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A CATEGORICAL VIEW OF VARIETIES OF ORDERED ALGEBRAS

J. ADÁMEK, M. DOSTÁL, AND J. VELEBIL

Abstract. It is well known that classical varieties of Σ-algebras correspond bijectively
to finitary monads on Set. We present an analogous result for varieties of ordered Σ-
algebras, i.e., categories presented by inequations between Σ-terms. We prove that they
correspond bijectively to strongly finitary monads on Pos. That is, those finitary monads
which preserve reflexive coinserters. We deduce that strongly finitary monads have a
coinserter presentation, analogous to the coequaliser presentation of finitary monads due
to Kelly and Power. We also show that these monads are liftings of finitary monads on
Set.

Dedicated to John Power,
from whom we have learned so much,
on the occasion of his 60th birthday

1. Introduction

Varieties of ordered algebras, i.e., classes of ordered Σ-algebras (for a finitary signature
Σ) presented by inequations between Σ-terms, play an important role in universal algebra
and computer science. Example: ordered monoids with bottom as the unit, e, are pre-
sented by the inequation e ď x and the usual equations for classical monoids. For every
variety V free algebras exist on all posets, that is, the forgetful functor V Ñ Pos has a left
adjoint. The corresponding monad T on Pos will be proved to be strongly finitary, which
means that its underlying endofunctor T preserves

(1) filtered colimits, and
(2) coinserters of reflexive pairs.

In the above example of ordered monoids T is a lifting of the word monad (of monoids)
on Set. For every poset X we have the poset TX “ X˚ with the following order: a word
x0 . . . xn´1 is smaller or equal to a word w iff w decomposes as w “ w0 . . . wn´1 and each
wi contains a letter yi P X with xi ď yi in X.

Conversely, given a strongly finitary monad T on Pos, its Eilenberg-Moore category
PosT will be proved to be isomorphic to a variety of ordered algebras. This leads to the
following main result of our paper:

Theorem. The category of varieties of ordered algebras (with concrete functors as mor-
phisms) is dually equivalent to the category of strongly finitary monads on Pos.

We thus obtain a bijective correspondence between varieties of ordered algebras and
strongly finitary monads on Pos. This is analogous to the well-known correspondence
between (classical) varieties and finitary monads on Set, up to natural isomorphism.

Moreover, every variety of ordered algebras is a lifting of a classical variety. This follows
from the above bijective correspondence and the fact we prove that every strongly finitary

monad T on Pos is a lifting of a finitary monad rT on Set: for every poset X the underlying

set of TX is rT |X|, and the underlying maps of ηX and µX are rη|X| and rµ|X|, respectively.

J. Adámek and M. Dostál acknowledge the support of the grant No. 19-0092S of the Czech Grant
Agency.
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Naturally, one classical variety can have many liftings, consider e.g. ordered monods (a
’minimal’ lifting of the variety of monoids), compared with our example above.

Related results. The bijective correspondence between varieties of ordered algebras and
strongly finitary monads has been established already by Kurz and Velebil [15]. However,
the proof there was derived from technically involved results concerning the exactness (in
Pos-enriched sense) of these varieties. Our present proof is much simpler.

Strongly finitary monads on enriched categories were studied by Kelly and Lack [12].
When specialised to Pos (enriched over itself as a cartesian closed category), their results
yield a bijection between strongly finitary monads and equationally (!) presented classes of
Σ-algebras. However, here Σ means a much more complex concept of signature, following
the paper of Kelly and Power [13]: let Posf be a set of finite posets representing all of them
up to isomorphism. The signatures in Pos introduced in [13] are collections Σ “ pΣnqnPPosf

of posets Σn. In the recent paper [1] finitary (ordinary as well as enriched) monads on
Pos are studied. They are related to inequationally specified classes of Σ-algebras for
signatures Σ that present a compromise between the classical signatures (used in the
present paper) and those of Kelly and Power: they are collections of sets Σn indexed by
n P Posf .

2. Finitary and Strongly Finitary Functors

In the present section we recall finitary and strongly finitary endofunctors of Pos. We
observe that a finitary endofunctor is strongly finitary iff it preserves reflexive coinserters.

Remark 2.1.

(1) Throughout the paper we view Pos as the cartesian closed category with the hom-
sets PospX, Y q ordered pointwise. All categories are understood to be enriched over
Pos. That is, hom-sets carry partial orders such that composition is monotone.
All functors, limits, colimits and adjunctions are understood as enriched over Pos.

Thus when we say ‘endofunctor H of Pos’ we automatically mean that it is
locally monotone. Its underlying ordinary functor is denoted by H0.

(2) Colimits are understood to be weighted. Let us recall that for a given scheme, i.e.,
a small category D , a weight is a functor ϕ : Dop Ñ Pos. Example: given a poset
X and a diagram D : D Ñ Pos, the functor PospD´, Xq : Dop Ñ Pos is a weight.
The category of all weights is simply the functor category rDop ,Poss.

A weighted colimit of a diagram D : D Ñ Pos of weight ϕ is a poset ϕ ˚D
together with an isomorphism

Pospϕ ˚D,Xq – rDop ,Posspϕ,PospD´, Xqq

natural in X P Pos.
(3) Every set is considered as a poset with the discrete order. In particular, every

natural number n is the discrete poset on the set t0, 1, . . . , n ´ 1u.

Example 2.2. Coinserters are colimits of the scheme D given by a parallel pair

X Y

1

0
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The weight ϕ : Dop Ñ Pos is as follows:

‚

‚ ϕY

ϕX ‚

ϕ1

ϕ0

Thus, a diagram in Pos is a parallel pair

f0, f1 : A Ñ B

of monotone maps (considered as an ordered pair pf0, f1q, of course). And the coinserter
is a morphism c : B Ñ C universal w.r.t. c ¨ f0 ď c ¨ f1.

A B C

D

f1

f0

c

u
v

That is:

(1) for every morphism u : B Ñ D with u ¨ f0 ď u ¨ f1 there exists a unique morphism
v : C Ñ D with u “ v ¨ c, and

(2) the map u ÞÑ v is monotone: given u1 “ v1 ¨ c, then u ď u1 implies v ď v1.

Remark 2.3. Every finite poset P is a canonical coinserter of a parallel pair

k n

p1

p0

of morphisms in N . Let n be the number of elements of P and k the number of comparable
pairs in P . Thus we can assume that P has elements 0, . . . , n ´ 1, and we can index all
comparable pairs as follows

p0ptq ď p1ptq for t “ 0, . . . , k ´ 1.

This defines functions p0, p1 : k Ñ n. The coinserter of this pair is carried by the identity
map:

k n P

p1

p0

id

Notation 2.4. Denote by
J : Posf Ñ Pos

the full embedding of a subcategory Posf representing all finite posets up to isomorphism.

Remark 2.5.

(1) Pos is a free completion of Posf under filtered conical colimits. In the realm of or-
dinary categories this follows from [3] (Theorem 1.46) since Pos is a locally finitely
presentable category with finite posets precisely the finitely presentable objects.
Thus, given an ordinary category K with filtered colimits, for every ordinary
functor H : Posf Ñ K there exists an extension H 1

: Pos Ñ K preserving filtered
colimits, unique up to natural isomorphism. Filtered conical colimits in Pos have
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the property that given a colimit cocone ci : Ci Ñ C (i P I), then for two mor-
phisms u, v : C Ñ X we have u ď v iff u ¨ ci ď v ¨ ci for all i P I. It follows that H 1

is locally monotone whenever H is. Thus, the statement above holds also in the
enriched sense.

(2) Following Kelly [11] we call an endofunctor of Pos finitary iff its underlying ordi-
nary endofunctor is finitary (i.e., preserves ordinary filtered colimits).

We now turn to strongly finitary functors.

Notation 2.6. The full subcategory of Pos on natural numbers (Remark 2.1 (3)) is
denoted by N , and the full embedding by

I : N Ñ Pos.

Definition 2.7 ([12]). An endofunctor H of Pos is called strongly finitary if it is the left
Kan extension of its restriction to N . More precisely:

H “ LanIH ¨ I.

Remark 2.8. In ordinary categories sifted colimits are colimits of diagrams whose schemes
D are (small) sifted categories. This means categories such that colimits of diagrams
D : D Ñ Set commute with finite products.

In our enriched setting, sifted colimits are introduced analogously. A weight ϕ : Dop Ñ
Pos is called sifted if the functor ϕ ˚ ´ : rD ,Poss Ñ Pos preserves finite (conical) products.
Sifted colimits then are colimits weighted by sifted weights.

Example 2.9.

(1) Filtered colimits are clearly sifted (the corresponding weighted colimits in Pos

commute with finite limits).
(2) A pair f0, f1 : A Ñ B is called reflexive if there exists i : B Ñ A with f0 ¨i “ idB “

f1 ¨ i. Coinserters of reflexive pairs are sifted colimits. The proof is completely
analogous to the fact that in ordinary categories coequalisers of reflexive pairs are
sifted colimits ([4], Example 1.2). We speak about reflexive coinserters. Example:
the canonical coinserters (Remark 2.3) are clearly reflexive.

Theorem 2.10 ([8], Corollary 8.45). The following conditions are equivalent for endo-
functors H of Pos:

(1) H is strongly finitary,
(2) H preserves sifted colimits,
(3) H is finitary and preserves reflexive coinserters, and
(4) H “ LanIH ¨ I.

Proof. Every poset is a filtered colimit of its finite subposets, each of which is a coinserter
as in Remark 2.3.

Consequently, starting with the subcategory N we obtain all of Pos by reflexive coin-
serters and filtered colimits. In the terminology of [10] (Theorem 5.29), this states that
the embedding I : N Ñ Pos has a codensity presentation formed by filtered colimits and
reflexive coinserters. By that theorem properties (1)-(4) are equivalent.

�

Remark 2.11. In (3) we can substitute reflexive coinserters by canonical coinserters, as
is clear from the above proof.



A CATEGORICAL VIEW OF VARIETIES OF ORDERED ALGEBRAS 5

Remark 2.12. The above theorem is completely analogous to the fact proved in [4] for
ordinary endofunctors of categories with finite coproducts: preservation of sifted colimits
is equivalent to the preservation of filtered colimits and reflexive coequalisers.

Example 2.13.

(1) The endofunctor X ÞÑ Xm (for m P N) of Pos is strongly finitary: it clearly
preserves filtered colimits, and we verify that it also preserves the canonical coin-
serters of Remark 2.3. Suppose m “ 2. Then a comparable pair in P ˆP is a pair
pa, bq where the left-hand components of a and b are comparable in P , and thus
have the form xp0piq ď xp1piq for some i ď k ´ 1. And the right-hand components
have the form xp0pjq ď xp1pjq for some j ď k´1. Thus the only comparable pairs of
P ˆ P are pxp0piq, xp0pjqq, pxp1piq, xp1pjqq. We conclude that the canonical coinserter
of the poset P ˆ P is given by p0 ˆ p0, p1 ˆ p1 : k ˆ k Ñ n ˆ n. Analogously for
m ą 2.

(2) Coproducts of strongly finitary endofunctors are strongly finitary. Example: given
a signature Σ, the corresponding polynomial functor X ÞÑ

š
mPN Σm ˆ Xm is

strongly finitary.
(3) (Weighted) colimits of strongly finitary endofunctors are strongly finitary.
(4) A composite of strongly finitary endofunctors is strongly finitary.

Remark 2.14. Every strongly finitary endofunctor H of Pos generates a free monad

whose underlying functor pH is also strongly finitary. Indeed, following [17], pH is a colimit
in rPos,Poss of the following ω-chain

Id H ` Id HpH ` Idq ` Id . . .
w0 w1 w2

That is, the chain W : ω Ñ rPos,Poss has objects

W0 “ Id and Wn`1 “ HWn ` Id

and morphisms

w0 : Id Ñ H ` Id the coproduct injection

and

wn`1 “ Hwn ` id .

Thus if H is strongly finitary, so is each Wn (by the preceding example). Consequently,
pH “ colimWn is strongly finitary.

Notation 2.15. A monad whose endofunctor is strongly finitary is called a strongly
finitary monad. We denote by

MndsfpPosq

the category of strongly finitary monads and monad morphisms.

Example 2.16. The endofunctor HΣ generates the following free monad TΣ on Pos: to
every poset X (of variables) it assigns the poset TΣX of Σ-terms with variables from
X. That is, the underlying set is the smallest set containing X and such that for every
σ P Σn and every n-tuple ti in TΣX we have σptiq in TΣX. This yields a structure of a
Σ-algebra on TΣX. The ordering of TΣX is the smallest one such that TΣX contains X

as a subposet, and all operations are monotone. It follows from 2.14 that TΣ is strongly
finitary.
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Remark 2.17. It follows from Example 2.13 and Remark 2.14 that MndsfpPosq has
(weighted) colimits. Indeed, given a diagram D and a weight, the underlying diagram

D0 in EndsfpPosq has a colimit H which is strongly finitary. The free monad pH is then a
colimit of D in MndsfpPosq, and it is strongly finitary.

3. From Varieties of Ordered Algebras to Strongly Finitary Monads

Notation 3.1. Let Σ be a signature, i.e., a collection of sets Σn (of n-ary operation
symbols) indexed by n P N. An ordered Σ-algebra is a poset A together with a monotone
map σA : An Ñ A for every n P N and σ P Σn. The category of ordered Σ-algebras and
homomorphisms (i.e., monotone functions preserving the given operations) is denoted by
AlgpΣq.

Remark 3.2.

(1) With Σ we associate the polynomial functor HΣ : Pos Ñ Pos given on objects by

HΣX “
ž

nPN

Σn ˆ Xn

and analogously on morphisms. By Example 2.13 (2), HΣ is strongly finitary.
(2) AlgpΣq is clearly equivalent to the category of algebras for HΣ, i.e., pairs pA, αq

where A is a poset and α : HΣA Ñ A is a monotone function. (Morphisms are
monotone maps making the obvious square commutative.)

(3) It follows from [5] that the category of algebras for an ordinary endofunctor H is

equivalent to the category of Eilenberg-Moore algebras for the free monad pH (see
Remark 2.14). The same result holds for enriched endofunctors. In particular, we
conclude

AlgpΣq » PosTΣ .

(4) The algebra TΣX of terms (Example 2.16) is a free Σ-algebra on ηX : X Ñ TΣX,
the inclusion of variables: for every Σ-algebra A and every monotone function
f : X Ñ A the unique extension to a homomorphism f 7 : TΣX Ñ A is given by

f 7pσptiqq “ σApf 7ptiqq.

Definition 3.3. Let V be a countably infinite set (of variables), V “ txn | n P Nu.
An ordered pair of terms in TΣV is called an inequation and is written as u ď v. A
Σ-algebra A satisfies u ď v iff every map f : V Ñ |A| (interpretation of variables) fulfills
f 7puq ď f 7pvq.

By a variety of ordered Σ-algebras we understand a full subcategory of AlgpΣq specified
by a set of inequations.

Example 3.4.

(1) Ordered monoids are specified by the usual signature Σ “ t¨, eu and the usual
equations for monoids. The corresponding algebras are monoids with a partial
order making the multiplication monotone (in both variables).

This leads to the monad T on Pos lifting the word monad on Set as follows:

TX “ X˚,

the poset of words on |X| ordered pointwise:

x0x1 . . . xn´1 ď y0y1 . . . ym´1 iff n “ m and xi ď yi pi ă nq.
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(2) If we add to the equations above the inequation

x ď x ¨ y

we obtain the variety of ordered monoids with e the smallest element. That is,
the above inequation is equivalent to

e ď y.

Indeed the first inequation yields the latter one by putting x “ e. Conversely,
from e ď y we get x “ x ¨ e ď x ¨ y.

The corresponding monad is the lifting of the word monad

TX “ X˚

ordered as follows:

x0x1 . . . xn´1 ď w iff w “ w0w1 . . . wn´1 and wi contains yi with xi ď yi pi ă nq.

(3) Bounded posets (with a least element 0 and a largest element 1) form a variety with
Σ given by nullary operations 0,1 and the variety is presented by the inequations

0 ď x and x ď 1.

This is a lifting of the variety of non-ordered algebras with two nullary operations.

Remark 3.5. Every variety of Σ-algebras is a reflective subcategory of AlgpΣq with sur-
jective reflections.

Indeed, since HΣ is a finitary endofunctor on a locally finitely presentable category,
AlgpΣq – HΣ-Alg is also locally finitely presentable, see [3], Remark 2.78. In particular,
it is complete and cowellpowered. The factorisation system (epi, embedding) on Pos lifts,
since HΣ preserves epimorphisms, to AlgpΣq. Since a variety V is easily seen to be closed
under products and subalgebras carried by embeddings, the surjective reflections follow,
see [2], Theorem 16.8.

Construction 3.6 (see [7]). For every variety V of ordered algebras the free algebra TVX

of V on a poset X can be constructed as follows.
Let EX be the collection of all inequations s ď t satisfied by all algebras of V, where

s, t P TΣX are terms in variables from X. Then EX is a preorder, i.e., a reflexive and
transitive relation on TΣX. Moreover, it is admissible in the sense of Bloom [7]: given an
n-ary symbol σ P Σ and n pairs si ď ti (i ă n) in EX , it follows that the pair σpsiq ď σptiq
also lies in EX . Indeed, given an algebra A P V and an interpretation f : X Ñ |A|, we
know that the homomorphism f 7 : TΣX Ñ A fulfils f 7psiq ď f 7ptiq for all i, thus

f 7pσpsiqq “ σTVXpf 7psiqq ď σTVXpf 7ptiqq “ f 7pσptiqq.

Consequently, for the induced equivalence relation

E
o
X “ EX X E

´1

X

we obtain a Σ-algebra TVX on the quotient set

|TVX| “ |TΣX|{Eo
X

(of all equivalence classes rts of terms t P TΣX). The operations are as expected:

σTVXprt0s, . . . , rtn´1sq “ rσpt0, . . . , tn´1qs

for every n-ary σ and all n-tuples t0, . . . , tn´1 P TΣX. Finally, we consider TVX as a poset
via

rss ď rts iff ps, tq P EX .
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The following theorem was stated by Bloom ([7], Theorem 2.2). We present a full proof
since we need it later, and the original proof was only a sketch.

Theorem 3.7. The above ordered algebra TVX is a free algebra of the variety V on the
poset X w.r.t. ηX : X Ñ TVX given by x ÞÑ rxs.

Proof.

(1) TVX is a well-defined ordered Σ-algebra. This follows easily from the fact that EX
is an admissible preorder.

(2) V has a free algebra on X which is given by an admissible preorder Ď on TΣX

(that is, for the induced equivalence relation „ the underlying poset is |TVX| “
|TΣX|{ „ and the operations are induced by those of TΣX). This statement follows
from Remark 3.5, which implies that a free algebra TVX exists, and the unique
homomorphism

eX : TΣX Ñ TVX

extending the universal arrow is epic. Indeed, the desired preorder is simply

s Ď t iff eXpsq ď eXptq.

(3) The preorder EX of the above construction coincides with Ď of (2). Indeed, if
ps, tq P EX , then the algebra TVX satisfies s ď t (since it lies in V) and taking the
universal map pηVqX : X Ñ TVX as the interpretation, we have

eX “ pηVq7
X

(because eX is a Σ-homomorphism). Since eXpsq ď eXptq, we conclude that s Ď t.
Conversely, if s Ď t, which means eXpsq ď eXptq, we verify that every algebra

A P V satisfies s ď t. Let f : X Ñ A be an interpretation, then the corresponding
homomorphism f 7

: TΣX Ñ A factorises through the reflection of TΣX in V in
AlgpΣq:

TΣX TVX

A

eX

f7
h

Since h is monotone, the inequality eXpsq ď eXptq implies f 7psq ď f 7ptq, as re-
quired.

�

Notation 3.8. For every variety V of Σ-algebras we denote by

cV : TΣ Ñ TV

the monad morphism whose components are the canonical quotient maps

|TΣX| Ñ |TΣX|{Eo
X .

Lemma 3.9. For every variety V the forgetful functor to Pos is strictly monadic: the
comparison functor K : V Ñ PosTV is an isomorphism.

Proof. For classical varieties see [16], Theorem VI.8.1. The proof for varieties of ordered
algebras is completely analogous, one just replaces the equation λB “ µB with the in-
equation λB ď µqB. �

Remark 3.10 (See [10]).
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(1) Recall the continuation monad xA,Ay on Pos associated with every poset A: to
a poset X it assigns the power of A to the set Pos0pX,Aq of all monotone maps
f : X Ñ A:

xA,AyX “
ź

Pos0pX,Aq

A.

Denote by πf : xA,AyX Ñ A the projection corresponding to f : X Ñ A. To
every morphism h : X Ñ Y the monad assigns the morphism xA,Ayh determined
by the following commutative triangles:

ś
Pos0pX,Aq A

ś
Pos0pY,Aq A,

A

xA,Ayh

πf ¨h πf

f P Pos0pY,Aq.

The unit is xfyfPPos0pX,Aq : X Ñ xA,AyX, and the multiplication µX is determined
by the following commutative triangles:

ś
Pos0pxA,AyX,Aq A

ś
Pos0pX,Aq A,

A

µX

ππf
πf

f P Pos0pX,Aq.

(2) It follows from [9] that for every monad T and every poset A there is a bijection
between monad morphisms T Ñ xA,Ay and algebras of PosT on A. This bijection
assigns to an algebra α : TA Ñ A the monad morphism

pα : T Ñ xA,Ay

with components determined by the following commutative squares:

TX xA,AyX

TA A

pαX

Tf πf

α

f P Pos0pX,Aq.

Thus if T “ TΣ, then pαX assigns to a term t P TΣX the tuple pf 7ptqqf :XÑA.

(3) Let b : S Ñ T be a monad morphism. Every algebra pA, αq in PosT then yields
an algebra pA, α ¨ bAq in PosS. The following triangle

S T

xA,Ay

b

zα¨bA pα

commutes. Indeed, for every poset X and every f P Pos0pX,Aq we have

πfppαX ¨ bXq “ α ¨ Tf ¨ bX “ α ¨ bA ¨ Sf.
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The same result is obtained by

πf p{α ¨ bAXq “ α ¨ bA ¨ Sf.

(4) In particular, let T “ TΣ for a signature Σ. Given a term u in TΣn, it corresponds
to a monad morphism

ru : TΩn
Ñ TΣ

where Ωn is a signature of a single operation ω of arity n. Its component ruX :

TΩn
X Ñ TΣX assigns to a term t over X (containing the unique operation symbol

ω) the Σ-term obtained by replacing each ω by the term u. Thus if a Σ-algebra
pA, αq satisfies an inequation u0 ď u1, the inequation ppα ¨ ru0qX ď ppα ¨ ru1qX holds
for all posets X. Shortly: pα ¨ ru0 ď pα ¨ ru1.

Example 3.11. We describe the free-algebra monad of the variety given by a single
inequation u0 ď u1 in signature Σ. Let u0, u1 be terms with variables x0, . . . , xn´1. For
the signature Ωn of a single operation of arity n they can be viewed (via Yoneda lemma)
as natural transformations

u0, u1 : HΩn
Ñ TΣ.

The corresponding monad morphisms

ru0, ru1 : TΩn
Ñ TΣ.

have, in the category of strongly finitary monads, a coinserter we denote as follows:

TΩn
TΣ T

ru1

ru0

c

We verify that this is precisely cV above for the variety presented by u0 ď u1.

Proposition 3.12. The above monad T is the free-algebra monad of the variety presented
by the inequation u0 ď u1.

Proof. The variety V presented by u0 ď u1 yields a free-algebra monad TV . The proposi-
tion will be proved by verifying that cV (Notation 3.8) is a coinserter of ru0,ru1 in MndsfpPosq.
From the definition of cV we conclude

cV ¨ ru0 ď cV ¨ ru1.

(a) Given a strongly finitary monad S “ pS, µS, ηSq and a monad morphism b : TΣ Ñ S

with

b ¨ ru0 ď b ¨ ru1,

we prove that b factorises through cV via a monad morphism.
For every poset X, the free algebra pSX, µS

Xq for S yields, since b is a monad
morphism, the following algebra for TΣ on SX:

βX :“ TΣSX
bSXÝÝÑ SSX

µS
XÝÝÑ SX

From αX ¨ pru0qX ď αX ¨ pru1qX we deduce, using Remark 3.10 (4), that the Σ-algebra
pSX, βXq satisfies the inequality u0 ď u1. Since the free algebra pTX, µT

Xq of V on X

corresponds to the Σ-algebra

TΣTX
pcV qTX
ÝÝÝÝÑ TTX

µT
XÝÝÑ TX,
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we obtain a unique Σ-homomorphism bX with bX ¨ ηTX “ ηSX :

TΣTX TTX TX X

TΣSX SSX SX

pcV qTX

TΣbX

µT
X

bX

ηTX

ηSX

bSX µS
X

We verify that these morphisms bX form a monad morphism

b : T Ñ S with b “ b ¨ cV .

(1) The equality bX “ bX ¨ pcVqX : TΣX Ñ SX holds because both sides are homo-
morphisms of Σ-algebras and we have

bX ¨ ηΣX “ ηSX “ bX ¨ ηTX “ bX ¨ pcVqX ¨ ηΣX .

(2) bX is natural in X. In fact, every morphism f : X Ñ Y yields a Σ-homomorphism

Tf : pTX, µT
X ¨ pcVqTXq Ñ pTY, µT

Y ¨ pcVqTY q

Thus, bY ¨ Tf is also a Σ-homomorphism, and so is Sf ¨ bX : pTX, µT
X ¨ pcVqTXq Ñ

pSY, αY q. Since the domain of both composites is a free algebra of V on X, for
proving that they are equal we just need to verify

bY ¨ Tf ¨ ηTX “ Sf ¨ bX ¨ ηTX .

See the following diagram:

TX SX

X

Y

TY SY

bX

Tf Sf

ηTX ηSX

f

ηTY ηSY

bY

(3) The equality

b ¨ ηT “ ηS

follows from the right-hand triangle in the diagram defining bX above.
(4) We finally prove

b ¨ µT “ µS ¨ Sb ¨ bT.
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Consider the following diagram

TΣTX TTX TX

STX

TΣSX SSX SX

pcV qTX

bTX

TΣbX

µT
X

bTX

bX

SbX

bSX µS
X

The outward rectangle is the definition of bX . The left-hand parts commute by
(1) and (2). Consequently, the desired right-hand square commutes since it does
when precomposed by the epimorphism pcVqTX .

(b) Finally for every monad morphism b1 : TΣ Ñ S factorised as b1 “ b1 ¨ cV we are to
verify that

b ď b1 implies b ď b1.

This is trivial since the components of cV are surjective.

�

Construction 3.13. The above proposition immediately generalises to sets of inequa-
tions. For every variety V of Σ-algebras the free-algebra monad TV is a canonical quotient
cV : TΣ Ñ TV of the free-Σ-algebra monad, see Notation 3.8. We construct monad mor-
phisms ru0, ru1 : TΩ Ñ TΣ for some signature Ω forming a coinserter in MndsfpPosq as
follows:

TΩ TΣ TV

ru1

ru0

cV

Given a collection

ui
0

ď ui
1
, i P I

of inequations specifying the variety V, let ni be the number of variables on both sides.
We define a signature Ω “ tγiuiPI , where γi has arity ni. By Yoneda lemma we obtain
natural transformations u0, u1 : HΩ Ñ TΣ, since we have HΩ –

š
i inI Pospni,´q. Let

ru0, ru1 : TΩ Ñ TΣ be the corresponding monad morphisms. In the category MndsfpPosq
we form a coinserter

TΩ TΣ T

ru1

ru0

c

Proposition 3.14. For every variety V of ordered algebras the above monad T is the
corresponding free-algebra monad TV .

The proof is completely analogous to Proposition 3.12.
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Corollary 3.15. The free-algebra monad TV of a variety of ordered algebras is strongly
finitary. It follows from the above proposition that we have a coinserter

TΩ TΣ TV

ru1

ru0

cV

in rPos,Poss. Hence, TV is strongly finitary by Examples 2.13 (3) and 2.16.

Example 3.16. A finitary monad on Pos need not be strongly finitary. (In contrast, every
finitary monad on Set is strongly finitary in the sense of preserving reflexive coequalisers,
see [14].)

Denote by V the category of partial algebras pA, αq where A is a poset and α a monotone
function assigning to every pair a0 ď a1 in A an element of A. Morphisms to pB, βq are
monotone functions h : A Ñ B such that

hαpa0, a1q “ βphpa0q, hpa1qq

holds for all a0 ď a1. This is a ‘variety in context’ as introduced in [1], from which it
follows that the forgetful functor U : V Ñ Pos is finitary monadic, see Theorem 3.24 in op.
cit. The corresponding monad T assigns to a poset X the poset TX defined by induction
as follows:

(1) elements of X are terms; they are ordered as in X, and
(2) given terms u0 ď u1, then αpu0, u1q is a term and the ordering is pointwise: for

terms v0 ď v1 we have αpu0, u1q ď αpv0, v1q iff ui ď vi for i “ 0, 1.

This monad is not strongly finitary because for the 2-chain P given by x0 ď x1 it does
not preserve its canonical reflexive coinserter (recall Remark 2.3):

tpx0, x0q, px0, x1q, px1, x1qu tx0, x1u tx0 ď x1u

p1

p0

c

Indeed, every coinserter is surjective, whereas Tc is not: the element αpx0, x1q of TP does
not lie in the image of Tc.

4. From Strongly Finitary Monads to Varieties

We now prove that the results of Section 3 can be reversed: for every strongly finitary
monad T a variety is presented with T as the free-algebra monad.

Recall that given a monad T every morphism f : X Ñ TY yields a homomorphism
f˚ : pTX, µXq Ñ pTY, µY q by f˚ “ µY ¨Tf . Below we associate with every n-ary operation
symbol σ the term σpxiqiăn over V (see Definition 3.3).

Definition 4.1. For every monad T on Pos the associated variety VT has the signature
Σ whose n-ary symbols are the elements of Tn (n P N). The variety is presented by
inequations as follows (with n and m ranging over N):

(1) σpxiq ď τpxiq for all σ ď τ in Tn;
(2) k˚pσqpxiq “ σpk0pxiq, . . . , km´1pxiqq for all m-tuples k : m Ñ Tn, k “ pk0, . . . , km´1q

and all σ P Tm.
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Example 4.2. Every algebra α : TA Ñ A in PosT yields a Σ-algebra in VT: given an
n-ary symbol σ P Tn and an n-tuple f : n Ñ A, let f` “ α ¨ Tf : pTn, µnq Ñ pA, αq be
the corresponding homomorphism for T. We put

σApfq “ f`pσq.

To verify that this Σ-algebra satisfies (1) in Definition 4.1, observe that for every n-tuple
f : n Ñ A the corresponding Σ-homomorphism f 7 : TΣV Ñ A fulfills

(3) f 7pσpxiqq “ f`pσq for all σ P Tn.

This equality holds since σpxiq is the result of the operation σ in the algebra TΣn (Exam-
ple 2.16) on pxiq, thus, f 7pσpxiqq “ σApfpxiqq. Given σ ď τ in Tn, then f`pσq ď f`pτq
since f` “ α ¨ Tf is monotone, thus f 7pσpxiqq ď f 7pτpxiqq holds.

To verify (2), we need to prove

f 7pk˚pσqpxiqq “ f 7pσpk0pxiq, . . . , km´1pxiqqq

for every n-tuple f : n Ñ A. Due to (3) above, the left-hand side is

f`pk˚pσqq.

Since f 7 is a homomorphism, the right-hand side is

σApf 7pk0pxiqq, . . . , f 7pkm´1pxiqqq

which due to (3) is equal to

σApf` ¨ kq “ pf` ¨ kq`pσq

Thus we only need to observe that

(4) f` ¨ k˚ “ pf` ¨ kq`
: pTn, µnq Ñ pA, αq.

Indeed, both sides are homomorphisms in PosT, and they are equal when precomposed
with the universal map:

f` ¨ k˚ ¨ ηn “ f` ¨ k “ pf` ¨ kq` ¨ ηn.

Remark 4.3. We can thus consider PosT as a full subcategory of VT. Indeed, given two
algebras pA, αq and pB, βq in PosT, then a monotone map h : A Ñ B is a homomorphism
in PosT iff it is a Σ-homomorphism:

(1) Let h ¨ α “ β ¨ Th. Then

h ¨ f` “ ph ¨ fq`
: pTn, µnq Ñ pA, αq

because both sides are homomorphisms of PosT extending h ¨ f . For every σ P Σn

and every n-tuple f : n Ñ A we have

hpσApfqq “ h ¨ f`pσq, by definition of σA

“ ph ¨ fq`, as h ¨ f` “ ph ¨ fq`

“ σBph ¨ fq, by definition of σB.

Thus h is a Σ-homomorphism.
(2) Let h be a Σ-homomorphism. To prove that h is a homomorphism of T -algebras,

consider the diagram below for an arbitrary n P N and f : n Ñ A. (Recall that n
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is the discrete poset on t0, . . . , n ´ 1u.) Since T is finitary, it is sufficient to show
that the desired square commutes when precomposed by Tf .

Tn TA A

TB B

Tf α

Th h

β

Indeed, given σ P Tn we have

β ¨ Th ¨ Tfpσq “ ph ¨ fq`pσq, by definition of ph ¨ fq`

“ σBph ¨ fq, by definition of σB

“ hpσApfqq, since h is a Σ-homomorphism

“ hpf`pσqq, by definition of σA

“ hpα ¨ Tfpσqq, by definition of f`.

Theorem 4.4. Every strongly finitary monad on Pos is the free-algebra monad of the
associated variety VT.

Proof.

(1) For every poset X we prove that the free algebra pTX, µXq on X in PosT, consid-
ered as a Σ-algebra, is free on X in VT w.r.t. ηX as the universal map.

To verify this, we can restrict ourselves to finite posets X. Then it holds for
all posets since T preserves filtered colimits: express X “ colim

iPI
Xi as a filtered

colimit of finite posets, then TX “ colim
iPI

TXi, and from Remark 4.3 we conclude

that the Σ-algebra TX is a filtered colimit of TXi (i P I) in AlgpΣq. Thus from
TXi being a free Σ-algebra on Xi in VT we conclude that TX is a free Σ-algebra
on X.

Let P be a finite poset, say, on the set tx0, . . . , xn´1u. Then its canonical
coinserter (Remark 2.3) yields, since T is strongly finitary, the following coinserter

Tk Tn TP

Tp1

Tp0

id

The free algebras Tk and Tn of PosT are also free Σ-algebras in VT: see Re-
mark 4.3. Given an algebra A of VT and a monotone function f : P Ñ A, we thus
have a unique Σ-homomorphism f 1

: Tn Ñ A with f “ f 1 ¨ ηn. To prove that f 1 is
also a Σ-homomorphism f 1 : TP Ñ A, it is sufficient to verify

f 1 ¨ Tp0 ď f 1 ¨ Tp1 : Tk Ñ A.
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k n

Tk Tn A

p1

p0

ηk ηn
f

Tp1

Tp0

f 1

Thus we need to prove that for each x P Tk we have f 1pTp0pxqq ď f 1pTp1pxqq.
Indeed, this holds for all variables yi P k:

f 1 ¨ Tp0pηkpyiqq “ fpp0pyiqq, by the diagram above

ď fpp1pyiqq, by f being monotone

“ f 1 ¨ Tp1pηkpyiqq, by the diagram above.

And thus we only need to observe that the set of all x P Tk with the desired
property is closed under the Σ-operations. For every σ P Σn and every n-tuple
pxiqiăn with f 1 ¨Tp0pσTkpxiqq ď f 1 ¨Tp1pxiq we have (since Tpi are homomorphisms
of PosT)

f 1 ¨ Tp0pσTkpxiqq “ f 1pσTnpTp0pxiqqq, by Remark 4.3

“ σApf 1pTp0pxiqqq, since f 1 is a Σ-homomorphism

ď σApf 1pTp1pxiqqq, since σA is monotone

“ f 1 ¨ Tp1pσTkpxiqq as above.

(2) The full embedding E : PosT Ñ VT of Remark 4.3 is concrete. That is, if U :

PosT Ñ Pos and V : VT Ñ Pos denote the forgetful functors, the triangle

PosT VT

Pos

E

U
V

commutes. Both U and V are monadic functors by Lemma 3.9. It follows from
(1) that the corresponding monads are isomorphic.

�

Notation 4.5. Let VarpPosq denote the category of varieties of ordered algebras and
concrete functors. These are functors F : V1 Ñ V2 which commute (strictly) with the
forgetful functors Ui : Vi Ñ Pos:

V1 V2

Pos

F

U1

U2
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Theorem 4.6. The category of varieties is dually equivalent to the category of strongly
finitary monads:

VarpPosq – MndsfpPosq
op .

Proof.

(1) Let F : V1 Ñ V2 be a concrete functor. The comparison functors Ki : Vi Ñ PosTVi

are isomorphisms of categories by Lemma 3.9. These isomorphisms are concrete:
if U 1

i : Pos
TVi Ñ Pos denotes the underlying functor, then Ui “ U 1

i ¨ Ki. From F

we thus obtain a concrete functor

F “ K2 ¨ F ¨ K´1

1 : PosTV1 Ñ PosTV2 .

V1 V2

Pos

PosTV1 PosTV2

F

U1

K2

U2

F

U 1
1

K´1

1

U 1
2

The passage F ÞÑ F is bijective (with the inverse passage K´1

2 ¨ p´q ¨ K1) and
preserves composition and identity morphisms.

(2) Given monads T1, T2, monad morphisms ρ : T2 Ñ T1 bijectively correspond to
concrete functors from PosT1 to PosT2 : the bijection takes ρ to Hρ : Pos

T1 Ñ PosT2

assigning to an algebra α : T1A Ñ A in PosT1 the algebra

T2A
ρAÝÑ T1A

α
ÝÑ A

in PosT2 . This passage ρ ÞÑ Hρ moreover preserves composition and indentity
morphisms. See [6], Theorem 3.6.3.

(3) Define a functor

R : VarpPosq Ñ MndsfpPosq
op

on objects by

RpVq “ TV

and on morphisms F : V1 Ñ V2 by the following rule

RpF q “ ρ iff Hρ “ F .

It follows from (1) and (2) that R is a well-defined full and faithful functor. Theo-
rem 4.4 tells us that every strongly finitary monad is isomorphic to RpVq for some
variety V. Therefore, R is an equivalence of categories.

�

5. Lifting Finitary Monads from Set to Pos

The examples of varieties of ordered algebras presented so far are all liftings of varieties
of classical algebras (over Set). In the present section we prove that this is no coincidence:
there are no other examples. Since varieties of ordered algebras are in a bijective corre-
spondence with strongly finitary monads on Pos (and varieties of classical algebras are in
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a bijective correspondence with finitary monads on Set), an equivalent statement is the
following theorem.

Theorem 5.1. Every strongly finitary monad pT, µ, ηq on Pos is a lifting of a finitary

monad p rT , rµ, rηq on Set: for every poset X the underlying set of TX is rT |X|, and the
underlying maps of µX and ηX are rµX and rηX , resp.

Before proving this theorem, we explain why we have decided for the above strict variant
of lifting.

Remark 5.2.

(1) There is a less strict concept of a lifting of an ordinary monad rT on Set: denote
by U : Pos Ñ Set the forgetful functor. A monad T on Pos is a non-strict lifting

of rT iff there is a natural isomorphism ϕ

Pos Pos

Set Set

T

U ϕ
ñ

U

rT

such that the following diagrams commute:

U

UT rTU

Uη rηU

ϕ

UTT rTUT rT rTU

UT rTU

ϕT

Uµ

rTϕ

rµU

ϕ

(2) Given ϕ as above, T is isomorphic to a monad T0 on Pos which is a strict lifting

of rT (i.e., for which the conditions in the above theorem hold). Indeed, define

T0 “ pT0, µ0, η0q by letting T0X be the unique poset on the set rT |X| for which ϕX

carries an isomorphism TX – T0X in Pos. Analogously define T0 on morphisms
f : X Ñ Y : the underlying map of T0f is such that the square

TX TY

T0X T0Y

Tf

ϕX ϕY

T0f

commutes. The unit of T0 has components ϕX ¨ ηX : X Ñ T0X and the mul-
tiplication pµ0qX : T0T0X Ñ T0X is the unique monotone map for which the
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square

TTX TX

T0T0X T0X

µX

pϕ˚ϕqX ϕX

pµ0qX

commutes. It is easy to see that T0 “ pT0, η0, µ0q is a well-defined monad on Pos

isomorphic to T via ϕ, and that it is a strict lifting of rT.

Proof of Theorem 5.1. In view of Theorem 4.6 it is sufficient to present, for every variety

V of ordered Σ-algebras, a variety rV of non-ordered algebras such that TV is a lifting of

TrV . Here TV is the ordinary V-free-algebra monad on Pos, and TrV the rV-free-algebra
(ordinary) monad on Set. Recall that we consider an arbitrary set as the poset with the
trivial order.

(1) For our standard set V “ tx0, x1, x2, . . . u of variables in Definition 3.3 we have
defined a set Eo

V “ EV X E
´1

V of equations in Construction 3.6: they are those
equations s “ t which every ordered algebra in V satisfies. (Since this is equivalent

to satisfying both s ď t and t ď s.) We denote by rV the variety of non-ordered

algebras presented by Eo
V . This clearly implies that every algebra in rV satisfies,

for every set X, all equations s “ t for pairs in Eo
X . Moreover, Eo

X is clearly a

congruence on the non-ordered Σ-algebra rTΣX of all Σ-terms on X.

(2) Denote by TrVX the free algebra of rV on the set X. It can be constructed as the

quotient of the non-ordered algebra rTΣX modulo the congruence Eo
X :

TrVX “ rTΣX{Eo
X .

The proof is completely analogous to that of Theorem 3.7. We thus conclude
that for an arbitrary poset X our choice of TVX and TrV |X| can be such that
the underlying set of TVX is TrV |X| and all operations are equal. The universal
arrows pηVqX : X Ñ |TVX| and pηrVq|X| : |X| Ñ TrV |X| are both given by forming
the equivalence classes of x P X modulo Eo

X , thus ηrV is the underlying map of
ηV . The multiplication pµVqX : TVTVX Ñ TVX is an interpretation of every term
t P TVX over the poset TVX of Σ-terms as a term µVptq over X modulo Eo

X . This
interpretation is independent of the ordering of X, shortly, the underlying function

of pµVqX is the corresponding interpretation prµVq|X| of terms modulo Eo
X w.r.t. rT.

�

Definition 5.3. A variety V of ordered algebras is called a lifting of a variety rV of classical

(non-ordered) algebras if a functor from V to rV is given which is concrete over Set and
takes the free algebra on any poset X to the free algebra on |X|.

Corollary 5.4. Every variety of ordered algebras is a lifting of some classical variety.

Indeed, given a variety V, let rT be an ordinary monad of Set such that TV is a lifting
of it. The comparison functor is an isomorphism K : V Ñ PosTV concrete over Pos

(Lemma 3.9). And we have a classical variety rV with an analogous concrete isomorphism
rK : rV Ñ Set

rT over Set. Define a concrete functor H : PosT Ñ Set
rT over Set by the

obvious rule: it sends an algebra α : TA Ñ A to α : rT |A| Ñ |A|. The desired functor is
rK´1 ¨ H ¨ K : V Ñ rV .
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Example 5.5. We present a finitary lifting of a monad on Set to Pos which is not strongly
finitary.

Consider all ordered algebras on two binary operations ` and ˚. The full subcategory
on all algebras for which the implication

x ď y ùñ x ` y ď x ˚ y

holds yields the following monad T on Pos. Given a poset X, the poset TX contains all
terms with variables in X using ` and ˚, where the order on TX is the smallest one such
that

(1) x ď y in X implies x ď y in TX,
(2) ` and ˚ are monotone, and
(3) t ` s ď t ˚ s for all terms t ď s in TX.

Thus T is a lifting of the monad on Set corresponding to two binary operations (and no
equations).

The monad T is not strongly finitary. For example, it does not preserve the canonical
coinserter (recall Remark 2.3) of the chain 2 given by 0 ă 1:

3 2 2

p1

p0

id

Indeed, in T2 we have 0 ` 1 ă 0 ˚ 1. In contrast, this does not hold in the coinserter
of Tp0 and Tp1. We can describe the order of that coinserter as the smallest one that,
besides conditions (1)-(3) above, also fulfills t ď s for terms such that s is obtained by
changing some 0 in t to 1. The down-set of the term 0 ˚ 1 in that coinserter consists of
the following terms

0 ` 0 ă 0 ˚ 0 ă 0 ˚ 1.

Thus, T does not preserve the coinserter of p0 and p1.

6. Conclusions

Kelly and Power proved that every finitary monad T on Pos has a presentation as a
coequaliser of a parallel pair of monad morphisms between free monads on generalised
signatures, see [13]. In the present paper we derive an analogous result for strongly finitary
monads: each such monad has a presentation as a coinserter of a parallel pair of monad
morphisms between free monads TΣ on (classical) signatures Σ, see Construction 3.13.
The move from coequalisers to coinserters is needed since the signatures used in [13] were
substantially more general than those we use here: they were collections Σ “ pΣΓqΓPPosf of
posets ΣΓ indexed by finite posets. However, the proof method we use is closely related
to that in [13].

We have proved that for (classical) varieties of ordered Σ-algebras the corresponding
free-algebra monad on Pos is strongly finitary, ie. finitary and preserving reflexive coin-
serters. Using this we proved that the category of varieties of ordered algebras is dually
equivalent to the category of strongly finitary monads on Pos.

In the future we plan extending our results to strongly finitary monads on more general
V -categories for closed monoidal categories V , e.g. the category of small categories. For
general V it is interesting to know under which conditions strongly finitary functors
are precisely the finitary ones preserving reflexive coinserters. But the main question
is whether strongly finitary monads correspond again to ‘naturally‘ defined varieties of
algebras in V .
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