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Abstract

We give two concrete examples of continuous valuations on dcpo’s
to separate minimal valuations, point-continuous valuations and con-
tinuous valuations:

1. Let J be the Johnstone’s non-sober dcpo, and µ be the continu-
ous valuation on J with µ(U) = 1 for nonempty Scott opens U
and µ(U) = 0 for U = ∅. Then µ is a point-continuous valuation
on J that is not minimal.

2. Lebesgue measure extends to a measure on the Sorgenfrey line R`.
Its restriction to the open subsets of R` is a continuous valua-
tion λ. Then its image valuation λ through the embedding of
R` into its Smyth powerdomain QR` in the Scott topology is a
continuous valuation that is not point-continuous.

We believe that our construction λ might be useful in giving coun-
terexamples displaying the failure of the general Fubini-type equations
on dcpo’s.
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1 Introduction

Continuous valuations on topological spaces are analogues of measures on
measurable spaces. In domain theory, continuous valuations on dcpo’s with
the Scott topology are employed by computer scientists and mathematicians
to give denotational meanings to probabilistic programming languages. This
line of work dates back to Jones and Plotkin [19, 18]. Indeed, in her Ph.D.
thesis, Jones developed the theory of valuations and used the valuations
monad V on the category DCPO of dcpo’s and Scott-continuous maps to
give denotational semantics to probabilistic programming languages.

While the valuations monad on the category DCPO enjoys many nice
properties, for example this monad is a strong monad and dcpo-enriched, it
is unknown whether it is a commutative monad on the same category. As a
result, it would be difficult, using the valuations monad, to establish the so-
called contextual equivalence between programs that only differ in the order
of sampling random variables. To combat this problem, the authors in [17]
constructed submonads of the valuations monad V that are commutative on
the category of dcpo’s. Among their construction, there is a least submonad
of the valuations monad that consists of which we call minimal valuations.
Minimal valuations are these continuous valuations that are in the d-closure
of the simple valuations; precisely, they consist of directed suprema of simple
valuations, directed suprema of directed suprema of simple valuations and so
forth, transfinitely. Every minimal valuation is a point-continuous valuation
in the sense of Heckmann [12, 17]. Heckmann[12] proved that the class of
point-continuous valuations on space X form the sobrification of the space
of simple valuations on X, both in the so-called weak topology. Every point-
continuous valuation is a continuous valuation [11, Proposition 3.1].

It is relatively easy to see that on general topological spaces minimal
valuations form a strictly smaller class than that of point-continuous valua-
tions. However, it is unknown whether the same is true on dcpo’s with the
Scott topology. The first example in this paper clarifies the difference be-
tween minimal valuations and point-continuous valuations on dcpo’s. Con-
cretely, we consider the well-known Johnstone’s non-sober dcpo J and the
“constant-1 valuation” µ on J defined by µ(U) = 1 if U is nonempty and
µ(∅) = 0. We show that every bounded continuous valuation on J can
be written as a sum of some discrete valuation and a scalar multiple of µ.
This enables us to conclude that every continuous valuation on J is actu-
ally point-continuous. Moreover, we prove that the continuous valuation µ
is not in the d-closure of simple valuations, hence it serves as an example
that separates minimal valuations from point-continuous valuations. This
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example is included in Section 3.
Similar to the difference between minimal valuations and point-continuous

valuations, continuous valuations that are not point-continuous can be eas-
ily found on topological spaces. For example, Lebesgue measure, restricted
to the usual opens of reals, is a continuous valuation that is not point-
continuous. However, it has been unknown whether point-continuous valua-
tions differ from continuous valuation on dcpo’s since 1996. The second goal
of this note is to give an example of a continuous valuation on a dcpo that
is not point-continuous. In order to find such an example, one is tempted
to find the simplest possible example, and typically to find a continuous
valuation that takes only two values, 0 or 1, and hoping that it would not
be point-continuous. However, we notice that such a strategy cannot work,
as we will see in Section 4.1. Hence, we will have to work a bit more. We
show how one can build certain continuous valuation on the Sorgenfrey line
R` in Section 4.2, including one based on Lebesgue measure λ. We study the
compact subsets of R` in Section 4.3, as a preparation to studying the dcpo
QR` of compact subsets of R` under reverse inclusion, and showing that the
natural map from R` to QR` is a subspace embedding in Section 4.4. We
transport Lebesgue measure λ along this embedding, and we will show that
the resulting continuous valuation λ on QR` fails to be point-continuous in
Section 4.5. We believe that our construction λ might be useful in giving
counterexamples displaying the failure of the general Fubini-type equations
on dcpo’s, which is a longstanding open problem in domain theory. More
detailed discussion about this part is included in the concluding remarks.

2 Preliminaries

We use standard concepts and notations from topology, measure theory, and
domain theory. The reader is referred to [1, 7, 6] for topology and domain
theory, and to [22] for measure theory.

2.1 Valuations

On a topological space X, a valuation ν is a map from the set OX of opens
of X to the extended reals R+, satisfying strictness (ν(∅) = 0), monotonicity
(U ⊆ V ⇒ ν(U) ≤ ν(V )) and modularity (ν(U) + ν(V ) = ν(U ∪V ) + ν(U ∩
V )). A valuation ν on X is called continuous if it is Scott-continuous from
OX to R+, and it is called bounded if ν(X) < ∞. Continuous valuations
are ordered in the stochastic order : ν1 ≤ ν2 if and only if ν1(U) ≤ ν2(U)
for all opens U of X. The set of all continuous valuations on X, which we
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denote as VX, is a dcpo in the stochastic order. Canonical examples of
continuous valuations on X include Dirac valuations δx for x ∈ X, where
δx(U) = 1 if x ∈ U and δx(U) = 0 if x /∈ U . As a dcpo, VX is closed
under suprema, it also is closed under scalar multiplication and sum, for
νi ∈ VX and ri ∈ [0,∞[, i = 1, · · · , n, the sum

∑n
i=1 riνi which is defined by

(
∑n

i=1 riνi)(U) =
∑n

i=1 riνi(U) also is in VX. For ri ∈ [0,∞[ and xi ∈ X,
i = 1, · · · , n, the finite sum

∑n
i=1 riδxi is called a simple valuation on X.

The set of all simple valuations on X is denoted by SX. Valuations of
the form

∑∞
i riδxi = supn∈N

∑n
i=1 riδxi are called discrete valuations. The

smallest sub-dcpo of VX that contains SX (hence all discrete valuations on
X) is denoted byMX, and every valuations inMX is called minimal. It is
easy to see that for each minimal valuation ν, ν is either a simple valuation,
or a directed supremum of simple valuations, or a directed supremum of
directed suprema of simple valuations · · · , transfinitely. A valuation ν on a
space X is point-continuous if and only if for every open subset U , for every
real number r such that 0 ≤ r < ν(U), there is a finite subset A of U such
that ν(V ) > r for every open neighborhood V of A. Minimal valuations
are point-continuous [17], and point-continuous valuations are continuous
valuations [11, Proposition 3.1].

2.2 Ring of sets

We will need the notion of Boolean ring of sets (ring of sets for short). On
a set X, a ring of sets on X is a lattice of sets consisting of subsets of X that
also is closed under relative complements. For a topological space X, the
set OX of all opens of X is a lattice of sets, and the ring of sets generated
by OX is the intersection of all rings of sets on X that contain OX, and it
is denoted by A(OX).

Lemma 2.1. [6, Lemma IV-9.2] Let X be a topological space. For each set
A in A(OX), the ring of sets generated by open sets of X, A is of the form
of a finite disjoint union

∐n
i=1 Ui\Vi, where Ui and Vi are open subsets of X.

One can also stipulate that Vi ⊆ Ui for each i.

For open subsets U and V of X, the set difference U \ V is called a
crescent. Since U \ V = U \ (U ∩ V ), in the sequel, when we write a set
A ∈ A(OX) as

∐n
i=1 Ui \ Vi, we always assume that Vi ⊆ Ui for each i.

Lemma 2.2. [12, Section 3.3] Let X be a topological space and µ be a
bounded continuous valuation on X. For each set A =

∐n
i=1 Ui \ Vi in

A(OX), define µA =
∑n

i=1 µ|ViUi
, where for open sets U, V and W , µ|VU (W ) =

4



µ(W ∩U)− µ(W ∩ V ∩U). Then µA is a bounded continuous valuation for
each A ∈ A(OX). In particular, µU\V = µ|VU . Note that µU = µ|∅U for every
open subset U .

Note that it is possible that for each A ∈ A(OX), A can be written as a
disjoint union

∐n
i=1 Ui \ Vi or

∐m
j=1 Uj \ Vj . However, when

∐n
i=1 Ui \ Vi =∐m

i=j Uj\Vj , we will always have that
∑n

i=1 µ|ViUi
=

∑m
j=1 µ|

Vj
Uj

. This validates
the definition of µA in the previous lemma.

Lemma 2.3. For two disjoint sets A,B ∈ A(OX), µA∪B = µA + µB. This
implies that µA ≤ µB when A ⊆ B.

Proof. From the above remark and straightforward computation.

Lemma 2.4. Let X be a T0 topological space and µ be a bounded continuous
valuation on X. If {a} is in A(OX), then there exist opens U, V with
V ⊆ U and U \ V = {a}. Moreover, in this case µ{a} = raδa, where
ra = µ{a}(X) = µ(U)− µ(V ) = µ{a}(U).

Proof. The first assertion is obvious.
For the second assertion, since X is T0, we only need to prove that for

each open O, µa(O) is equal to ra if a ∈ O and to 0 if a /∈ O. Assume that
U and V are open subsets of X with V ⊆ U and U \ V = {a}. For an open
subset O, if a ∈ O, then O ∩ U \ O ∩ V = U \ V = {a}, which implies that
µa(O) = µ|VU (O) = µ|V ∩OU∩O(O) = µ|V ∩OU∩O(U) = µa(U). If a is not in O, then
O ∩ U = O ∩ V . Hence µa(O) = 0.

3 Point-continuous valuations need not be mini-
mal valuations

In this section, we built a point-continuous valuation µ on the well-known
Johnstone’s non-sober dcpo, which is not a minimal valuation.

3.1 Valuations on Ncof

Let Ncof be the topological space of natural numbers equipped with the co-
finite topology. It is easy to verity that the the map β : ONcof → R+ defined
by

β(U) =

{
1, U ⊆ Ncof is open and nonempty;

0, U is empty

is a bounded continuous valuation on Ncof .
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Lemma 3.1. For each i ∈ Ncof , the set {i} is closed. Hence it is in the ring
of sets generated by the co-finite topology on Ncof .

Proof. Straightforward.

Proposition 3.2. Let ν be a bounded continuous valuation on Ncof . Then
there exists a discrete valuation α on Ncof and nonnegative real number r
such that ν = α+ rβ.

Proof. We let α =
∑

i∈N ν{i}. By Lemma 3.1 and Lemma 2.2, each ν{i} is
a continuous valuation. Since Ncof is a T0 topological space, it follows from
Lemma 2.4 that α is a discrete valuation. Now we define the map

ν∗ : ONcof → R+ :: U 7→ ν(U)− α(U).

We proceed to show that ν∗ is a multiple of β, that is, there exists some
r ∈ [0,∞[ such that ν∗ = rβ.

First, for each n ∈ N, ν(U)−∑n
i=1 ν{i}(U) = νN\{1,2,...,n}(U) is nonneg-

ative, hence ν∗(U), which is the infimum of ν(U) −∑n
i=1 ν{i}(U), n ∈ N,

indeed takes values in R+.
Second, for nonempty open sets U and V with V ⊆ U , we prove that

ν∗(U) = ν∗(V ). Because V is co-finite, we know that U \ V is a finite set,
which we denote by F . Then we know

ν∗(U) = ν(U)−
∞∑
i=1

ν{i}(U) definition of ν∗

= νU (U)−
∞∑
i=1

ν{i}(U) νU (U) = ν(U ∩ U)

= νV (U) +
∑
i∈F

ν{i}(U)−
∞∑
i=1

ν{i}(U) by Lemma 2.3 and V ∪ F = U

= νV (V )−
∞∑
i=1

ν{i}(V ) by Lemma 2.4

= ν∗(V ). definition of ν∗

Now for general nonempty opens U and V , we have ν∗(U) = ν∗(U ∩ V ) =
ν∗(V ). Let r = ν∗(X), then we know that r is nonnegative from above and
that ν∗ = rβ (hence ν∗ also is a continuous valuation).

Finally, we conclude the proof by the fact that ν = α+ ν∗ = α+ rβ.
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3.2 Valuations on Johnstone’s non-sober dcpo J
In 1980, Johnstone gave the first dcpo which is not sober in the Scott topol-
ogy [20]. This dcpo, which we denote by J , serves as a basic building block
in several counterexamples in domain theory [15, 14]. In this subsection, we
will use it to construct a continuous valuation that is not minimal.

Definition 3.3 (The dcpo J ). Let N be the set of natural numbers and
J = N× (N∪{∞}). The order on J is defined by (a, b) ≤ (c, d) if and only
if either a = c and b ≤ d, or d =∞ and b ≤ c.

The structure of J is depicted in Figure 1.
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Figure 1: Johnstone’s non-sober dcpo J .

We will use the following convention throughout this subsection when
we reason about J .

• M denotes the set of all maximal points of J , that is M = {(i,∞) |
i ∈ N};

• Mk = {(i,∞) | k < i}, and Mk,l = {(i,∞) | k < i ≤ l} for k, l ∈ N and
k < l;

• N denotes the set J \M ; elements in N are of finite height ;

• Li denotes the set of points of J which are at Level i, for each i ∈ N,
that is Li = {(j, i) | j ∈ N};
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• Ci denotes the set of points of J which are in Column i, that is
Ci = {(i, j) | j ∈ N ∪ {∞}}.

• Di denotes the set
⋃
j≤iCj , i.e., Di consists of elements in the first

i-many columns.

The dcpo J in the Scott topology is a non-sober topological space, and
the set M of maximal points of J equipped with the relative Scott topology
is homeomorphic to Ncof .

Let ν be an arbitrarybounded continuous valuation on J . We are going
to show that ν can be written as a sum of a discrete valuation θ and rµ,
where r is a nonnegative real number and in this section, µ is reserved for
the fixed valuation on J that takes value 1 on nonempty Scott-opens, and
0 on the empty set:

µ(U) =

{
1, U 6= ∅;
0, U = ∅.

Note that µ on J is an analogue of β on Ncof . Indeed, the pushforward
image of β along the canonical topological embedding n 7→ (n,∞) of Ncof

into J is exactly the valuation µ. Since θ and rµ are point-continuous
(direct verification), by proving that ν is a sum of some discrete θ and rµ,
we infer that all (not necessarily bounded) continuous valuations on J are
point-continuous by using a trick due to Heckmann.

Theorem 3.4. Every bounded continuous valuation ν on J is point-continuous.
Moreover, there exist a discrete valuation θ and nonnegative real number r
such that ν = θ + rµ.

We prove this theorem by a series of results. First, we give a lemma that
will be used a few times. It is a slight generalisation of [12, Proposition 3.2].

Lemma 3.5. Let µ be a bounded continuous valuation on a space X, and
ν be a monotonic map from OX to R ∪ {−∞,+∞} such that ν(∅) = 0. If
µ+ ν is a continuous valuation, then so is ν.

Proof. Since ν is monotonic and ν(∅) = 0, ν actually takes its values in R+.
It is clear that ν = (µ+ν)−µ is modular, using the fact that µ is bounded for
the subtraction to make sense. The only challenge is Scott-continuity. Let
(Ui)i∈I be any directed family of open subsets of X, and U be its union. We

have ν(U) ≥ sup↑i∈I ν(Ui) by monotonicity. In order to prove the reverse
inequality, we consider any a < ν(U), and we show that a ≤ ν(Ui) for some
i ∈ I. Since µ is bounded, µ(U) + a < (µ + ν)(U), and since µ + ν is a
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continuous valuation, there is an i ∈ I such that µ(U) + a < (µ + ν)(Ui).
Then a < µ(Ui)− µ(U) + ν(Ui) ≤ ν(Ui).

Lemma 3.6. For each element a ∈ N (using the convention after Defini-
tion 3.3) , the singleton {a} is a crescent. Thus, for each a ∈ N , {a} in the
ring of sets generated by Scott-opens of J .

Proof. For each a ∈ N , if a is at Level n, that is a = (j, n) for some j ∈ N,
then {a} can be written as ({a} ∪ ↑Ln+1) \ ↑Ln+1. The proof is done since
both {a} ∪ ↑Ln+1 and ↑Ln+1 are Scott-open in J .

Proposition 3.7. For each Scott-open subset U of J , let ν∗(U) = ν(U)−∑
a∈N ν{a}(U). Then ν∗ is a bounded continuous valuation on J .

Proof. Since for each a ∈ N , {a} is a crescent by Lemma 3.6, ν{a} is a
continuous valuation. Hence ν{a}(U) makes sense for each a ∈ N .

By Lemma 3.5, we only need to prove that ν∗ is well-defined and order-
preserving. Note that N is a countable set. We index elements in N by
natural numbers by letting N = {a1, a2, ..., an, ...}. Since for each open set
U ,

∑n
i=1 ν{ai}(U) = ν{a1,...,an}(U) ≤ νX(U) = ν(U) and ν(U) is bounded, it

means that for each U the sequence ν{ai}(U), n = 1, ..., n, ... is commutatively
summable. Hence ν∗ is well-defined and takes values in R+.

For monotonicity of ν∗, we let U be Scott-open and compute as follows:

ν∗(U) = ν(U)−
∑
a∈N

ν{a}(U)

= ν(U)−
∞∑
i=1

ν{ai}(U)

= lim
n→∞

(ν(U)−
n∑
i=1

ν{ai}(U))

= inf
n∈N

(νX(U)− ν{a1,...,an}(U))

= inf
n∈N

νX\{a1,...,an}(U).

Since for each n ∈ N, νX\{a1,...,an} is a continuous valuation therefore a non-
negative order-preserving map. Hence the pointwise infimum ν∗ of νX\{a1,...,an}, n ∈
N also is order-preserving.

Lemma 3.8. For any two Scott-open subsets U, V of J with M∩U = M∩V ,
ν∗(U) = ν∗(V ).
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Proof. Without loss of generality, we assume that U ⊆ V . Let Vn = U ∪
(V ∩Dn) (see the convention after Definition 3.3). Since M ∩ U = M ∩ V ,
Vn is Scott-open for each n. Moreover, V =

⋃∞
n=1 Vn.

Note that for every n, Vn \ U = (V ∩Dn) \ U is a finite subset of N , again
by the fact that M ∩ U = M ∩ V . Then we know that

ν∗(Vn) = ν∗(U) + ν∗(Vn)− ν∗(U)

= ν∗(U) + (ν(Vn)− ν(U))− (
∑
a∈N

ν{a}(Vn)−
∑
a∈N

ν{a}(U))

= ν∗(U) + νVn\U (Vn)− (
∑
a∈N

ν{a}(Vn)−
∑
a∈N

ν{a}(U))

= ν∗(U) +
∑

a∈Vn\U

ν{a}(Vn)−
∑

a∈N∩(Vn\U)

ν{a}(Vn)

= ν∗(U).

Hence by Scott-continuity of ν∗ (Proposition 3.7), we know that ν∗(V ) =
ν∗(

⋃
n∈N Vn) = supn∈N ν

∗(Vn) = ν∗(U).

We consider M as a subspace of J with the Scott-topology, and define
a continuous valuation ν∞ on M by stipulating for each open subset W
of M that ν∞(W ) = ν∗(UW ), where UW is the largest Scott-open subset
of J with M ∩ UW = W . We now use Lemma 3.8 to prove that ν∞ is
indeed a bounded continuous valuation on M . This is a consequence of [9,
Proposition 5.2], we provide a direct proof here nevertheless.

Lemma 3.9. The map ν∞ is a bounded continuous valuation on M equipped
with the relative Scott topology from J .

Proof. It is easy to see that ν∞(∅) = 0.
For modularity, let W1 and W2 be two open subsets of M . Then we

have:

ν∞(W1) + ν∞(W2) = ν∗(UW1) + ν∗(UW2) definition of ν∞

= ν∗(UW1 ∪ UW2) + ν∗(UW1 ∩ UW2) ν∗ is a valuation

= ν∗(UW1∪W2) + ν∗(UW1∩W2) by Lemma 3.8

= ν∞(W1 ∪W2) + ν∞(W1 ∩W2). definition of ν∞

Now we prove that ν∞ is Scott-continuous. Let Wi, i ∈ I be a directed family
of open subsets of M and W =

⋃
i∈IWi. We first note that UWi , i ∈ I also
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form a directed family of Scott-opens in J . Hence we have

ν∞(W ) = ν∗(U⋃
i∈I Wi

) definition of ν∞

= ν∗(
⋃
i∈I

UWi) by Lemma 3.8

= sup
i∈I

ν∗(UWi) ν∗ is Scott-continuous

= sup
i∈I

ν∞(Wi). definition of ν∞

Finally, boundedness of ν∞ is clear since ν∗ is.

We are now ready to prove Theorem 3.4.

Proof of Theorem 3.4. The space M in the relative Scott topology from
J is homeomorphic to Ncof . For example, one of the (infinitely many)
homeomorphisms between them is the map sending n ∈ Ncof to (n,∞) ∈M .
It then follows from Proposition 3.2 that ν∞ can be written as α+rβ where
α is a discrete valuation on M , r is a nonnegative real number, and β is the
valuation on M defined as β(W ) = 1 if W ⊆M is nonempty, and β(W ) = 0
if W = ∅. For each Scott open subset U of J , we have

ν∗(U) = ν∞(U ∩M) = α(U ∩M) + rβ(U ∩M).

Now we define θ′(U) = α(U ∩M). Since α is a discrete valuation on M ,
it is obvious that θ′ is a discrete valuation on J . Hence, by combining
Proposition 3.7 and the fact that µ(U) = β(U ∩M), we know that for each
Scott open subset U of J ,

ν(U) =
∑
a∈N

ν{a}(U) + ν∗(U) =
∑
a∈N

ν{a}(U) + θ′(U) + rµ(U).

Finally, we let θ = θ′ +
∑

a∈N ν{a} and the proof is complete.

As a corollary to Theorem 3.4, we have the following:

Corollary 3.10. Every continuous valuation on J is point-continuous.

Proof. It is proved in [12, Theorem 4.2] that every continuous valuation on a
T0 topological space can be written as a directed supremum of bounded con-
tinuous valuations. By Theorem 3.4, we know that on J every bounded con-
tinuous valuation is of the form θ+ rµ, which is obviously point-continuous.
Hence every continuous valuation on J , as a directed supremum of point-
continuous valuations, also is point-continuous [12, Section 3.2, Item (5)].

11



3.3 Non-minimality of µ on J
In this subsection, we show that the valuation µ on J , defined in the last
subsection, is not a minimal valuation.

As we know from Theorem 3.4, every bounded continuous valuation ν
on J is of the form θ + rµ. We first prove that that for any r > 0, θ + rµ
can not be written as a supremum of discrete valuations. Without loss of
generality, in the sequel we assume that the total mass of θ + rµ is 1, i.e.,
θ(J ) + rµ(J ) = θ(J ) + r = 1.

We will need the following extension result for discrete valuations, which
is a special case of [3, Theorem 4.1].

Lemma 3.11. Let θ be a discrete valuation on a dcpo D with θ(D) < ∞.
Then θ has a unique extension to a measure, which we again denote as θ,
on the Borel σ-algebra of (D,σD), where σD is the Scott topology on D.
In fact, if θ =

∑
i∈N riδxi with

∑
i∈N ri < ∞, then the value of its measure

extension on a Borel subset B of D is just
∑

i/xi∈B ri. �

Lemma 3.6 says that for each a ∈ N ⊆ J , the singleton {a} is a crescent,
hence {a} is a Borel subset of J . Actually, every subset of J is a Borel
subset. To see this, we only need to show that {(i,∞)} is a Borel subset in
J for each i ∈ N, since J is countable. Indeed, {(i,∞)} = ↓(i,∞)\⋃i∈N ↓Lj ,
and for i, j ∈ N, ↓(i,∞) and ↓Lj are Scott-closed. Now if θ is a discrete
valuation on J , then it makes sense to apply θ to any subset of J , viewing
that θ is a measure defined on the Borel σ-algebra generated by Scott-opens
on J .

Proposition 3.12. Let θ be a discrete valuation on J with total mass 1− r
and r > 0. Then θ + rµ is not a directed supremum of discrete valuations.

Proof. Suppose, for the sake of contradiction, that there exists a directed
family {θa}a∈A of discrete valuations with supremum supa∈A θa = θ + rµ.

Since (θ + rµ)(J ) = 1, there exists a discrete valuation θa, a ∈ A such
that θa(J ) > 1− r

4 . Note that supi∈NDi = J , where Di =
⋃
j≤iCj consists

of points in the first i-many columns (see Section 3.2), and also that Di

is a Borel subset of J for each i ∈ N. Since θa extends to a measure
(Lemma 3.11), we know that there exists a k ∈ N such that θa(Dk) > 1− r

4 .
Obviously, ↓Dk is Scott-closed and Uk = J \ ↓Dk is a nonempty Scott-

open subset of J , hence (θ + rµ)(Uk) ≥ r > 3r
4 . Again since θ + rµ =

supa∈A θa, there exists θb > θa such that θb(Uk) >
3r
4 .

Note that the set ↑Dk is a filtered intersection of countably many Scott-
open subsets of J , for example one can write ↑Dk =

⋂
i∈NOi, where for
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each i, Oi = J \ ↓{(k + 1, i), (k + 2, i), ...}. Then we know that

θb(↑Dk) = inf
i∈N

θb(Oi) ≥ inf
i∈N

θa(Oi) = θa(↑Dk) ≥ θa(Dk) > 1− r

4
.

Since Mk = {(i,∞) | k < i} is a Borel subset of J and it equals to
↑Dk ∩ Uk, hence by inclusion-exclusion of θb we know

θb(Mk) + θb(J ) ≥ θb(Uk) + θb(↑Dk) > 1 +
r

2
,

from which it follows that θb(Mk) >
r
2 . Since

⋃
l/l>kMk,l = Mk (Mk,l =

{(i,∞) | k < i ≤ l}), there exists a big enough l > k such that θb(Mk,l) >
r
2 .

Now consider Ul = J \ ↓Dl. Since (θ + rµ)(Ul) ≥ r > 3r
4 , we find a

θc, c ∈ A such that θc ≥ θb and θc(Ul) >
3r
4 . Meanwhile, note that Dk ⊆

Dl, similar to the reasoning above we will have that θc(↑Dl) ≥ θb(↑Dl) ≥
θb(↑Dk) > 1 − r

4 and that θc(Ml) >
r
2 . Then there exists a large enough

natural number m > l such that θc(Ml,m) > r
2 .

We claim that θc(J ) > r. Indeed, θc(J ) ≥ θc(Mk,m) = θc(Mk,l) +
θc(Ml,m) ≥ θb(Mk,l) + θc(Ml,m) > r. The second to last inequality comes
from the fact that θc ≥ θb and Mk,l is a filtered intersection of countably
many Scott-open subsets of J : one may take such a filtered family as {J \
↓F | F ⊆fin M \Mk,l}.

Next we consider the Scott-open set Um = J \↓Dm and then find θd ≥ θc
with θd(J ) > 3r

2 , and so forth. We proceed the above process N times,
where N is a natural number satisfying that N × r

2 > 1, to find a discrete
valuation θz in the directed family {θa}a∈A. By the construction, we would
know that θz(J ) > 1. However, this is impossible since θz ≤ θ + rµ and
(θ + rµ)(J ) = 1. So our assumption of the existence of the directed family
{θa}a∈A of discrete valuations with supa∈A θa = θ + rµ mush have been
wrong, and we finish the proof.

Theorem 3.13. Let θ be a discrete valuation on J with total mass 1 − r
and r > 0. Then θ + rµ is not a minimal valuation.

Proof. We know that the set of minimal valuations (bounded by 1) on J
is obtained by taking directed suprema of simple valuations (bounded by
1), directed suprema of directed suprema of simple valuations (bounded by
1), and so forth, transfinitely. However, from Theorem 3.4 and Proposi-
tion 3.12, at each of these steps we only obtain discrete valuations. Hence,
by transfinite induction θ + rµ is not a minimal valuation for r > 0.

The following result, as promised, is then obvious:

Corollary 3.14. The valuation µ on J is point-continuous but not minimal.
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4 Continuous valuations need not be point-continuous

In the last section we have seen that on dcpo’s not all point-continuous
valuations are minimal. In this section, we present another separation result:
on dcpo’s, not all continuous valuations are point-continuous, a result which
is known on general topological spaces, but unknown on dcpo’s with the
Scott topology.

4.1 What are non-point-continuous valuations like?

Tix showed that, on a sober space X, the bounded continuous valuations
that take only finitely many values are the simple valuations, namely the
finite linear combinations

∑n
i=1 aiδxi , where each coefficient ai is in R+ and

xi ∈ X [24, Satz 2.2]. Hence they are all point-continuous.
We will extend that result slightly in this subsection. We first recall that

a nonempty subset A of a space X is irreducible if A ⊆ B ∪ C, for closed
subsets B and C of X, implies that A ⊆ B or A ⊆ C. X is sober if every
irreducible closed subset C of X is the closure of some unique singleton
subset of X.

Lemma 4.1. Let X be a topological space. For every irreducible closed
subset C of X, let eC : OX → R+ map every open subset U of X to 1 if U
intersects C, to 0 otherwise. Then eC is a point-continuous valuation. If
C = ↓x for some point x, then eC = δx.

Proof. It is clear that eC is strict. In order to show point-continuity, we
assume 0 ≤ r < eC(U). We note that C must intersect U , say at x, and that

0 ≤ r < 1. Let A
def
= {x}. For every open neighborhood V of A, V intersects

C (at x), so eC(V ) = 1 > r.
In order to show modularity, we observe that, since C is irreducible,

for all open subsets U and V of X, C intersects both U and V if and
only if C intersects U ∩ V . Hence eC(U ∩ V ) = min(eC(U), eC(V )). Since
C intersects U or V if and only if C intersects U ∪ V , we have eC(U ∪
V ) = max(eC(U), eC(V )). Now for all real numbers a and b, max(a, b) +
min(a, b) = a+ b, so eC(U ∩ V ) + eC(U ∪ V ) = eC(U) + eC(V ).

When C = ↓x, for every U ∈ OX we have eC(U) = 1 if and only if C
intersects U , if and only if x ∈ U , if and only if δx(U) = 1.

For every continuous valuation ν on a space X, let Val(ν) denote the set
of non-trivial values {ν(U) | U ∈ OX, ν(U) 6= 0,+∞} taken by ν.
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Lemma 4.2. Let ν be a continuous valuation on a space X, with the prop-
erty that Val(ν) has a least element r. Then there is an irreducible closed
subset C of X such that:

(1) ν ′
def
= ν − reC is a continuous valuation;

(2) Val(ν ′) ⊆ {v − r | v ∈ Val(ν), v 6= r}.

Proof. Let Ur be any open subset of X such that ν(Ur) = r 6= 0. We
consider the family U of open subsets U of X such that ν(U ∩ Ur) = 0, or
equivalently ν(U ∩Ur) < r. That family contains the empty set, and for any
two elements U , V of U , we have ν((U∪V )∩Ur) ≤ ν(U∩Ur)+ν(V ∩Ur) = 0,
so U ∪ V is in U . It follows that U is directed. Let U∗ be the union of all
the elements of U . Then ν(U∗ ∩ Ur) = sup↑U∈U ν(U ∩ Ur) = 0, so U∗ is in
U . It follows that U∗ is the largest element of U . In particular, for every
U ∈ OX, ν(U ∩ Ur) = 0 if and only if U ⊆ U∗.

We define C as the complement of U∗. Since ν(Ur) 6= 0, Ur is not
included in U∗, so C intersects Ur. In particular, C is non-empty. For any
two open subsets U and V of X that intersect C, we claim that U ∩ V also
intersects C. This will show that C is irreducible. By assumption, neither U
nor V is included in U∗, so ν(U ∩Ur) ≥ r and ν(V ∩Ur) ≥ r. It follows that
ν((U ∩V )∩Ur) = ν(U ∩Ur)+ν(V ∩Ur)−ν((U ∪V )∩Ur) ≥ 2r−r = r, using
modularity and the inequality ν((U ∪ V ) ∩ Ur) ≤ ν(Ur) = r. We conclude
that U ∩ V is not included in U∗, hence intersects C.

(1) Let ν ′
def
= ν−reC . We first verify that ν ′ is monotonic. Let U ⊆ V be

two open subsets of X. If eC(U) = eC(V ), then ν ′(U) ≤ ν ′(V ). Therefore
let us assume that eC(U) 6= eC(V ), hence necessarily eC(U) = 0, eC(V ) = 1.
As a consequence, ν(U ∩ Ur) = 0 and ν(V ∩ Ur) ≥ r. Then:

ν ′(U) = ν(U) = ν(U ∪ Ur) + ν(U ∩ Ur)− ν(Ur)

by modularity, and since ν(Ur) < +∞
= ν(U ∪ Ur)− r
≤ ν(V ∪ Ur)− r
= ν(V ) + ν(Ur)− ν(V ∩ Ur)− r
by modularity, and since ν(V ∩ Ur) ≤ ν(Ur) < +∞
≤ ν(V ) + ν(Ur)− r − r = ν ′(V ).

In particular, since ν ′(∅) = 0, ν ′ takes its values in R+. It then follows from
Lemma 3.5 that ν ′ is a continuous valuation.
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(2) Let V ′
def
= {v − r | v ∈ Val(ν), v 6= r}. For every U ∈ OX, if U

intersects C then ν ′(U) = ν(U)−r; hence if ν ′(U) 6= 0,+∞, then ν ′(U) ∈ V ′.
Otherwise, U ⊆ U∗, so ν(U ∩ Ur) = 0, and therefore ν ′(U) = ν(U) =
ν(U ∪ Ur) + ν(U ∩ Ur)− ν(Ur) = ν(U ∪ Ur)− r, using modularity and the
fact that ν(Ur) = r < +∞. Hence if ν ′(U) 6= 0,+∞, then ν ′(U) is in V ′.

Proposition 4.3. Let X be a topological space. The bounded continuous
valuations ν on X that take only finitely many values are exactly the finite
linear combinations

∑n
i=1 aieCi, where each Ci is irreducible closed and ai ∈

R+ r {0}.

Proof. That
∑n

i=1 aieCi only takes finitely many values is obvious. We prove
the converse implication by induction on the number n of non-zero values
taken by ν. If n = 0, then ν is the zero valuation. Otherwise, let r be
the least non-zero value taken by ν. We find C and ν ′ as in Lemma 4.2.
Since Val(ν ′) has one less element than Val(ν), we can apply the induction
hypothesis, allowing us to conclude.

Proposition 4.4. Every continuous valuation ν on a topological space X
that takes only finitely many distinct values is point-continuous.

Proof. If ν is bounded, then by Proposition 4.3, ν is of the form
∑

i=1 aieCi ,
where each Ci is irreducible closed and ai ∈ R+, and eCi is point-continuous.
Any linear combination of point-continuous valuations is point-continuous
[11, Section 3.2], so ν is point-continuous.

Hence we concentrate on the case where ν(X) is equal to +∞. Let s be
the greatest finite value that ν takes. Consider the family S of all opens U
such that ν(U) ≤ s. For any U, V ∈ S, ν(U ∪V ) = ν(U) + ν(V )− ν(U ∩V ),
which is obviously a finite value. Hence U ∪ V is in S. This implies that
the family S is directed. Let Us be the directed union of S, and C∞ be the
complement of Us. We notice that ν(Us) = supU∈S ν(U) = s, and hence
that Us is a proper subset of X.

The collection F of simple valuations
∑n

i=1 aiδxi such that every xi
is in C∞ is directed: it is non-empty because C∞ is non-empty, and any
two elements

∑n
i=1 aiδxi and

∑n
i=1 biδxi (which we take over the same set

of points xi, without loss of generality), have an upper bound, such as∑n
i=1 max(ai, bi)δxi . Let µ be the supremum of F . Since the family of point-

continuous valuations is closed under directed suprema [11, Section 3.2 (5)],
µ is point-continuous.

We compute µ explicitly. For every open subset U of X, if U ⊆ Us,
namely if U and C∞ are disjoint, then the value of any element

∑n
i=1 aiδxi
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of F on U is zero, so µ(U) = 0. Otherwise, let us pick an element x from
U ∩C∞. Then aδx is in F for every a ∈ R+, so µ(U) ≥ aδx(U) = a for every
a ∈ R+, from which it follows that µ(U) = +∞.

Let ν|Us
be the restriction of ν to Us, namely the map V 7→ ν(Us ∩

V ). This is a continuous valuation [11, Section 3.3]. It is bounded by
construction of Us, and takes only finitely many values. Therefore, as we
have already seen, Proposition 4.3 entails that ν|Us

is point-continuous.
We now observe that ν = ν|Us

+ µ. For every U ∈ OX, if U ⊆ Us,
then ν|Us

(U) + µ(U) = ν(U ∩ Us) + 0 = ν(U). Otherwise ν|Us
(U) + µ(U) =

ν|Us
(U) + (+∞) = +∞ = ν(U). Being a sum of two point-continuous

valuations, ν is point-continuous.

4.2 The Sorgenfrey line

Let R be the set of real numbers, with its usual metric topology.
The Sorgenfrey line R` has the same set of points as R, but its topology

is generated by the half-open intervals [a, b[, a < b [23]. The topology of R`
is finer than that of R. R` is a zero-dimensional, first-countable space [8,
Exercices 4.1.34, 4.7.17]. It is paracompact hence T4, and Choquet-complete
hence a Baire space [8, Exercises 6.3.32, 7.6.11]. R` is not locally compact,
as every compact subset of R` has empty interior [8, Exercise 4.8.5]. In fact,
R` is not even consonant [4, 5]. Although it is first-countable, R` is not
second-countable [8, Exercise 6.3.10].

A hereditarily Lindelöf space is a space in which every family (Ui)i∈I of
open subsets has a countable subfamily with the same union, or equivalently
a space whose subspaces are all Lindelöf. Every second-countable space is
hereditarily Lindelöf, but R` is a counterexample to the reverse implication,
as the following folklore result demonstrates.

Proposition 4.5. R` is hereditarily Lindelöf.

Proof. Let us denote by Ů the interior of any set U in the topology of R
(not R`).

Let (Ui)i∈I be any family of open subsets of R`, U
def
=

⋃
i∈I Ui and U ′

def
=⋃

i∈I Ůi. Since R is second-countable hence hereditarily Lindelöf, there is a

countable subset J of I such that U ′ =
⋃
i∈J Ůj .

We claim that U r U ′ is countable. For each point x ∈ U r U ′, x is in
some Ui hence in some basic open set [a, b[⊆ Ui. Then x is also included in
the smaller basic open set [x, b[. Let us write b as x + δx, with δx > 0. We
observe that ]x, x+ δx[ is included in Ůi, hence in U ′.
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Let x and y be two points of U r U ′, with x < y. If [x, x + δx[ and
[y, y + δy[ intersect, then y is in [x, x+ δx[, and since x 6= y, it follows that
y is in ]x, x+ δx[. That is impossible, since ]x, x+ δx[ is included in U ′ and
y is not in U ′.

Therefore, for any two distinct points x and y of U rU ′, [x, x+ δx[ and
[y, y+ δy[ are disjoint. We pick one rational number qx in each set [x, x+ δx[
with x ∈ U r U ′: then x 6= y implies qx 6= qy, and therefore U r U ′ is
countable.

Let us now pick an index ix ∈ I such that x ∈ Uix , one for each x ∈ U r
U ′. Then U = U ′∪ (UrU ′) ⊆ U ′∪⋃x∈UrU ′ Uix ⊆ U , so (Ui)i∈J∪{ix|x∈UrU ′}
is a countable subfamily with the same union as our original family (Ui)i∈I .

Lemma 4.6. R and R` have the same Borel σ-algebra.

Proof. Let Σ be the Borel σ-algebra of R, and Σ` be that of R`. Clearly,
Σ ⊆ Σ`.

In the converse direction, we first claim that every open subset U of R`
is in Σ. For every x ∈ U , the union of all the intervals included in U and
containing x is convex, hence is an interval Ix. Let ax be its lower end, bx
be its upper end. We note that bx cannot be in Ix, otherwise bx would be in
some basic open subset [bx, bx + δx[ included in U , which would allow us to
form a strictly larger interval included in U and containing x. Hence Ix is
equal to [ax, bx[ or to ]ax, bx[. In any case, ax < bx, so Ix contains a rational
number qx. Since the intervals Ix are pairwise disjoint, there are no more
such intervals than there are rational numbers. Moreover,

⋃
x∈U Ix is equal

to U . It follows that U is a countable union of pairwise disjoint intervals,
and is therefore in Σ.

Since Σ` is the smallest σ-algebra containing the open subsets of R`, we
conclude that Σ` ⊆ Σ.

Given a topological space X, a Borel measure on X is τ -smooth if and
only if its restriction to the lattice OX of open subsets of X is a continuous
valuation. Adamski showed that a space X is hereditarily Lindelöf if and
only if every Borel measure on X is τ -smooth [2, Theorem 3.1].

Proposition 4.7. For every Borel measure µ on R, the restriction of µ to
the open subsets of R` is a continuous valuation.

Proof. By Lemma 4.6, µ is also a Borel measure on R`. We then apply
Adamski’s theorem, thanks to Proposition 4.5.
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Corollary 4.8. The restriction λ of the Lebesgue measure on R to OR` is
a continuous valuation.

4.3 The compact subsets of R`

We recall that every compact subset Q of R` has empty interior. For
completeness, we give the proof here. Let us assume a compact subset
Q of R` with non-empty interior. Q contains a basic open set [a, b[ with
a < b. [a, b[ is not only open, but also closed, since it is the complement of
the open set ] − ∞, a[∪[b,+∞[. (Those two sets are open, being equal to⋃
m∈N[a−m−1, a−m[ and to

⋃
n∈N[b+n, b+n+1[ respectively). Being closed

in a compact set, [a, b[ is compact. But the open cover ([a, b− ε[)ε∈]0,b−a[ of
[a, b[ has no finite subcover: contradiction.

We use the following folklore result. The fact that every compact subset
of R` is countable is the only thing we will need to know in later sections,
together with Corollary 4.14 below, but we think that giving a complete
characterization of the compact subsets of R` is interesting in its own right,
and may help one understand better what they look like.

Lemma 4.9. Every compact subset Q of R` is countable, bounded, and is
well-founded in the ordering ≥.

Proof. For every point x of Q, the family of open sets ]−∞, x−ε[ (ε > 0) plus
[x,+∞[ is an open cover of Q (in fact, of the whole of R`), hence contains a
finite subcover. It follows that Q is contained in ]−∞, x− εx[∪[x,+∞[ for
some εx > 0. Equivalently, Q contains no point in [x− εx, x[.

From this, we deduce that [x− εx, x[ and [y − εy, y[ are disjoint for any
two distinct points x and y of Q. Indeed, without loss of generality, let us
assume that y < x. Since y is in Q, it is not in [x− εx, x[, so y > x (which
is impossible), or y ≤ x − εx. Then [y − εy, y[ lies entirely to the left of
[x− εx, x[, and does not intersect it.

Next, for each x ∈ Q, we pick a rational number qx in [x− εx, x[. By the
disjointness property we just proved, the map x ∈ Q 7→ qx is injective, so Q
is countable.

Since Q is compact in R` and the topology of R` is finer than that of
R+, Q is also compact in R, hence is bounded.

Let us imagine that Q contains an infinite increasing sequence r0 < r1 <

· · · < rn < · · · . Let also r
def
= sup↑n∈N rn. Then the open sets ] − ∞, r0[,

[r0, r1[, . . . , [rn, rn+1[, . . . , and [r,+∞[ (if r < +∞, otherwise we ignore the
last interval) form an open cover of Q without a finite subcover. It follows
that Q is well-founded in the ordering ≥.
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We now give a few seemingly lesser known results. Given a compact
subset Q of R`, Q is a chain, namely a totally ordered subset of (R,≥).
Notice that we use the reverse ordering ≥: Lemma 4.9 tells us that Q is
even a well-founded chain. A chain A in a poset (P,v) is a subdcpo of P if
and only if for every non-empty (equivalently, directed) subset D of A, the
supremum of D exists in P and is in A.

Lemma 4.10. Every compact subset Q of R` is a subdcpo of (R,≥): for
every non-empty subset D of Q, inf D is in Q. If Q is non-empty, then Q
has a least element in the usual ordering ≤.

Proof. We first need to note that a net (xi)i∈I,v converges to x in R` if and
only if xi tends to x from the right, namely: for every ε > 0, x ≤ xi < x+ ε
for i large enough [8, Exercise 4.7.6].

Let D be any non-empty subset of Q, and let r
def
= inf D. By Lemma 4.9,

Q is bounded, so r is a well-defined real number. Since Q is well-founded,
D is isomorphic to a unique ordinal β, and we can write the elements of D
as rα, α < β, in such a way that for all α, α′ < β, α ≤ α′ if and only if
rα ≥ rα′ . The net (rα)α<β,≤ then converges to r from the right. Since R` is
T2, its compact subset Q is closed, so r is in Q.

If Q is non-empty, we can take D
def
= Q. Then inf D ∈ Q is the least

element of Q.

Another way of expressing Lemma 4.10, together with the well-foundedness
property of Lemma 4.9 is to say the following. The fact that βQ is not a
limit ordinal is due to the fact that Q must be empty or have a least element,
namely that βQ must be equal to 0 or have a largest element.

Lemma 4.11. For every compact subset Q of R`, (Q,≥) is order-isomorphic
to a unique ordinal βQ; βQ is not a limit ordinal, and the order-isomorphism
is a Scott-continuous map from βQ to (Q,≥).

Lemma 4.12. Let β be a non-limit ordinal, and f : β → (R,≥) be a Scott-
continuous map. The image Im f of f is compact in R`.

Proof. Since β is a non-limit ordinal, it is a dcpo. Its finite elements are the
ordinals α < β that are not limit ordinals, and then it is easy to see that
β is an algebraic domain. It is also a complete lattice, and every algebraic
complete lattice is Lawson-compact [6, Corollary III.1.11].

We claim that f is continuous from β, with its Lawson topology, to R`.
Let [a, b[ be any subbasic open subset of R`. We aim to show that f−1([a, b[)
is Lawson-open. If f−1(]−∞, a[) is empty, then f−1([a, b[) = f−1(]−∞, b[),
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which is Scott-open since f is Scott-continuous; in particular it is Lawson-
open. So let us assume that f−1(] −∞, a[) is non-empty. Since β is well-
founded, f−1(]−∞, a[) has a least element α. Then f−1(]−∞, a[) = ↑α, and
therefore f−1([a, b[) = f−1(]−∞, b[) r f−1(]−∞, a[) = f−1(]−∞, b[) r ↑α
is Lawson-open.

Since β is compact in the Lawson topology, it follows that Im f is com-
pact in R`.

In particular, we obtain the following converse to Lemma 4.10.

Lemma 4.13. Every well-founded subdcpo Q of (R,≥) is compact in R`.

Proof. Q is order-isomorphic to a unique ordinal βQ through some map
f : βQ → (Q,≥). Since Q has a least element, βQ has a largest element,
so βQ cannot be a limit ordinal. Let D be any non-empty family D in βQ.
Since Q is a subdcpo of (R,≥), inf f(D) is an element f(α) of Q. Since
f is an order-isomorphism, α is the supremum of D, and therefore f is
Scott-continuous. We can now apply Lemma 4.12.

Corollary 4.14. Let x be any real number and x0 > x1 > · · · > xn · · · be
any decreasing sequence of real numbers such that inf↓n∈N xn = x. Then
{x0, x1, · · · , xn, · · · } ∪ {x} is compact in R`.

Together, Lemmas 4.9, 4.11, and 4.13 imply the following.

Theorem 4.15. The compact subsets of R` are exactly the well-founded
subdcpos of (R,≥). They are all countable.

Remark 4.16. In general, any well-founded chain in (R,≥) is countable.
Conversely, for every countable ordinal β, there is a well-founded chain of
(R,≥) that is order-isomorphic to β. This is proved by induction on β, using
the fact that every countable ordinal has countable cofinality, namely is the
supremum of countably many strictly lower countable ordinals. All this is
folklore, and is left as an exercise.

Remark 4.17. A space X is consonant if and only if, for every Scott-open
subset U of OX, for every U ∈ U , there is a compact saturated subset Q of X
such that U ∈ �Q ⊆ U , where �Q is the set of open neighborhoods of Q. We
now have enough to give an elementary proof that R` is not consonant [4, 5].

Let us pick any real number r > 0. By Corollary 4.8, U def
= λ−1(]r,+∞]) is

a Scott-open subset of OR`. For every compact (saturated) subset Q of R`,
Q is countable. Let us write Q as {xn | n ∈ I}, where I is some subset of N.
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Then V
def
=

⋃
n∈I [xn, xn + r/2n+1[ is an open neighborhood of Q such that

λ(V ) ≤ ∑
n∈I r/2

n+1 ≤ r, so V is not in U . It follows that no set of the
form �Q is included in U .

4.4 The dcpo QR`

Given any topological space X, we can form the set QX of all non-empty
compact saturated subsets of X. QX is a poset under the reverse inclusion
ordering⊇ called the Smyth powerdomain ofX. WhenX is well-filtered, this
is a dcpo, where suprema of directed families (Qi)i∈I are their intersection⋂↓

i∈I
Qi [8, Proposition 8.3.25]. This is notably the case when X = R`,

since R` is T2, hence sober, hence well-filtered. Note also that, in that
case, every subset is saturated, so we may safely omit “saturated” from the
description of elements of QR`.

There are at least two topologies of interest on QX. One is the Scott
topology on the poset (QX,⊇). Another one is the upper Vietoris topology,

whose basic open sets are the sets �U
def
= {Q ∈ QX | Q ⊆ U}, where

U ranges over the open subsets of X. When X is well-filtered (e.g., if
X = R`), �U is Scott-open, and hence the Scott topology is finer than the
upper Vietoris topology.

The set MaxQR` of maximal points of QR` consists of the one-element
compact sets {x}, x ∈ R. By equating them with x, we equate the set
MaxQR` with R`. This allows us to write U ∩ R` for any subset U of QR`.

Lemma 4.18. For every Scott-open subset U of QR`, U ∩R` is open in R`.

Proof. Let x be an arbitrary point of U ∩R`. We claim that U ∩R` contains
an interval [x, x + ε[ for some ε > 0. We reason by contradiction, and we
assume that every interval [x, x+ ε[ contains a point outside U ∩ R`.

We use this to build a sequence of points x0 > x1 > · · · > xn > · · · ≥ x
as follows. Since U ∩ R` does not contain [x, x + 1[, there is a point x0 in
[x, x+1[ that is not in U ∈ R`. This cannot be x, since x is in U ∩R`. Hence
min(x0, x + 1/2) > x. Since U ∩ R` does not contain [x,min(x0, x + 1/2)[,
there is a point x1 in [x,min(x0, x+ 1/2)[ that is not in U ∈ R`. Again, x1

is different from x. This allows us to build the interval [x,min(x1, x+ 1/4)[,
and as before, this must contain a point x2 outside U∩R`. By induction, this
allows us to define points xn outside U ∩R` such that xn+1 ∈ [x,min(xn, x+
1/2n+1)[. In particular, x0 > x1 > · · · > xn > · · · ≥ x. Also, inf↓n∈N xn =
x.
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For each n ∈ N, let Qn be the set {xm | m ≥ n} ∪ {x}. This is compact
in R` by Corollary 4.14.

It is clear that Qn is non-empty, and that
⋂↓

n∈N
Qn = {x}, which is in

U . Since U is Scott-open, some Qn must be in U . This implies that {xn},
which is included, hence above Qn in QR`, is also in U . Therefore xn is in
U ∩R`; but that is impossible, since all the points xn were built so as to lie
outside U ∩ R`.

A dcpo model of a T1 space X is a dcpo P such that MaxP , the subset of
maximal elements of P with the subspace topology, from the Scott topology
on P , is homeomorphic to X. The following is a special case of Corollary 2.12
of [10], which says that for every T1, first-countable and well-filtered space,
QX is a dcpo model of X.

Theorem 4.19. QR` is a dcpo model of R`.

Proof. By Lemma 4.18, every open subset in the subspace topology on
MaxQR` is open in R`. Conversely, for every open subset U of R`, �U
is a Scott-open subset of QR` whose intersection with R` is equal to U , so
U is open in the subspace topology on MaxQR`.

Remark 4.20. Actually, one can expect more in this case. Xu and Yang[26]
proved that for a first-countable well-filtered space X, in which each com-
pact saturated subset has countable minimal elements (in the specialization
order), the Scott and the upper Vietoris topologies coincide on QX. As we
have seen from above that R` does satisfy these properties, hence the Scott
and the upper Vietoris topologies coincide on QR`. This is slightly stronger
than Theorem 4.19. We speak in full of the development of Theorem 4.19
in order to keep this note self-contained.

4.5 A continuous, non point-continuous valuation on QR`

By Proposition 4.7, every Borel measure µ on R` defines a continuous val-
uation by restriction to OR`, and we again write that continuous valuation
as µ. By Theorem 4.19, the map x 7→ {x} is a topological embedding of R`
into QR`. The image of µ by that embedding is a continuous valuation µ
on QR`. Explicitly, we have:

µ(U)
def
= µ(U ∩ R`) (1)

for every Scott-open subset U of QR`.
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Theorem 4.21. Let µ be any Borel measure on R` with the property that
there is an open subset U of R` such that 0 < µ(U) < +∞, and µ({x}) = 0
for every x ∈ U . Then the continuous valuation µ is not point-continuous.
In particular, λ is not point-continuous.

Proof. Since µ(U) > 0 and since µ(�U) = µ(U), we can find a real number
r such that 0 < r < µ(�U).

We will show that, for every finite subset A
def
= {Q1, · · · , Qm} of �U ,

there is an open neighborhood V of A such that µ(V) ≤ r.
We make the following preliminary claim (∗): for every x ∈ U , for every

a > 0, there is an ε > 0 such that [x, x+ε[⊆ U and µ([x, x+ε[) ≤ a. Indeed,

it is a general property of measures that µ(
⋂↓

n∈N
En) = inf↓n∈N µ(En) for

any decreasing family of measurable subsets En such that µ(En) < +∞ for

at least one n. Hence µ({x}) = µ(
⋂↓

n∈N
[x, x+ ε0/2

n[) = inf↓n∈N µ([x, x+

ε0/2
n[), where ε0 > 0 is chosen so that [x, x + ε0[⊆ U . Since µ({x}) = 0,

there is an n ∈ N such that µ([x, x+ ε0/2
n[< a.

Let s > 0 be such that ms ≤ r. For every i ∈ {1, · · · ,m}, Qi is countable
(Lemma 4.9), so let us write it as {xi0, xi1, · · · }. (We allow for infinite
repetitions of elements in order not to have to make a special case when Qi is
finite.) For every i ∈ {1, · · · ,m}, for every j ∈ N, we use (∗) to find a number

εij > 0 such that µ([xij , xij + εij [) ≤ s/2j+1. Let Vi
def
=

⋃
j∈N[xij , xij + εij [.

We note that µ(Vi) ≤
∑

j∈N µ([xij , xij + εij [) =
∑

j∈N s/2
j+1 = s. We now

define V as
⋃m
i=1 Vi. Then µ(V ) ≤∑m

i=1 µ(Vi) ≤ ms ≤ r.
Clearly, Qi is included in Vi, hence in V , for every i ∈ {1, · · · ,m}, so A

is included in �V . We define V as �V . Then µ(V) = µ(V ) ≤ r.

4.6 More remarks on QR`

In [21, Theorem 3.1], Lyu and the second author showed that a space X is
locally compact if and only if that QX is core-compact in the upper Vietoris
topology. It is easy to see that R` is not locally compact as the interior of
each compact set is empty. So QR` is not core-compact in the upper Vietoris
topology. By Remark 4.20, we have

Proposition 4.22. QR` is not core-compact in its Scott topology.

R` exhibits a diverse mix of pleasant and unpleasant properties, and so
does QR`. While Proposition 4.22 would be on the unpleasant side, the
following shows more regularity.
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Proposition 4.23. QR` is sober.

Proof. Theorem 3.13 of [13] states that, for any topological space X, X is
sober if and only if QX is sober in the upper Vietoris topology. Since R` is
T2, it is sober. By Remark 4.20, the upper Vietoris topology coincides with
the Scott topology on QR`, so QR` is sober.

In particular, QR` is well-filtered, something we can rederive in another
way.

Proposition 4.24. For every well-filtered, coherent space, QX is a meet-
continuous dcpo inf-semilattice, which is well-filtered and coherent in its
Scott topology. Hence QR`, Q2R`, . . . all are meet-continuous dcpo inf-
semilattices, which are well-filtered and coherent in their Scott topologies.

Proof. Let X be a well-filtered, coherent space. In a well-filtered space,

filtered intersections
⋂↓

i∈I
Qi of compact saturated subsets are compact

saturated, and are non-empty if all the sets Qi are non-empty. Hence QX
is a dcpo.

Given any two elements Q and Q′ of QX, their infimum is Q∪Q′. Since
directed suprema are filtered intersections, and intersections commute with
binary unions, QR` is a meet-continuous inf-semilattice.

For every dcpo P , let its lifting P⊥ be P plus a fresh element ⊥ below
all elements of P . It is an easy exercise to show that the Scott-open subsets
of P⊥ are those of P , plus P⊥ itself, and that the compact saturated subsets
of P⊥ are those of P plus P⊥. It follows that P is well-filtered if and only if
P⊥ is.

A bounded-complete dcpo is one in which every (upper) bounded family
has a least upper bound, or equivalently in which every non-empty family
has a greatest lower bound. QX is not bounded-complete in general, since
the empty family has no least upper bound unless X is compact.

However, (QX)⊥ is bounded-complete: the least upper bound of the
empty set is ⊥, and the least upper bound of any non-empty set A bounded
by some element Q0 of QX is

⋂
A, which is compact because R` is T2, and

non-empty because it contains Q0.
Corollary 3.2 of [25] shows that every bounded-complete dcpo is well-

filtered in its Scott topology. Hence (QX)⊥ is well-filtered, and therefore
QX is well-filtered as well.

Lemma 3.1 of [16] states that any well-filtered dcpo X in which ↑x ∩ ↑y
is compact saturated for all x, y ∈ X is coherent. For all Q,Q′ ∈ QX,
↑Q ∩ ↑Q′ = ↑(Q ∩ Q′), and Q ∩ Q′ is again in QX since X is coherent. In
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particular, ↑Q ∩ ↑Q′ is a compact saturated subset of QX. Therefore QX
is coherent.

Finally, R` is T2, hence (sober hence) well-filtered, and coherent, so we

may apply the above to X
def
= R`, then to X

def
= QR`, and so on.

5 Concluding Remarks

We have given two concrete examples (Corollary 3.14, Thorem 4.21) on
dcpo’s to separate minimal valuations, point-continuous valuations and con-
tinuous valuations, showing these three classes of valuations differ from each
other.

In [17], the Fubini-type equation∫
x∈D

∫
y∈E

h(x, y)dνdξ =

∫
y∈E

∫
x∈D

h(x, y)dξdν (2)

is established when either ν or ξ is point-continuous, where D and E are
dcpo’s and h : D × E → R+ are Scott-continuous. (For a definition of the
integration, see [18].) This is crucial in proving that Heckmann’s point-
continuous valuations monad is commutative over DCPO. However, it is
unknown whether the Equation (2) holds for general continuous valuations
ν and ξ, a crucial question in establishing commutativity of the valuations
moand V on DCPO. The aforementioned result in [17] entails that any
valuations ν and ξ that possibly fail Equation (2) must also fail to be point-
continuous. Hence if one aims to find examples on dcpo’s to invalidate
Equation (2), the valuations in desire must be non-point-continuous valu-
ations. For the first time, we have given a continuous valuation λ that is
not point-continuous on dcpo’s, but more non-point-continuous valuations
(of different types from those in Theorem 4.21) are needed before they are
sent to test Equation (2).

Acknowledgement

The second author acknowledges support from NSFC (No. 12001181), and
he would also like to thank Andre Kornell and Michael Mislove for useful
discussions.

26



References

[1] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Semantic Structures, volume 3
of Handbook of Logic in Computer Science, pages 1–168. Clarendon
Press, 1994.

[2] W. Adamski. τ -smooth Borel measures on topological spaces. Mathe-
matische Nachrichten, 78:97–107, 1977.

[3] M. Alvarez-Manilla, A. Edalat, and N. Saheb-Djahromi. An extension
result for continuous valuations. Journal of the London Mathematical
Society, 61:629–640, 2000.

[4] A. Bouziad. Borel measures in consonant spaces. Topology and its
Applications, 70:125–138, 1996.

[5] C. Costantini and S. Watson. On the dissonance of some metrizable
spaces. Topology and its Applications, 84:259–268, 1996.

[6] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and
D. S. Scott. Continuous Lattices and Domains, volume 93 of Encyclope-
dia of Mathematics and its Applications. Cambridge University Press,
2003.

[7] J. Goubault-Larrecq. Full abstraction for non-deterministic and prob-
abilistic extensions of PCF I — the angelic cases. Journal of Logical
and Algebraic Methods in Programming, 84(1):155–184, 2015.

[8] J. Goubault-Larrecq. Non-Hausdorff Topology and Domain Theory,
volume 22 of New Mathematical Monographs. Cambridge University
Press, 2013.

[9] J. Goubault-Larrecq. Products and projective limits of continuous val-
uations on T0 spaces. Accepted for publication in “Mathematical Struc-
ture in Computer Science”, 2021.

[10] Q. He, G. Li, X. Xi, and D. Zhao. Some results on poset models con-
sisting of compact saturated subsets. Electronic Notes in Theoretical
Computer Science, 345:77–85, 2019. Proceedings of the 8th Interna-
tional Symposium of Domain Theory (ISDT’19), A. Jung, Q. Li, L. Xu
and G.-Q. Zhang, editors.

27



[11] R. Heckmann. Spaces of valuations. Technical Report A 09/95, FB 14
Informatik, Universität des Saarlandes, 66041 Saarbrücken, Germany,
1995.

[12] R. Heckmann. Spaces of valuations. In S. Andima, R. C. Flagg,
G. Itzkowitz, P. Misra, Y. Kong, and R. Kopperman, editors, Papers
on General Topology and Applications: Eleventh Summer Conference
at the University of Southern Maine, volume 806 of Annals of the New
York Academy of Sciences, pages 174–200, 1996.

[13] R. Heckmann and K. Keimel. Quasicontinuous domains and the Smyth
powerdomain. In D. Kozen and M. Mislove, editors, Proceedings of
the 29th Conference on the Mathematical Foundations of Programming
Semantics, volume 298 of Electronic Notes in Theoretical Computer
Science, pages 215–232. Elsevier Science Publishers B.V., 2013.

[14] W. K. Ho and J. Goubault-Larrecq and A. Jung and X. Xi. The Ho-
Zhao Problem. Logical Methods in Computer Science, 14(1), 2018.

[15] J. Isbell. Completion of a construction of Johnstone. Proceedings of the
American Mathematical Society, 85:333–334, 1982.

[16] X. Jia, A. Jung, and Q. Li. A note on coherence of dcpos. Topology
and its Applications, 209:235–238, 2016.

[17] X. Jia, B. Lindenhovius, M. Mislove, and V. Zamdzhiev. Commutative
monads for probabilistic programming languages. In Logic in Computer
Science (LICS 2021), 2021.

[18] C. Jones. Probabilistic Non-Determinism. PhD thesis, University
of Edinburgh, Edinburgh, 1990. Also published as Technical Report
No. CST-63-90.

[19] C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations.
In Proceedings of the 4th Annual Symposium on Logic in Computer
Science, pages 186–195. IEEE Computer Society Press, 1989.

[20] P. T. Johnstone. Scott is not always sober. In Continuous Lattices,
Proceedings Bremen, 871:282–283, 1981.

[21] Z. Lyu and X. Jia. Core-compactness of smyth powerspaces. Available
at https://arxiv.org/abs/1907.04715, July 2019.

[22] H. L. Royden. Real Analysis. Macmillan, New York, 3rd edition, 1988.

28

https://arxiv.org/abs/1907.04715


[23] R. H. Sorgenfrey. On the topological product of paracompact spaces.
Bulletin of the American Mathematical Society, 53:631–632, 1947.

[24] R. Tix. Stetige Bewertungen auf topologischen Räumen. Master’s the-
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