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A CATEGORICAL VIEW OF VARIETIES OF ORDERED ALGEBRAS
J. ADAMEK, M. DOSTAL, AND J. VELEBIL

ABSTRACT. It is well known that classical varieties of 3-algebras correspond bijectively
to finitary monads on Set. We present an analogous result for varieties of ordered -
algebras, i.e., categories presented by inequations between X-terms. We prove that they
correspond bijectively to strongly finitary monads on Pos. That is, those finitary monads
which preserve reflexive coinserters. We deduce that strongly finitary monads have a
coinserter presentation, analogous to the coequaliser presentation of finitary monads due
to Kelly and Power. We also show that these monads are liftings of finitary monads on
Set.

Dedicated to John Power,
from whom we have learned so much,
on the occasion of his 60th birthday

1. INTRODUCTION

Varieties of ordered algebras, i.e., classes of ordered Y-algebras (for a finitary signature
Y)) presented by inequations between »-terms, play an important role in universal algebra
and computer science. Example: ordered monoids with bottom as the unit, e, are pre-
sented by the inequation e < x and the usual equations for classical monoids. For every
variety V free algebras exist on all posets, that is, the forgetful functor ¥ — Pos has a left
adjoint. The corresponding monad T on Pos will be proved to be strongly finitary, which
means that its underlying endofunctor T' preserves

(1) filtered colimits, and
(2) coinserters of reflexive pairs.

In the above example of ordered monoids T is a lifting of the word monad (of monoids)
on Set. For every poset X we have the poset T X = X™* with the following order: a word
Zg...T,—1 is smaller or equal to a word w iff w decomposes as w = wy . ..w,_1; and each
w; contains a letter y; € X with z; < y; in X.

Conversely, given a strongly finitary monad T on Pos, its Eilenberg-Moore category
PosT will be proved to be isomorphic to a variety of ordered algebras. This leads to the
following main result of our paper:

Theorem. The category of varieties of ordered algebras (with concrete functors as mor-
phisms) is dually equivalent to the category of strongly finitary monads on Pos.

We thus obtain a bijective correspondence between varieties of ordered algebras and
strongly finitary monads on Pos. This is analogous to the well-known correspondence
between (classical) varieties and finitary monads on Set, up to natural isomorphism.

Moreover, every variety of ordered algebras is a lifting of a classical variety. This follows
from the above bijective correspondence and the fact we prove that every strongly finitary
monad T on Pos is a lifting of a finitary monad T on Set: for every poset X the underlying
set of T'X is f|X|, and the underlying maps of nx and px are 7 x| and fi x|, respectively.
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Naturally, one classical variety can have many liftings, consider e.g. ordered monods (a
'minimal’ lifting of the variety of monoids), compared with our example above.

Related results. The bijective correspondence between varieties of ordered algebras and
strongly finitary monads has been established already by Kurz and Velebil [15]. However,
the proof there was derived from technically involved results concerning the exactness (in
Pos-enriched sense) of these varieties. Our present proof is much simpler.

Strongly finitary monads on enriched categories were studied by Kelly and Lack [12].
When specialised to Pos (enriched over itself as a cartesian closed category), their results
yield a bijection between strongly finitary monads and equationally (!) presented classes of
Y-algebras. However, here ¥ means a much more complex concept of signature, following
the paper of Kelly and Power [13]: let Pos; be a set of finite posets representing all of them
up to isomorphism. The signatures in Pos introduced in [I3] are collections ¥ = (X,,) nepos;
of posets X,,. In the recent paper [1] finitary (ordinary as well as enriched) monads on
Pos are studied. They are related to inequationally specified classes of Y-algebras for
signatures Y that present a compromise between the classical signatures (used in the
present paper) and those of Kelly and Power: they are collections of sets ¥, indexed by
n € Poss.

2. FINITARY AND STRONGLY FINITARY FUNCTORS

In the present section we recall finitary and strongly finitary endofunctors of Pos. We
observe that a finitary endofunctor is strongly finitary iff it preserves reflexive coinserters.

Remark 2.1.

(1) Throughout the paper we view Pos as the cartesian closed category with the hom-
sets Pos(X, Y') ordered pointwise. All categories are understood to be enriched over
Pos. That is, hom-sets carry partial orders such that composition is monotone.
All functors, limits, colimits and adjunctions are understood as enriched over Pos.

Thus when we say ‘endofunctor H of Pos’ we automatically mean that it is
locally monotone. Its underlying ordinary functor is denoted by H,.

(2) Colimits are understood to be weighted. Let us recall that for a given scheme, i.e.,
a small category ¥, a weight is a functor ¢ : 27 — Pos. Example: given a poset
X and a diagram D : 2 — Pos, the functor Pos(D—, X) : 2°? — Pos is a weight.
The category of all weights is simply the functor category [Z°7, Pos|.

A weighted colimit of a diagram D : 2 — Pos of weight ¢ is a poset ¢ =* D
together with an isomorphism

Pos(p = D, X) = [2°, Pos| (¢, Pos(D—, X))

natural in X € Pos.
(3) Every set is considered as a poset with the discrete order. In particular, every
natural number n is the discrete poset on the set {0,1,...,n — 1}.

Example 2.2. Coinserters are colimits of the scheme & given by a parallel pair
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The weight ¢ : Z°° — Pos is as follows:

Thus, a diagram in Pos is a parallel pair

anfl:AHB

of monotone maps (considered as an ordered pair (fy, f1), of course). And the coinserter
is a morphism ¢ : B — C universal w.r.t. ¢- fo < c- fi.

f1
AmB—C>C
\f_/r
0

That is:

(1) for every morphism u : B — D with u- fo < u- f; there exists a unique morphism
v:C — D with u =v-c¢, and

(2) the map u — v is monotone: given u’ = v’ - ¢, then u < v’ implies v < v'.

Remark 2.3. Every finite poset P is a canonical coinserter of a parallel pair

of morphisms in .#". Let n be the number of elements of P and k£ the number of comparable
pairs in P. Thus we can assume that P has elements 0,...,n — 1, and we can index all
comparable pairs as follows

po(t) < pi(t) fort =0,...,k— 1.

This defines functions pg, p1 : K — n. The coinserter of this pair is carried by the identity
map:

Notation 2.4. Denote by
J : Posf — Pos

the full embedding of a subcategory Poss representing all finite posets up to isomorphism.

Remark 2.5.

(1) Pos is a free completion of Poss under filtered conical colimits. In the realm of or-
dinary categories this follows from [3] (Theorem 1.46) since Pos is a locally finitely
presentable category with finite posets precisely the finitely presentable objects.
Thus, given an ordinary category ~# with filtered colimits, for every ordinary
functor H : Pos; — £ there exists an extension H' : Pos — % preserving filtered
colimits, unique up to natural isomorphism. Filtered conical colimits in Pos have
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the property that given a colimit cocone ¢; : C; — C' (i € I), then for two mor-
phisms u,v : C'— X we have u < v iff u-¢; <v-¢; for all i € I. It follows that H'
is locally monotone whenever H is. Thus, the statement above holds also in the
enriched sense.

(2) Following Kelly [I1] we call an endofunctor of Pos finitary iff its underlying ordi-
nary endofunctor is finitary (i.e., preserves ordinary filtered colimits).

We now turn to strongly finitary functors.

Notation 2.6. The full subcategory of Pos on natural numbers (Remark 2.1 (3)) is
denoted by .47, and the full embedding by

I: N4 — Pos.

Definition 2.7 ([12]). An endofunctor H of Pos is called strongly finitary if it is the left
Kan extension of its restriction to 4. More precisely:

H =Lan;H - I.

Remark 2.8. In ordinary categories sifted colimits are colimits of diagrams whose schemes
2 are (small) sifted categories. This means categories such that colimits of diagrams
D : 9 — Set commute with finite products.

In our enriched setting, sifted colimits are introduced analogously. A weight ¢ : 2P —
Pos is called sifted if the functor ¢ = — : [Z, Pos| — Pos preserves finite (conical) products.
Sifted colimits then are colimits weighted by sifted weights.

Example 2.9.

(1) Filtered colimits are clearly sifted (the corresponding weighted colimits in Pos
commute with finite limits).

(2) A pair fy, f1 : A — B is called reflexive if there exists i : B — A with fy-i = idg =
f1 - i. Coinserters of reflexive pairs are sifted colimits. The proof is completely
analogous to the fact that in ordinary categories coequalisers of reflexive pairs are
sifted colimits ([4], Example 1.2). We speak about reflexive coinserters. Example:
the canonical coinserters (Remark 2.3)) are clearly reflexive.

Theorem 2.10 (|8, Corollary 8.45). The following conditions are equivalent for endo-
functors H of Pos:

(1) H is strongly finitary,

(2) H preserves sifted colimits,

(8) H is finitary and preserves reflexive coinserters, and
(4) H=Lan;H - I.

Proof. Every poset is a filtered colimit of its finite subposets, each of which is a coinserter
as in Remark 2.3

Consequently, starting with the subcategory .4 we obtain all of Pos by reflexive coin-
serters and filtered colimits. In the terminology of [10] (Theorem 5.29), this states that
the embedding I : .4~ — Pos has a codensity presentation formed by filtered colimits and
reflexive coinserters. By that theorem properties (1)-(4) are equivalent.

Remark 2.11. In (3) we can substitute reflexive coinserters by canonical coinserters, as
is clear from the above proof.
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Remark 2.12. The above theorem is completely analogous to the fact proved in [4] for
ordinary endofunctors of categories with finite coproducts: preservation of sifted colimits
is equivalent to the preservation of filtered colimits and reflexive coequalisers.

Example 2.13.

(1) The endofunctor X — X™ (for m € N) of Pos is strongly finitary: it clearly
preserves filtered colimits, and we verify that it also preserves the canonical coin-
serters of Remark 2.3l Suppose m = 2. Then a comparable pair in P x P is a pair
(a,b) where the left-hand components of a and b are comparable in P, and thus
have the form w,,;) < xp, () for some ¢ < & — 1. And the right-hand components
have the form z,,,(;) < x,(;) for some j < k—1. Thus the only comparable pairs of
P x P are (Tp3i), Tpo(j)) (Tp1(i), Tpy(j))- We conclude that the canonical coinserter
of the poset P x P is given by py X po,p1 X p1 : k x k — n x n. Analogously for
m > 2.

(2) Coproducts of strongly finitary endofunctors are strongly finitary. Example: given
a signature ¥, the corresponding polynomial functor X — [] (X, x X™ is
strongly finitary.

(3) (Weighted) colimits of strongly finitary endofunctors are strongly finitary.

(4) A composite of strongly finitary endofunctors is strongly finitary.

Remark 2.14. Every strongly finitary endofunctor H of Pos generates a free monad
whose underlying functor H is also strongly finitary. Indeed, following [17], H is a colimit
in [Pos, Pos| of the following w-chain

Id —" s H+I1d —2— HH+Id) + Id —2— ...

That is, the chain W : w — [Pos, Pos| has objects
Wo = Id and W,,.1 = HW,, + Id

and morphisms

wq : Id — H + Id the coproduct injection

and
Wpy1 = Hw, + 1d.

Thus if H is strongly finitary, so is each W,, (by the preceding example). Consequently,
H = colim W, is strongly finitary.

Notation 2.15. A monad whose endofunctor is strongly finitary is called a strongly
finitary monad. We denote by

Mndg¢ (Pos)

the category of strongly finitary monads and monad morphisms.

Example 2.16. The endofunctor Hy generates the following free monad Ty on Pos: to
every poset X (of variables) it assigns the poset 75X of X-terms with variables from
X. That is, the underlying set is the smallest set containing X and such that for every
o € X, and every n-tuple ¢; in T X we have o(¢;) in Ty X. This yields a structure of a
Y-algebra on Ty X. The ordering of T, X is the smallest one such that 75, X contains X
as a subposet, and all operations are monotone. It follows from 2.14] that Ty is strongly
finitary.
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Remark 2.17. It follows from Example 2.13] and Remark 2.14] that Mnds(Pos) has
(weighted) colimits. Indeed, given a diagram D and a weight, the underlying diagram
Dy in Endg(Pos) has a colimit H which is strongly finitary. The free monad H is then a
colimit of D in Mndg(Pos), and it is strongly finitary.

3. FROM VARIETIES OF ORDERED ALGEBRAS TO STRONGLY FINITARY MONADS

Notation 3.1. Let ¥ be a signature, i.e., a collection of sets ¥, (of n-ary operation
symbols) indexed by n € N. An ordered Y-algebra is a poset A together with a monotone
map o4 : A" — A for every n € N and o € ¥,,. The category of ordered Y-algebras and
homomorphisms (i.e., monotone functions preserving the given operations) is denoted by
Alg(X).

Remark 3.2.
(1) With X we associate the polynomial functor Hy : Pos — Pos given on objects by

Hzxz]_[zn x X"

neN

and analogously on morphisms. By Example 2.13] (2), Hy, is strongly finitary.

(2) Alg(X) is clearly equivalent to the category of algebras for Hy, i.e., pairs (A, a)
where A is a poset and o : HsA — A is a monotone function. (Morphisms are
monotone maps making the obvious square commutative.)

(3) It follows from [5] that the category of algebras for an ordinary endofunctor H is
equivalent to the category of Eilenberg-Moore algebras for the free monad H (see
Remark 2.T4]). The same result holds for enriched endofunctors. In particular, we
conclude

Alg(¥) ~ Pos™=,

(4) The algebra 75X of terms (Example 2.16)) is a free Y-algebra on nx : X — Tx X,
the inclusion of variables: for every X-algebra A and every monotone function
f: X — A the unique extension to a homomorphism f*: 75X — A is given by

FHo(t:) = oa(fH(t:).

Definition 3.3. Let V' be a countably infinite set (of variables), V' = {z, | n € N}.
An ordered pair of terms in TxV is called an inequation and is written as v < v. A
Y-algebra A satisfies u < v iff every map f : V — |A] (interpretation of variables) fulfills

fiu) < fi(v).
By a wvariety of ordered ¥-algebras we understand a full subcategory of Alg(X) specified
by a set of inequations.

Example 3.4.

(1) Ordered monoids are specified by the usual signature ¥ = {-,e} and the usual
equations for monoids. The corresponding algebras are monoids with a partial
order making the multiplication monotone (in both variables).

This leads to the monad T on Pos lifting the word monad on Set as follows:

TX = X*,
the poset of words on | X| ordered pointwise:

XL+ Tyl < YoU1 - - Ym—1 Iff n=mand z; <y; (i <n).
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(2) If we add to the equations above the inequation
r< Ty
we obtain the variety of ordered monoids with e the smallest element. That is,
the above inequation is equivalent to
e<y.
Indeed the first inequation yields the latter one by putting x = e. Conversely,
frome<ywegetr=x-e<uz-y.
The corresponding monad is the lifting of the word monad
TX = X*
ordered as follows:
Tory ... Typoq < w iff w=wow; ... w,_1 and w; contains y; with z; <y; (i <n).
(3) Bounded posets (with a least element 0 and a largest element 1) form a variety with
Y given by nullary operations 0,1 and the variety is presented by the inequations
0<xandzx<1.

This is a lifting of the variety of non-ordered algebras with two nullary operations.

Remark 3.5. Every variety of ¥-algebras is a reflective subcategory of Alg(¥) with sur-
jective reflections.

Indeed, since Hy, is a finitary endofunctor on a locally finitely presentable category,
Alg(X) =~ Hx-Alg is also locally finitely presentable, see [3], Remark 2.78. In particular,
it is complete and cowellpowered. The factorisation system (epi, embedding) on Pos lifts,
since Hy, preserves epimorphisms, to Alg(X). Since a variety 7 is easily seen to be closed
under products and subalgebras carried by embeddings, the surjective reflections follow,
see [2], Theorem 16.8.

Construction 3.6 (see [7]). For every variety V of ordered algebras the free algebra Ty X
of V on a poset X can be constructed as follows.

Let £x be the collection of all inequations s < t satisfied by all algebras of V, where
s,t € Ty X are terms in variables from X. Then £x is a preorder, i.e., a reflexive and
transitive relation on 7% X. Moreover, it is admissible in the sense of Bloom [7]: given an
n-ary symbol o € ¥ and n pairs s; < t; (i <n) in Ex, it follows that the pair o(s;) < o(t;)
also lies in Ex. Indeed, given an algebra A € V and an interpretation f : X — |A], we
know that the homomorphism f*: Tx X — A fulfils f*(s;) < f*(¢;) for all 4, thus

fio(s:) = onx(Fi(s:) < o x (FF(t:)) = fH(o(t).
Consequently, for the induced equivalence relation
E =Ex n &Y
we obtain a Y-algebra T, X on the quotient set
TVX| = [T X1/E%
(of all equivalence classes [t] of terms t € T5; X ). The operations are as expected:
or,x([tol, -, [tn1]) = [o(to, .- - tn-1)]

for every n-ary o and all n-tuples tg,...,t,_1 € TxX. Finally, we consider T}, X as a poset
via

[s] < [t] iff (s,t) € Ex.
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The following theorem was stated by Bloom (|7], Theorem 2.2). We present a full proof
since we need it later, and the original proof was only a sketch.

Theorem 3.7. The above ordered algebra T, X is a free algebra of the variety V on the
poset X w.r.t. nx : X —» TyX given by x — [z].

Proof.

(1) TvX is a well-defined ordered ¥-algebra. This follows easily from the fact that £x
is an admissible preorder.

(2) V has a free algebra on X which is given by an admissible preorder = on Ty X
(that is, for the induced equivalence relation ~ the underlying poset is |17, X| =
|7 X|/ ~ and the operations are induced by those of 75, X'). This statement follows
from Remark 3.5 which implies that a free algebra T, X exists, and the unique
homomorphism

€x . TEX - TvX
extending the universal arrow is epic. Indeed, the desired preorder is simply
sCtiff ex(s) < ex(t).

(3) The preorder Ex of the above construction coincides with = of (2). Indeed, if
(s,t) € Ex, then the algebra Ty, X satisfies s < ¢ (since it lies in V) and taking the
universal map (ny)x : X — Ty X as the interpretation, we have

€x = (TIV)ﬁX
(because ex is a ¥-homomorphism). Since ex(s) < ex(t), we conclude that s = ¢.
Conversely, if s = ¢, which means ex(s) < ex(t), we verify that every algebra
A e V satisfies s < t. Let f : X — A be an interpretation, then the corresponding
homomorphism f* : TxX — A factorises through the reflection of 75X in V in
Alg(X):
TsX —=X 5 T, X

A
<

Since h is monotone, the inequality ex(s) < ex(t) implies f*(s) < f(¢), as re-

quired.
]
Notation 3.8. For every variety V of ¥-algebras we denote by
cy: Ty — Ty
the monad morphism whose components are the canonical quotient maps
T X| — |TsX|/E%.

Lemma 3.9. For every variety V the forgetful functor to Pos is strictly monadic: the
comparison functor K : V — Pos™ is an isomorphism.

Proof. For classical varieties see [16], Theorem VI.8.1. The proof for varieties of ordered
algebras is completely analogous, one just replaces the equation A\g = pp with the in-
equation Ag < u)B. [

Remark 3.10 (See [10]).
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Recall the continuation monad (A, A) on Pos associated with every poset A: to
a poset X it assigns the power of A to the set Posy(X, A) of all monotone maps
f: X - A
ADHXx = T] A
POS() X A)

Denote by 7 : (A, A)X — A the projection corresponding to f : X — A. To
every morphism A : X — Y the monad assigns the morphism (A, A)h determined
by the following commutative triangles:

HPOSO X,A)

(A, ASh

HPOSO Y, A)

\ / f € Posy(Y, A).

The unit is (f) feposy (x,4) : X — (A, A)X, and the multiplication p1x is determined
by the following commutative triangles:

HPoso (AAYXA) HPOSQ X,A)

\ / f € Posy(X, A).

It follows from [9] that for every monad T and every poset A there is a bijection
between monad morphisms T — (A, A) and algebras of Pos™ on A. This bijection
assigns to an algebra o : TA — A the monad morphism

a:T— (A A
with components determined by the following commutative squares:

TX — 3 5 (A DX

T - f € Posy(X, A).

TA— 5 A

Thus if T = Ty, then ax assigns to a term ¢t € Tx, X the tuple (fu(t))f:X_,A.
Let b : S — T be a monad morphism. Every algebra (A, a) in Pos™ then yields
an algebra (A, « - by) in Pos®. The following triangle

S b > T

(A, 4)

commutes. Indeed, for every poset X and every f € Posy(X, A) we have

Wf(aX'bx)ZOé'Tf'bX:Oé'bA'Sf.
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The same result is obtained by
mp(a-bay) = - by Sf.

(4) In particular, let T = Ty, for a signature ¥. Given a term u in Tyn, it corresponds

to a monad morphism
?7 : TQn - TE

where 2, is a signature of a single operation w of arity n. Its component ux :
T, X — Tx X assigns to a term ¢ over X (containing the unique operation symbol
w) the Y-term obtained by replacing each w by the term u. Thus if a ¥-algebra
(A, o) satisfies an inequation uy < wug, the inequation (& - %y)x < (@ - Up)x holds
for all posets X. Shortly: & -y < & - ;.

Example 3.11. We describe the free-algebra monad of the variety given by a single
inequation ug < wy in signature X. Let wug,u; be terms with variables xg,...,z,_1. For
the signature 2, of a single operation of arity n they can be viewed (via Yoneda lemma)
as natural transformations

U, U7 - Hﬂn — Tg.
The corresponding monad morphisms
Up, U7 TQn — Tz.

have, in the category of strongly finitary monads, a coinserter we denote as follows:

U1
7
i Ty — ¢ T
~_

uo

Toq

We verify that this is precisely ¢y, above for the variety presented by ug < u;.

Proposition 3.12. The above monad T is the free-algebra monad of the variety presented
by the inequation uy < uq.

Proof. The variety V presented by ug < u; yields a free-algebra monad Ty,. The proposi-
tion will be proved by verifying that ¢, (Notation[B.8)) is a coinserter of %g,u; in Mndg(Pos).
From the definition of ¢, we conclude

Cy'ﬂo <CV'?71.
(a) Given a strongly finitary monad S = (S, %, n°) and a monad morphism b : Ty, — S
with
bty <b- U,
we prove that b factorises through ¢y via a monad morphism.

For every poset X, the free algebra (SX,u%) for S yields, since b is a monad
morphism, the following algebra for Ty, on SX:

S
By i= TuSX 5 55X X, 5x

From ax - (o) x < ay - (1)x we deduce, using Remark 310 (4), that the X-algebra
(SX, Bx) satisfies the inequality ug < u;. Since the free algebra (T'X, u%) of V on X
corresponds to the Y-algebra

(ev)Tx 1
T5TX —TTX — TX,
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we obtain a unique Y-homomorphism by with by - n% = n3:

ny

T
ToTX —Y7™, 71X y TX X x

TEBX bX
755X —— SSX —— SX
bsx ui.

We verify that these morphisms bx form a monad morphism
b: T —>Swithb="0-cy.

(1) The equality bx = by - (cy)x : TeX — SX holds because both sides are homo-
morphisms of Y-algebras and we have

bx 1% = nx = bx - nx = bx - (ev)x - 0¥
(2) by is natural in X. In fact, every morphism f : X — Y yields a ¥-homomorphism
Tf:(TX, pw% - (ev)rx) = (TY, py - (ev)ry)

Thus, by - T'f is also a ¥-homomorphism, and so is Sf - by : (T X, p% - (cy)rx) —
(SY, ay). Since the domain of both composites is a free algebra of V on X, for
proving that they are equal we just need to verify

by -Tf nx =Sf bx nx.

See the following diagram:

TX bx y SX
nk n%
X
Tf f Sf
Y
ny %
TY - s SY
by
(3) The equality
byt =g

follows from the right-hand triangle in the diagram defining bx above.
(4) We finally prove

b-pt = p®-Sb-0T.
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Consider the following diagram
(ev)rx rk
IsTX ——— 1TTX ——— TX

brx
brx

-

Tsbx STX bx

Sbx

T5SX — SSX —— SX
bsx 5%

The outward rectangle is the definition of bx. The left-hand parts commute by
(1) and (2). Consequently, the desired right-hand square commutes since it does
when precomposed by the epimorphism (¢y)7x.
(b) Finally for every monad morphism & : Ty — S factorised as b’ = b’ - ¢, we are to
verify that

b <V implies b < V.
This is trivial since the components of ¢y, are surjective.

Construction 3.13. The above proposition immediately generalises to sets of inequa-
tions. For every variety V of ¥-algebras the free-algebra monad T, is a canonical quotient
¢y : Ty, — Ty of the free-Y-algebra monad, see Notation 3.8 We construct monad mor-
phisms g, : Tq — Ty for some signature {2 forming a coinserter in Mndg(Pos) as
follows:

C
TQ TZ —r TV
\_/r
U
Given a collection
Uy < Uy, 1el

of inequations specifying the variety V, let n; be the number of variables on both sides.
We define a signature = {7;}ic;, where v; has arity n;. By Yoneda lemma we obtain
natural transformations g, u; : Ho — Ty, since we have Ho = [], . ;Pos(n;, —). Let
U, Uy : Tg — Ty be the corresponding monad morphisms. In the category Mndg(Pos)
we form a coinserter

Tq Ty ——— T

Proposition 3.14. For every variety V of ordered algebras the above monad T is the
corresponding free-algebra monad T,.

The proof is completely analogous to Proposition [3.12]
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Corollary 3.15. The free-algebra monad Ty, of a variety of ordered algebras is strongly
finitary. It follows from the above proposition that we have a coinserter

Uy
/\ ey
Ty Ty — Ty

o
in [Pos, Pos]. Hence, Ty, is strongly finitary by Examples 213 (3) and 210

Example 3.16. A finitary monad on Pos need not be strongly finitary. (In contrast, every
finitary monad on Set is strongly finitary in the sense of preserving reflexive coequalisers,
see [14].)

Denote by V the category of partial algebras (A, ) where A is a poset and « a monotone
function assigning to every pair ap < a; in A an element of A. Morphisms to (B, ) are
monotone functions h : A — B such that

ha(ag, ar) = f(h(ag), h(aq))

holds for all ag < ay. This is a ‘variety in context’ as introduced in [I], from which it
follows that the forgetful functor U : V — Pos is finitary monadic, see Theorem 3.24 in op.
cit. The corresponding monad T assigns to a poset X the poset T'X defined by induction
as follows:

(1) elements of X are terms; they are ordered as in X, and
(2) given terms ug < wug, then a(ug, u;) is a term and the ordering is pointwise: for
terms vy < v; we have a(ug, uy) < avg, v1) iff w; < v; for i =0, 1.
This monad is not strongly finitary because for the 2-chain P given by zy < x; it does
not preserve its canonical reflexive coinserter (recall Remark [2.3)):

p1

/_\

{(z0,20), (z0, 71), (71, 21)} {o, 11} ——— {mp < 11}

\_/

Po

Indeed, every coinserter is surjective, whereas T'c is not: the element a(z,z1) of TP does
not lie in the image of T'c.

4. FROM STRONGLY FINITARY MONADS TO VARIETIES

We now prove that the results of Section [3] can be reversed: for every strongly finitary
monad T a variety is presented with T as the free-algebra monad.

Recall that given a monad T every morphism f : X — TY yields a homomorphism
5 (TX,ux) = (TY, uy) by f* = py-T'f. Below we associate with every n-ary operation
symbol o the term o(x;);<, over V (see Definition B.3]).

Definition 4.1. For every monad T on Pos the associated variety Vr has the signature
Y whose n-ary symbols are the elements of Tn (n € N). The variety is presented by
inequations as follows (with n and m ranging over N):

(1) o(x;) < 7(x;) for all ¢ < 7 in T'n;
(2) k*(0)(z;) = o(ko(x;), ..., km_1(z;)) for all m-tuples k : m — Tn, k = (ko, ..., kn_1)
and all o € T'm.



14 J. ADAMEK, M. DOSTAL, AND J. VELEBIL

Example 4.2. Every algebra o : TA — A in Pos? yields a Y-algebra in Vr: given an
n-ary symbol o € T'n and an n-tuple f :n — A, let f* =a -Tf: (Tn,u,) — (A, «) be
the corresponding homomorphism for T. We put

oalf) = f"(0).

To verify that this Y-algebra satisfies (1) in Definition [4.1] observe that for every n-tuple
f :n — A the corresponding ¥-homomorphism f*: 75,V — A fulfills

(3) fHo(x)) = fT(o) for all o € Tn.

This equality holds since o(z;) is the result of the operation o in the algebra Tsn (Exam-
ple Z186) on (z;), thus, f*(o(x;)) = oa(f(x;)). Given o < 7 in Tn, then f* (o) < f*(7)
since f* = a - Tf is monotone, thus f*(o(x;)) < f*(7(x;)) holds.

To verify (2), we need to prove

Fok* () (@2) = filo(Ro(i), .., k1 (22)))
for every n-tuple f:n — A. Due to (3] above, the left-hand side is
[ (k" ().
Since f* is a homomorphism, the right-hand side is
aa(fiko(@:)), -, [ (kmo(2:)))
which due to (@) is equal to
oalf* k) =(f"- k)" (o)
Thus we only need to observe that
(4) Ukt = (k)T (T, pn) — (A, @)

Indeed, both sides are homomorphisms in Pos®, and they are equal when precomposed
with the universal map:

f+'7€*'77n=f+'k=(f+'7<«')+'77n-

Remark 4.3. We can thus consider Pos™ as a full subcategory of Vp. Indeed, given two
algebras (A, ) and (B, 3) in Pos™, then a monotone map h : A — B is a homomorphism
in Pos™ iff it is a ¥-homomorphism:

(1) Let h- = - Th. Then
h'f+:(h'f)+:(Tn7Mn)_>(Ava)

because both sides are homomorphisms of Pos® extending & - f. For every o € &,
and every n-tuple f:n — A we have

h(oa(f)) = h- f"(0), by definition of o4
=(h-f)f,ash-f"=(h-f)"
= op(h- f), by definition of op.

Thus h is a X-homomorphism.

(2) Let h be a ¥-homomorphism. To prove that A is a homomorphism of T-algebras,
consider the diagram below for an arbitrary n € N and f: n — A. (Recall that n
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is the discrete poset on {0,...,n — 1}.) Since T is finitary, it is sufficient to show
that the desired square commutes when precomposed by T'f.

Th — oA 2 4y
Th k
TB——— B

Indeed, given o € T'n we have

Theorem 4.4. Fvery strongly finitary monad on Pos is the free-algebra monad of the
associated variety V.

Proof.

1) For every poset X we prove that the free algebra (T'X, 1x) on X in PosT. consid-
(1) y P p g  H ,

ered as a X-algebra, is free on X in Vp w.r.t. nx as the universal map.
To verify this, we can restrict ourselves to finite posets X. Then it holds for
all posets since T' preserves filtered colimits: express X = coth as a filtered

colimit of finite posets, then T'X = colim T'X;, and from Remark 4.3 we conclude

el

that the Y-algebra T'X is a filtered colimit of T'X; (i € I) in Alg(X). Thus from
TX; being a free Y-algebra on X; in V1 we conclude that T'X is a free »-algebra
on X.

Let P be a finite poset, say, on the set {zg,...,x,_1}. Then its canonical
coinserter (Remark [2.3)) yields, since T is strongly finitary, the following coinserter

Tp1
Tk T™n ———— TP
\_/r
T'po

The free algebras Tk and Tn of Pos® are also free Y-algebras in Vr: see Re-
mark [4.3] Given an algebra A of V1 and a monotone function f : P — A, we thus
have a unique ¥-homomorphism f’: Tn — A with f = f’-n,. To prove that [’ is
also a Y-homomorphism f’: TP — A, it is sufficient to verify

f’Tpoéf/TplTkﬁA
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Tk Tn — A
~_ 7 f

Thus we need to prove that for each x € Tk we have f'(Tpo(x)) < f'(Tpi(x)).
Indeed, this holds for all variables y; € k:

I Tpo(nk(y:)) = f(po(ys)), by the diagram above
< f(pr(3)), by f being monotone
= " Tp1(nk(y;)), by the diagram above.

And thus we only need to observe that the set of all x € Tk with the desired
property is closed under the -operations. For every o € X, and every n-tuple
()i<n wWith f"-Tpo(orr(x;)) < f'-Tpi(x;) we have (since T'p; are homomorphisms
of Pos™)
I Tpolork(z)) = f(orn(Tpo(z;))), by Remark [1.3]
= oa(f'(Tpo(w:))
< oa(f'(Tpi(xs))
= " Tpi(or(z;)) as above.

)
), since [’ is a X-homomorphism
), since o4 is monotone

)

(2) The full embedding E : Pos™ — Vp of Remark is concrete. That is, if U :
Pos™ — Pos and V : YV — Pos denote the forgetful functors, the triangle

E
Pos? — = Vrp

Pos

commutes. Both U and V are monadic functors by Lemma 3.9, It follows from
(1) that the corresponding monads are isomorphic.

Notation 4.5. Let Var(Pos) denote the category of varieties of ordered algebras and
concrete functors. These are functors F' : V; — V, which commute (strictly) with the
forgetful functors U; : V; — Pos:

VlL}Vz

U
U 2

Pos
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Theorem 4.6. The category of varieties is dually equivalent to the category of strongly
finitary monads:
Var(Pos) =~ Mnd(Pos) .

Proof.

(1) Let F': V; — V; be a concrete functor. The comparison functors K; : V; — Pos™i
are isomorphisms of categories by Lemma [3.9. These isomorphisms are concrete:
if U/ : Pos™ — Pos denotes the underlying functor, then U; = U/ - K;. From F
we thus obtain a concrete functor

F =K, -F-K{':Pos™ — Pos™:.

F \
\ /
Pos
/ '(X

Vi

A

Vo

K>

~

Ty,

Pos s Pos

F
The passage I — F is bijective (with the inverse passage K,' - (=) - K;) and
preserves composition and identity morphisms.
(2) Given monads Ty, Ty, monad morphisms p : Ty — T bijectively correspond to
concrete functors from Pos™ to Pos™2: the bijection takes p to H b Pos™! — Pos™?

assigning to an algebra a : T{A — A in Pos*! the algebra
ThAPSTIAS A

in Pos™2. This passage p — H, moreover preserves composition and indentity
morphisms. See [6], Theorem 3.6.3.
(3) Define a functor

R : Var(Pos) — Mndg¢(Pos)?
on objects by
R(V)=Ty
and on morphisms F': V; — V, by the following rule
R(F)=piff H,=F.

It follows from (1) and (2) that R is a well-defined full and faithful functor. Theo-
rem [ tells us that every strongly finitary monad is isomorphic to R(V) for some
variety V. Therefore, R is an equivalence of categories.

5. LIFTING FINITARY MONADS FROM Set TO Pos

The examples of varieties of ordered algebras presented so far are all liftings of varieties
of classical algebras (over Set). In the present section we prove that this is no coincidence:
there are no other examples. Since varieties of ordered algebras are in a bijective corre-
spondence with strongly finitary monads on Pos (and varieties of classical algebras are in
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a bijective correspondence with finitary monads on Set), an equivalent statement is the
following theorem.

Theorem 5.1. Every strongly finitary monad (T, p,n) on Pos is a lifting of a finitary

monad (T,ﬁ,?)) on Set: for every poset X the underlying set of TX is T|X|, and the
underlying maps of ux and nx are fix and 1x, TESP.

Before proving this theorem, we explain why we have decided for the above strict variant
of lifting.

Remark 5.2.

(1) There is a less strict concept of a lifting of an ordinary monad T on Set: denote
by U : Pos — Set the forgetful functor. A monad T on Pos is a non-strict lifting
of T iff there is a natural isomorphism ¢

Pos — 2~ Pos
U Y U

Set —f‘> Set

such that the following diagrams commute:

U
/ X
ur % > TU

uvrr — s Tur —X . TTU

Up au

Ur s TU

©
(2) Given ¢ as above, T is isomorphic to a monad T on Pos which is a strict lifting
of T (i.e., for which the conditions in the above theorem hold). Indeed, define

Ty = (To, po, m0) by letting Ty X be the unique poset on the set T|X| for which ¢
carries an isomorphism T X =~ Ty X in Pos. Analogously define Ty on morphisms
f X = Y: the underlying map of Ty f is such that the square

Tx — 7 1y

T()X Tf> T()Y

commutes. The unit of Ty has components px - nx : X — Ty X and the mul-
tiplication (po)x : ToToX — ToX is the unique monotone map for which the
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square
TrxX —" v TX

(pxp)x Px

T()T()X e T()X
(ko) x

commutes. It is easy to see that T = (7o, 1o, io) is a well-defined monad on Pos
isomorphic to T via ¢, and that it is a strict lifting of T.

Proof of Theorem [5.1. In view of Theorem it is sufficient to present, for every variety
V of ordered X-algebras, a variety V of non-ordered algebras such that Ty, is a lifting of
Ty. Here Ty is the ordinary V-free-algebra monad on Pos, and Ty the ]}-free—algebra
(ordinary) monad on Set. Recall that we consider an arbitrary set as the poset with the
trivial order.

(1) For our standard set V' = {x¢,x1,x9,...} of variables in Definition we have
defined a set & = & n 5‘71 of equations in Construction they are those
equations s = ¢ which every ordered algebra in V satisfies. (Since this is equivalent
to satisfying both s < ¢t and ¢t < s.) We denote by V the variety of non-ordered
algebras presented by &. This clearly implies that every algebra in % satisfies,
for every set X, all equations s = ¢ for pairs in £%. Moreover, £% is clearly a
congruence on the non-ordered X-algebra T X of all ©-terms on X

(2) Denote by T3 X the free algebra of V on the set X. It can be constructed as the

quotient of the non-ordered algebra T X modulo the congruence E%:
TpX =T X/E%.
The proof is completely analogous to that of Theorem B.71 We thus conclude
that for an arbitrary poset X our choice of 7y, X and T3|X| can be such that
the underlying set of 71,X is T3] X| and all operations are equal. The universal
arrows (ny)x : X — [Ty X| and (ny)x| : |X| — T3|X| are both given by forming
the equivalence classes of x € X modulo £%, thus 7 is the underlying map of
ny. The multiplication (uy)y : TVTy X — Ty X is an interpretation of every term
t € Ty X over the poset Ty, X of Y-terms as a term py(t) over X modulo £%. This
interpretation is independent of the ordering of X, shortly, the underlying function
of (y1y)x is the corresponding interpretation (fiy)x| of terms modulo £ w.r.t. T.
|

Definition 5.3. A variety V of ordered algebras is called a lifting of a variety V of classical
(non-ordered) algebras if a functor from V to V is given which is concrete over Set and
takes the free algebra on any poset X to the free algebra on | X].

Corollary 5.4. Every variety of ordered algebras is a lifting of some classical variety.

Indeed, given a variety V), let T be an ordinary monad of Set such that T is a lifting
of it. The comparison functor is an isomorphism K : ¥V — Pos™ concrete over Pos
(Lemma@]} And we have a classical variety V with an analogous concrete isomorphism

.V — SetT over Set. Define a concrete functor H : PosT — SetT over Set by the
0bV10us rule: it sends an algebra o : TA — A to o : T|A| — |A|. The desired functor is
K'Y H-K: V-V,
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Example 5.5. We present a finitary lifting of a monad on Set to Pos which is not strongly
finitary.

Consider all ordered algebras on two binary operations + and *. The full subcategory
on all algebras for which the implication

r<y = r+yscrxy

holds yields the following monad T on Pos. Given a poset X, the poset T X contains all
terms with variables in X using + and =, where the order on 7'X is the smallest one such
that

(1) z < yin X implies z < y in TX,

(2) + and = are monotone, and

(3) t+ s <t=*sforall termst < sin TX.

Thus T is a lifting of the monad on Set corresponding to two binary operations (and no
equations).

The monad T is not strongly finitary. For example, it does not preserve the canonical
coinserter (recall Remark 2.3]) of the chain 2 given by 0 < 1:

P1
37 Hg__id g
~_ "7

Po

Indeed, in T2 we have 0 + 1 < 0 = 1. In contrast, this does not hold in the coinserter
of T'py and Tp;. We can describe the order of that coinserter as the smallest one that,
besides conditions (1)-(3) above, also fulfills ¢ < s for terms such that s is obtained by
changing some 0 in ¢ to 1. The down-set of the term 0 = 1 in that coinserter consists of
the following terms

0+0<0x0<0=1.

Thus, T does not preserve the coinserter of py and p;.

6. CONCLUSIONS

Kelly and Power proved that every finitary monad T on Pos has a presentation as a
coequaliser of a parallel pair of monad morphisms between free monads on generalised
signatures, see [13]. In the present paper we derive an analogous result for strongly finitary
monads: each such monad has a presentation as a coinserter of a parallel pair of monad
morphisms between free monads Ty on (classical) signatures X, see Construction .13
The move from coequalisers to coinserters is needed since the signatures used in [13] were
substantially more general than those we use here: they were collections ¥ = (Xr)repos, Of
posets Yr indexed by finite posets. However, the proof method we use is closely related
to that in [13].

We have proved that for (classical) varieties of ordered Y-algebras the corresponding
free-algebra monad on Pos is strongly finitary, ie. finitary and preserving reflexive coin-
serters. Using this we proved that the category of varieties of ordered algebras is dually
equivalent to the category of strongly finitary monads on Pos.

In the future we plan extending our results to strongly finitary monads on more general
¥ -categories for closed monoidal categories 7', e.g. the category of small categories. For
general ¥ it is interesting to know under which conditions strongly finitary functors
are precisely the finitary ones preserving reflexive coinserters. But the main question
is whether strongly finitary monads correspond again to ‘naturally‘ defined varieties of
algebras in 7.
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