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Abstract
Finitary monads on Pos are characterized as precisely the free-algebra monads of varieties of algebras.
These are classes of ordered algebras specified by inequations in context. Analogously, finitary enriched
monads on Pos are characterized: here we work with varieties of coherent algebras which means that their
operations are monotone.
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Dedicated to John Power on the occasion of his 60th birthday.

1. Introduction
Algebraic specifications of data types are often given in terms of operations and equations. The
models of such equational specifications are (often many-sorted) finitary algebras satisfying those
equations. The models of an equational specification form a variety of algebras over the category
SetS of S-sorted sets. Such varieties are well known to be equivalently described by finitarymonads
over SetS, i.e. monads preserving filtered colimits: every variety V yields a free-algebra monad TV
on SetS which is finitary and whose Eilenberg–Moore category is isomorphic to V . Conversely,
every finitary monad T on SetS defines a canonical S-sorted variety V whose free-algebra monad
is isomorphic to T.

There are cases in which algebraic specifications use operations and inequations; the corre-
sponding models are then carried by partially ordered sets rather than sets without structure. In
this article, we present an analogous characterization of finitary monads on the category Pos of
partially ordered sets: we define varieties of ordered algebras which allow us to represent (a) all
finitary monads on Pos and (b) all enriched finitary monads on Pos as the free-algebra monads of
varieties. “Enriched” refers to Pos as a cartesian closed category: a monad is enriched if its under-
lying functor T is locally monotone (f ≤ g in Pos(A, B) implies Tf ≤ Tg in Pos(TA, TB)). Case
(b) works with algebras on posets whose operations are monotone (and as morphisms we take
monotone homomorphisms), whereas Case (a) involves algebras on posets whose operations are
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not necessarily monotone (but whose morphisms are). To distinguish these cases, we shall call an
algebra coherent if all of its operations are monotone.

A basic step, in which we follow the presentation of finitary monads on enriched categories
due to Kelly and Power (1993), is to work with operation symbols whose arity is a finite poset
rather than a natural number; we briefly recall the approach of op. cit. in Section 2. Just as
natural numbers n= {0, 1, . . . , n− 1} represent all finite sets up to isomorphism, we choose a
representative set

Posf

of finite posets up to isomorphism. Specializing the signatures of op. cit., we introduce the
concept of a discrete signature. This is a set � of operation symbols equipped with an arity from
Posf. More precisely,� is a family of sets (��)�∈Posf . Thus, a�-algebra is a poset A together with
an operation σA, for every σ ∈ �� , which assigns to every monotone map u : � →A an element
σA(u) of A. For example, let 2 be the two-chain in Posf. Then an operation symbol σ of arity 2
is interpreted in an algebra A as a partial function σA : A×A→A whose domain of definition
consists of all comparable pairs in A.

Given a signature � we form, for every finite poset �, the set T (�) of terms in context �.
It is defined as usual in universal algebra, ignoring the order structure of �. Then, for every
�-algebra A, whenever a monotone function f : � →A is given (i.e. whenever the variables of
� are interpreted in A) we define an evaluation of terms in context �. This is a partial map f #
assigning a value to a term t provided that values of the subterms of t are defined and respect
the order of �. This leads to the concept of inequation in context �: it is a pair (s, t) of terms in
that context. An algebra A satisfies this inequation if for every monotone interpretation f : � →A
we have that both f #(t) and f #(s) are defined and f #(s)≤ f #(t) holds in A. We use the following
notation for inequations in context:

� � s≤ t.

By a variety, we understand a category V of �-algebras presented by a set I of inequations in
context. Thus, the objects of V are all algebras satisfying each � � s≤ t in I , and morphisms
are monotone homomorphisms. We prove that every variety V is strictly monadic over Pos,
that is, for the monad TV of free V-algebras, V is isomorphic to the category PosTV of algebras
for TV . Moreover, TV is a finitary monad and, in case V consists of coherent algebras, TV is
enriched.

Conversely, with every finitary monad T on Pos, we associate a canonical variety whose free-
algebra monad is isomorphic to T. This process from monads to varieties is inverse to the above
assignment V �→TV . Moreover, if T is enriched, the canonical variety consists of coherent alge-
bras. This leads to a bijection between finitary enriched monads and varieties of coherent algebras
up to isomorphism.

Is it really necessary to work with signatures of operations with partially ordered arities and
inequations in context? There is a "natural" concept of a variety of ordered (coherent) algebras
for classical signatures � = (�n)n∈N. Here, terms are elements of free �-algebras on finite sets
(of variables) and a variety is given by a set of inequations s≤ t between terms (with no context
being used, which corresponds to using a discrete context). Such varieties were studied e.g. by
Bloom (1976), Bloom and Wright (1983). Kurz and Velebil (2017) characterized these classical
varieties as precisely the exact categories (in an enriched sense) with a ‘suitable’ generator. In a
recent article, the first author, Dostál, and Velebil (2021) proved that for every such variety V the
free-algebra monad TV is enriched and strongly finitary in the sense of Kelly and Lack (1993).
This means that the functor TV is the left Kan extension of its restriction along the full embedding
E : Posfd ↪→ Pos of finite discrete posets:

TV = LanE (TV · E).
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Conversely, every strongly finitary monad on Pos is isomorphic to the free-algebra monad of a
variety in this classical sense. This answers our question above affirmatively: arities in Posf are
necessary if all (possibly enriched) finitary monads are to be characterized via inequations.

For example, we have mentioned above a binary operation σ (x, y) of arity 2. For the corre-
sponding variety Alg� (with no specified inequations), the free-algebra monad is described in
Example 4.3. This monad is not strongly finitary (Adámek et al., 2021, Ex. 3.17), thus no variety
with a classical signature has this monad as the free-algebra monad.

Relatedwork Aswe have alreadymentioned, the idea of using signatures with arities in Posf stems
from work by Kelly and Power (1993) on the presentation of enriched monads by operations and
equations. A signature in their sense is more general than what we use here: it is a family of posets
(��)�∈Posf , and a �-algebra A is then a poset together with a monotone function from �� to the
poset of monotone functions from Pos(�,A) to A for every � in Posf.

Whereas we deal with the monadic view on varieties of ordered algebras in this article, the view
using algebraic theories has been investigated by Power with coauthors, e.g. Power (1999), Plotkin
and Power (2001, 2002), Nishizawa and Power (2009); see Section 5. In particular, Nishizawa
and Power (2009) work with enriched categories over a monoidal closed category V for which a
V -enriched base category C has been chosen.Then enriched algebraic C -theories are shown to
correspond to V -enriched monads on C . This is particularly relevant for this article: by choosing
V = Set and C = Pos we treat non-enriched finitary monads on Pos, whereas the choice V =
C = Pos covers the enriched case. An alternative proof of our main result has been presented by
Rosický (2021) (after our paper was communicated to him).

Since the submission of this article, the results presented here have been generalized in at least
two directions. First, Ford et al. (2021a) describe an extension of the notion of inequational theory
for describing graded monads (with grades in the monoid (N,+, 0)) on Pos, along with a sound
and complete deduction system for graded inequational reasoning. Second, Ford et al. (2021b)
establish a monad-theory correspondence between a notion of λ-ary relational algebraic theory
and enriched λ-accessible monads given the choice of a locally λ-presentable category of relational
structures specified by a set of infinitary Horn sentences; the results of this article are included
there by instantiation. Furthermore, op. cit. describes a sound and complete sequent system for
inequational reasoning, which yields an alternative description of the free-algebra monad of an
inequational theory.

2. Equational Presentations of Monads
We now recall the approach to equational presentations of finitary monads introduced by Kelly
and Power (1993); our aim here is to bring the rest of the article into this perspective. However,
we note that the signatures used here are more general than those of the subsequent sections, and
(unlike later) some enriched category theory is used. The reader can decide to skip this section
without losing the connection.

For a locally finitely presentable category, C enriched over a symmetric monoidal closed cat-
egory V , Kelly and Power consider (enriched) monads on C that are finitary, i.e. the ordinary
underlying endofunctors preserve filtered colimits. Belowwe specialize their approach toC = Pos
considered as an ordinary category (V = Set) or as a category enriched over itself (V = Pos) via
its cartesian closed structure. In the first case, the hom-object Pos(A, B) is the set of all monotone
functions from A to B; in the latter case, this is the poset of those functions, ordered pointwise.
As in Section 1, a representative set Posf of finite posets (called arities) is chosen which is to be
viewed as a full subcategory of Pos. We denote by

|Posf|
the corresponding discrete category.
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Definition 2.1. A signature is a functor from |Posf| to Pos. In other words, a signature � is a
family of posets �� of operation symbols of arity � indexed by � ∈ Posf. A morphism s : � → �′
of signatures, being a natural transformation, is thus just a family of monotone maps s� : �� → �′

�
indexed by arities.

We denote by
Sig= [|Posf|, Pos]

the category of signatures and their morphisms.

In the introduction, we have considered the special case of signatures where each poset �� is
discrete, i.e. we just have a set of operation symbols of arity �; for emphasis, we will call such
signatures discrete. (N.B.: This terminology differs from the way the word discrete is used in the
concept of discrete Lawvere theory (Power, 2005) where it refers to the arities � of operations
rather than the objects �� .)

Remark 2.2. Recall (Borceux, 1994, Def. 6.5.1) the concept of a tensor for objects V ∈ V and
C ∈ C : it is an object V ⊗ C of C together with an isomorphism

C (V ⊗ C, X)∼= V (V ,C (C, X))
in V which is V -natural in X; here V (−,−) denotes the internal hom-functor of V .

In the case where C = Pos and V = Set, the tensor is the copower
V ⊗ C =∐

V C,
and for C = V = Pos, the tensor is just the product in Pos:

V ⊗ C =V × C.

Notation 2.3. (1) We denote by Fin(Pos) the enriched category of finitary enriched endofunctors
on Pos. In the case where V = Set, these are all endofunctors preserving filtered colimits. For
V = Pos, these are all locally monotone endofunctors preserving filtered colimits.
(2) The category of finitary enriched monads on Pos is denoted by FinMnd(Pos). We have a
forgetful functor U : FinMnd(Pos)→ Fin(Pos).

By precomposing endofunctors with the non-full embedding J : |Posf| → Pos, we obtain a forget-
ful functor from Fin(Pos) to Sig. It has a left adjoint assigning to every signature� the polynomial
functor P� given on objects by

P�X =∐
�∈Posf Pos(�, X)⊗ �� , (1)

and similarly on morphisms. As explained previously, the hom-object Pos(�, X) can have one of
two meanings: for V = Set, it is regarded as a set and for V = Pos as a poset. Henceforth, we will
use that notation for hom-objects only in the latter case and write

Pos0(�, X)
for the set of monotone maps.

Observation 2.4. The usual category of algebras for the functor P� , whose objects are posets A
with a monotone map α : P�A→A, has the following form for our two enrichments:
(1) Let V = Set. Then α as above is a monotone map

(
∐

�∈Posf
∐

u∈Pos0(�,A) ��)→A,
and as such has components assigning to everymonotone function u : � →A (that is, a monotone
interpretation of the variables in �) a monotone function �� →A. We denote this function by
σ �→ σA(u).
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In other words, the poset A is equipped with operations σA : Pos0(�,A)→A (which need not
be monotone since Pos0(�,A) is just a set) satisfying σA(u)≤ τA(u) for all pairs σ ≤ τ in �� and
u in Pos0(�,A). If � is discrete, this is precisely a �-algebra (see the Introduction).
(2) Now let V = Pos. Then α : P�A→A is a monotone map

(
∐

�∈Posf Pos(�,A)× ��)→A,

and thus has as components monotone functions (u, σ ) �→ σA(u). That is, in addition to the con-
dition that σA(u)≤ τA(u) for all pairs σ ≤ τ in �� and u in Pos(�,A) as above, we also see that
each σA is monotone. Thus, if � is discrete, this is precisely a coherent algebra (again, see the
Introduction).

Observe also that “homomorphism” has the usual meaning: a monotone function preserving the
given operations. In fact, given algebras α : P�A→A and β : P�B→ B a homomorphism is a
monotone function h : A→ B such that h · α = β · P�h. This is equivalent to h(σA(u))= σB(h · u)
for all u ∈ Pos(�,A) and all σ ∈ �� .

Remark 2.5. (1) As shown by Trnková et al. (1975) (see also Kelly 1980), every ordinary finitary
endofunctor H on Pos generates a free monad whose underlying functor Ĥ is a colimit of the
ω-chain

Ĥ = colimn<ωWn

of functors, where

W0 = Id and Wn+1 =HWn + Id.

Connectingmorphisms arew0 : Id→H + Id, the coproduct injection, andwn+1 =Hwn + Id. The
colimit injections cn : WnX → ĤX in Pos have the property that if a parallel pair u, v : ĤX →A
satisfies cn · u≤ cn · v for all n< ω, then we have u≤ v. It follows that Ĥ is enriched if H is.
(2) The category of H-algebras is isomorphic to the Eilenberg-Moore category PosĤ (see Barr
1970).
(3) Lack (1999) shows that the composite functor

FinMnd(Pos) U−→ Fin(Pos) (−)·J−−−→ Sig,

where J : |Posf| ↪→ Pos is the canonical inclusion functor, is monadic; this means that the functor
has a left adjoint and the Eilenberg-Moore category of the ensuing monad M on Sig is equiva-
lent to FinMnd(Pos) via the comparison functor. The monad M assigns to every signature � the
signature P̂� · J : |Posf| → Pos.
(4) It follows that every enriched finitary monad T on Pos can be regarded as an algebra for the
monad M. Therefore, T is a coequalizer in FinMnd(Pos) of a parallel pair of monad morphisms
between freeM-algebras on signatures �,�:

P̂� P̂� T.
�

r
c

This is the equational presentation of T considered by Kelly and Lack (1993).

Example 2.6. (1) In the case where V = Set and C = Pos, FinMnd(Pos) is the category of (non-
enriched) finitary monads on Pos. Consider the above coequalizer in the special case that �

consists of a single operation δ of arity�. That is,�� = {δ} and all��̄ for �̄ �= � are empty. By the
Yoneda lemma, l and r simply choose two elements of P̂��, say t� and tr . The above coequalizer
means that T is presented by the signature � and the equation t� = tr .
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For � arbitrary, we do not get one equation, but a set of equations (one for every operation
symbol in �) and T is presented by � and the corresponding set of equations, grouped by their
respective arities.
(2) The case V = C = Pos yields as FinMnd(Pos) the category of enriched finitary monads on
Pos. That is, the underlying endofunctor T is locally monotone.

Remark 2.7. The fact that every finitary (possibly enriched) monad on Pos has an equational pre-
sentation depends heavily on the fact that signatures are not restricted to be discrete. In contrast,
we characterize finitary (possibly enriched) monads using discrete signatures and inequational
presentations. While it is clear that the two specification formats are mutually convertible,
inequational presentations seem natural for varieties of algebras on Pos.

Of course, it is possible to translate �-algebras for non-discrete signatures � as varieties of
algebras for discrete ones (see Example 3.19(9)). Using the result of Kelly and Power, such a trans-
lation would lead to a correspondence between finitary monads and varieties. This article can be
viewed as a detailed realization of this.

3. Varieties of Ordered Algebras
Recall that Posf is a fixed set of finite posets that represent all finite posets up to isomorphism. If
� ∈ Posf has the underlying set {x0, . . . , xn−1}, then we call the xi the variables in �. Recall that all
monotone functions from A to B form a set Pos0(A, B) and a poset Pos(A, B) with the pointwise
order.

Notation 3.1. The category Pos is cartesian closed, with hom-objects Pos(X, Y) given by all
monotone functions X → Y , ordered pointwise. That is, given monotone functions f , g : X → Y ,
by f ≤ g we mean that f (x)≤ g(x) for all x ∈ X.

We denote the underlying set of a poset X by |X|. We also often regard |X| as the discrete poset
on that set.

In the following, we will work with discrete signatures, which we already mentioned after
Definition 2.1. Explicitly:

Definition 3.2. A discrete signature is a set � of operation symbols each with a prescribed
arity. That is, � is a family (��)�∈Posf of sets �� . A �-algebra is a poset A equipped with a
function

σA : Pos0(�,A)→A.
for every σ ∈ �� . That is, σA assigns to every monotone interpretation f : � →A of the variables
in � an element σA(f ) of A. The algebra A is called coherent if each σA is monotone, i.e. whenever
f ≤ g in Pos(�,A), then σA(f )≤ σA(g).

Notation 3.3. We denote by Alg� the category of �-algebras. Its morphisms A→ B are the
homomorphisms in the expected sense; i.e. they are monotone functions h : A→ B such that for
every arity � and every operation symbol σ ∈ �� , the square

Pos0(�,A) A

Pos0(�, B) B

h·(−)

σA

h
σB

commutes. Similarly, we have the category Algc � of all coherent�-algebras. For their homomor-
phisms we have the commutative squares
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Pos(�,A) A

Pos(�, B) B

h·(−)

σA

h
σB

Example 3.4. Let � be the signature given by
�2 = {+} and �1 = {@},

where 2 is a 2-chain and 1 is a singleton. A �-algebra consists of a poset A with a (not necessarily
monotone) unary operation @A and a partial binary operation +A whose domain of definition is
formed by all comparable pairs. Moreover, A is coherent iff both @A and +A are monotone, the
latter in the sense that a+ a′ ≤ b+ b′ whenever a≤ a′, b≤ b′, a≤ b, and a′ ≤ b′.

Similarly to the more general signatures discussed in Section 2, discrete signatures � can be
represented as polynomial functors H� (for �-algebras) and K� (for coherent �-algebras),
respectively, introduced next. These functors arise by specializing the corresponding instances
of the polynomial functor P� according to Observation 2.4 to discrete signatures.

Notation 3.5. The polynomial and coherent polynomial functors for a discrete signature� are the
endofunctors H� : Pos→ Pos and K� : Pos→ Pos given by

H�X =
∐

�∈Posf
�� × Pos0(�, X) and K�X =

∐
�∈Posf

�� × Pos(�, X),

respectively, where we regard the sets �� and Pos0(�, X) as discrete posets. Thus, the elements of
both H�X and K�X are pairs (σ , f ) where σ is an operation symbol of arity � and f : � → X is
monotone. The action on monotone maps h : X → Y is then the same for both functors:

H�h(σ , f )= (σ , h · f )=K�h(σ , f ).

Remark 3.6. (1) Every �-algebra A induces an H�-algebra α : H�A→A given by
α(σ , f )= σA(f ) for σ ∈ �� and f ∈ Pos0(�, X).

Conversely, every H�-algebra α : H�A→A can be viewed as a �-algebra, putting σA(f )=
α(σ , f ). More conceptually, we have bijective correspondences between the following (families
of) maps:

α : H�A→A

α� : �� × Pos0(�,A)→A (� ∈ Posf)
σA : Pos0(�,A)→A (� ∈ Posf, σ ∈ ��)

Thus, Alg� is isomorphic to the category AlgH� of algebras for H� whose morphisms from
(A, α) to (B, β) are those monotone maps h : A→ B for which the square below commutes:

H�A A

H�B B
H�h

α

h
β

Indeed, this is equivalent to h being a homomorphism of �-algebras. Shortly,
Alg� ∼= AlgH� .

Moreover, this isomorphism is concrete, i.e. it preserves the underlying posets (and monotone
maps). That is, if U : Alg� → Pos and Ū : AlgH� → Pos denote the forgetful functors, the

https://doi.org/10.1017/S0960129521000360 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000360


806 J. Adámek et al.

above isomorphism I : Alg� → AlgH� makes the following triangle commutative:

Alg� AlgH�

Pos

I

U Ū

(2) Similarly, every coherent �-algebra defines an algebra for K� , and conversely. Indeed, giving
an algebra structure α : K�A→A is the same as giving a Posf-indexed family of monotone maps

α� : �� × Pos(�,A)→A.
Equivalently, we have for every σ of arity � a monotone map σA : Pos(�,A)→A.

This leads to an isomorphism Ic : Algc � → AlgK� , which is concrete:

Algc � AlgK�

Pos

Ic

Uc Ūc

where Uc and Ūc denote the forgetful functors, respectively.

Remark 3.7. Recall that an embedding in Pos is a map m : A→ B such that for all a, a′ ∈A we
have a≤ a′ iffm(a)≤m(a′). That is, embeddings are order-reflecting monotone functions. Given
an ω-chain of embeddings in Pos, its colimit is simply their union (with inclusion maps as the
colimit cocone).

Proposition 3.8. Every poset X generates a free �-algebra T�X. Its underlying poset is the union
of the following ω-chain of embeddings in Pos:

W0 = X w0−−→W1 =H�X + X w1−−→W2 =H�W1 + X w3−−→ · · · (2)
where w0 is the right-hand coproduct injection X →H�X + X and wn+1 =Hwn + idX : Wn+1 =
H�Wn + X →HWn+1 + X =Wn+2 for every n. The universal map ηX : X → T�X is the inclusion
of W0 into the union.

Proof. Observe first that the polynomial functorH� can be rewritten, up to natural isomorphism,
as

H�X ∼=
∐

�∈Posf
∐

��

Pos0(�, X)

because every �� is discrete. It follows that H� is finitary, being a coproduct of functors
Pos0(�,−) (where each Pos0(�,−) is finitary because � is finite). As shown by Adámek (1974),
it follows that the free H�-algebra over X is the colimit of the ω-chain (Wn) from (2) in Pos. The
desired result thus follows from the concrete isomorphism Alg� ∼= AlgH� .

A similar result can be proved for coherent �-algebras and the associated functor K� , using the
fact that like Pos0(�,−), also the internal hom-functor Pos(�,−) is finitary:

Proposition 3.9. Every poset X generates a free coherent�-algebra Tc�X. Its underlying poset is the
union of the following ω-chain of embeddings in Pos:

W0 = X w0−−→W1 =K�X + X w1−−→W2 =K�W1 + X w3−−→ · · ·
The universal morphism ηcX : X → Tc�X is the inclusion of W0 into the union.

Definition 3.10. For a finite poset � we define terms in context � as usual in universal algebra,
ignoring the order structure of the context �; we write T (�) for the set of �-terms in variables
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from |�|. Explicitly, the set T (�) of terms in context � is the least set containing |�| such that given
an operation σ with arity � and a function f : |�| → T (�), we obtain a term σ (f ) ∈ T (�).

Convention 3.11. Wedenote by u� : � → T (�) the inclusionmap.Wewill often silently assume
that the elements of |�| are listed in some fixed sequence x1, . . . , xn, and then write σ (t1, . . . , tn)
in lieu of σ (f ) where f (xi)= ti for i= 1, . . . , n. In particular, in examples we will normally use
arities � with |�| = {1, . . . , n} for some n, and then assume the elements of � to be listed in the
sequence 1, . . . , n. We will often abbreviate (t1, . . . , tn) as (ti), in particular writing σ (ti) in lieu
of σ (t1, . . . , tn). Every σ ∈ �� yields the term σ (u�) ∈ T (�), which by abuse of notation we will
occasionally write as just σ .

Example 3.12. Let � be a signature with a single operation symbol σ whose arity is a 2-chain.
Then T (�) is the usual set of terms built from a binary operation σ and the variables from �,
whereas T�� contains only those terms which either (a) are variables or (b) have the shape σ (t, t)
for a term t or (c) σ (x, y) for variables x≤ y in �. The order of T�� is such that the only compa-
rable distinct terms are variables. On the other hand, Tc�� not only has more comparable pairs of
terms, but consequently also contains more terms. For instance, if x≤ y in �, then Tc�� contains
the term σ (σ (x, x), σ (x, y)) (which is not present in T��).

Definition 3.13. Let A be a �-algebra. Given a finite poset � and a monotone interpretation
f : � →A, the evaluation of terms in context � is the partial map

f # : T (�)→ |A|
defined recursively by
(1) f #(x)= f (x) for every x ∈ |�|, and
(2) f #(σ (g)) is defined for σ ∈ �� and g : |�| → T (�) iff all f #(g(i)) are defined and i≤ j in �

implies f #(g(i))≤ f #(g(j)) in A; then f #(σ (g))= σA(f # · g).

Example 3.14. (1) For the signature in Example 3.4, we have terms in T {x, y} (with {x, y}
ordered discretely) such as @x and y+@y. Given a�-algebra A and an interpretation f : {x, y} →
A we see that @x is always interpreted as f #(@x)=@A(f (x)), whereas f #(y+@x) is defined if and
only if f (y)≤@A(f (x)), and then f #(y+@x)= f (y)+A @A(f (x)).
(2) Every operation symbol σ ∈ �� considered as a term (see Convention 3.11) satisfies

f #(σ )= σA(f (xi)).

Definition 3.15. An inequation in context � is a pair (s, t) of terms in T (�), written in the form

� � s≤ t.

Furthermore, we denote by

� � s= t

the conjunction of the inequations � � s≤ t and � � t ≤ s.
A�-algebra satisfies � � s≤ t if for every monotone function f : � →A, both f #(s) and f #(t) are

defined and f #(s)≤ f #(t).

Example 3.16. For the signature of Example 3.4, consider the singleton context {x} and the
inequation

{x} � x≤@x. (3)
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An algebra A satisfies this inequation iff a≤@A(a) holds for every a ∈A. In such algebras, the
interpretation of the term x+@x is defined everywhere.

Example 3.17. For � as in Example 3.12, given a context �, the structure of Tc�� is completely
described as follows. The elements of Tc�� are certain terms of uniform depth, where variables
have uniform depth 0 and a term σ (t, s) has uniform depth n+ 1 if t and s have uniform depth n,
and a term t has uniform depth if t has uniform depth n for some n. Given two such terms t, s
in Tc��, we have t ≤ s iff s arises from t by replacing any number of occurrences (maybe none)
of x in t by y where x≤ y in � (in particular, t and s have the same uniform depth). Finally,
the terms of uniform depth actually contained in Tc�� are determined by induction on the depth:
Every term of uniform depth 0 is in Tc��, and a term σ (t, s) of uniform depth n+ 1 is contained in
Tc�� iff t, s ∈ Tc�� and t ≤ s. This description is easily verified by noting that, on the one hand, for
every t as per the above description, f #(t) is defined for every monotone valuation f in a coherent
�-algebra, and whenever t ≤ s according to the above description, then f #(t)≤ f #(s); and that, on
the other hand, the description actually yields a coherent �-algebra. We note in particular that
T�� maps injectively into Tc��.

Definition 3.18. We denote by Alg(�, I) the full subcategory of Alg� that is specified by a set I
of inequations in context. It consists of all �-algebras that satisfy all inequations in I . A cate-
gory of the form Alg(�, I) is called a variety of �-algebras. Analogously, a variety of coherent
�-algebras is a full subcategory of Algc � specified by a set I of inequations in context, denoted
by Algc(�, I).

Example 3.19. We present some varieties of algebras.
(1) We have seen the variety V specified by (3) in Example 3.16.
(2) The subvariety of all coherent algebras in V as in the previous item can be specified as follows.
Consider the contexts �1 and �2 given by

�1 =
y

x
and �2 =

y′

x′ y

x

and the inequations

�1 �@x≤@y and �2 � x+ y≤ x′ + y′. (4)

It is clear that �-algebras satisfying (3) and (4) form precisely the full subcategory of V consisting
of coherent algebras.
(3) In general, all coherent �-algebras form a variety of �-algebras. For every context �, form
the context �̄ with variables x and x′ for every variable x of �, where the order is the least one such
that the functions e, e′ : � → �̄ given by e(x)= x and e′(x)= x′ are embeddings satisfying e≤ e′.
For every � and every σ ∈ �� consider the following inequation in context �̄:

�̄ � σ (e)≤ σ (e′).
It is satisfied by precisely those �-algebras A for which σA is monotone.
(4) Ordered groups and ordered vector spaces are important examples of varieties that are not
coherent. Recall that an ordered group is a group on a poset whose multiplication is monotone.
But it is not required (and usually not true) that the operation of inverse elements be monotone.
The situation is analogous for ordered vector spaces.
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(5) Recall that an internal semilattice in a category with finite products is an object A together
with morphisms +: A×A→A and 0 : 1→A such that
(a) 0 is a unit for +, i.e. the following triangles commute

A∼= 1×A A×A A× 1∼=A

A

0×id

+

id×0

(b) + is associative, commutative, and idempotent:

A×A×A A×A

A×A A

+×id

id×+ +
+

A×A A×A

A

swap

+ +
A A×A

A

�

+

Here, swap= 〈πr , π�〉 : A×A→A×A is the canonical isomorphism commuting product com-
ponents, and � = 〈id, id〉 : A→A×A is the diagonal.

Internal semilattices in Pos form a variety of coherent �-algebras. To see this, consider the
signature � with �2 = {+} and �∅ = {0}, where 2 denotes the two-element discrete poset. The
set I is formed by (in)equations specifying that + is monotone, associative, commutative, and
idempotent with unit 0. Note that this does not imply that x+ y is the join of x, y in X w.r.t. its
given order (cf. Example 3.32).
(6) A related variety is that of classical join-semilattices (with 0). To specify those, we take the
signature � from the previous item; but now we impose inequations in context specifying that 0
and + are the least element and the join operation, respectively:

{x} � 0≤ x {x, y} � x≤ x+ y {x, y} � y≤ x+ y {x≤ z, y≤ z} � x+ y≤ z.

It then follows that + is monotone, associative, commutative, and idempotent, so these equations
need not be included. Note that although all operations have discrete arities, the inequation stating
that x+ y is below all upper bounds of {x, y} needs a non-discrete context.
(7) Bounded joins: For a natural example of an operation with non-discrete arity, take the signa-
ture � consisting of a unary operation ⊥ and an operation j (bounded join) of arity {0, 1, 2} where
0≤ 2 and 1≤ 2 (but 0 �≤ 1). We then define a variety V by the following inequations in context

{x, y} � ⊥(x)≤ y
{x≤ z, y≤ z} � x≤ j(x, y, z)
{x≤ z, y≤ z} � y≤ j(x, y, z)

{x≤ z, y≤ z, x≤w, y≤w} � y≤ j(x, y, z)≤w.

That is, j(x, y, z) is the join of elements x, y having a joint upper bound z. It follows that the value
of j(x, y, z), when defined, does not actually depend on z, which instead just serves as a witness for
boundedness of {x, y}. The operation⊥ and its inequality specify that algebras are either empty or
have a least element, i.e. the empty set has a join provided that it is bounded. Thus, V consists of the
partial orders having all bounded finite joins, which we will refer to as bounded-join semilattices,
and morphisms in V are monotone maps that preserve all existing finite joins.
(8) The theory of subconvex algebras (Pumplün and Röhrl, 1984, Definition 2.7) (or positive
convex modules Pumplün 2003) has as operations

∑n
i=1 pi · (−) (forming formal subconvex com-

binations) for all n-tuples of real numbers pi ≥ 0 such that
∑

pi ≤ 1, with discrete arity {1, . . . , n}.

https://doi.org/10.1017/S0960129521000360 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000360


810 J. Adámek et al.

Its axioms are on the one hand all equations of the form
n∑

k=1

δik · xk = xi,

where δik is the Kronecker symbol (i.e. δik = 1 if i= k, and 0 otherwise), and on the other hand all
equations of the form

n∑
i=1

pi ·
m∑
k=1

qik · xk =
m∑
k=1

( n∑
i=1

piqik

)
· xk.

The theory of ordered subconvex algebras additionally has inequational axioms
n∑

i=1
pi · xi ≤

n∑
i=1

qi · xi

for coefficients pi, qi satisfying pi ≤ qi for all i= 1, . . . n. This is an example of a theory where
inequations are naturally presented in the format of Kelly and Power (1993), i.e. the inequations
are effectively among operation symbols only.
(9) Let a collection of posets�� (� ∈ Posf), i.e. a signature in the sense of Kelly and Power (1993)
(cf. Section 2), be given. We obtain the corresponding discrete signature �d = (|��|)�∈Posf by
disregarding the order of �� . Now consider the set I consisting of all inequations in context of
the form

� � σ (xi)≤ τ (xi)

where |�| = {x1, . . . , xn} and σ ≤ τ in �� . Then the variety Alg (�, I) is precisely the category of
algebras for the non-discrete signature � (see Definition 2.1).

Remark 3.20. We will now discuss limits and directed colimits in Alg�.
(1) It is easy to see that for every endofunctor H on Pos the category AlgH of algebras for H is
complete. Indeed, the forgetful functor V : AlgH → Pos creates limits. This means that for every
diagramD : D → AlgH withVD having a limit cone (�d : L→VDd)d∈obj(D), there exists a unique
algebra structure α : HL→ Lmaking each �d a homomorphism in AlgH. Moreover, the cone (�d)
is a limit of D.
(2) Analogously, it is easy to see that for every finitary endofunctor H of Pos the category AlgH
has filtered colimits created by V .
(3) We conclude from Alg� ∼= AlgH� that limits and filtered colimits of�-algebras exist and are
created by the forgetful functor into Pos; similarly for Algc �.
(4) Moreover, we note that AlgH� is a locally finitely presentable category; this was shown by
Bird (1984, Prop. 2.14), see also the remark given by the first author and Rosický (1994, 2.78).

Lemma 3.21. Let h : A→ B be a homomorphism of �-algebras, and let f : � →A be a monotone
interpretation. Then for every term t ∈ T (�) we have that
(1) if f #(t) is defined, then (h · f )#(t) is also defined, and (h · f )#(t)= h(f #(t)).
(2) if h(f #(t)) is defined and h is an embedding, then f #(t) is defined, too.

Proof. (1) We proceed by induction on the structure of t. If t is a variable, then the claim is imme-
diate from the definition of (−)#. For the inductive step, let t ∈ T (�) be a term of the form
t = σ (t1, . . . , tn) such that f #(t) defined, where σ ∈ �� and � has cardinality n. Then, by defi-
nition of (−)#, it follows that f #(ti) is defined for all i= 1, . . . , n and f #(ti)≤ f #(tj) for all i≤ j in
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� (i.e. the map i �→ f #(ti) is monotone). Combining this with our assumption that h : A→ B is a
homomorphism, we obtain that

h · f #(σ (t1, . . . , tn))= σB(h · f #(t1), . . . , h · f #(tn)).
Moreover, since f #(ti) is defined for all i= 1, . . . , n, the inductive hypothesis implies that h ·
f #(ti)= (h · f )#(ti) for all i≤ n, hence also

(h · f )#(ti)= h · f #(ti)≤ h · f #(tj)= (h · f )#(tj)
for all i≤ j in �. Thus σB((h · f )#(t1), . . . , (h · f )#(tn)) is defined and equal to h · f #(σ (t1, . . . , tn)),
as desired.
(2) Suppose now that h is an embedding. We use a similar inductive proof. In the inductive step
suppose that (h · f )#(t) is defined. Then by the definition of (−)#, it follows that (h · f )#(ti) is
defined for all i= 1, . . . , n and (h · f )#(ti)≤ (h · f )#(tj) holds for all i≤ j in �. By induction we
know that all f #(ti) are defined and by item (1) that

h · f #(ti)= (h · f )#(ti)≤ (h · f )#(tj)= h · f #(ti)
holds for all i≤ j in �. Since h is an embedding, we therefore obtain f #(ti)≤ f #(tj) for all i≤ j in
�, whence f #(t) defined.

Proposition 3.22. Every variety is closed under filtered colimits in Alg�.

In other words, the full embedding E : V ↪→ Alg� creates filtered colimits.

Proof. Let V be a variety of �-algebras. Let D : D → Alg� be a filtered diagram having colimit
cd : Dd →A (d ∈ objD). It suffices to show that every inequation in context � � s≤ t satisfied
by every algebra Dd is also satisfied by A. Let f : � →A be a monotone interpretation. Since � is
finite, f factorizes, for some d ∈ objD , through cd via a monotone map f̄ : � →Dd: in symbols,
cd · f̄ = f . Since Dd satisfies the given inequation in context, we know that f̄ #(s) and f̄ #(t) are
defined and that f̄ #(s)≤ f̄ #(t) in Dd. By Lemma 3.21 we conclude that

f #(s)= (cd · f̄ )#(s)= cd · f̄ #(s) and f #(t)= (cd · f̄ )#(t)= cd · f̄ #(t)
are defined. Using the monotonicity of cd, we obtain

f #(s)= cd · f̄ #(s)≤ cd · f̄ #(t)= f #(t)
as desired.

Corollary 3.23. The forgetful functor of a variety into Pos creates filtered colimits.

Indeed, the forgetful functor of a variety V is a composite of the inclusion V ↪→ Alg� and the
forgetful functor of Alg�, both of which create filtered colimits.

Proposition 3.24. Every variety of �-algebras is a reflective subcategory of Alg� closed under
subalgebras.

Proof. We are going to prove below that every variety V = Alg (�, I) is closed in Alg� under
products and subalgebras, whence it is closed under all limits. We also know from Proposition
3.22 that V is closed under filtered colimits in Alg�. Being a full subcategory of the locally finitely
presentable category Alg� (Remark 3.20(4)), V is reflective by the reflection theorem for locally
presentable categories (Adámek and Rosický, 1994, Cor. 2.48).
(1) Alg (�, I) is closed under products in Alg�. Indeed, given A=∏

i∈I Ai with projections
πi : A→Ai and a monotone interpretation f : � →A, we prove for every term s ∈ T (�) that
f #(s) is defined if and only if so is (πi · f )#(s) for all i ∈ I. This is done by structural induction: for
s ∈ |�| there is nothing to prove. Suppose that s= σ (tj) for some σ ∈ �� and tj ∈ T (�), j ∈ �.
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Then f #(s) is defined iff j≤ k in � implies f #(tj)≤ f #(tk) in A. Equivalently, j≤ k in � implies
πi · f #(tj)≤ πi · f #(tk) in Ai for all i ∈ I because the πi are monotone and jointly order-reflecting,
i.e. for every x, y ∈A we have x≤ y iff πi(x)≤ πi(y) for all i ∈ I. By Lemma 3.21, we have, again
equivalently, that (πi · f )#(tj)≤ (πi · f )#(tk) since every πi is a homomorphism.

We now prove that A satisfies every inequation � � s≤ t in I , as claimed. Let f : � →A be
a monotone interpretation. We have that (πi · f #)(s) and (πi · f #)(t) are defined and πi · f #(s)≤
πi · f #(t) for all i ∈ I, using Lemma 3.21 and since all Ai satisfy the given inequation in context.
Using again that the πi are jointly order-reflecting, we obtain f #(s)≤ f #(t), as required.
(2) Alg (�, I) is closed under subalgebras in Alg�. Indeed, letm : B ↪→A be a�-homomorphism
carried by an embedding. For every inequation � � s≤ t in I , we prove that B satisfies it. For
a monotone interpretation f : � → B, we see that (m · f )#(s) and (m · f )#(t) are defined and
(m · f )#(s)≤ (m · f )#(t) since A satisfies the given inequation in context. By Lemma 3.21, we
obtain that f #(s) and f #(t) are defined and

m · f #(s)= (m · f )#(s)≤ (m · f )#(t)=m · f #(s).
Sincem is an embedding, it follows that f #(s)≤ f #(t).

Corollary 3.25. The category Algc � of all coherent �-algebras is a reflective subcategory of Alg�.

Indeed, this follows using Example 3.19(3).

Example 3.26. Unlike in classical general algebra a variety need not be regular-epireflective in
Alg�. To see this recall from Example 3.12 the signature � with a binary operation symbol
σ whose arity is a 2-chain. Consider Algc � as a variety of �-algebras (see Example 3.19(3)).
Then the reflection of the free �-algebra T�� in V is its embedding in the free coherent
�-algebra Tc�� (see Example 3.17), which is not a regular epimorphism being a monomorphism
but not an isomorphism, as explained in Example 3.12.

Remark 3.27. (1) A concrete category over Pos is a category V together with a faithful functor
UV : V → Pos. We say that V is concretely isomorphic to a concrete category UW : W → Pos if
there is an isomorphism I : V →W such that UV =WW · I (cf. Remark 3.6(1)).
(2) In the proof of Theorem 3.28, we will apply Beck’s Monadicity Theorem (MacLane, 1998,
Thm. VI.7.1). This makes use of the notion of a split coequalizer: a morphism c : B→ C is a split
coequalizer of a parallel pair f , g : A→→ B if there are morphisms s and t with types vizualized as

A B C
f

g
c

t
s

such that
c · f = c · g, c · s= idC,
f · t = idB, g · t = s · c. (5)

Note that this implies that c is an absolute coequalizer of f and g (i.e. a coequalizer that is preserved
by every functor).

Beck’s Monadicity Theorem states that for a right adjoint functor U : C → Pos with induced
monad T, the category C is concretely isomorphic to PosT (i.e. U is strictly monadic; note that
MacLane simply calls this monadic) if and only if U creates coequalizers of U-split pairs; these are
parallel pairs f , g : A→ B in C such that the pair Uf ,Ug has a split coequalizer c in Pos. In more
detail, there exists a unique morphism c′ : B→ C in C such that Uc′ = c and, moreover, c′ is a
coequalizer of the pair f , g in C .

Theorem 3.28. For every variety, the forgetful functor to Pos is strictly monadic.

Proof. Given a variety V of �-algebras we prove that the forgetful functor U : V → Pos is strictly
monadic (cf. Remark 3.27(2)).
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(1) The functor U is a right adjoint because it is the composite of the embedding E : V → Alg�

and the forgetful functor V : Alg� → Pos: the functor E is a right adjoint by Proposition 3.24
and V is one by Proposition 3.8.
(2) Let f , g : A→ B be a U-split pair of homomorphisms in V . For every σ ∈ �� , there exists a
unique operation σC : Pos0(�, C)→ Cmaking c a homomorphism:

Pos0(�, B) B

Pos0(�, C) C

σB

c·(−) c
σC

Indeed, let us define σC by

σC(h)= c · σB(i · h) for all h : � → C.

Then c is a homomorphism since σC(c · k)= c · σB(k) for every k : � → B:

c · σB(k)= c · σB(f · j · k) since f · j= id
= c · f · σA(j · k) f a homomorphism
= c · g · σA(j · k) since c · f = c · g
= c · σB(g · j · k) g a homomorphism
= c · σB(i · c · k) since g · j= i · c
= σC(c · k).

Conversely, if C has an algebra structure making c a homomorphism, then the above formula
holds since c · i= id:

σC(h)= σC(c · i · h)= c · σB(i · h).
Furthermore, C lies in V . To verify this, we prove that whenever an inequation � � s≤ t is

satisfied by B, then the same holds for the algebra C. Given a monotone interpretation h : � → C
such that h#(s) and h#(t) are defined, we prove h#(s)≤ h#(t).

For the monotone interpretation i · h : � → B we have that (i · h)#(s) and (i · h)#(t) are defined
and that (i · h)#(s)≤ (i · h)#(t) since B lies in V . Since c is a homomorphism, we conclude using
Lemma 3.21 and that c · i= idC that

h#(s)= (c · i · h)#(s)= c · (i · h)#(s)
is defined and similarly for h#(t). Then we have

h#(s)= c · (i · h)#(s)≤ c · (i · h)#(t)= h#(t)

since c is monotone, as desired.
Finally, we prove that c is a coequalizer of f and g in V . We already know that c is a coequalizer

in Pos. Given a homomorphism d : B→D such that d · f = d · g we therefore obtain a unique
monotone map d′ : C →D such that d′ · c= d. It remains to prove that d′ is a homomorphism.
Given σ ∈ �� we consider the following diagram:

Pos0(�, B) B

Pos0(�, C) C

Pos0(�,D) D

σB

c·(−)

d·(−)

c

d
σC

d′·(−) d′

σD
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The left-hand and right-hand parts clearly commute, and the upper square and outside do since
c and d are homomorphisms. Thus, the desired lower square commutes when precomposed by
c · (−). This is an epimorphism since it is a coequalizer, being the image of the absolute
coequalizer c under the hom-functor Pos0(�,−). Hence, the desired lower square commutes.

Definition 3.29. Given a variety V , the left adjoint of U : V → Pos assigns to every poset X the free
algebra of V on X. The ensuing monad is called the free-algebra monad of the variety and is denoted
by TV .

Remark 3.30. The monad TV is finitary, which means that its underlying endofunctor preserves
filtered colimits. Indeed, the underlying endofunctor is UF, where F : Pos→ V is the free-algebra
functor. Since F is left adjoint, it preserves (filtered) colimits, and U is finitary by Corollary 3.23.

Corollary 3.31. Every variety V is concretely isomorphic to the Eilenberg-Moore
category PosTV .

Example 3.32. (1) Recall the variety of internal semilattices considered in Example 3.19(5). It is
well known (and easy to show) that the free internal semilattice on a posetX is formed by the poset
CωX of its finitely generated convex subsets. Here, a subset S⊆ X is convex if x, y ∈ S implies that
every z such that x≤ z ≤ y lies in S, too, and finitely generated means that S is the convex hull of
a finite subset of X. The order on CωX is the Egli-Milner order, which means that for S, T ∈ CωX
we have

S≤ T iff ∀s ∈ S. ∃t ∈ B. s≤ t ∧ ∀t ∈ T. ∃s ∈ S. s≤ t.

The constant 0 is the empty set, and the operation + is the join w.r.t. inclusion, explicity, S+ T is
the convex hull of S∪ T for all S, T ∈ CωX. One readily shows that + is monotone w.r.t. the Egli-
Milner order and that CωX with the universal monotone map x �→ {x} is a free internal semilattice
onX. Thus we see thatCω is a monad on Pos and PosCω is (isomorphic to) the category of internal
semilattices in Pos.
(2) Denote by Dω the monad of free join-semilattices. It assigns to every poset X the set of all
finitely generated, downwards closed subsets of X ordered by inclusion. Here a downwards closed
subset S⊆ X is finitely generated if there are x1, . . . , xn ∈ S, n ∈N, such that S=⋃n

i=1 xi↓. The
category PosDω is equivalent to that of join-semilattices, see Example 3.19(6).
(3) Similarly, the monad Db

ω generated by the variety of bounded-join semilattices
(Example 3.19(7)) assigns to a poset X the set of finitely generated downwards closed bounded
subsets of X, ordered by inclusion.
(4) The subdistribution monad S on Pos assigns to each poset X the set of finitely supported
subdistributions on X, i.e. finitely supported [0, 1]-valued measures; these may be represented as
mapsμ : X → [0, 1] such that {x ∈ X | μ(x)> 0} is finite and∑x∈X μ(x)≤ 1. The ordering on SX
is given by μ ≤ ν iff μ(x)≤ ν(x) for all x ∈ X. This monad is generated by the variety of ordered
subconvex algebras as described in Example 3.19(8). A variant of this claim with complete partial
orders instead of Pos as the base category has been proved by Jones and Plotkin (1989); a direct
proof for Pos is given by Ford et al. (2021a).

Corollary 3.33. The forgetful functors U : Alg� → Pos, Uc : Algc � → Pos are strictly monadic.

Note that the corresponding monads are the free-(coherent-)�-algebra monads given by T�X
and Tc�X, respectively (cf. Propositions 3.8 and 3.9).
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4. Finitary Monads
Let T be a finitary monad on Pos. We present a variety VT such that the mapping T �→ VT is
inverse to the assignment V →TV of a variety to its free-algebra monad (up to isomorphism).
Moreover, we prove that there is a completely analogous bijection between enriched finitary
monads and varieties of coherent algebras.

Remark 4.1. Recall, e.g. from Moggi (1991), that monads can, equivalently, be presented by
Kleisli triples; this notion goes back to Manes (1976, Exercise 12), who called it algebraic theory in
extension form.
(1) A Kleisli triple on Pos consists of (a) a self map X �→ TX on the class of all posets, (b) an
assignment of a monotone map ηX : X → TX to every poset, and (c) an assignment of a monotone
map f ∗ : TX → TY to every monotone map f : X → TY , which satisfies

η∗
X = idX∗ (6)

f ∗ · ηX = f (7)
g∗ · f ∗ = (g∗ · f )∗ (8)

for all posets X and all monotone maps f : X → TY and g : Y → TZ.
(2) A morphism into another Kleisli triple (T′, η′, (−)+) is a family ϕX : TX → T′X of mono-
tone maps such that the diagrams below commute for all posets X and all monotone functions
f : X → TY :

X TX T′X

TX T′X TY T′Y

η′
XηX

ϕX

f ∗ (ϕY ·f )+
ϕX ϕY

(3) Every monad T defines a Kleisli triple (T, η, (−)∗) by

f ∗ = TX
Tf−−→ TTY μY−−→ TY .

Every monad morphism ϕ : T→T
′ defines a morphism ϕX : TX → T′X of Kleisli triples. The

resulting functor from the category of monads to the category of Kleisli triples is an equivalence
functor.

Definition 4.2. Let T be a finitary monad on Pos. The variety VT associated to T on Pos has the
signature

�� = |T�| for every � ∈ Posf.
That is, operations of arity� are elements of the poset T�. For each� ∈ Posf, we impose inequations
of the following types:
(1) � � σ ≤ τ for all σ ≤ τ in T� (with operations used as terms as per Convention 3.11);
(2) � � k∗(σ )= σ (k) for all � ∈ Posf, monotone maps k : � → T� and σ ∈ T�;
(3) � � η�(x)= x for all x ∈ � (again with the operation η�(x) ∈ T� used as a term).

Example 4.3. For every poset X, the poset TX carries the following structure of an algebra of VT.
Given σ ∈ T�, we define the operations σTX : Pos0(�, TX)→ TX by

σTX(f )= f ∗(σ ) for f : � → TX.
It then follows that the evaluation map f # : T (�)→ |TX| coincides with f ∗ on operation symbols
(used as terms as per Convention 3.11):

f #(σ )= f ∗(σ ) (9)
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for all σ ∈ T�. Indeed, for |�| = {x1, . . . , xn} we have
f #(σ )= f #(σ (x1, . . . , xn)) Conv. 3.11

= σTX(f #(x1), . . . , f #(xn)) def. of f #

= σTX(f (x1), . . . , f (xn)) def. of f #

= σTX(f )
= f ∗(σ ) def. of σTX .

We now verify that the �-algebra TX lies in VT. It satisfies the inequations of type (1) because
f ∗ is monotone: given σ ≤ τ in T�, we have f #(σ )= f ∗(σ )≤ f ∗(τ )= f #(τ ). Further, it satisfies
the inequations of type (2) since for every monotone map k : � → T� we know that f #(k∗(σ )) is
defined by Example 3.14(2), and we have

f #(k∗(σ ))= f ∗ · k∗(σ ) by (9)
= (f ∗ · k)∗(σ ) by (8)
= σTX(f ∗ · k) def. of σTX
= σTX(f # · k) by (9)
= f #(σ (k)) def. of f #.

Finally, we verify that TX satisfies the inequations of type (3). Indeed, given a monotone
interpretation k : � → TX, we know that k#(η�(x)) and k#(x) are defined, and the desired
equality k#(η�(x))= k#(x) follows immediately from Equation (9) using that k∗ · η� = k (see
Remark 4.1(1)). We conclude that TX lies in VT, as claimed.

Theorem 4.4. Every finitary monad T on Pos is the free-algebra monad of its associated variety VT.

Proof. (1) We first prove that the algebra TX of Example 4.3 is a free algebra of VT w.r.t. the
monad unit ηX : X → TX.
(1a) First, suppose that X = � is an object of Posf. Given an algebra A of VT and a monotone
map f : � →A, we are to prove that there exists a unique homomorphism f̄ : T� →A such that
f = f̄ · η.

Indeed, given σ ∈ T�, define f̄ by

f̄ (σ )= σA(f ).

Then f̄ · η� = f since for every x ∈ �, we have

f̄ · η�(x)= f̄ (η�(x))
= η�(x)A(f ) def. of f̄
= η�(x)A(f # · u�) def. of f #

= f #(η�(x)(u�)) def. of f #

= f #(x) A satisfies � � η�(x)= x
= f (x) def. of f #.

Moreover, f̄ is a monotone function: if σ ≤ τ in T�, then use the fact that A satisfies the
inequation � � σ ≤ τ to obtain

σA(f )= f #(σ )≤ f #(τ )= τA(f ).

We now verify that f̄ is a homomorphism: given τ ∈ ��, we will prove that the following square
commutes:
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Pos0(�, T�) T�

Pos0(�,A) A

f̄ ·(−)

τT�

f̄

τA

Indeed, for every monotone map k : � → T� we have that f # is defined in k∗(τ ) by
Example 3.14(2), and we therefore obtain:

f̄ (τT�(k))= f̄ (k∗(τ )) def. of τT�

= (k∗(τ ))A(f ) def. of f̄
= f #(k∗(τ )) Def. 3.13
= f #(τ (k̂)) A satisfies � � k∗(τ )= τ (k̂)
= τA(f #(k)) def. of f #

= τA(f̄ · k).
For the last step, we use again the definition of f # to obtain that for every x ∈ |�| the
operation symbol σ = k(x), considered as the term σ (y1, . . . , yk) where |�| = {y1, . . . , yk}
(Convention 3.11), satisfies

f #(σ (y1, . . . , yk))= σA(f #(y1), . . . , f #(yk))
= σA(f (y1), . . . , f (yk))
= σA(f )= f̄ (σ ).

Since σ = k(x), this gives the desired f̄ · k when we let x range over �.
As for uniqueness, suppose that f̄ : T� →A is a homomorphism such that f = f̄ · η� . The

above square commutes for � = � which applied to η� ∈ Pos(�, T�) yields for every σ ∈ |T�|:
f̄ (σ )= f̄ (η∗

�(σ )) by (6)
= f̄ (η#�(σ )) by (9)
= f̄ (σT�(η�)) def. of η#�
= σA(f̄ · η�) f̄ a homomorphism
= σA(f ) since f̄ · η� = f ,

as required.
(1b) Now, let X be an arbitrary poset. Express it as a filtered colimit X = colimi∈I �i of objects
from Posf. The free algebra on X is then a filtered colimit of the corresponding diagram of the
�-algebras T�i (i ∈ I). Indeed, that TX = colim T�i in Pos follows from T preserving filtered
colimits. That this colimit lifts toV follows from the forgetful functor ofV creating filtered colimits
(Corollary 3.23).
(2) To conclude the proof, we apply Remark 4.1. Our given monad and the monad TV of the
associated variety share the same object assignment X �→ TX = TVX for an arbitrary poset X, and
the same universal map ηX , as shown in part (1). It remains to prove that for every morphism
f : X → TY in Pos the homomorphism h∗ = μY · Th extending h in PosT is a �-homomorphism
h∗ : TX → TY of the corresponding �-algebras of Example 4.3. Then T and TV also share the
operator h �→ h∗. Thus given σ ∈ �� we are to prove that the following square commutes:

Pos0(�, TX) TX

Pos0(�, TY) TY

h∗·(−)

σTX

h∗

σTY
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Indeed, given f : � → TX, we have

h∗ · σTX(f )= h∗ · f ∗(σ ) def. of σA
= (h∗ · f )∗(σ ) by (8)
= σTY (h∗ · f ) def. of σTY

This completes the proof.

In the following corollary, we consider varieties independently of their presentation. In other
words, concretely isomorphic varieties (Remark 3.27(1)) are identified. For example, join semi-
lattices form the same variety as meet semilattices or as commutative idempotent monoids.

Corollary 4.5. Finitary monads on Pos correspond bijectively, up to monad isomorphism, to
finitary varieties of ordered algebras.

Indeed, the assignment of the associated variety VT to every finitary monadT is essentially inverse
to the asignment of the free-algebramonadTV to every varietyV . To see this, recall that every vari-
ety V is concretely isomorphic to the category PosTV (Corollary 3.31). Conversely, every finitary
monad T is isomorphic to TV for the associated variety (Theorem 4.4).

Proposition 4.6. If T is an enriched finitary monad on Pos, then the algebras of its associated
variety VT are coherent. Conversely, for every variety V of coherent algebras, the free-algebra monad
TV is enriched.

Proof. For the first claim, let T be enriched. Then the �-algebra TX of Example 4.3 is coher-
ent: Given an operation symbol σ ∈ �� and monotone interpretations f ≤ g in Pos(�, TX),
we have Tf ≤ Tg, and hence f ∗ = μTX · Tf ≤ μTX · Tg = g∗ because T is enriched. Therefore,
f ∗(σ )≤ g∗(σ ). That is,

σTX(f )≤ σTX(g).

For every algebra A of the variety VT we have the unique�-homomorphism k : TA→A such that
k · ηA = idA (since TA is a free �-algebra in VT; see item (1) in the proof of Theorem 4.4). The
coherence of TA implies the coherence of A: given f1 ≤ f2 in Pos(�,A), we verify σA(f1)≤ σA(f2)
by applying the commutative square below to ηA · fi:

Pos(�, TA) TA

Pos(�,A) A

σTA

k·(−) k

σA

We obtain σA(fi)= σA(k · ηA · fi)= k · σTA(ηA · fi); by monotonicity of composition in Pos and of
σTA as established above, this implies σA(f1)≤ σA(f2) as desired.

Conversely, let V be a variety of coherent �-algebras. Given f1 ≤ f2 in Pos(X, Y), we prove that
the free-algebramonadTV fulfilsTV f1 ≤ TV f2. Let e : E ↪→ TVX be the subposet of all elements t ∈
|TVX| such that TV f1(t)≤ TV f2(t). Since for x ∈ X we know that f1(x)≤ f2(x), the poset E contains
all elements ηX(x). Moreover, E is closed under the operations of TVX: Suppose that σ ∈ �� and
that h : � → TVX is a monotone map such that h[�]⊆ E; we have to show that σTVX(h) ∈ E.
Applying the commutative square

Pos(�, TVX) TVX

Pos(�, TVY) TVY

σTVX

TV fi·(−) TV fi

σTVY
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to h, we obtain
TV f1(σTVX(h))= σTVY (TV f1 · h)

≤ σTVY (TV f2 · h)
= TV f2(σTVX(h))

using in the inequality that σTVY is monotone and, by assumption, TV f1(h)≤ TV f2(h); that is,
σTVX(h) ∈ E, as desired.

We thus see that E is a�-subalgebra of TVX. Since TVX is the free algebra of V w.r.t. ηX and the
subalgebra E contains ηX[X], it follows that E= TVX. This proves that Tf1 ≤ Tf2, as desired.

Corollary 4.7. Enriched finitary monads on Pos correspond bijectively, up to monad isomorphism,
to finitary varieties of coherent ordered algebras.

5. Enriched Lawvere Theories
Power (1999) proves that enriched finitary monads on Pos bijectively correspond to Lawvere
Pos-theories. This is another way of proving Corollary 4.7. However, we believe that a precise
verification of all details would not be simpler than our proof. Here we indicate this alternative
proof.

Dual to Remark 2.2, cotensors P � X in a Pos-enriched category T are characterized by an
enriched natural isomorphism T (−, P � X)∼= Pos(P,T (−, X)). If we restrict ourselves to finite
posets P we speak about finite cotensors.

Definition 5.1 (Power 1999). A Lawvere Pos-theory is a small enriched category T with finite
cotensors together with an enriched identity-on-objects functor ι : Posopf → T which preserves finite
cotensors.

Example 5.2. Let V be a variety, and denote by TV its free-algebra monad on Pos. The fol-
lowing theory TV is the restriction of the Kleisli category of TV to Posf: objects are all arities,
and morphisms from � to �′ form the poset Pos(�′, TV�). A composite of f : �′ →TV� and
g : �′′ → TV�′ is f ∗ · g : �′′ →TV� where (−)∗ is the Kleisli extension (see Remark 4.1(3)).

Theorem 5.3 (Power, 1999, Thm. 4.3). There is a bijective correspondence between enriched
finitary monads on Pos and Lawvere Pos-theories.

Example 5.4. By inspecting Power’s proof, we see that for the theory TV of Example 5.2, the
corresponding monad is precisely the free-algebra monad TV .

Remark 5.5. With every Lawvere Pos-theoryT , Power associates the categoryModT ofmodels,
which are enriched functors Ā : T → Pos preserving finite cotensors. Morphisms are all enriched
natural transformations between models.

In Example 5.2, every algebra A of V yields a model Ā of TV by putting Ā(�)= V(TV�,A) and
for f : �′ → TV� we have

Ā(f )= f ∗ · (−) : V(TV�,A)→ V(TV�′,A).
The proof of Theorem 5.3 implies that these are, up to isomorphism, all models of TV and this
yields an equivalence between V and ModTV .

Thus, Corollary 4.7 can be proved by verifying that every Lawvere Pos-theory T is naturally
isomorphic to TV for a variety of algebras, and the passage from T to V is inverse to the passage
V �→ TV of Example 5.4.
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In addition, Nishizawa and Power (2009) generalize the concept of Lawvere theory to a setting
in which one may obtain an alternative proof of the non-coherent case (Corollary 4.5); we briefly
indicate how. Again we believe that that proof would not be simpler than ours. The setting of
op. cit. includes a symmetric monoidal closed category V that is locally finitely presentable in the
enriched sense and a locally finitely presentable V-category A . For our purposes, V = Set and
A = Pos.

Definition 5.6 (Nishizawa and Power, 2009, Def. 2.1). A Lawvere Pos-theory for V = Set is a
small ordinary category T together with an ordinary identity-on-objects functor ι : Posopf → T
preserving finite limits.

Example 5.7. Every variety of (not necessarily coherent) algebras yields a theory T analogous to
Example 5.2: the hom-set T (�, �′) is Pos0(�′,TV�).

Remark 5.8. Here, a model of a theory T is an ordinary functor A : T → Set such that
A · ι : Posopf → Set is naturally isomorphic to Pos(−, X)/Posopf for some poset X. The category
ModT of models has ordinary natural transformations as morphisms.

Theorem 5.9 (Nishizawa and Power, 2009, Cor. 5.2). There is a bijective correspondence between
ordinary finitary monads on Pos and Lawvere Pos-theories in the sense of Definition 5.6.

6. Conclusion and Future Work
Classical varieties of algebras are well known to correspond to finitary monads on Set. We have
investigated the analogous situation for the category of posets. It turns out that there are two
reasonable variants: one considers either all (ordinary) finitary monads, or just the enriched ones,
whose underlying endofunctor is locally monotone. (An orthogonal restriction, not considered
here, is to require the monad to be strongly finitary, which corresponds to requiring the arities
of operations to be discrete, see Adámek et al. 2021.) We have defined the concept of a variety of
ordered algebras using signatures where arities of operation symbols are finite posets. We have
proved that these varieties bijectively correspond to
(1) all finitary monads on Pos, provided that algebras are not required to have monotone
operations,
(2) all enriched finitary monads on Pos for varieties of coherent algbras, i.e. those with monotone
operations.
In both cases, “term” has the usual meaning in universal algebra, and varieties are classes presented
by inequations in context.

Although we have concentrated entirely on posets, many features of our article can clearly
be generalized to enriched locally λ-presentable categories and the question of a semantic pre-
sentation of (ordinary or enriched) λ-accessible monads. For example, what type of varieties
corresponds to countably accessible monads on the category of metric spaces with distances at
most one (and nonexpanding maps)? Such varieties will be related toMardare et al.’s (2016) quan-
titative varieties (also called c-varieties by Mardare et al. 2017; Milius and Urbat 2019), probably
extended by allowing non-discrete arities of operation symbols.

Rosický (2021) suggests another possibility of presenting finitary monads on Pos: by applying
the functorial semantics by Linton (1969) to functors into Pos and taking the appropriate finitary
variation in the case where those functors are finitary. We intend to pursue this idea in future
work.
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