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Abstract. We consider the well known Coordinated Attack Problem, where two generals have to
decide on a common attack, when their messengers can be captured by the enemy. Informally, this
problem represents the difficulties to agree in the presence of communication faults. We consider here
only omission faults (loss of message), but contrary to previous studies, we do not to restrict the way
messages can be lost, i.e. we make no specific assumption, we use no specific failure metric.
In the large subclass of message adversaries where the double simultaneous omission can never happen,
we characterize which ones are obstructions for the Coordinated Attack Problem. We give two proofs of
this result. One is combinatorial and uses the classical bivalency technique for the necessary condition.
The second is topological and uses simplicial complexes to prove the necessary condition. We also present
two different Consensus algorithms that are combinatorial (resp. topological) in essence. Finally, we
analyze the two proofs and illustrate the relationship between the combinatorial approach and the
topological approach in the very general case of message adversaries. We show that the topological
characterization gives a clearer explanation of why some message adversaries are obstructions or not.
This result is a convincing illustration of the power of topological tools for distributed computability.

Keywords: Distributed Systems, Fault-Tolerance, Message-Passing, Synchronous Sys-
tems, Coordinated Attack Problem, Two Generals Problem, Two Armies Problem, Consen-
sus, Message adversaries, Omission Faults, Distributed Computability, Simplicial Complexes,
Topological methods

1 Introduction

1.1 Motivations

The Coordinated Attack Problem (also known in the literature as the two generals or the
two armies problem) is a long time problem in the area of distributed computing. It is a
fictitious situation where two armies have to agree to attack or not on a common enemy
that is between them and might capture any of their messengers. Informally, it represents
the difficulties to agree in the presence of communication faults. The design of a solution
is difficult, sometimes impossible, as it has to address possibly an infinity of lost mutual
acknowledgments. It has important applications for the Distributed Databases commit for
two processes, see [Gra78]. It was one of the first impossibility results in the area of fault
tolerance and distributed computing [AEH75,Gra78].

In the vocabulary of more recent years, this problem can now be stated as the Uniform
Consensus Problem for 2 synchronous processes communicating by message passing in the
presence of omission faults. It is then a simple instance of a problem that had been very
widely studied [AT99,CBGS00,MR98]. See for example [Ray02] for a recent survey about
Consensus on synchronous systems with some emphasis on the omissions fault model.
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Moreover, given that, if any message can be lost, the impossibility of reaching an agree-
ment is obvious, one can wonder why it has such importance to get a name on its own, and
maybe why it has been studied in the first place... The idea is that one has usually to restrict
the way the messages are lost in order to keep this problem relevant.

We call an arbitrary pattern of failure by loss of messages a message adversary. It will for-
mally describe the fault environment in which the system evolves. For example, the message
adversary where any message can be lost at any round except that all messages cannot be
lost indefinitely is a special message adversary (any possibility of failure except one scenario),
for which it is still impossible to solve the Coordinated Attack Problem, but the proof might
be less trivial. Given a message adversary, a natural question is whether the Coordinated
Attack Problem is solvable against this environment. More generally, the question that arises
now is to describe what are exactly the message adversaries for which the Coordinated At-
tack Problem admit a solution, and for which ones is there no solution. These later message
adversaries will be called obstructions.

1.2 Related Works

The Coordinated Attack Problem is a kind of folklore problem for distributed systems. It
seems to appear first in [AEH75] where it is a problem of gangsters plotting for a big job. It
is usually attributed to [Gra78], where Jim Gray coined the name “Two Generals Paradox”
and put the emphasis on the infinite recursive need for acknowledgments in the impossibility
proof.

In textbooks it is often given as an example, however the drastic conditions under which
this impossibility result yields are never really discussed, even though for relevancy purpose
they are often slightly modified. In [Lyn96], a different problem of Consensus (with a weaker
validity condition) is used. In [San06], such a possibility of eternal loss is explicitly ruled out
as it would give a trivial impossibility proof otherwise.

This shows that the way the messages may be lost is an important part of the problem
definition, hence it is interesting to characterize when the pattern of loss allows to solve
the consensus problem or not, i.e. whether the fault environment is an obstruction for the
Coordinated Attack Problem or not. To our knowledge, this is the first time, this problem is
investigated for arbitrary patterns of omission failures, even in the simple case of only two
processes. Most notably, it has been addressed for an arbitrary number of processes and for
special (quite regular) patterns in [CHLT00,GKP03,Ray02].

A message adversary is oblivious if the set of possible communication pattern is the same
at each step. The complete characterization of oblivious message adversaries for which Con-
sensus is solvable has been given in [CGP15]. We consider here also non oblivious adversaries.

Note that while the model has been around for at least tens of years [SW89], the name
“message adversary” has been coined only recently by Afek and Gafni in [AG13].

1.3 Scope of Application and Contributions

Impossibility results in distributed computing are the more interesting when they are tight,
i.e. when they give an exact characterization of when a problem is solvable and when it is
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not. There are a lot of results regarding distributed tasks when the underlying network is
a complete graph and the patterns are simply described by faults (namely in the context
of Shared Memory systems), see for example the works in [HS99,SZ00,BG93] where exact
topologically-based characterizations is given for the wait-free model.

There are also more recent results when the underlying network can be any arbitrary
graph. The results given in [SW07] by Santoro and Widmayer are almost tight. What is
worth to note is that the general theorems of [HS99] could not be directly used by this study
for the very reason that the failure model for communication networks is not interestingly
expressible in the fault model for systems with one to one communication. In the following
of [CBS09], we are not interested in the exact cause of a message not being sent/received. We
are interested in as general as possible models. See Section 2.3 for a more detailed discussion.

We underline that the omission failures we are studying here encompass networks with
crash failures, see Example 8. It should also be clear that message adversaries can also be
studied in the context of a problem that is not the Consensus Problem. Moreover, as we
do not endorse any pattern of failures as being, say, more “realistic”, our technique can be
applied for any new patterns of failures.

On the way to a thorough characterization of all obstructions, we address the Consensus
problem for a particular but important subclass of failure patterns, namely the ones when no
two messages can be lost at the same round. It is long known that the Coordinated Attack
Problem is unsolvable if at most one message might be lost at each round [CHLT00,GKP03].
But what happens with strictly weaker patterns was unknown.

Our contribution is the following. In the large subclass of message adversaries where the
double simultaneous omission can never happen, we characterize which ones are obstructions
for the Coordinated Attack Problem. We give two alternative proofs of this result. One is
based on traditional combinatorial techniques, that have been extended to the more involved
setting of arbitrary message adversaries. The second one presents an extension of topological
techniques suited to arbitrary message adversaries. The combinatorial proof was presented
in [FG11]. The topological proof is an improved extract from the Master thesis of one of the
authors [Per15] where the notion of terminating subdivision from [GKM14] is applied to the
setting of the Coordinated Attack Problem.

More interestingly, the topological characterization gives a nice topological unified expla-
nation of the characterization, which is separated in four different cases in the combinatorial
presentation from [FG11]. This result is a convincing illustration of the power of topological
tools for distributed computability. Topological tools for distributed computing have some-
times been criticized for being over-mathematically involved. The result presented in this
paper shows that distributed computability is inherently linked to topological properties.

But the paper also illustrate some pitfalls of such tools as we could use the given charac-
terization to uncover an error in the main theorem of a paper generalizing the Asynchronous
Computability Theorem to arbitrary message adversaries [GKM14]. Mathematically, this
error can be traced to the subtle differences between simplicial complexes and abstract sim-
plicial complexes of infinite size. See Remark 29
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The outline of the paper is the following. We describe Models and define our Problem
in the Section 2. We present numerous examples of application of our terminology and
notation in Section 2.5. We then address the characterization of message adversaries without
simultaneous faults that are obstructions for the Coordinated Attack Problem in Theorem 19.
We give the proofs for necessary condition (impossibility result) in 3.1 and for sufficient
condition (explicit algorithm) in 3.2 using the classical bivalency techniques. We then prove
the same results in a topological way in section 4. Finally, the two results are compared and
we show how the topological explanation gives more intuition about the result.

2 Models and Definitions

2.1 The Coordinated Attack Problem

A folklore problem Two generals have gathered forces on top of two facing hills. In
between, in the valley, their common enemy is entrenched. Every day each general sends a
messenger to the other through the valley. However this is risky as the enemy may capture
them. Now they need to get the last piece of information: are they both ready to attack?

This two army problem was originated by [AEH75] and then by Gray [Gra78] when
modeling the distributed database commit. It corresponds to the binary consensus with two
processes in the omission model. If their is no restriction on the fault environments, then
any messenger may be captured. And if any messenger may be captured, then consensus is
obviously impossible: the enemy can succeed in capturing all of them, and without commu-
nication, no distributed algorithm.

Possible Environments Before trying to address what can be, in some sense, the most
relevant environments, we will describe different environments in which the enemy cannot
be so powerful as to be able to capture any messenger.

This is a list of possible environments, using the same military analogy. The generals
name are White and Black.

(1) no messenger is captured
(2) messengers from General White may be captured
(3) messengers from General Black may be captured
(4) messengers from one general are at risk, and if one of them is captured, all the following

will also be captured (the enemy got the secret “Code of Operations” for this general
from the first captured messenger)

(5) messengers from one general are at risk (the enemy could manage to infiltrate a spy in
one of the armies)

(6) at most one messenger may be captured each day (the enemy can’t closely watch both
armies on the same day)

(7) any messenger may be captured

Which ones are (trivial) obstructions, and which are not? Nor obstruction, nor trivial?
What about more complicated environments?
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2.2 The Binary Consensus Problem

A set of synchronous processes wish to agree about a binary value. This problem was first
identified and formalized by Lamport, Shostak and Pease [PSL80]. Given a set of processes,
a consensus protocol must satisfy the following properties for any combination of initial
values [Lyn96]:

– Termination: every process decides some value.
– Validity : if all processes initially propose the same value v, then every process decides v.
– Agreement : if a process decides v, then every process decides v.

Consensus with such a termination and decision requirement for every process is more
precisely referred to as the Uniform Consensus, see [Ray02] for example for a discussion.
Given a fault environment, the natural questions are : is the Consensus solvable, if it is
solvable, what is the minimal complexity?

2.3 The Communication Model

In this paper, the system we consider is a set Π of only 2 processes named white and black,
Π = {◦, •}. The processes evolve in synchronized rounds. In each round r, every process p
executes the following steps: p sends a message to the other process, receives a messages M
from the other process, and then updates its state according to the received message.

The messages sent are, or are not, delivered according to the environment in which the
distributed computation takes place. This environment is described by a message adversary.
Such an adversary models exactly when some messages sent by a process to the other process
may be lost at some rounds. We will consider arbitrary message adversaries, they will be
represented as arbitrary sets of infinite sequences of combinations of communication rounds.

In the following of [CBS09], we are not interested in the exact cause of a message not being
sent/received. We only refer to the phenomenon: the content of messages being transmitted
or not. The fact that the adversaries are arbitrary means that we do not endorse any metric
to count the number of “failures” in the system. There are metrics that count the number
of lost messages, that count the number of process that can lose messages (both in send and
receive actions). Other metrics count the same parameters but only during a round of the
system. The inconvenient of this metric-centric approach is that, even when restricted only
to omission faults, it can happen that some results obtained on complete networks are not
usable on arbitrary networks. Because in, say, a ring network, you are stating in some sense
that every node is faulty. See eg [SW07] for a very similar discussion, where Santoro and
Widmayer, trying to solve some generalization of agreement problems in general networks
could not use directly the known results in complete networks.

As said in the introduction, the Coordinated Attack Problem is nowadays stated as the
Uniform Consensus Problem for 2 synchronous processes communicating by message passing
in the presence of omission faults. Nonetheless, we will use Consensus and Uniform Consensus
interchangeably in this paper. We emphasize that, because we do not assign omission faults
to any process (see previous discussion), there are only correct processes.
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2.4 Message Adversaries

We introduce and present here our notation.

Definition 1. We denote by G2 the set of directed graphs with vertices in Π.

G2 = {◦↔•, ◦←•, ◦→•, ◦−−•}

We denote by Γ the following subset of G2

Γ = {◦↔•, ◦←•, ◦→•}.

At a given round, there are only four combinations of communication. Those elements
describe what can happen at a given round with the following straightforward semantics:

– ◦↔•, no process looses messages
– ◦←•, the message of process ◦, if any, is not transmitted
– ◦→•, the message of process •, if any, is not transmitted
– ◦−−•, both messages, if any, are not transmitted1.

The terminology message adversary has been introduced in [AG13], but the concept is
way older.

Definition 2. A message adversary over Π is a set of infinite sequences of elements of G2.

We will use the standard following notations in order to describe more easily our message
adversaries [PP04]. A (infinite) sequence is seen as a (infinite) word over the alphabet G2.
The empty word is denoted by ε.

Definition 3. Given A ⊂ G2, A∗ is the set of all finite sequences of elements of A, Aω is
the set of all infinite ones and A∞ = A∗ ∪ Aω.

An adversary of the form Aω is called an oblivious adversary. A word in L ⊂ Gω2 is called
a communication scenario (or scenario for short) of message adversary L. Given a word
w ∈ G∗2 , it is called a partial scenario and len(w) is the length of this word.

Intuitively, the letter at position r of the word describes whether there will be, or not,
transmission of the message, if one is being sent at round r. A formal definition of an
execution under a scenario will be given in Section 2.6.

We recall now the definition of the prefix of words and languages. A word u ∈ G∗2 is a
prefix for w ∈ G∗2 (resp. w′ ∈ Gω2 ) if there exist v ∈ G∗2 (resp. v′ ∈ Gω2 ) such that w = uv
(resp. w′ = uv′).

Given w ∈ Gω2 and r ∈ N, w|r is the prefix of size r of w.

Definition 4. Let w ∈ G∗2 , then Pref(w) = {u ∈ G∗2 |u is a prefix of w}. Let L ⊂ G∗2 , let
r ∈ N, Prefr(L) = {w|r | w ∈ L} and Pref(L) =

⋃
w∈L

Pref(w) =
⋃
r∈N

Prefr(L).

1 In order to increase the readability, we note ◦−−• instead of ◦ •, the double-omission case.
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2.5 Examples

We do not restrict our study to regular languages, however all message adversaries we are
aware of are regular, as can be seen in the following examples, where the rational expressions
prove to be very convenient.

We show how standard fault environments are conveniently described in our framework.

Example 5. Consider a system where, at each round, up to 2 messages can be lost. The
associated message adversary is Gω2 .

Example 6. Consider a system where, at each round, only one message can be lost. The
associated message adversary is {◦↔•, ◦←•, ◦→•}ω = Γ ω.

Example 7. Consider a system where at most one of the processes can lose messages. The
associated adversary is the following:

S1 = {◦↔•, ◦←•}ω ∪ {◦↔•, ◦→•}ω

Example 8. Consider a system where at most one of the processes can crash, For the phe-
nomena point of view, this is equivalent to the fact that at some point, no message from a
particular process will be transmitted. The associated adversary is the following:

C1 = {◦↔•ω} ∪ {◦↔•}∗({◦←•ω, ◦→•ω})

Example 9. Finally the seven simple cases exposed by the possible environments described
in Section 2.1 are described formally as follows:

S0 = {◦↔•}ω (1)

T◦ = {◦↔•, ◦←•}ω (2)

T• = {◦↔•, ◦→•}ω (3)

C1 = {◦↔•ω} ∪ {◦↔•}∗({◦←•ω, ◦→•ω}) (4)

S1 = {◦↔•, ◦←•}ω ∪ {◦↔•, ◦→•}ω = T◦ ∪ T• (5)

R1 = Γ ω (6)

S2 = Gω2 (7)

Note that the fourth and first cases correspond respectively to the synchronous crash-
prone model [Lyn96] and to the 1−resilient model [Ada03,GKP03]. Even though in our
definition, sets of possible scenarios could be arbitrary, it seems that all standard models
(including crash-based models) can be described using only regular expressions.

2.6 Execution of a Distributed Algorithm

Given a message adversary L, we define what is a run of a given algorithm A subject to L.
An execution, or run, of an algorithm A under scenario w ∈ L is the following. At round

r ∈ N, messages are sent (or not) by the processes. The fact that the corresponding receive
action will be successful depends on a, the r-th letter of w.
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– if a = ◦↔•, then all messages, if any, are correctly delivered,
– if a = ◦←•, then the message of process ◦ is not transmitted (the receive call of •, if any

at this round, returns null),
– if a = ◦←•, then the message of process • is not transmitted (the receive call of ◦, if any

at this round, returns null),
– if a = ◦−−•, no messages is transmitted.

Then, both processes updates their state according to A and the value received. An
execution is a (possibly infinite) sequence of such messages exchanges and corresponding
local states.

Given u ∈ Pref(w), we denote by sp(u) the state of process p at the len(u)-th round of
the algorithm A under scenario w. This means in particular that sp(ε) represents the initial
state of p, where ε denotes the empty word.

Finally and classically,

Definition 10. An algorithm A solves the Coordinated Attacked Problem for the message
adversary L if for any scenario w ∈ L, there exist u ∈ Pref(w) such that the states of the
two processes (s◦(u) and s•(u)) satisfy the three conditions of Section 2.2.

Definition 11. A message adversary L is said to be solvable if there exist an algorithm that
solves the Coordinated Attacked Problem for L. It is said to be an obstruction otherwise.

A message adversary L is a (inclusion) minimal obstruction if any L′  L is solvable.

2.7 Index of a Scenario

We will use the following integer function of scenarios that will be proved to be a useful
encoding of all the important properties of a given message adversary by mapping scenarios
in Γ r to integers in [0, 3r − 1]. The intuition to this function will become clearer from the
topological point of view in Section 4. By induction, we define the following integer index
given w ∈ Γ ∗. First, we define µ on Γ by

– µ(◦→•) = −1,
– µ(◦↔•) = 0.
– µ(◦←•) = 1,

Definition 12. Let w ∈ Γ ∗. We define ind(ε) = 0. If len(w) ≥ 1, then we have w = ua
where u ∈ Γ ∗ and a ∈ Γ . In this case, we define

ind(w) := 3ind(u) + (−1)ind(u)µ(a) + 1.

Let n ∈ N, define indn : Γ n → [0, 1] and ind : Γ ω → [0, 1] to be respectively the normal-
ization of ind and the limit index of the infinite scenarios :

– ∀w ∈ Γ n indn(w) = ind(w)
3n

– ∀w ∈ Γ ω ind(w) = lim
n→+∞

indn(w|n)
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The convergence for ind is obvious from the following lemma.

Lemma 13. Let r ∈ N. The application ind is a bijection from Γ r to J0, 3r − 1K.

Proof. The lemma is proved by a simple induction. If r = 0, then the property holds.
Let r > 0. Suppose the property is satisfied for r − 1. Given w ∈ Γ r, we have w = ua

with u ∈ Γ r−1 and a ∈ Γ . From ind(w) = 3ind(u) + (−1)ind(u)µ(a) + 1 and the induction
hypothesis, we get immediately that 0 ≤ ind(w) ≤ 3r − 1.

Now, we need only to prove injectivity. Suppose there are w,w′ ∈ Γ r such that ind(w) =
ind(w′). So there are u, u′ ∈ Γ r−1 and a, a′ ∈ Γ such that

3ind(u) + (−1)ind(u)µ(a) + 1 = 3ind(u′) + (−1)ind(u
′)µ(a′) + 1.

Then
3(ind(u)− ind(u′)) = (−1)ind(u

′)µ(a′)− (−1)ind(u)µ(a).

Remarking that the right hand side of this integer equality has an absolute value that can
be at most 2, we finally get

ind(u) = ind(u′)

(−1)ind(u)µ(a) = (−1)ind(u
′)µ(a′)

By induction hypothesis, we get that u = u′ and a = a′. Hence w = w′, and ind is
injective, therefore bijective from Γ r onto J0, 3r − 1K.

Two easy calculations give

Proposition 14. Let r ∈ N, ind(◦→•r) = 0 and ind(◦←•r) = 3r − 1.

In Figure 1, the indexes for words of length at most 2 are given.

word of length 1 ◦→• ◦↔• ◦←•
index 0 1 2

word of length 2 ◦→•◦→• ◦→•◦↔• ◦→•◦←•
index 0 1 2

word of length 2 ◦↔•◦→• ◦↔•◦↔• ◦↔•◦←•
index 5 4 3

word of length 2 ◦←•◦→• ◦←•◦↔• ◦←•◦←•
index 6 7 8

Fig. 1: Indexes for some short words

We now describe precisely what are the words whose indexes differs by only 1. We have
two cases, either they have the same prefix and different last letter or different prefix and
same last letter.
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Lemma 15. Let r ∈ N, and v, v′ ∈ Γ r. Then ind(v′) = ind(v) + 1 if and only if one of the
following conditions holds:

15.i ind(v) is even and
– either there exist u ∈ Γ r−1, and v = u◦↔•, v′ = u◦→•,
– either there exist u, u′ ∈ Γ r−1, and v = u◦←•, v′ = u′◦←•, and ind(u′) = ind(u) + 1.

15.ii ind(v) is odd and
– either there exist u ∈ Γ r−1, and v = u◦←•, v′ = u◦↔•,
– either there exist u, u′ ∈ Γ r−1, and v = u◦→•, v′ = u′◦→•, and ind(u′) = ind(u) + 1.

Proof. The lemma is proved by a induction. If r = 0, then the property holds. Let r ∈ N∗.
Suppose the property is satisfied for r − 1.

Suppose there are w,w′ ∈ Γ r such that ind(w′) = ind(w) + 1. So there are u, u′ ∈ Γ r−1

and a, a′ ∈ Γ such that

3ind(u) + (−1)ind(u)µ(a) + 2 = 3ind(u′) + (−1)ind(u
′)µ(a′) + 1.

Then
3(ind(u)− ind(u′)) = (−1)ind(u

′)µ(a′)− (−1)ind(u)µ(a)− 1.

Remarking again that this is an integer equality, we then have

– either (ind(u) = ind(u′) and (−1)ind(u
′)µ(a′) = (−1)ind(u)µ(a) + 1,

– either (ind(u′) = ind(u) + 1 and (−1)ind(u
′)µ(a′) = (−1)ind(u)µ(a)− 2.

This yields the following cases:

1. ind(u) = ind(u′) is even, a = ◦←• and a′ = ◦↔•,
2. ind(u) = ind(u′) is odd, a = ◦→• and a′ = ◦↔•,
3. ind(u) = ind(u′) is even, a = ◦↔• and a′ = ◦→•,
4. ind(u) = ind(u′) is odd, a = ◦↔• and a′ = ◦←•,
5. ind(u′) = ind(u) + 1, ind(u) is even, a = ◦←• = a′,
6. ind(u′) = ind(u) + 1, ind(u) is odd, a = ◦→• = a′,

Getting all the pieces together, we get the results of the lemma.

Given an algorithm A, we have this fundamental corollary, that explicit the uncertainty
process can experience between two executions whose indexes differ by only 1: one of the
process is in the same state in both cases. Which process it is depends on the parity. In other
word, when the first index is even, • cannot distinguish the two executions, when it is odd,
this is ◦ that cannot distinguish the two executions.

Corollary 16. Let v, v′ ∈ Γ r such that ind(v′) = ind(v) + 1. Then,

16.i if ind(v) is even then s•(v) = s•(v′),
16.ii if ind(v) is odd then s◦(v) = s◦(v′).

Proof. We prove the result using Lemma 15 and remarking that either a process receives a
message from the other process being in the same state in the preceding configuration u;
either it receives no message when the state of the other process actually differ.
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2.8 Characterization

We prove that a message adversary L ⊂ Γ ω is solvable if and only if it does not contain a
fair scenario or a special pair of unfair scenarios. We define the following set to help describe
the special unfair pairs.

Definition 17. A scenario w ∈ Gω2 is unfair if w ∈ G∗2({◦−−•, ◦←•}ω ∪ {◦−−•, ◦→•}ω). The
set of fair scenarios of Γ ω is denoted by Fair(Γ ω).

In words, in an unfair scenario, there is one or more processes for which the messages are
indefinitely lost at some point. And in a fair scenario there is an infinity of messages that
are received from both processes.

Definition 18. We define special pairs as SPair(Γ ω) = {(w,w′) ∈ Γ ω×Γ ω | w 6= w′,∀r ∈
N|ind(w|r)− ind(w′|r)| ≤ 1}.

Theorem 19. Let L ⊂ Γ ω, then Consensus is solvable for message adversary L if and only
if L ∈ {F1 ∪ F2 ∪ F3 ∪ F4} where

19.i F1 = {L ⊂ Γ ω | ∃f ∈ Fair(Γ ω) ∧ f /∈ L}
19.ii F2 = {L ⊂ Γ ω | ∃(w,w′) ∈ SPair(Γ ω) ∧ w,w′ /∈ L}
19.iii F3 = {L ⊂ Γ ω | ◦→•ω /∈ L}
19.iv F4 = {L ⊂ Γ ω | ◦←•ω /∈ L}

We have split the set of solvable scenarios in four families for a better understanding even
though it is clear that they largely intersect. F1 contains every scenarios for which at least
one unfair scenario cannot occur ; in F2 both elements of a special pair cannot occur ; finally
F3 and F4 contains every scenarios for which at least one message is received from both
processes.

We present two proofs of Theorem 19 in the following sections.

2.9 Application to the Coordinated Attack Problem

We consider now our question on the seven examples of Example 9.
The answer to possibility is obvious for the first and last cases. In the first three cases,

S0, {◦↔•, ◦←•}ω or {◦↔•, ◦→•}ω, Consensus can be reached in one day (by deciding the
initial value of ◦,•, and ◦ respectively). The fourth and fifth cases are a bit more difficult
but within reach of our Theorem 19. We remark that the scenario ◦←•◦→•◦↔•ω is a fair
scenario that does not belong to C1, nor S1. Therefore, those are solvable cases also. In the
last case, consensus can’t be achieved [Gra78,Lyn96], as said before.

The following observation is also a way to derive lower bounds from computability results.

Proposition 20. Let O ⊂ Γ ω an obstruction for the Consensus problem. Let L ⊂ Γ ω and
r ∈ N such that Prefr(O) ⊂ Prefr(L) then, Consensus can not be solved in L in less than
r steps.
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Indeed if every prefixes of length r of O in which Consensus is unsolvable are also prefixes
of L, then after r rounds of any scenario w ∈ L, processes solving Consensus in L would be
mean it is also solvable in O.

Now, using Proposition 20 for the fourth and fifth cases of Example 9 yields the following
summary by remarking that their first round are exactly the same as Γ ω.

1. S0 is solvable in 1 round,
2. T◦ is solvable in 1 round,
3. T• is solvable in 1 round,
4. C1 is solvable in exactly 2 rounds,
5. S1 is solvable in exactly 2 rounds.

2.10 About Minimal Obstructions

Theorem 19 shows that, even in the simpler subclass where no double omission are permitted,
simple inclusion-minimal adversaries may not exist. Indeed, there exists a sequence of unfair
scenarios (ui)i∈N) such that ∀i, j, (ui, uj) is not a special pair. Therefore Ln = Γ ω\

⋃
0≤i≤nui

defines an infinite decreasing sequence of obstructions for the Coordinated Attack Problem.
Considering the set of words in SPair(Γ ω), it is possible by picking up only one member

of a special pair to have an infinite set U of unfair scenarios such that, by Theorem 19, the
adversary Γ ω\U is a minimal obstruction. So there is no minimum obstruction.

As a partial conclusion, we shall say that the well known adversary Γ ω, even not being
formally a minimal obstruction, could be considered, without this being formally defined, as
the smallest example of a simple obstruction, as it is more straightforward to describe than,
say the adversaries Γ ω\U above.

This probably explains why the other obstructions we present here have never been
investigated before.

3 Combinatorial Characterization of Solvable Adversaries

In this part, we consider the adversaries without double omission, that is the adversaries
L ⊂ Γ ω and we characterize exactly which one are solvable. When the consensus is achievable,
we also give an effective algorithm. In this section, we rely on a classical combinatorial
bivalency technique [FLP85].

3.1 Necessary Condition: a Bivalency Impossibility Proof

We will use a standard, self-contained, bivalency proof technique. We suppose now on that
there is an algorithm A to solve Consensus on L.

We proceed by contradiction. So we suppose that all the conditions of Theorem 19 are
not true, i.e. that Fair(Γ ω)∪{◦→•ω, ◦←•ω} ⊂ L, and that for all (w,w′) ∈ SPair(Γ ω), w /∈
L =⇒ w′ ∈ L.

12



Definition 21. Given an initial configuration, let v ∈ Pref(L) and i ∈ {0, 1}. The partial
scenario v is said to be i-valent if, for all scenario w ∈ L such that v ∈ Pref(w), A decides
i at the end. If v is not 0−valent nor 1−valent, then it is said bivalent.

By hypothesis, ◦←•ω, ◦→•ω ∈ L. Consider our algorithm A with input 0 on both pro-
cesses running under scenario ◦←•ω. The algorithm terminates and has to output 0 by
Validity Property. Similarly, both processes output 1 under scenario ◦→•ω with input 1 on
both processes.

From now on, we have this initial configuration I: 0 on process ◦ and 1 on process •. For
◦ there is no difference under scenario ◦→•ω for this initial configurations and the previous
one. Hence, A will output 0 for scenario ◦→•ω. Similarly, for • there is no difference under
scenario ◦←•ω for both considered initial configurations. Hence, A will output 1 for this
other scenario. Hence ε is bivalent for initial configuration I. In the following, valency will
always be implicitly defined with respect to the initial configuration I.

Definition 22. Let v ∈ Pref(L), v is decisive if

22.i v is bivalent,
22.ii For any a ∈ Γ such that va ∈ Pref(L), va is not bivalent.

Lemma 23. There exist a decisive v ∈ Pref(L).

Proof. We suppose this not true. Then, as ε is bivalent, it is possible to construct w ∈ Γ ω

such that, Pref(w) ⊂ Pref(L) and for any v ∈ Pref(w), v is bivalent. Bivalency for a given
v means in particular that the algorithm A has not stopped yet. Therefore w /∈ L.

This means that w is unfair, because from initial assumption, Fair(Γ ω) ⊂ L. Then this
means that, w.l.o.g we have u ∈ Γ+, such that w = u◦←•ω and ind(u) is even. We denote
by w′ = ind−1(ind(u) − 1)◦←•ω. The couple (w,w′) is a special pair. Therefore w′ belongs
to L, so A halts at some round r0 under scenario w′.

By Corollary 16, s•(w|r0) = s•(w
′
|r0) This means that w|r0 is not bivalent. As w|r0 ∈

Pref(L) this gives a contradiction.

We can now end the impossibility proof.

Proof. Consider a decisive v ∈ Pref(L). By definition, this means that there exist a, b ∈ Γ ,
with a 6= b, such that va, vb ∈ Pref(L) and va and vb are not bivalent and are of different
valencies. Obviously there is an extension that has a different valency of the one of ◦↔• and
w.l.o.g., we choose b to be ◦↔•. Therefore a = ◦←• or a = ◦→•. We terminate by a case by
case analysis.

Suppose that a = ◦←•, and ind(v) is even. By Corollary 16, this means • is in the
same state after va and vb. We consider the scenarios va◦←•ω and vb◦←•ω, they forms a
special pair. So one belongs to L by hypothesis, therefore both processes should halt at
some point under this scenario. However, the state of • is always the same under the two
scenarios because it receives no message at all so if it halts and decides some value, we get
a contradiction with the different valencies.

Other cases are treated similarly using the other cases of Corollary 16.
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3.2 A Consensus Algorithm

Given a word w in Γ ω, we define the following algorithm Aw (see Algorithm 1). It has
messages always of the same type. They have two components, the first one is the initial bit,
named init. The second is an integer named ind. Given a message msg, we note msg.init
(resp. msg.ind) the first (resp. the second) component of the message.

Algorithm 1: Consensus Algorithm Aw for Process p:
Data: w ∈ Γω

Input: init ∈ {0, 1}
1 r=0;
2 initother=null;
3 if p = ◦ then
4 ind=0;
5 else
6 ind=1;

7 while |ind− ind(w|r)| ≤ 2 do
8 msg = (init,ind);
9 send(msg);

10 msg = receive();
11 if msg == null then // message was lost
12 ind = 3 ∗ ind;
13 else
14 ind = 2 ∗msg.ind+ ind;
15 initother = msg.init;

16 r=r+1;

17 if p = ◦ then
18 if ind < ind(w|r) then

Output: init
19 else

Output: initother

20 else
21 if ind > ind(w|r) then

Output: init
22 else

Output: initother

We prove that the ind values computed by each process in the algorithm differ by only
one. Moreover, we show that the actual index is equal to the minimum of the ind values.

More precisely, with sign(n) being +1 (resp. −1) when n ∈ Z is positive (resp. negative),
we have

Proposition 24. For any round r of an execution of Algorithm Aw under scenario v ∈ Γ r,
such that no process has already halted, |ind

•
r − ind◦r| = 1,

sign(ind•r − ind◦r) = (−1)ind(v),
ind(v) = min{ind◦r, ind•r}.

14



Proof. We prove the result by induction over r ∈ N.
For r = 0, the equations are satisfied.
Suppose the property is true for r−1. We consider a round of the algorithm. Let u ∈ Γ r−1

and a ∈ Γ , and consider an execution under environment w = ua. There are exactly three
cases to consider.

Suppose a = ◦↔•. Then it means both messages are received and ind◦r = 2ind•r−1+ind◦r−1
and ind•r = 2ind◦r−1+ind•r−1. Hence ind•r−ind◦r = ind◦r−1−ind•r−1. Thus, using the recurrence
property, we get |ind•r − ind◦r| = 1.

Moreover, by construction

ind(v) = ind(ua)

= 3ind(u) + (−1)ind(u)(µ(a)) + 1

= 3ind(u) + 1

The two indices ind(u) and ind(v) are therefore of opposite parity. Hence, by induction
property, sign(ind•r − ind◦r) = (−1)ind(v). And remarking that min{ind◦r, ind•r} =

min{2ind•r−1 + ind◦r−1, 2ind
◦
r−1 + ind•r−1}

= ind•r−1 + ind◦r−1 + min{ind◦r−1, ind•r−1}
= 2 min{ind◦r−1, ind•r−1}+ |ind•r−1 − ind◦r−1|

+ min{ind◦r−1, ind•r−1}
= 3 min{ind◦r−1, ind•r−1}+ 1

we get that the third equality is also verified in round r.
Consider now the case a = ◦→•. Then ◦ gets no message from • and • gets a message

from ◦. So we have that ind◦r = 3ind◦r−1 and ind•r = 2ind◦r−1 + ind•r−1. So we have that
ind•r − ind◦r = ind•r−1 − ind◦r−1. The first equality is satisfied.

We also have that ind(v) = 3ind(u) + (−1)ind(u)µ(◦→•) + 1 = 3ind(u) + α, with α = 0
if ind(u) is even and α = 2 otherwise. Hence, ind(u) and ind(v) are of the same parity, and
the second equality is also satisfied.

Finally, we have that min{ind◦r, ind•r} = {3ind◦r−1, 2ind◦r−1 + ind•r−1}. If ind(u) is even,
then ind(u) = ind◦r−1 and the equality holds. If ind(u) is odd, then ind(u) = ind•r−1 and the
equality also holds.

The case a = ◦←• is a symmetric case and is proved similarly.

3.3 Correctness of the Algorithm

Given a message adversary L, we suppose that one of the following holds.

– ∃f ∈ Fair(Γ ω), f /∈ L,
– ∃(u, u′) ∈ SPair(Γ ω), u, u′ /∈ L,
– ◦→•ω /∈ L,
– ◦←•ω /∈ L.
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In particular, L ( Γ ω and we denote by w, a scenario in Γ ω\L. If we can choose w such
that it is fair, we choose such a w. Otherwise w is unfair, and we assume it is either ◦→•ω
or ◦←•ω, or it belongs to a special pair that is not included in L.

We consider the algorithm Aw with parameter w as defined above.

Lemma 25. Let v ∈ L. There exist r ∈ N such that |ind(v|r)− ind(w|r)| ≥ 3.

Proof. Given w /∈ L, we have v 6= w and at some round r, w|r 6= v|r. Therefore |ind(v|r) −
ind(w|r)| ≥ 1.

From Lemma 15 and Definition 18, it can be seen that the only way to remain indefinitely
at a difference of one is exactly that w and v form a special pair. Given the way we have
chosen w, and that v ∈ L, this is impossible. So at some round r′, the difference will be
greater than 2 : |ind(v|r′)− ind(w|r′)| ≥ 2.

Then by definition of the index we have that |ind(v|r′+1)− ind(w|r′+1)| ≥ 3.

Now we prove the correctness of the algorithm under the message adversary L.

Proposition 26. The algorithm Aw is correct for every v ∈ L.

Proof. First we show Termination. This is a corollary of Lemma 25 and Proposition 24.
Consider the execution v ∈ L. From Lemma 25, there exists a round r ∈ N such that

|ind(v|r)− ind(w|r)| ≥ 3.
Denote by r the round when it is first satisfied for one of the process. From the condition

of the While loop, it means this process will stop at round r. If the ind value of the other
process p at round r is also at distance 3 or more from the index of w|r, then we are done.
Otherwise, from Proposition 24, we have |indpr− ind(w|r)| = 2. In the following round, p will
receive no message (the other process has halted) and |indpr − ind(w|r)| ≥ 3 will hold . Note
also, that even though the final comparisons are strict, the output value is well defined at
the end since indr 6= ind(w|r) at this stage.

The validity property is also obvious, as the output values are ones of the initial values.
Consider the case for • (the case for ◦ is symmetric). Since the only case where initother•

would be null is when • has not received any message from ◦, i.e. when v = ◦←•r. But as
ind(◦←•r) = 3r − 1 is the maximal possible index for scenario of length r, and • outputs
initother• only if ind• < ind(w|r), it cannot have to output initother when it is null.
Similarly for ◦, this proves that null can never be output by any process.

We now prove the agreement property. Given that |ind◦r − ind•r| = 1 by Proposition 24,
when the processes halt, from Lemma 25 the ind values are on the same side of ind(w|r). This
means that one of the process outputs init, the other outputting initother. By construction,
they output the same value.

4 Topological approach

In this Section, we provide a topological characterization of solvable message adversaries
for the Consensus Problem. First, we will introduce some basic topological definitions in
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Section 4.1, then we will explain the link between topology and distributed computability in
Section 4.2 in order to formulate our result in Section 4.3.

We then show in the following Section 5 how this new characterization matches the
combinatorial one described by Theorem 19. We also discuss a similar characterization in
[GKM14] and we show that our result indicates that there is a flaw in the statement of
Theorem 6.1 of [GKM14]. If no restriction are given on the kind of adversary are addressed in
this theorem, then, in the case of 2 processes, this would imply that Γ ω\{w} is solvable for any
w. From our result, this is incorrect when w belongs to a special pair. This has been confirmed
by the authors [Kuz] that the statement has to be corrected by restricting to adversaries
L that are closed for special pairs (if {w,w′} is a special pair, then w ∈ L ⇔ w′ ∈ L).
Moreover, even if the present work is for only 2 processes, the approach that is taken might
help correct the general statement of [GKM14].

4.1 Definitions

The following definitions are standard definitions from algebraic topology [Mun84]. We fix
an integer N ∈ N for this part.

Definition 27. Let n ∈ N. A finite set σ = {v0, . . . , vn} ⊂ RN is called a simplex of
dimension n if the vector space generated by {v1 − v0, . . . , vn − v0} is of dimension n. We
denote by |σ| the convex hull of σ that we call the geometric realization of σ.

Definition 28. A simplicial complex is a collection C of simplices such that :

(a) If σ ∈ C and σ′ ⊆ σ, then σ′ ∈ C,
(b) If σ, τ ∈ C and |σ| ∩ |τ | 6= ∅ then there exists σ′ ∈ C such that

– |σ| ∩ |τ | = |σ′|,
– σ′ ⊂ σ, σ′ ⊂ τ.

The simplices of dimension 0 (singleton) of C are called vertices, we denote V (C) the
set of vertices. The geometric realization of C, denoted |C|, is the union of the geometric
realization of the simplices of C.

Let A and B be simplicial complexes. A map f : V (A) → V (B) is called simplicial (in
which case we write f : A→ B) if it preserves the simplices, i.e. for each simplex σ of A, the
image f(σ) is a simplex of B.

In this paper, we also work with colored simplicial complexes. These are simplicial com-
plexes C together with a function c : V (C)→ Π such that the restriction of c on any maximal
simplex of C is a bijection. A simplicial map that preserves colors is called chromatic.

As a final note, since we only deal with two processes, our simplicial complexes will be
of dimension 1. The only simplices are edges (sometimes called segments) and vertices, and
the latter are colored with Π = {◦, •}.

Remark 29. The combinatorial part of simplicial complexes (that is the sets of vertices and
the inclusion relationships they have) is usually referred as abstract simplicial complexes.
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Abstract simplicial complex can be equivalently defined as a collection C of sets that are
closed by inclusion, that is if S ∈ C and if S ′ ⊂ S then S ′ ∈ C.

For finite complexes, the topological and combinatorial notions are equivalent, including
regarding geometric realizations. But it should be noted that infinite abstract simplicial com-
plex might not have a unique (even up to homeomorphisms) geometric realization. However,
here the infinite complexes we deal with are derived from the subdivision, see below, of a
finite initial complex, hence they have a unique realization in that setting. So in the context
of this paper, we will talk about “the” realization of such infinite complexes.

The elements of |C| can be expressed as convex combinations of the vertices of C, i.e.
∀x ∈ |C| x =

∑
v∈V (C)

αvv such that
∑

v∈V (C)

αv = 1 and {v | αv 6= 0} is a simplex of C.

The geometric realization of a simplicial map δ : A→ B, is |δ| : |A| → |B| and is obtained
by f(x) =

∑
v∈V (C)

αvf(v).

A subdivision of a simplicial complex C is a simplicial complex C ′ such that :

(1) the vertices of C ′ are points of |C|,
(2) for any σ′ ∈ C ′, there exists σ ∈ C such that |σ′| ⊂ |σ|;
(3) |C| = |C ′|.

Let C be a chromatic complex of dimension 1, its standard chromatic subdivision Chr C
is obtained by replacing each simplex σ ∈ C by its chromatic subdivision. See [HKR13] for
the general definition of the chromatic subdivision of a simplex, we present here only the
chromatic subdivision of a segment [0, 1] ⊂ R whose vertices are colored ◦ and • respectively.
The subdivision is defined as the chromatic complex consisting of 4 vertices at position 0, 1

3
,

2
3

and 1; and colored ◦, •, ◦, • respectively. The edges are the 3 segments [0, 1
3
], [1

3
, 2
3
] and

[2
3
, 1]. The geometric realization of the chromatic subdivision of the segment [0, 1] is identical

to the segment’s.
If we iterate this process m times we obtain the mth chromatic subdivision denoted

Chrm C. Figure 2 shows Chr [0, 1] to Chr3 [0, 1].

σ
0 1

Chr σ
0 1

2
3

1
3

Chr2σ
0 1

2
9

1
9

8
9

7
9

Chr3σ
0 1

2
27

1
27

24
27

23
27

Fig. 2: Chromatic subdivision of the segment.
The correspondence with executions (bolder simplices) is explained at the end of section 4.2.
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4.2 Topological representation of distributed systems

As shown from the celebrated Asynchronous Computability Theorem [HS99], it is possible
to encode the global state of a distributed system in simplicial complexes. First we give the
intuition for the corresponding abstract simplicial complex.

We can represent a process in a given state by a vertex composed of a color and a value :
the identity and the local state. A global configuration is an edge whose vertices are colored
◦ and •.

The set of input vectors of a distributed task can thus be represented by a colored
simplicial complex I (associating all possible global initial configurations).

Remark 30. The vertices that belongs to more than one edge illustrate the uncertainty of a
process about the global state of a distributed system. In other words, a local state can be
common to multiple global configurations, and the process does not know in which config-
uration it belongs. We have a topological (and geometrical) representation of theses uncer-
tainties.

For example, Figure 3 shows a very simple graph where each colored vertex is associated
with a value (0 or 1). The vertex in the middle is common to both edges; it represents the
uncertainty of the process • concerning the value of ◦, i.e. • doesn’t know if it is in the global
configuration (0, 0) of (0, 1)

0 0 1

Fig. 3: Example of a simplicial complex with uncertainty

In the same way than I, we construct (for a distributed task) the output complex O
that contains all possible output configurations of the processes. For a given problem, it is
possible to construct a relation ∆ ⊂ I × O that is chromatic and relates the input edges
with the associated possible output edges. So, any task can be topologically represented by
a triplet (I,O, ∆).

For example, the Binary Consensus task with two processes, noted (I2gen,O2gen, ∆2gen),
is shown in Figure 4. The input complex I2gen, on the left-hand side, consists of a square.
Indeed, there are only four possible global configurations given that the two process can only
be in two different initial states (proposed value 0 or 1). The output complex, on the right-
hand side, has only two edges corresponding to the valid configurations for the Consensus (all
0 or all 1). Finally ∆ maps the input configuration with the possible output ones, according
to the validity property of the Consensus.

Any protocol can be encoded as a full information protocol 2 any local state is related to
what is called the view of the execution. A protocol simplex is a global configuration such

2 since the full information protocol send all possible information, the computations can be emulated provided it is
allowed to send so much information.
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1 1

0 0

I2gen

1 1

0 0

O2gen∆2gen

Fig. 4: Representation of the Consensus Task with 2 processes

that there exists an execution of the protocol in which the processes end with theses states.
The set of all theses simplices forms the protocol complex associated to an input complex,
a set of executions and an algorithm. Given any algorithm, it can be redefined using a full-
information protocol, the protocol complex thus depends only on the input complex and the
set of executions.

Given an input complex I, we construct the protocol complex at step r by applying r
times to each simplex σ the chromatic subdivision shown in Section 4.1 and Figure 2.

The input complex of the Consensus and the first two steps of the associated protocol
complex are shown in Figure 5.

(a) Initial complex (b) First step (c) Second step

Fig. 5: Protocol complex of the initial, first and second rounds
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For example, let w0 = ◦←•◦↔•◦→•ω. w corresponds to the following execution :

– first, the message from ◦ is lost;
– ◦ and • receive both message;
– the message from • is lost;
– ... (this last round is repeated indefinitely)

This can be represented as a sequence of simplices. Each infinite sequence of edges
(σ0, σ1, . . .) with σi+1 ∈ Chrσi, and σ0 the initial configuration, corresponds to a unique
scenario and vice versa. Consider Figure 2, at [2

3
, 1] the thick red simplex corresponds to

◦←•. Then, at [7
9
, 8
9
], this corresponds to ◦←•◦↔•. Finally, at [23

27
, 24
27

] the thick red simplex
of Chr3 σ corresponds to the execution ◦←•◦↔•◦→•.

For a given finite execution, the embedding is exactly given by the normalized index indn.
Thus, when the initial simplex is [0, 1] (◦ initial value is 0, • is 1) for an infinite execution,
the corresponding sequence of simplices will converge to a point of [0, 1]. At the limit, the
vertex’ convergence point is given by ind. For example, w0 converges to 1/9.

Without loss of generality, in the rest of the paper, we will describe what happens on the
segment [0, 1] instead of the whole complex. Indeed, the behaviour of subdivision of initial
segments is identical (through a straightforward isometry for each segment) as this behaviour
does not depend on the initial values. The ”gluing” at “corners” is always preserved since it
corresponds to state obtained by a process when it receives no message at all.

Given x ∈ [0, 1], i◦, i• ∈ {0, 1}, we denote by geo(x, i◦, i•) the point in the geometrical
realization that corresponds to x in the simplex [(◦, i◦), (•, i•)], namely x(◦, i◦)+(1−x)(•, i•).

Given L ⊂ Γ ω, we denote |CL| = {geo(ind(w), i◦, i•) | ∃w ∈ L, i◦, i• ∈ {0, 1}}. Note
that it is possible to define the limit of the geometric realizations this way, but that there
are no sensible way to define a geometric realization directly for the corresponding abstract
simplicial complex. See Section 5.1.

4.3 Topological Characterization

The following definition is inspired by [GKM14].

Definition 31. Let C be a colored simplicial complex. A terminating subdivision Φ of C is
a (possibly infinite) sequence of colored simplicial complexes (Σk)k∈N such that Σ0 = ∅, and
for all k ≥ 1 Σk ⊂ ChrkC, and ∪i≤kΣi is a simplicial complex for all k.

The intuition for this definition is as follows. It is well known that (non-terminated) runs
of length r in Γ ω with initial values encoded as C are represented by a protocol complex
that is the chromatic subdivision ChrkC. This definition refines the known correspondence
by looking at the actual runs for a given algorithm. When the algorithm stops, the protocol
complex should actually be no more refined. For a given algorithm, we end up with protocol
complexes that are of a special form : where, possibly, the level of chromatic subdivision
is not the same everywhere. We will prove later that those resulting complexes are exactly
terminating subdivisions. Or to say it differently, terminating subdivisions are the form of
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protocol complexes for non-uniformly terminating algorithms (that is for algorithms that do
not stop at the same round for all possible executions).

From the correspondence between words and simplexes of the chromatic subdivision, we
can see that the corresponding set of words is an anti-chain for the prefix order relation.

An edge of Σk for some k is called a stable edge in the subdivision Φ. The union ∪kΣk

of stable edges in Φ forms a colored simplicial complex, and a stable edge can only intersect
another given stable edge at an extremity (a single vertex).

For r ∈ N, we denote by Kr(Φ) the complex ∪k≤rΣk. We denote by K(Φ) the complex
∪kΣk; it possibly has infinitely many simplices. Observe that the geometric realization |K(Φ)|
can be identified with a subset of |C|. For example, Figure 6 shows a terminating subdivision
of [0, 1] up to round 3.

Σ0 = ∅

Σ1 ≡ {◦←•}

Σ2 ≡ {◦↔•◦←•, ◦→•◦↔•}

Σ3 is all remaining simplices

Fig. 6: Example of a terminating subdivision.
The bolder simplices show the stable edges (colored red at first appearance). For the corre-
spondence of simplices with executions, see section 4.2

There is an example in Fig. 6 of a terminating subdivision for Γ ω.
The following definition expresses when a terminating subdivision covers all considered

scenarios of a given L. The intuition is that every scenario of L should eventually land
into a simplex of Φ. In terms of words, this means that all words of L have a prefix in the
corresponding words of the simplexes of Φ.

Definition 32. A terminating subdivision Φ of C is admissible for L ⊆ Γ ω if for any
scenario ρ ∈ L the corresponding sequence of edges σ0, σ1, . . . is such that there exists r > 0,
|σr| is a stable edge in K(Φ).

We can now state and prove our new characterization theorem. First, for simplicity, notice
that the output complex Consensus O2gen has two connected components representing 0 and
1. Thus we can identify it to the set {0, 1} and define the relation ∆′2gen ⊂ I2gen × {0, 1}
analogous to ∆2gen.

Theorem 33. The task T2gen = (I2gen,O2gen, ∆2gen) is solvable in a sub-model L ⊆ Γ ω

if and only if there exist a terminating subdivision Φ of I2gen and a simplicial function
δ : K(Φ)→ {0, 1} such that :

33.i Φ is admissible for L;

22



33.ii For all simplex σ ∈ I2gen, if τ ∈ K(Φ) is such that |τ | ⊂ |σ|, then δ(τ) ∈ ∆′2gen(σ);
33.iii |δ| is continuous.

Proof. Necessary condition. Suppose we have an algorithm A for solving the Binary
Consensus task, we will construct a terminating subdivision Φ admissible for L and a function
δ that satisfies the conditions of the theorem.

When running A , we can establish which nodes of the protocol complex decide a value by
considering the associated state of the process. Intuitively, Φ and δ are built as the following :
in each level r, we consider all runs of length r in L. Each run yields a simplex, if the two
nodes of the simplex have decided a (unique) value v, we add this simplex to Σr and set
δ(σ) = v.

Formally, let C L(r) be the protocol complex of a full information protocol subject to
the language L at round r and V (C L(r)) its set of vertices. Given a vertex x, let val(x) be
the value decided by the corresponding process in the execution that leads to state x. And
∀r ≥ 0 define

Σr = {{x, y} ∈ C L(r) | x and y have both decided and at least one has just decided in round r}
δ(x) = val(x) ∀x ∈ V (Σr)

The function δ is well defined since it depends only on the state encoded in x and in Σr

all vertex have decided.
For all {x, y} ∈ Σr, note that val(x) = val(y) because A satisfies the agreement property.
By construction for Φ, it is a terminating subdivision. Furthermore, Φ is admissible for

L. Since A terminates subject to L, all processes decide a value in a run of L, so all nodes
of the complex protocol restricted to L will be in Φ (by one of their adjacent simplexes).

The condition 33.ii is also satisfied by construction because A satisfies the validity prop-
erty, i.e. val(x) ∈ ∆′2gen(σ).

We still have to prove that |δ| is continuous, in other words for all x ∈ |K(Φ)|, we must
have

∀ε > 0 ∃ηx > 0 ∀y ∈ |K(Φ)| |x− y| ≤ ηx ⇒ ||δ|(x)− |δ|(y)| < ε

This property for continuity says that when two points x, y ∈ |K(Φ)| are close, their value of
|δ| is close. When ε is small (e.g. ε < 1/2), ||δ|(x)− |δ|(y)| < ε implies that |δ|(x) = |δ|(y).
This is because |δ|’s co-domain is discrete. When ε is large, the property is always verified
and thus is not much of interest. We can thus reformulate it without considering ε : we must
show that ∀x ∈ |K(Φ)|

∃ηx > 0 ∀y ∈ |K(Φ)| |x− y| ≤ ηx ⇒ |δ|(x) = |δ|(y) (8)

In defining ηx as followed, we have the continuity condition for all x ∈ V (K(Φ)) :

ηx = min{ 1

3r+1
| ∃r ∈ N,∃y, {x, y} ∈ V (Σr)}.
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Since there exists at least one (A terminates for any execution in L) and at most two
such y, the minimum is well defined for all x ∈ V (K(Φ)). Moreover, we remark that since the
geometric realization of simplices of Σr are of size 1

3r
, the ball centered in x and of diameter

ηx is included in the stable simplices and the function δ is constant on this ball (by agreement
property).

Let x, y ∈ V (K(Φ)), let z ∈ [x, y], we define ηz = min(d(x, z), d(y, z)). By construction,
using such function η, for all z ∈ |K(Φ)|, Proposition (8) is satisfied.

Sufficient condition. Given a terminating subdivision Φ admissible for I2gen and a
function δ that satisfies the conditions of the theorem, we present an algorithm A that
solves Consensus.

First, we describe how to obtain a function η from the continuity of |δ|. For any x ∈
V (K(Φ)), there exists η(x) such that for any y ∈ |K(Φ)|, when |x − y| ≤ η(x), we have
δ(y) = δ(x). Notice we can choose η such that ∀x ∈ |I|∀y1, y2 ∈ |K(Φ)|, |y1 − x| ≤ η(y1) ∧
|y2 − x| ≤ η(y2) ⇒ |δ|(y1) = |δ|(y2). Now, we show how to extend the definition to |K(Φ)|.
Consider w ∈ |Φ|\V (K(Φ)) and denote x, y the vertices of K(Φ) that defines the segment to
which w belongs. We define η(w) = min{η(x), η(y)}.

We recall that B(z, t) (resp. B̄(z, t)) is the open (resp. closed) ball of center z and radius
t. We define a boolean function Finished(r, x) for r ∈ N and x ∈ |I| that is true when
∃y ∈ V (Chrr(I)), y ∈ |Kr(Φ)|, B̄(x, 1

3r
) ⊂ B(y, η(y)).

The Consensus algorithm is described in Algorithm 2, using the function Finished we
just defined from η. Notice that η is fully defined on |K(Φ)| and that the existential condition
at line 10 is over a finite subset of |K(Φ)|.

As in Algorithm 1, it has messages always of the same type. They have two components,
the first one is the initial bit, named init. The second is an integer named ind. Given a
message msg, we note msg.init (resp. msg.ind) the first (resp. the second) component of
the message. The computation of the index is similar. We maintain in an auxiliary variable
r the current round (line 23).

The halting condition is now based upon the position of the geometric realization geo of
the current round with regards to the terminating subdivision K(Φ) and the η function : we
wait until the realization is close enough of a vertex in |K(Φ)| and the corresponding open
ball of radius η contains a neighbourhood of the current simplex. Note that when initb or
initw is still null, this means that we are at the corners of the square I.

We show that the algorithm solves Consensus. Consider an execution w, we will prove
it terminates. The fact that the output does not depends on y comes from the choice of η.
The properties Agreement and Validity then come immediately from condition 33.ii on δ and
∆′2gen.

First we prove termination for at least one process. Assume none halts.
The admissibility of Φ proves that there is a round r0 for which the simplex corresponding

to the current partial scenario w|r0 is a simplex σ of Φ. Denote r1 ≥ r0 an integer such that
1

3r1
< η(y) with y ∈ |σ|. Since from round r0, all future geometric realizations will remain in

|σ|, we have, at round r1, that Finished is true. A contradiction.
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Algorithm 2: Algorithm Aη for the binary consensus with two processes for process
p where η is a function [0, 1]→ [0, 1]. geo(x,w,b) is the embedding function into the
geometric realization.
Data: function η
Input: init ∈ {0, 1}

1 r = 0;
2 if p = • then
3 ind=1;
4 initw=null;
5 initb=init;

6 else
7 ind=0;
8 initw=init;
9 initb=null;

10 repeat
11 msg = (init,ind);
12 send(msg);
13 msg = receive();
14 if msg == null then // message was lost
15 ind = 3 ∗ ind;
16 else
17 ind = 2 ∗msg.ind+ ind;
18 if p = • then
19 initw = msg.init;
20 else
21 initb = msg.init;

22 r = r + 1;

23 until ∃y ∈ V (Chrr(I)), y ∈ |Kr(Φ)|, B̄(geo(ind/3r, initw, initb), 1
3r

) ⊂ B(y, η(y));
Output: |δ|(y)
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Now, from the moment the first process halts with an index with geometric realization
x because of some y, if the other one has not halted at the same moment, then this one
will receive no other message from the halted process, and its ind variable, with geometric
realization z, will remain constant forever. The closed ball centered in x has a neighbourhood
inside the open ball centered in y, therefore there exists r2 such that 1

3r2
is small enough and

Finished(r2, z) is true.

We say that the corner of the squares in Fig. 5 are corner nodes. If we compare the
two algorithms, we can see that the differences are in the halting condition and the decision
value. In Algorithm 1, once a forbidden execution w has been chosen, the algorithm runs
until it is far away enough of a prefix of w to conclude by selecting the initial value of the
corner node which is on the same side as the prefix.

Algorithm 2 is based on the same idea but somehow is more flexible (more general).
If there are many holes in the geometric realization, it is possible to have different chosen
output values for two different connected components. Of course, the connected components
that contains the corner nodes have no liberty in choosing the decision value.

5 About the two Characterizations

In this section, we explain how the combinatorial and the topological characterizations match.
This is of course convenient but the more important result will be to see that the topolog-
ical characterization permits to derive a richer intuition regarding the characterization, in
particular about the status of the special pairs. We will also illustrate how the Theorem
6.1 of [GKM14] does not handle correctly the special pairs by showing that in this cases,
combinatorial and geometric simplicial protocol complexes do differ in precision to handle
Consensus computability.

For any adversary L ⊆ Γ ω, L can be either an obstruction or solvable for Consensus.
In other words, the set of sub-models P(Γ ω) is partitioned in two subset : obstructions
and solvable languages. Theorem 19 explicitly describes the solvable languages and classes
them in four families. In contrast, Theorem 33 gives necessary and sufficient conditions for
a sub-model to be either an obstruction or not.

We first give an equivalent version of Theorem 33.

Theorem 34. The task T2gen is solvable in L ⊆ Γ ω if and only if |CL| is not connected.

Proof. (⇒) If T2gen is solvable in L, let Φ and δ as described in Theorem 33. From admis-
sibility, we have that |CL| ⊂ |K(Φ)|. Now |δ| is a continuous surjective function from |CL|
to {0, 1}, this implies that the domain |CL| is not connected since the image of a connected
space by a continuous function is always connected.

(⇐) With |CL| disconnected, we can associate output value to connected components in
such a way that ∆′2gen is satisfied. Consider the segment [0, 1], there exists z ∈ [0, 1] and
z /∈ |CL|.
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We define Φ in the following way :

Σk = {S | S = [ind(w), ind(w)+
1

3k
], w ∈ Γ k,∃w′ ∈ Γ ω, ww′ ∈ L and ∀iw, ib ∈ {0, 1} geo(z, iw, ib) /∈ |S|}

We now denote δ the function K(Φ) → {0, 1} such that for v ∈ [0, 1], for X =
geo(v, iw, ib), δ(X) = iw if v < z and δ(v) = ib otherwise.

We now check that these satisfies the conditions of Theorem 33. Admissibility comes
from the fact that, by construction of z, there are no runs in L that converge to z, therefore
for any run w ∈ L, at some point, 1

3k
is small enough such that there is an edge in Σk that

contains indw|k and not z.
The function |δ| is continuous and has been defined such that condition 33.ii is also clearly

satisfied.

We recall the definitions of Fair and SPair languages, and the admissible language
families defined in Section 2.8.

Fair(Γ ω) = Γ ω\{xy | x ∈ Γ ∗ y ∈ {◦−−•, ◦←•}ω ∪ {◦−−•, ◦→•}ω}
SPair(Γ ω) = {(w,w′) ∈ Γ ω × Γ ω | w 6= w′, ∀r ∈ N |ind(w|r)− ind(w′|r)| ≤ 1}

A message adversary is solvable if it is one of the following (non-exclusive) forms

1. F1 = {L | ∃f ∈ Fair(Γ ω), f /∈ L}
2. F2 = {L | ∃(w,w′) ∈ SPair(Γ ω), w, w′ /∈ L}
3. F3 = {L | ◦→•ω /∈ L}
4. F4 = {L | ◦←•ω /∈ L}

We give now a topological interpretation of this description. We start with a topological
characterization of special pairs.

Lemma 35. Let w,w′ ∈ Γ ω, w 6= w′, ind(w) = ind(w′) if and only (w,w′) ∈ SPair(Γ ω).

Proof. This comes from Lemma 25 and the very definition of special pairs.

In others words, special pairs are exactly the runs that have another run that converges
to the same geometric realization. So removing only one member of a special pair is not
enough to disconnect |CL|. It is also straightforward to see that removing a fair run implies
disconnection and that removing ◦→•ω or ◦←•ω implies disconnecting at the corners.

5.1 Counter-Example

Now we look at Theorem 6.1 from [GKM14]. The only difference is that in [GKM14] δ is
only required to be chromatic. Here we have shown that we need a stronger condition that
is the continuity of |δ|. We explain why this is strictly stronger, ie how it is possible to have
simplicial mapping while not having continuity of the geometric realization.

Consider L = Γ ω\w0, with w0 = ◦↔•◦←•ω. We define Φ as follows.
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Σ1 = {[0, 1
3
], [2

3
, 1]} For r ≥ 2, Σr = {[2

3
− 1

3r−1 ,
2
3
− 2

3r
], [2

3
− 2

3r
, 2
3
− 1

3r
]}.

The terminating subdivision Φ is admissible for L and there exists a simplicial mapping
from K(Φ) to {0, 1}. We can set δ(x) = 0 when x < 2

3
and δ(x) = 1 otherwise.

K(Φ) has two connected components [2
3
, 1] on one side, and all the other segments on the

other side. The function δ is therefore simplicial since there is no [z, 2
3
] interval in K(Φ).

So such a L satisfies the assumptions for Theorem 6.1 of [GKM14]. To see that it does not
satisfy the assumptions of Theorem 33, we remark that | K(Φ) | is [0, 1] and the δ function
we define above does not have a geometric realization that is continuous and moreover there
is no way to define a continuous surjective function from [0, 1] to {0, 1}. So the statements of
the Theorem are not equivalent. To correct Theorem 6.1 of [GKM14], it is needed to add an
assumption, that is that L has to be “closed” for special pairs : either both members belong
to L or none, this has been confirmed by the authors [Kuz].

The simplicial complex K(Φ) has two connected components when seen as an abstract
simplicial complex, however, it is clear that the geometric realization of K(Φ) is the entire
interval [0, 1], it has one connected component.

6 Conclusion

To conclude, we have that the two Theorems 19 and 33 are indeed equivalent, even if their
formulation is very different. We emphasize that the topological characterization with The-
orem 34 gives a better explanation of the results primarily obtained in [FG11]. The different
cases of Theorems 19 are unified when considered topologically. Note also that in the gen-
eral case, the topological reasoning should be done on the continuous version of simplicial
complexes, not on the abstract simplicial complexes. From Section 5.1, we see we have a
simplicial complex K(Φ) that is disconnected when seen as an abstract simplicial complex,
but whose embedding (geometric realization) makes for a connected space.

This study of the solution to the Consensus problem in the general case for two processes
is another argument in favor of topological methods in Distributed Computability.

We are aware of [NSW19] that appeared between revisions of this paper. We underline
that Theorem 33 cannot be obtained in a straightforward way from [NSW19].
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[CBS09] Bernadette Charron-Bost and André Schiper. The heard-of model: computing in distributed systems with
benign faults. Distributed Computing, 22(1):49–71, 2009.

[CGP15] Étienne Coulouma, Emmanuel Godard, and Joseph G. Peters. A characterization of oblivious message
adversaries for which consensus is solvable. Theor. Comput. Sci., 584:80–90, 2015.

[CHLT00] Soma Chaudhuri, Maurice Herlihy, Nancy A. Lynch, and Mark R. Tuttle. Tight bounds for k-set agree-
ment. J. ACM, 47(5):912–943, 2000.

[FG11] Tristan Fevat and Emmanuel Godard. Minimal obstructions for the coordinated attack problem and
beyond. In Parallel Distributed Processing Symposium (IPDPS), 2011 IEEE International, pages 1001–
1011, May 2011.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with
one faulty process. J. ACM, 32(2):374–382, 1985.

[GKM14] Eli Gafni, Petr Kuznetsov, and Ciprian Manolescu. A generalized asynchronous computability theorem.
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Aix-Marseille, 2015.
[PP04] J.E. Pin and D. Perrin. Infinite Words, volume 141 of Pure and Applied Mathematics. Elsevier, 2004.
[PSL80] L. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal of the ACM,

27(2):228–234, 1980.
[Ray02] Michel Raynal. Consensus in synchronous systems:a concise guided tour. Pacific Rim International Sym-

posium on Dependable Computing, IEEE, 0:221, 2002.
[San06] N. Santoro. Design and Analysis of Distributed Algorithms. Wiley, 2006.
[SW89] Nicola Santoro and Peter Widmayer. Time is not a healer. In STACS 89, volume 349 of Lecture Notes in

Computer Science, pages 304–313–313. Springer Berlin / Heidelberg, 1989.
[SW07] Nicola Santoro and Peter Widmayer. Agreement in synchronous networks with ubiquitous faults. Theor.

Comput. Sci., 384(2-3):232–249, 2007.
[SZ00] M. Saks and F. Zaharoglou. ”wait-free k-set agreement is impossible: The topology of public knowledge.

SIAM J. on Computing, 29:1449–1483, 2000.

29


