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Rewriting in Gray categories with applications to coherence

Simon Forest, Samuel Mimram

Abstract

Over the recent years, the theory of rewriting has been used and extended in order to
provide systematic techniques to show coherence results for strict higher categories. Here, we
investigate a further generalization to Gray categories, which are known to be equivalent to
tricategories. This requires us to develop the theory of rewriting in the setting of precategories,
which are adapted to mechanized computations and include Gray categories as particular cases.
We show that a finite rewriting system in precategories admits a finite number of critical pairs,
which can be efficiently computed. We also extend Squier’s theorem to our context, showing
that a convergent rewriting system is coherent, which means that any two parallel 3-cells are
necessarily equal. This allows us to prove coherence results for several well-known structures
in the context of Gray categories: monoids, adjunctions, Frobenius monoids.

Introduction

Algebraic structures, such as monoids, can be defined inside arbitrary categories. In order to
generalize their definition to higher categories, the general principle is that one should look for
a coherent version of the corresponding algebraic theory: this roughly means that we should add
enough higher cells to our algebraic theory so that “all diagrams commute” up to these cells. For
instance, when generalizing the notion of monoid from monoidal categories to monoidal 2-categories,
associativity and unitality are now witnessed by 2-cells, and one should add new axioms in order
to ensure their coherence: in this case, those can be chosen to be MacLane’s unit and pentagon
equations, thus resulting in the notion of pseudomonoid. The fact that these are indeed enough to
make the structure coherent constitutes a reformulation of MacLane’s celebrated coherence theorem
for monoidal categories [22]. In this context, a natural question is: how can we systematically find
those higher coherence cells?

Rewriting theory [2, 31] provides a satisfactory answer to this question. Its starting point is
the observation that it is often useful to provide an orientation to equations in algebraic structures,
which dates back to the work of Dehn [8] and Thue [32] on presentations of groups and monoids
respectively. Namely, when the resulting rewriting system is suitably behaved (confluent and
terminating) equality can be tested efficiently (by comparing normal forms). Moreover, confluence
of the whole rewriting system can be decided algorithmically by computing critical branchings
and testing for the confluence of those only, which are always in finite number when the rewriting
system is finite. In fact, this result can be reformulated as the fact that the confluence diagrams
for critical branchings provide us precisely with enough cells to make the structure coherent. This
was first observed by Squier for monoids, first formulated in homological language [26] and then
generalized as a homotopical condition [27, 20]. These results were then extended to strict higher
categories by Guiraud and Malbos [13, 14, 15] based on a notion of rewriting system adapted to this
setting, which is provided by Burroni’s polygraphs [7] (also called computads [28]). In particular,
their work allows recovering the coherence laws for pseudomonoids in this way.

Our aim is to generalize those techniques in order to be able to define coherent algebraic
structures in weak higher categories. We actually handle here the first non-trivial case, which is
the one of dimension 3. Namely, it is well-known that tricategories are not equivalent to strict
3-categories: the “best” one can do is to show that they are equivalent to Gray categories [11, 17],
which is an intermediate structure between weak and strict 3-categories, roughly consisting in
3-categories in which the exchange law is not required to hold strictly. This means that classical
rewriting techniques cannot be used off the shelf in this context and one has to adapt those to
Gray categories, which is the object of this article.
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It turns out that a slightly more general notion than Gray categories is adapted to rewriting:
precategories. The notion of precategory is a generalization of the one of sesquicategory, whose use
has already been advocated by Street in the context of rewriting [29]. The interest in those has also
been renewed recently, because they are at the heart of the graphical proof-assistant Globular [3, 4].
Gray categories are particular 3-precategories equipped with exchange 3-cells satisfying suitable
axioms. We first work out in details the definition of precategories and, based on the work of
Weber [33], show that (n+1)-precategories can be defined as categories enriched in n-precategories
equipped with the so-called funny tensor product, see Section 1. This is analogous to the well-
known fact that Gray categories are categories enriched over 2-categories equipped with the Gray
tensor product [11], that we recall in Section 2. We then define in Section 3 a notion of polygraph
adapted to precategories, called prepolygraph. It is amenable to computer implementation: there
is an efficient representation of the morphisms in free precategories, which allows for mechanized
computation of critical branchings. Moreover, it can be used to present other precategories, in
particular Gray categories (Section 2.3). In order to study these presentations, we adapt the
theory of rewriting to the context of prepolygraphs in Section 3, and we show that our notion of
rewriting system retains the classical properties. In particular, a finite rewriting system always
has a finite number of critical branchings, which contrasts with the case of strict categories [21,
13, 24]. It moreover allows for a Squier-type coherence theorem (Theorem 3.4.5). Finally, in
Section 4, we apply our technology to several algebraic structures of interest, which allows us to
recover known coherence theorems and find new ones, such as for pseudomonoids (Section 4.1),
pseudoadjunctions (Section 4.2), self-dualities (Section 4.3), and also Frobenius pseudomonoids
but up to a termination conjecture (Section 4.4).
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1 Precategories

In this work, we use a variant of the notion of n-category called precategory whose 2-dimensional
version is better known as sesquicategory [29]. Many definitions of “semi-strict” higher categories
can be described as precategories with additional structures and equations, and this is in particular
the case for Gray categories. Moreover, contrarily to strict higher categories, their cells can be
easily described by normal forms, making them amenable to computations. This notion was used
to give several definitions of semi-strict higher categories [4] and is the underlying structure of
the Globular tool for higher categories [3]. Premises of it can be found in the work of Street [29]
and Makkai [23]. In what follows, we give equational and enriched definitions of precategories
(Section 1.2 and Section 1.4). Then, we define prepolygraphs as a direct adaptation of the notion
of polygraph for strict categories (Section 1.5), and we show that the cells of such a prepolygraph
admit a normal form (Section 1.8). Finally, we recall the usual construction of localization, in the
context of 3-dimensional precategories only (Section 1.9), since our subsequent results will mostly
target (3, 2)-precategories.

1.1 Globular sets

Given n € N, an n-globular set C' is a diagram of sets

% or 0y 9,1
Cp § Cq 3 Cy § ) Cn
oy of oy oy,

such that 9; 00, = 9; 081-':_1 and 8;" 00,1, = 8i+ o 81-':_1 for 0 <7 <n-—1. An element u of C; is
called an i-globe of C and, for i > 0, the globes 9;_, (u) and 9;" | (u) are respectively called the source
and target and u. We write Glob,, for the category of n-globular sets, a morphism f: C' — D being
a family of morphisms f;: C; — D;, for 0 < ¢ < n, such that 95 o fiy1 = fi 0 0f for e € {—, +}.
Given m > n and C' € Glob,,, we denote by T.'(C) the n-globular set obtained from C by
removing the i-globes for n < ¢ < m. This operation extends to a functor 7, : Glob,, — Glob,,.



For simplicity, we often implicitly suppose that, in an n-globular set C, the sets C; are pairwise
disjoint and write u € C for u € | |; C;. For e € {—,+} and k > 0, we write

€ __ AE € €
i,k_aioai-i-lo"'o i+k—1

for the dterated source (when € = —) and target (when ¢ = +) maps. We generally omit the
index k when it is clear from the context. Also, we sometimes simply write 0°(u) for 95, (u).
Given i,7,k € {0,...,n} with k < i and k < j, we write C; X, C; for the pullback

Ci Xk Cj

Ci L A C’j )
N

A sequence of globes u; € Cj,, ..., u, € Cy, is said i-composable, for some i < min(iy, ..., i), when
0 (uj) = 9; (uj1) for 1 < j < p. Given u,v € Ciyq with i < n, u and v are said parallel when
0%(u) = 0°(v) for e € {—, +}.

For u € Cj;1, we sometimes write u: v — w to indicate that 9; (u) = v and 9] (u) = w. In
low dimension, we use n-arrows such as =, =, =, etc. to indicate the sources and the targets of
n-globes in several dimensions. For example, given a 2-globular set C' and ¢ € Cy, we sometimes
write

¢ f=g:x—y

to indicate that 0; (¢) = f, 9y (¢) = g, Oy (¢) = = and I3 (¢) = y. We also use these arrows
in graphical representations to picture the elements of a globular set C. For example, given an
n-globular set C' with n > 2, the drawing

f
TN i
Ty ——— 2 (1)
e
h

figures two 2-globes ¢, € Cy, four 1-globes f,g,h,k € Cy and three 0-globes z,y,z € Cy such
that
@)=/ O (e)=0r)=g O ()=h,
0 (f)=05(9) =0 (W) ==z, 05 (f)=00(9)=05(h)=0; (k) =y, g (k)=0.

1.2 n-precategories

Given n € N, an n-precategory C' is an n-globular set equipped with
— identity functions id Cir_1 — Cg, for 0 < i <n,
— composition functions *x ;: Ck Xmin(k,1)—1 C1 = Crax(k,1), for 0 <k, 1 <mn,

satisfying the axioms below. In this context, the elements of C; are called i-cells. Since the
dimensions of the cells determine the functions to be used, we often omit the indices of id and,
given 0 < k,I <n and ¢ = min(k, ) — 1, we often write *; for x5 ;. For example, in a 2-precategory
which has a configuration of cells as in (1), there are, among others, 1-cells f gk, hxok and 2-cells
¢ *1 ¢ and ¥ %¢ k given by the composition operations. The axioms of n-precategories are the
following:

(i) for k <mn and u € Cy,
0, (id,) = u = 97 (id,,),



(ii) for ¢,k,l € {0,...,n} such that i = min(k,l) — 1, (u,v) € Cf x; C}, and € € {—, +},

ux; 0°(v) if k<,
0~ (u) ifk=1land e=—,
ot (v) if k=1and e =+,
O (u) %, v ifk>1,

9 (u *; v) =

(iii) for é,k,1 € {0,...,n} with ¢ = min(k,1) — 1, given (u,v) € Cy_1 x; Cy,

. v if k£ <,
id, *;v =<, i
id,,,, ifk>1,

and, given (u,v) € Ci x; Cj_1,

. u ifl <k,
w*;id, = < | )
id if I >k,

Uk ;U

(iv) for i,k,l,m € {0,...,n} with ¢ = min(k,l) — 1 = min(l,m) — 1, and u € Cy, v € C
and w € Cy, such that u,v,w are i-composable,

(u#; V) % W= w*; (V*; W),
(v) for 4,4, k, k" € {0,...,n} such that
j=min(k,k') —1 and i<j,
given u € C;11 and (v,v’) € Ck x; Ci such that u, v are i-composable,
wk; (U 0") = (ukv) %5 (uwx0")
and, given (u,u’) € Ck x; Cy and v € Cj4q such that u, v are i-composable,
(ws;u') % v = (ux;v) % (u *;v).

A morphism of n-precategories, called an n-prefunctor, is a morphism between the underlying
globular sets which preserves identities and compositions as expected. We write PCat,, for the
category of n-precategories. The above description exhibits n-precategories as an essentially al-
gebraic theory. Thus, PCat,, is a locally presentable category [1, Thm. 3.36]; consequently, it is
complete and cocomplete [1, Cor. 1.28]. In the following, we write 1 for the terminal n-precategory
for n > 0.

In dimension 2, string diagrams can be used as usual to represent compositions of 2-cells. For
example, given the 2-precategory C' freely generated on the globular set

f g
z Jo y ¢ =z
N A
I’ q

we can represent the two 2-cells

(¢ *0g) %1 (f' *0 1) and (frov) *1 (%0 g")

9 f 9
To = &f
g g

respectively by



Note that these two 2-cells are different, and that the diagram
f g
g

makes no sense in a generic 2-precategory.

1.3 Truncation functors

Similarly to strict categories [25], the categories PCat,, for n > 0 can be related by several functors.
For m > n, we have a truncation functor

7. PCat,, — PCat,

where, given an m-precategory C, T, (C) is the n-precategory obtained by forgetting all the i-cells
for n < i < m. This functor admits a left adjoint

F': PCat, — PCat,,

which, to an n-precategory C, associates the m-precategory F,'(C) obtained by formally adding
i-identities for n < i <m, i.e., F;'(C); = C; for i <n and F,'(C), = C, for i > n.

Proposition 1.3.1. For m > n, the functors T, and F,' admit both left and right adjoints, i.e.,
we have a sequence of adjunctions

HPAF AT AR .
As a consequence, the functors T, and F, preserve both limits and colimits.

Proof. Suppose given an m-precategory C. The n-precategory H,'(C') has the same i-cells as C
for i < n and H,'(C), is obtained by quotienting C,, under the smallest congruence ~ such that
u ~ v whenever there exists an (n + 1)-cell a: w — v. The n-precategory R, (C) has the same
i-cells as C for 0 < i < n and, for n <i <m, R, (C)it1 is defined from R, (C); as the set of pairs
(u,v) € R (C)i x Ry (C); with 0~ (u) = 9~ (v) and 0 (u) = 8% (v), with 9~ (u,v) = u as source
and 97 (u,v) = v as target. Details are left to the reader. O

Given n < m, we write (—)(,) for the functor 7' o77": PCat,, — PCat,, and, given an
m-precategory C, we call C(,, the n-skeleton of C'. It corresponds to the m-precategory obtained
from C by removing all non-trivial i-cells with ¢ > n. We write

i) (5w = lpcat,,

for the counit of the adjunction F,' 4 7. Since F, and 7, both preserve limits and colimits
by Proposition 1.3.1, so does the functor (—),).

1.4 The funny tensor product

We now define the funny tensor product, that we will use to give an enriched definition of precate-
gories. It can be thought of as a variant of the cartesian product of categories where we restrict to
morphisms where one of the components is the identity (or, more precisely, to formal composites
of such morphisms). We give a rather direct and concise definition, and we refer the reader to the
work of Weber [33] for a more abstract definition. Given n > 0 and two n-precategories C' and D,
the funny tensor product of C' and D is the pushout

CoyXip

C(o) X D(o) C(o) x D
ic XD(O)J( rc,D
C x D(O) e »CQD



Since j(_y is a natural transformation, the funny tensor product can be extended as a functor
(-)O0(-): PCat,, x PCat,, — PCat,, .

We show that it equips PCat,, with a structure of monoidal category. First, we prove several
technical lemmas.

Lemma 1.4.1. Given n-precategories C and (D%);c1, the canonical morphism

[[¢xD")—cx]p"

icl el
is an isomorphism.

Proof. Write F' for this morphism. A morphism between n-precategories is an isomorphism if
and only if the underlying morphism of globular sets is an isomorphism. Thus, it is sufficient to
show that the isomorphism holds dimensionwise, i.e., that the images of F' under the functors
(—);: PCat,, — Set are isomorphisms for 0 < j < n. Products and coproducts are computed
dimensionwise in PCat,,, so that the functors (—); preserve products and coproducts. Since
coproducts distribute over products in Set, F} is an isomorphism for 0 < j <n, and sois F. O

Lemma 1.4.2. Given an n-precategory D, the functor (=) x D gy preserves colimits.

Proof. Since, by Proposition 1.3.1, F§ preserves limits and colimits, we have Dy = HzeDo 1.
Given a diagram C'(—): I — PCat,,, by Lemma 1.4.1, we have
(cci)éllm C(i)) x Doy = H cci)éllm C(i) = cci)éllm H C(i) = cci)éllm(C’(z) x D) - O

€ Do € Do
Lemma 1.4.3. Given n-precategories C, D, E, there is an isomorphism
acprp: (COD)OE = CO(DOE)
natural in C, D and E.
Proof. Given n-precategories C, D and FE, the precategory (C' 0 D)0 E is defined by the pushout

(CoyxD0y) Xig
_—

(C(O) X D(O)) X E(O) (C(O) X D(O)) x B

Jjeop XE(0) rcOD,E

(COD) x E » (COD)OE

loop, B

Since, by Lemma 1.4.2, (—) x E(o) preserves colimits, the following diagram is also a pushout

(C(0) Xip) X E0)
— 5

(Co) X D(o)) % E(o) (Croy x D) x Eg

(ic XD(0)) X E(0) rc,p XE(g) -

~

(C X D(O)) X E(O) » (C ] D) X E(O)

IC,D XE(O)
Thus, (C O D) O E is the colimit of the diagram

(jC XD(O))XE(O) (C x D(O)) X E(o)

(C(O) X D(O)) X E(O) — (C(0) Xip) X Eo) —> (C(O) X D) X E(O) (2)

(CoyxD0y)Xig (C(o) X D(O)) xE



The precategory CO(DOFE) admits a similar diagram, and we deduce easily, using the associativity
of x, a canonical morphism a¢ p g: (COD)OFE — CO(DOE), which admits an inverse defined
symmetrically. The morphism a¢ p, g is easily checked to be natural in C, D and E. O

Given an n-precategory, there are canonical morphisms
MNo1ocS e and  ph:cO1 50

where AL is defined by

1 .
1(0) X C(O) ic 1(0) x C
i1 XC(O)\L lrl,c
1xCp ——— IKC

© "o

jo oma
and pr is defined similarly. Both are natural in C. We can conclude that:
Proposition 1.4.4. (C,0O, l,a,)\f,pf) is a monoidal category.

Proof. The axioms of monoidal categories follow from the pushout definition of the funny tensor
product and the cartesian monoidal structure on n-precategories. O

In fact, the funny tensor product is a suitable product for an inductive enriched definition of
precategories, i.e.,

Proposition 1.4.5. There is an equivalence of categories between (n+1)-precategories and cate-
gories enriched in n-precategories with the funny tensor product.

Proof. See Appendix A. O

1.5 Prepolygraphs

In this section, we introduce the notion of prepolygraph which generalizes in arbitrary dimension
the notion of rewriting system. This definition is an adaptation to precategories of the notion
of polygraph introduced by Burroni for strict categories [7]. Polygraphs were also generalized by
Batanin to algebras of any finitary monad on globular sets [6], and prepolygraphs are a particular
instance of this construction, for which we provide rather here an explicit construction.

For n > 0, writing U,, for the canonical forgetful functor PCat, — Glob,,, we define the
category PCat, as the pullback

u+
PCatI % Glob,, 11
Vi, Lo
PCat, o Glob,,

and write L{:{: PCad:;r — Glob,, 11 for the top arrow of the pullback and V,,: PCat:Lr — PCat,
for the left arrow. An object (C,C, 1) of PCat; consists of an n-precategory C equipped with a
set Cp11 of (n+1)-cells and two maps d_,,d": C,,.; — C,, (note however that there is no notion of
composition for (n-+1)-cells). There is a functor W,,: PCat, y; — PCat; defined as the universal

arrow
Unt1
PCat,, 1 /\
W, 4 N

PCatt Y% Glob,s;

Va Lo
PCat, - Glob,,

Tt



and, since categories and functors in the above diagram are induced by finite limit sketches and
morphisms of finite limit sketches, they are all right adjoints (see [5, Thm. 4.1] for instance), so
that W,, admits a left adjoint £, : PCat;r — PCat, ;.

We define the category Pol,, of n-prepolygraphs together with a functor G,,: Pol,, — PCat,
by induction on n. We define Poly = Set and take Gy to be the identity functor. Now suppose
that Pol,, and G,, are defined for n > 0. We define Pol,,;; as the pullback
g+
Pol,.; "> PCat}
T I

Pol,, — PCat,

and write G, : Pol,;; — PCat/ for the top arrow and 77" for the left arrow of the diagram.
Finally, we define G, 1 as L, o gjg.
More explicitly, an (n+1)-prepolygraph P consists in a diagram of sets

such that 9; od;,, = 0; odf,, and 9; od;}; = 0; o d,, together with a structure of n-pre-
category on the globular set on the bottom row: P; is the set of i-generators, d;, d;r: Pit1 — P;
respectively associate to each (i+1)-generator its source and target, and P} is the set of i-cells, i.e.,
formal compositions of i-generators. In line with the latter notation, we will often write P* for the
image of an n-prepolygraph P by G,,.

By definition, an (n-+1)-prepolygraph P has an underlying n-prepolygraph 77"*(P), that we
will often denote by P<,,. More generally, for m > n, an m-prepolygraph P has an underlying
n-prepolygraph P<,, obtained by applying successively the forgetful functors 7'2*1 form > i > n.

Example 1.5.1. We define the 3-prepolygraph P for pseudomonoids as follows. We put
Po = {z}, Py ={a: z — z}, Py={u:2=1,n7: 0= 1},

where, given n € N, we write n for the composite a *q - --*ga of n copies of a, and we define P3 as
the set with the following three elements

A (pxol) s p = (Txop)*1 p

L : (7]*01>*1M31d1

Note that we make use of the arrows —, = and = to indicate the source and target of each i-gene-
rator for i € {1,2}: a is a 1-generator such that dy (a) = dg (a) = z, p is a 2-generator such that
di (p) = axoa and df (1) = a, and so on. In the following, we will keep using this notation to
describe the generators of other prepolygraphs.

1.6 Presentations

Given an n-precategory C with n > 0, a congruence for C' is an equivalence relation ~ on C,, such
that, for all u,u’ € C), satisfying u ~ u’,

= Oy _1(u) =05 _1(v) for e € {—,+},
— for v,w € Cj41 with 0 < ¢ < n such that v, u, w are i-composable, we have

I
V¥ UKW~V KU KW,



Given such a congruence for C, there is an n-precategory C'/~ which is the n-precategory D such
that D; = C; for i < n and D,, = C,,/~ and where the identities and compositions are induced by
the ones on C.

Now, consider the composite functor

Gn ot
Pol,,; —% PCat,,; —— PCat,, .

To an (n+1)-prepolygraph P, it associates an n-precategory denoted by P. Concretely, P is isomor-
phic to (P<,)*/~F where ~F is the smallest congruence such that 9, (u) ~F 9} (u) for u € P, 41.
In the following, we say that an (n+1)-prepolygraph P is a presentation of an n-precategory C
when C' is isomorphic to P.

1.7 Freely generated cells

Given (C,Cp41) € PCat, we give an explicit description of the free (n+41)-precategory £,,(C, Cp11)
it generates, similar to the one given in [25] in the case of polygraphs. This (n+1)-precategory
has C as underlying n-precategory so that we focus on the description of the (n+1)-cells, which
can be described as equivalence classes of terms, called here expressions, corresponding to formal
composites of cells. These expressions are defined inductively as follows:

— for every element u € C), 41, there is an expression, still noted wu,
— for every n-cell u € C,,, there is an expression id,,,

— for every 0 < i < n, for every u € C;41 and every expression v, there is an expression u *; v,

for every 0 < i < n, for every expression u and every v € C;41, there is an expression u *; v,
— for every pair of expressions v and v, there is an expression wu *, v.

We then define well-typed expressions through typing rules in a sequent calculus. We consider
judgments of the form

— F t: u — v, where t is an expression and u,v € C,, with the intended meaning that the
expression t has u as source and v as target,

- Ft=1t":u— v, where t and ¢’ are expressions and u,v € C,, with the intended meaning
that ¢ and t’ are equal expressions from u to v.

The associated typing rules are

— for every t € Cp41 with 9, (t) = v and 9;F (¢) = v,

Ft:u—w

— for every u € Cp,

Fid,: u —u
— for every 0 < i < n, every u € Cj41 and v,v’ € C,, with 9] (u) = 0 (v),

3

Ft:o—d

s t: (us;v) — (ux; o)
— for every 0 < i < n, every u,u’ € C,, and v € C;41 with 9] (u) = 9; (v)

2

Ftru— o

Ftxgv: (usv) = (v % v)



— and, for every u,v,w € C,
Ft:u—wo Ft':v—w

Fts,t':u—w

The equality rules, which express different desirable properties of the equality relation, are intro-
duced below. The first rules enforce that equality is an equivalence relation:

Ft:u—w Ft=t:u—v Ft=t:u—w Ft'=t""u—w 3)
Ft=t:u—wv Ft=t:u—w Ft=t"u—v

The next ones express that that identities are neutral elements for composition:

Ft:u—wo Ft:u—wo
Fid, s, t=t:u —v Fits,id, =t:u—wv
Ftru—u i<n Ft:u—u
I—idgiil(u) xt=1t:u—u I—t*iidg}l(u):t:u%u'

The next ones express that composition is associative:

Fitr:ug — ug Fto:up — ug Fit3: us — us
F (t1 % t2) *n t3 = t1 % (t2 *n t3): up — U3
Ft:o— ut,us € Cit 0 (u1) = 9; (u2) 0 (uz) = 9; (v)
By s (g % 1) = (g *q Ug) *; L2 Up *; Ug %5 U — U *; U *; U
Ftiu— v1,v2 € Cip o (u) = 9; (v1) 9 (v1) = 9; (v2)
B (t i v1) % Vo = g (V1 % V2): U 1 % Vo —> U K V1 K Vo
Ft:v—=dv i<n  uweCi w € Cit1 0 (u) = 9; (v) o (v') = 95 (w)

7 7

B t) g w = wsg (Ex;w): w0k w — w0 % w
The next ones express that (n+1)-identities are compatible with low-dimensional compositions:

i<n u € Cit1 veC, 0 (u) = 9; (v)

3

Fuxid, =id,,,c uxv —=>uxv

ueCp i<n veC; 0 (u) = 9; (v)

7

Fid, ;v =id, ,: u* v = uxv

The next ones express that n-compositions are compatible with low dimensional compositions:

Fi1:v1 = v9 Fito: vg — v3 u e Ci+1 af(u) :8[(1)1)
o (B %0 t2) = (wkg t1) *p (kg ta): w01 — ;U
Fti:ug — ug Fito: ug — us ’UGCiJrl aj(ul) :81_(1;)

B (t1 #n t2) % v = (t1 %; 0) %5 (E2 %; V)2 U % v — Uz *; v

The next ones express the distributivity properties between the different low-dimensional compo-
sitions:

Ftrw—w i<j<mn u € Citq 0 (u) = 0; (w) veCCjm oF (v) = 07 (w)
F s (v t) = (wk;v) %5 (U t): us (Vs w) = usk; (v

;W)
Ftiv—0 i<j<mn u € Citq 0 (u) = 0; (v) w € Cjy1 af(v)za-_(w)
*j W)

4 J
Foaws (B w) = (ws;t) s (ws w): ws (v w) — us* (v

Ft:v—0 i<j<mn ue€ Cj o (u) = 95 (v) w € Ciyq 0 (v) = 0; (w)

J J [
Fo(us;t) s w= (usw)*; (t+w): (ukjv) s w— (uk;v)w

Ftiu— i<j<n veCjg Of (u) = 95 (v) w e Cipq o (v) = 0; (w)
Bt 0) % w = (£ w) %5 (V% w): (uskjv)x w— (U %5 0) % w

10



Finally, the last ones express that equality is contextual:
Ft=t:v— u € Cip1 O (u) = 9; (v)
Fusit=usxt:uxv—uv

Ft=t:u—u v e Ciy 9 (u) = 0; (v)

3 3

Ftsjo=t % v:uxv—u %v

Ftlitlliul‘)’llq FtQZ’UQ‘)’U,g

l—ﬁl*ntgztll*ntgiul—>U3

|—t12U1—>U2 l_tQZtIQZUQ_>U3

Ftl*ntgitl*ntéi’ul‘)’llg

The following lemmas show that typing is unique and well-behaved regarding equality. They are
easily shown by inductions on the derivations:

Lemma 1.7.1 (Uniqueness of typing). Given an expression t such that the judgements - t: u — v
and Ft: v — v are derivable, we have u =u' and v ="1'.

Lemma 1.7.2. If+-t=1":u — v is derivable then-1t: u — v and - t': u — v are derivable.

A term t is well-typed if there are u,v € C), such that - ¢: v — v is derivable using the above
rules. In this case, by Lemma 1.7.1, the types u and v are uniquely determined by ¢, and we write
O, (t) = wand 9 (t) = v. We define C};__; to be the set of equivalence classes under = of well-typed
expressions. By Lemma 1.7.2, the operations 9, and 9, are compatible with the relation =. We
finally define £,(C,Cpy1) as the (n+1)-precategory with C' as underlying n-precategory, Cy |
as set of (n+1)-cells, with sources and targets given by the maps 9, and &;F. The compositions
and identities on the (n+1)-cells are induced in the expected way by the corresponding syntactic
constructions (this is well-defined by the axioms of =). It is routine to verify that:

Theorem 1.7.3. The above construction defines a functor L, which is left adjoint to W,.

1.8 Normal form for cells

Suppose given (C,Cy11) € PCat;. The set C; ., of cells of £,(C,Cpi1) was described in the
previous section as a quotient of expressions modulo a congruence =. In order to conveniently
work with its equivalence classes, we introduce here a notion of normal form for those. From now
on, we adopt the convention that missing parenthesis in expressions are implicitly bracketed on
the right, i.e., we write uy %, ug %y, - - - %, ug instead of ug *, (ug %, (- *p ug)).

By removing the relations (3) in the definition of the congruence = and orienting from left to
right the remaining equations, we obtain a relation = which can be interpreted as a rewriting
relation on expressions:

id, ¥, t =1 t*pid, =t

(t1 *p t2) *p t3 = t1 %y (t2 *p t3) (ug *; t) *; w2 = ug *; (tn *; u2)

We now study the properties of =. We recall that such a relation is said to be terminating when
there is no infinite sequence (t;);>o such that t; = ¢;41 for ¢ > 0. A normal form is an expression
t such that there exists no ¢’ with ¢ = ¢/. Writing =* for the reflexive transitive closure of =,
the relation = is said locally confluent when for all expressions t, ¢t; and ¢y such that ¢ = t; and
t = to, we have t; =* t/ and ty =* t’ for some expression t' (diagram on the left) and confluent
when for all expressions t, 1 and ¢ such that t =* ¢; and t =* t3, we have t; =* t' and t5 =* t/
for some expression ¢’ (diagram on the right):

/\t N

t1_ 2 tl» ‘t2
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Those notions are introduced in more details in [2].
Lemma 1.8.1. The relation = is terminating.

Proof. In order to show termination, we define a measure on the terms that is decreased by each
rewriting operation. To do so, we first define counting functions ¢, and [l;,r; for 0 < i < n from
expressions to N that take into account the three kinds of operations in the expression: top n-
dimensional compositions, and lower i-dimensional left and right compositions. These functions
count the numbers of potential reductions in an expression ¢ with the associated operations. Since
reductions involving composition operations change value of counting functions of composition
operations of lower dimension, we will use a lexicographical ordering of the counting functions to
obtain the wanted measure. Given an expression ¢, we define ¢, (t) € N and [;(¢),r;(¢t) € N for
0 < ¢ < n by induction on t as follows:

—if g € Chq1, we put ¢, (g9) = 1;(g) =ri(g) =0 for 0 <i < n,
— if uw € Cy, we put ¢, (id,,) = I;(id,,) = r;(id,) =1,
— if t = t1 %, to, We put

Cn(t) = 2Cn(t1) + Cn(tQ) +1,
i(t) = Li(t1) + Li(t2) + 2,
Ti(tl) —+ Ti(tg) —+ 2,

—ift =wux*;t', we put c,(t) = ¢, (') and

ri(t) if j <1,

L) =< 2,(¢)+1 ifj=1, i (t

L) +1  ifj >,

L) if j <, {

— if t =t %; v, we put ¢, (t) = cn(t') and

Ti(tl) ifj<’t',

Lt if j < i,
zi(t>={lgt,;“ ?fj.;’. ri(t) = 2m(t) +1 ifj =4,
i A r()+ 1 if§ >

For each expression t, we define

N(t) = (ca(t), ln_1(t),rn_1(t),...,lo(t), ro(t)) € N*"T1

and consider the lexicographical ordering <jcx on N27+1. For the inductive rules of =, we observe
that

—if £ =ty % by and ¢ = ¢} %, to with N(t1) <iex N(t}), then N(t) <jex N(t'),

if t =ty %, to and t =ty %, th with N(t}) <iex N(t2), then N(t') <jex N(t),
—ift =ux;tand ¢’ = u*; ¥’ with N(#') <jex N (), then N(#') <jex N (1),
—ift =tx;vand t' = ;v with N(#) <jex N(f), then N(t') <jex N ().

It is sufficient to prove that the other reduction rules decrease the norm N(—). We only cover the
most representative cases by computing the first component of N(—) modified by the reduction
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rule and showing that it is strictly decreasing:

en(idy, #n t) = cn(t) + 3 > e (t),
cn((t1 *n ta) *py t3) = dep(t1) + 2¢n(t2) + cn(ts) +

> 2¢,(t1) + 2¢n(t2) + cn(ts) + 2 = cn(ty *p (t2 #p t3)),

Li(ug #; (ug #; t)) = 41;(t) + 3 > 21;(t) + 1 = 1;((u1 *; ug) *; t),

ri((ug % t) %5 ug) = 2r;(t) + 3 > 2r(t) + 2 = ri(ug *; (¢ *; uz2)),

Li(w *; (t1 % t2)) = 20;(t1) + 21 (t2) + 5
> 20 (1) + 20 (t2) + 4 = Li((w x4 t1) %5 (u *; t2)),

Litus; (vx;t)) =20[;() +3 > 20;() +2 = L;((u; v) %5 (u= t)) for j > 4.

Thus, if t = t/, we have N(t') <jex N(t). Since the lexicographical order <je, on N?"*1 is well-
founded, the reduction rule = is terminating. (]

Lemma 1.8.2. The relation = is locally confluent.

Proof. By a direct adaptation of the critical pair lemma (for example [2, Thm. 6.2.4]), it is enough
to show that all critical branchings are confluent, which can be checked by direct computation. For
example, given t1, ts, t3 and t4 suitably typed, there is a critical branching given by the reductions

(fl *p, (tg *p t3)) *, ty < ((tl *, tg) *py t3) *, ty = (fl *p, tg) *p (t3 *p, t4)
This branching is confluent since
(fl *py (tg *p, tg)) *p, ty = t1 *py ((tg *p, tg) *p, t4) =t *py (tg *, (fg *py t4))

and
(tl *p, tg) *p (fg *p t4) =11 *p, (fg *p (t3 *p t4))

Another critical branching is given by the reductions
(ug *; ug) *; (1 % t2) < ug *; (ug *; (b1 % t2)) = ug *; ((ug *; t1) *p (U2 *; £2))
for uy,us € C; with ¢ < n and t;,ts suitably typed. This branching is confluent since
(uq x5 ug) *; (t1 %n ta) = ((ug *; uz) *; t1) *n ((ug *; uz) *; t2)

and

uy *; ((ug #; 1) *p (ug *; t2)) = (ug *; (U2 *; t1)) *p (U1 *; (ug *; t2))

= ((uq *; u2) *; t1) *p ((ug *; ug) *; t2).

The other cases are similar. O

Theorem 1.8.3. Any cell in u € C}; | admits a unique representative by an expression of the
form
U = U *ky U Ky =+ ke U

where each u; decomposes as
i i i i i i i
U = U k1 (- kg (V5 1 (V] %9 A % W) k1 Wh) *g -+ ) K1 W, (4)
where A? is an element of Cp,11 and v;- and w; are j-cells in Cj.

Proof. We have seen in Lemma 1.8.1 and Lemma 1.8.2 that the relation = is terminating and
locally confluent. By Newman’s lemma (see, for example, [2, Lem. 2.7.2]), it is thus confluent
and every equivalence class of expressions contains a unique normal form, which can be obtained
by reducing any expression to its normal form. It can be checked that those normal forms are
in bijective correspondence with the expression of the form (4) (essentially, those expressions are
normal forms where identities have been suitably inserted). (]
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A cell of C}; | of the form (4) is called a whisker. By the inductive definition of prepolygraphs from
Section 1.5 and Theorem 1.8.3, given an m-prepolygraph P with m > 0, an (i+1)-cell u € P} ;
with ¢ € {0,...,m — 1} can be uniquely written as a composite of (i+1)-dimensional whiskers
U *; + -+ *; ug for a unique k € N that is called the length of u and denoted by |u|. Moreover, each
whisker u; admits a unique decomposition of the form (4). We will extensively use this canonical
form for cells of precategories freely generated by a prepolygraph in the following, often omitting
to invoke Theorem 1.8.3.

Example 1.8.4. Recall the 3-prepolygraph of pseudomonoids P from Example 1.5.1. Theorem 1.8.3
allows a canonical string diagram representation of the elements of P5: first, we represent the
2-generators i and n by v and § respectively. Secondly, we represent the whiskers m xg o *gn
form,n € N and a € Py by adding m wires on the left and n wires on the right of the representation
of a. For example, 2 g p *o 3 is represented by

NN

Finally, a 2-cell of P5, which decomposes as a composite of whiskers wy 1 - - - %1 wy, is represented
by stacking the representation the whiskers. For example, below are shown two 2-cells with their
associated graphical representation:

(0*0#*02)*1(1*0#*00)*1/1:

(20 %0 0) #1 (00 prko 1) % =

Note that, contrary to 2-cells of strict 2-categories, these two 2-cells are not equal in P5. The
above graphical representation can be used in order to define unambiguously the source and target
of 3-cells. Here, the 3-generators A, L, and R can be described graphically by

1.9 (3,2)-precategories

In the following sections, we will mostly consider 3-precategories that are generated by 3-prepo-
lygraphs (as the one from Example 1.5.1), whose 3-generators should moreover be thought as
“invertible operations” (think of the 3-generators A, L, R of Example 1.5.1). Thus, we will in fact
be dealing with 3-precategories whose 3-cells are all invertible. Such 3-precategories will usually be
obtained by applying a localization construction to the 3-precategory P* for some 3-prepolygraph P,
which is a direct adaptation of the one for categories and described below.

Given a 3-precategory C, a 3-cell F': ¢ = ¢’ € Cj5 is invertible when there exists G: ¢’ = ¢
such that F'x; G = id, and G x2 F' = id,,. In this case, G is unique and we write it as F~1. A
(3,2)-precategory is a 3-precategory where every 3-cell is invertible. The (3, 2)-precategories form
a full subcategory of PCatjz denoted PCat s 3).

There is a forgetful functor

U: Pcat(gﬁg) — PCatj;

which admits a left adjoint (—)T also called localization functor described as follows. Given a
3-precategory C, for every F': ¢ = ¢ € C3, we write F'T for a formal element of source ¢ and
target ¢, and F'~ for a formal element of source ¢’ and target ¢. A zigzag of C is a list

(Flelv"'vFlsk)de)’ (5)

14



for some k >0, F,...,F € C3 and €1, ...,€; € {—,+} such that ¢ = 0~ (F}*), ¢/ = 01 (F[*) and

OT(Ff') = 0~ (F{i") for 1 <i < k (there is one empty list ()4, for each ¢ € P3, by convention).
The source and the target of a zigzag as in (5) are ¢ and ¢ respectively. Then, we define the
truncation T5(CT) as T5(C) and (CT)3 as the quotient of the zigzags by the following equalities:

for every zigzag (Fi*,..., Fi.*)g,¢'
- if F; =id,, for some i € {1,...,k} and ¢ € Cy, then

(F e B g = (FT o B F o g,

— if ¢, = €41 = + for some i € {1,...,k — 1}, then

(Flﬁl""’FI:k)QW = (Ffl""’ﬂeiElv(Fi *2 E+1)+7Fi6-i£2""’Flsk)¢7¢/’

— if ¢, = €,41 = — for some i € {1,...,k — 1}, then

(Flel""vFlsk)de)’ = (Ffl""vFieiilv(Fi+1 *2 Fi)i’ﬂe-‘f-ga""FI:k)de

—if {EZ‘,EZ'Jrl} = {7,4’} and Fz = Fi+1 for some 7 € {1, ey k— 1}, then

(F e F g = (B B FS s B g

Since the definitions of source and target of zigzags are compatible with the above equalities, they
induce source and target operations 9=,9%: (CT)3 — Cy. Given

F= (Flelﬂ""Flgk)%@z € (CT)3 and G = (G(lgla"wG?l)@@s € (CT)?M

we define F %5 G as
FagG=(F{', ... F* G0 Gy s
and, given i € {0,1}, u € Cip1 and F = (F{*, ..., Fi*)g e with 0 (u) = 9; (¢), we define u *; F
as
wwr F= ((ws; F1) oo (kg Fi) )uss g ums g

and, finally, given ¢ € Cs, we define id as ()¢,6- All these operations are compatible with the
quotient equalities above, and they equip C'T with a structure of 3-precategory.

There is a canonical 3-prefunctor H: C' — C'" sending F: ¢ = 1 € Cs3 to (F).4. Moreover,
given a (3, 2)-precategory D and a 3-prefunctor G: C — D, we can define G’: CT — D by putting
G'(u) = G(u) for u € C; with i < 2 and

G(F s B )gr) = GHETY) %2 oovo GU(FRY)
for a zigzag (F7*,..., F5*)u,, where

&) = {G(F)_ ife—+

GF) ! ife=—
for F' € C3 and € € {—,+}. The definition of G’ is compatible with the quotient equalities above
so that G’ is well-defined, and G’ can be shown to uniquely factorize G' through H. Hence, (—)T
is indeed a left adjoint for ¢. In the following, given a 3-precategory C and F' € C3, we often write
F for H(F).

2 Gray categories
Strict 3-categories are categories enriched in the monoidal category Cats equipped with the carte-

sian product. Similarly, Gray categories are categories enriched in the monoidal category Cats
equipped with the Gray tensor product. The latter can be seen as an “asynchronous” variant of
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the cartesian product, similar to the funny tensor product, where two interleavings of the same
morphisms are related by “exchange” cells. Typically, consider the 1-categories C' and D below

C= ot D= y—2sy

their funny and Gray tensor products are respectively

(f.0) (f.0)
(z,y) =% («/,y) (z,y) =% («/,y)
COD = 4,9 L@'9) CUD= @gl Ix Lo
! ! / ! / !

where the exchange 2-cell x can be invertible or not, depending on whether we consider the pseudo
or lax variant of the Gray tensor product. We first recall quickly the definition of the Gray tensor
product, both in its lax and pseudo variants. We then give a more explicit description in terms of
generators and relations of categories enriched in 2-categories with the Gray tensor product. Then,
we give a way for presenting canonically a Gray category.

2.1 The Gray tensor products

We recall here the definitions of the Gray tensor products on 2-categories, in its lax and pseudo
variants. We refer the reader to [12, Sec. 1,4] for details.
A (strict) 2-category is a 2-precategory C such that, for all ¢,¢ € Cy with 97 (¢) = 95 (¥),

(¢ 0 07 (1)) *1 (87 () %0 ¥) = (87 () *0 ) x1 (¢ %0 I} (1))

We denote Catg the full subcategory of PCats whose objects are 2-categories. We write 1 for the
terminal 2-category and we write * for its unique 0-cell.

Given C and D two 2-categories, we write C' X2 D for the 2-category which is presented as
follows:

~ the 0O-cells of C' X'** D are the pairs (z,y) where z € Cy and y € Dy,
— the 1-cells of C X!'** D are generated by 1-cells
(f,9): (5,9) = (@y) and (5,9): (3,9) = (@),
for frx—a2'€Ciand g: y— 1y €Oy,
— the 2-cells of C' X!'** D are generated by the 2-cells
(6. (F.y) = (Fy) and (0,9): (2.9) = (2.9
for ¢: f = f' € Oy, ¢p: g= ¢ € Cy and z,y € Cp, and by the 2-cells

(2,y) L2 (27, y)

7'y
@a|  bre  |@w

(JT, yl) W (x/a y/)

for frx—a2'€Ciandg: y— 1y €Ch,
under the conditions that
(i) the l-generators are compatible with O-composition, meaning that

(f*O f/ay) = (fay) *0 (f/ay)
(SC,g *0 g/) - (x,g) *0 (ZL',g/)

for all z € Cy, y € Dy, 0-composable f, f' € C; and 0-composable ¢, ¢’ € D1,

16



(ii) the 2-generators are compatible with 0-composition, meaning that
.12 .12 + 12
(idz,y) = (v,id,) = id(, )

(61 %0 P2,y) = (#1,¥) *0 (P2, Y)
(z, 91 %0 2) = (w,71) %0 (2,92)

for all x € Cy, y € Dy, O-composable ¢1,¢2 € Cy and 0-composable 91,19 € D, ie.,

graphically,

(id,y) (z.id,) g )
T T R
(ZL’,y) U«(idi,y) (ZL’,y) = (xay) ll(z,idi) (ZL’,y) = (xvy) “Uid?ﬂﬂ,y) (ZL’,y)
~_ A ~_ ~_
(id,,y) (ac,id,y) id<z,y)
(fr*o0f2,y) (f1.v) (f2,9)

(0,y) Werxoty) (22,9) = (z0,y) ey (21,9) Vo2 (22,9)
\/ ~_ ~_
(z,91%092) (z,91) (z,92)

/\‘
(,90) @wrixove) (T,92) = (7,90) @) (2,91) Vs (2,92)
\/I ~_ ~_ 7
(z,971*095) (x,91) (x,95)

(iii) the 2-generators are compatible with 1-composition, meaning that

(ids,y) =id(zy)

(61 %1 d2,y) = (¢1,9) *1 (¢2,9)
(z,idy) = id(, g

(@, 1 *1 ¥2) = (@,¢1) *1 (z,¢2)

for all ¢;: fio1 = fir @ — 2’ and ¥i: gio1 = gity — y' for i € {1,2} and f: 2 — 2’ and
g:y — v, i.e., graphically,

(f:y) (f.y)
(z,y) dadpw)  @hy) = (zy) ddy, (@y)
\_/I
(fy) (fv)
(f07y) A
TN Y(g1,v)
(x,y) $piroay) (@,y) = (2,y) — (Fry) — (2, y)
(f2,y)
(f2>y)
(z,9) (z,9)
(xa y) ll(%idy) (x’ y/> = (.Z‘, y) U’id(ac,g) (.%‘, y/)
\_/I \_/f
(z,9) (z,9)
(1»90) /(xém)\‘
TN J(@,91)
(z,y) Y@y (2,y) = (2,y) — @o) — (2,y)
\/’ W
(z,92) 0]
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(iv) the interchangers are compatible with 0-composition, meaning that

(id,, 9) = id(4 ¢

(f1 %0 f2,9) = ((f1,9) *0 (f2,9)) *1 ((f1,9) *o (f2,9))
(f,id,) = id(fy)

(f, 91 %0 92) = ((f,91) %0 (2, 92)) *1 ((z, 91) *0 (f,92))

for all f;: ;-1 — x; and ¢;: y;—1 — y; for i € {1,2} and f: 2 — 2/ and g: y — ¢/, ie
graphically,

(@) 2 (@) ()

(m,g)l (idg,9) l(w) = (w)é@@)(z,g)

/ /
(z,y") T (z,y') (2,1/)
(w0, y) ~L P (05 ) (@0, y) — s (21, y) — L2y (a2, )
|
@] hwtng) @) = @o]  bne  @o beo e
! ! ! A !
(x07y)m<x27y> ($an) (f1,y') ($179)W($2ay)
(fy) (fv)
(z,y) ——— (2',y) P
(ac,idy)l I(f.ia,) l(x id,) = (z,y) llid(f,y) (@',y)
~____
(1‘7 y) (:I; 9 y) (f,y)
(fy)
fs
(z,90) & (', 90)
(f,y0) /
(z,y0) ———— (¢’ %0) (I,gl)l J(f.01) l(l’ ,91)
($791*092)J/ J(f,91%092) l(:c’,gl*ogz) - (x,y1) — (fw) = (2/,y1)
(z,y2) W (2, y2) (z, gz)l I (£.92) l(r’ygz)
!
(z,y2) W (2", y2)

(v) the interchangers commute with the 2-generators, meaning that

forg: f= frx—a’andy: g=¢:y— v, ie., graphically,

(f.9) (f:v)
A /\,1
(r,y) Yo (2',y) (z,y) ll<¢y) (z',y)

(fy") —

(&, g)l l@ 9 (w,g)l T l(m 9
(z,y") o) (x,y) (,y) L9 (@y)
\_/I \_/f
f ) %!

() (f.9)

(z,y) = (2',y) (z,y) = (2',y)

(x,g’><<2;g>> (.9) (L9) >(w',g> = (w’)( (4,9) <x/,g/><<w;w>> (a'.9) -
(

The construction extends to a bifunctor Cats x Caty — Cats by defining, for F: C — C’ and
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G: D — D', FX"™ @G as the unique functor mapping

(0,y) = (F(9),G(y))
(z,9) = (F(x), G(¥))
(f,9) = (F(f),G(9))

for all x € Cy, y € Dy, ¢p € Ca, ¢ € Do, f € C1 and g € D;.
For C, D, E € Cat,, there is a 2-functor

al g (CK™ D)R™ E = C ®™ (DK™ E)

which is an isomorphism natural in C, D, E' and uniquely defined by the following mappings on
generators

(&, ), 2) = (9, (y,2)) ((f,9),2) = (f,(9,2))
(=, 9),7) = (=, (y,7)) ((z,9),h) = (z,(g,h))

forg: f=flio—>a2€Covp:9g=>g:y—y €Dsandy: h=h":z2—2 € E,.
For C' € Cat,, there are two 2-functors
AF IR C 5 C and  pE: CR™1— C
which are isomorphisms, natural in C', and uniquely defined by the mappings
Nk, 0) = and  p((4, %) =
for 1) € Cy. By checking coherence conditions between a!®*, N and P, we get that:

Proposition 2.1.1. The bifunctor K% together with the unit 1 and the natural isomorphisms
al?, A and P equip Caty with a structure of a monoidal category.

The monoidal structure (Caty, X% 1, ol8%, Aax p'%%) is called the laz Gray tensor product.

A variant of the Gray tensor is called the pseudo Gray tensor product is the monoidal structure
(Catq, X, 1, a, A, p) where, given C, D € Caty, C' X D is defined the same way as C' X'** D except
that we moreover require that the 2-cells (f, g) of C' ¥ D be invertible. The natural isomorphisms
a, \, p are uniquely defined by similar mappings than those defining o/®*, Aax ' and we have:

Proposition 2.1.2. The bifunctor X together with the unit 1 and the natural isomorphisms «, \,
p equip Cats with a structure of a monoidal category.

2.2 Gray categories

For each of the two variants of Gray tensor product defined in the previous section, there is an
associated notion of 3-dimensional category as we now describe here.

A lax Gray category [12, 1,4.25] is a category enriched in the category of 2-categories equipped
with the lax Gray tensor product. A more explicit definition using generators and relations can be
given as follows. A Gray category is a 3-precategory C' together with, for all every 0-composable
pair of 2-cells ¢: f = f:x —yand ¢¥: g=¢:y — z, a 3-cell

Xoyp:(@x09) %1 (f *0¥) = (f*ov) *x1 (%0 9)

which can be represented using string diagrams by

;9 f g
o * &
g g

called interchanger and satisfying the following sets of axioms:
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(i) compatibility with compositions and identities: for ¢: f = f/', ¢': f' = f", ¢¥: 9 = ¢,
Y g = ¢” in Cs and e, h in C; such that e, ¢, ¥ and h are 0-composable, we have

Xid, = id Koo = (9 %0 9) %1 Xgr ) %2 (X9 %1 (¢ %0 97))
Xgid, = idgu, Xowurwr = (Xog #1 (f %0 0) %2 ((f 0 ¥) #1 Xo,p0)
and
Xexopp = € %0 Xoy Xopwoh = Xy %0 h.

Moreover, given ¢, € Co and f € C; such that ¢, f and 1 are 0-composable, we have
Xoxotp = Xo,fr0

(ii) exchange law for 3-cells: for all A: ¢ = ¢ € C3 and B: ¢ = ¢’ € C5 such that A and B are
1-composable, we have

(A*11) %2 (¢' %1 B) = (¢ *1 B) %2 (A %1 9')
(iii) compatibility between interchangers and 3-cells: given
Arp=¢du=vcC; and B:y =9y :v=v¢cCs,
such that A, B are 0-composable, we have

(Ao v) 1 (u' %0 ¥)) %2 Xy = Xgp %2 (w0 ¥) #1 (A% 0"))
(60 v) #1 (' %0 B)) 2 Xor = Ko 2 (0 B) #1 (¢ 50 "))

A morphism between two lax Gray categories C' and D is a 3-prefunctor F': C' — D such that
F(Xo) = Xr),rw)-

We similarly have a notion of pseudo Gray category which is a category enriched in the category
of 2-categories equipped with the pseudo Gray tensor product. In terms of generators and relations,
a pseudo Gray category is a lax Gray category C where the 3-cell Xy  is invertible for every 0-
composable 2-cells ¢, 1) € C5. A morphism between two pseudo Gray categories C, D is a morphism
of lax Gray categories between C' and D.

In the following, a (3,2)-Gray category is a lax Gray category whose underlying 3-precategory
is a (3,2)-precategory. Note that it is then also a pseudo Gray category. As one can expect, a
localization of a lax Gray category gives a (3, 2)-Gray category:

Proposition 2.2.1. If C is a lax Gray category, then C'T is canonically a (3,2)-Gray category.
Proof. Given 1-composable 3-cells F': ¢ = ¢’ and G: ¢ = 9’ € C3, by the exchange law for 3-cells,

we have, in CJ ,
(F #11) %2 (¢" %1 G) = (¢ %1 G) x2 (F %1 ).
By inverting F *; 1) and F *; ¢’, we obtain
(¢ 1 G) %2 (FH 1 9) = (F7 w1 90) %2 (91 G).
Similarly,
(041 GT1) w2 (Fr1 ) = (F 1 ) 2 (¢ 51 G7)
and
(Fh ) sa (01 G1) = (¢ %1 GT1) wo (F 71w ).
Now, given general 1-composable F': ¢ = ¢',G: ¢ = ¢/ € CJ , we have that
F:Fl *2F271 *2"'*2F2k,1 *2F27€1
and
G = G1 %3 Gy xg -+ %9 Goy_1 %2 G3'
for some k£, > 1 and F;,G; € C3 for 1 <4 <2k and 1 < j < 2[. By applying the formulas above
4kl times to exchange the F;’s with the G;’s, we get
(F #11) %2 (¢" %1 G) = (¢ %1 G) x2 (F 51 Y).

A similar argument gives the compatibility between interchangers and 3-cells of C'T. Thus, C'T is
a (3,2)-Gray category. O
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2.3 Gray presentations

Starting from a 3-prepolygraph P, such as the one of Example 2.3.1, we want to add 3-generators
to P and relations on the 3-cells of P3 in order to obtain a presentation of a lax Gray category.
This can of course be achieved naively by adding, for each pair of 0-composable 2-cells ¢, ¢ in P3,
a 3-generator corresponding to the interchanger “X 7, together with the relevant relations, but
the resulting presentation has a large number of generators, and we detail below a more economical
way of proceeding in order to present lax Gray categories.

A Gray presentation is a 4-prepolygraph P containing the following distinguished generators:

(i) for O-composable «, g, 8 with a: f = f',8: g = ¢’ € P2, g € P}, a 3-generator X, 43 € P3
called interchange generator, which is of type

Xagp: (axogxoh)*1 (f'*0g*0B) = (f*09g*0B)*1(a*og*oh')

which can be represented using string diagrams by

f g h f g h

f’ g h' f’ g h'
(ii) for every pair of 3-generators A, B € P53 and e, e’,h,h’ € PT and x € P} as in

f
m
R
I P ()
¢ /g\ "

/

g

_—
™~

w

a 4-generator of type I' = A, called independence generator, where

I'= ((exo Axg h) x1 x %1 (€' %0 ¥ %0 h)) %2 ((e *¢ ¢’ %0 h) *1 x *1 (¢/ %9 B *¢ h'))
and

A = ((exq @ *oh)*1x*1 (€ %0 Bxg h')) %2 ((e xg A xg h) x1 x *1 (€ %0 ¢’ %o 1))

and can be pictured as
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(iii) for all 0-composable A, g, 8 with A € P3, g € P} and 8 € Py, and respectively, 0-composable
a,g’, B with a € Py, ¢’ € P} and B € P3 as on the first, resp. second line below

f h
STA , g , Y
rol=zle ' —— ' sy
~__ "
f/ h/
f h (7)
R . s , B ™\
r da o ——yypli=lvy
~_ ~__ "
f/ hl

a 4-generator, called interchange naturality generator, respectively of type

((Axo gxo )1 (f *0 g0 B)) *2 X grop = Xo.gwop *2 ((f *0 g %0 B) *1 (Axo g*o h'))
and

((Oé *0 gl *0 h) *1 (fl *0 gl *Q B)) *9 Xa*og’,w’ % on*og’,w *9 ((f *0 g/ *Q B) *1 (a *Q g/ *Q h/))

where the X, ,,’s appearing in the sources and targets will be defined below for any 0-
composable x1,x2 € P3; the first kind of interchange naturality generator can be pictured

by
Tl ==>5 [T
AlU/ > \M/A
Tl =&
The 3-cells Xy, € P3, which are used in the above definition, generalize interchange generators to
any pair of 0-composable 2-cells ¢ and 1. Their definition consists in a suitable composite of the

generators X, ., and is detailed below. Let us give an idea of the definition of those 3-cells on an
example. Consider a Gray presentation Q with

Q={z}, Qu={l:z—>2} and Q= {r:1=1}

where 7 is pictured by # . Then, the following sequence of “moves” is an admissible definition
for Xru iz rerr:

= = = = : (8)

Each “move” above is a 3-cell of the form ¢ %1 X jq_ - *1 % for some ¢, € Q3 and where X ;4 -
is an interchange generator provided by the definition of Gray presentation. Another admissible
sequence of moves is the following:

We see that there are multiple ways one can define the 3-cells X, , based on the interchange
generators of a Gray presentation P. We will show in Proposition B.8 that, in the end, the choice
does not matter, because all the possible definitions give rise to the same 3-cell in P. Still, we need
to introduce a particular structure that allows us to represent all the possible definitions of the
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3-cells X4 and reason about them. This structure consists in a graph ¢ L4 associated to each
pair of 0-composable 2-cells ¢ and 1 in P3: intuitively, a vertex in this graph will correspond to
an interleaving of the 2-generators of ¢ and v, and an edge will correspond to a “move” as above,
i.e., an interchange generator X, 4 3 in context that exchanges two 2-generators o from ¢ and 8
from 1, which appear consecutively in an interleaving of ¢ and . Given two 0-composable 2-cells

dp=¢1*1-- k1 ¢ €P5 and =P x1 -k P € P
with ¢; = fi %o a; %0 g; and ¢; = f]’ *( a;- *( g;- for some f;, g;, f]’-,g;- € P} and ai,a;- € Py, we define
the graph ¢ LY

— whose vertices are the shuffies of the words l; ...l and ry...rg on the alphabet

2¢7'¢’ = {llv"'vlkvrlv"'vrk’}v
i.e., words of length k + k’ which are order-preserving interleavings of the words I;...I

and re...rgs,

— whose edges are of the form X, . : wlirjw’ — wr;l;w’ for some ¢ € N}, j € N}, and some
words w,w" € X7, such that wl;rjw’ € (¢ L), intuitively representing the local “swaps”
one can do to move a letter |; to the right of a letter r; in a word.

Given4,7,p,q e Nwith0<: <k, 0<j <k, 0<p<k—i+1,0<qg<k —j+1, and a shuffle u
of the words
Ii e Iierfl and rj...ljtqg—1,

we define [u];]w € P5 (or simply [u]*7) by induction on p and g:

(¢ %0 OF (95)) *1 [W]HHif w =l
[u)™ = (07 () %0 ) 1 [W]™7FHif w = rju,
07 (1) x0 O (¥;) if w is the empty word,
where, by convention, 95" (¢o) = 9y (¢1) and 9; (19) = 9y (11). Note that the indices of [u]"’ are
uniquely determined if u has at least an | letter and an r letter. Intuitively, the letters |; and r;
correspond to the 2-cells ¢; *o (—) and (—) *o1; where the 1-cells (—) are most of the time uniquely
determined by the context, so that [u]''! for u € (¢ W )y is an interleaving of the ¢; %o (—)
and (—) %o ¥;. Now, given
Xuw s ulsrjv = urjlv
in (¢ W 1)1, we define the 3-cell
1,1 1,1
Xuolg,p: [“Iirjv]gb,w = [urjliv]¢,¢
in P3 by
1,1 i+1,j+1
[Xu,v]d),w = [u]dhw *1 (fz *0 Xaivgi*[)-f]{7a/j' *0 g;> *1 [”]Jw . ’

We thus obtain a functor

[<low: (@I)" = P*(97 (9) %0 01 (v), 07 (¢) %0 05 (¥))

where (¢ LU )* is the free 1-category on ¢ LU 1) considered as a 1-prepolygraph, and where [—]g
is defined by the mappings

u € (¢pww)o > [u)yh, € P
Xu,v € ((b L 1/1)1 = [X%’U](ﬁaw € P;

For example, for Q defined as above and ¢ = ¢ = %17, [l1larir2] e, and [l1r1lars]s 4 are respectively
the 2-cells of Q%

and
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and [X), r,]¢.p and [Xi ¢ e, are respectively the 3-cells of Qf

= and =

We write Xy for the path
Xug oy #1001 Xy oy € (@) (I lere oo ry ool g
defined by induction by
up =ly... g1 and V] =rg...lM

and where u;41,v;+1 are the unique words of Z; " such that

+ — 3 —
80 (Xuiyvi) = ui+1|prqvi+1 with Vig1l = Fg41 - Tkt Ip+1 . lk

for some p, g € N. We can finally end the definition of Gray presentations by putting

Xow = Xoplow
For example, for Q defined as above, X4, r«,+ is the composite of 3-cells of Q} given by (8).

Example 2.3.1. We define the Gray presentation of pseudomonoids as the 4-prepolygraph obtained
by extending the 3-prepolygraph for pseudomonoids P seen in Example 1.5.1. First, we add to Pg
the 3-generators

o Y L 2 DY e Y1, 2 U
P B S T ("I o S

for n € N. Second, we define Py as a minimal set of 4-generators such that, given a configuration
of cells of (P<3)* as in (6), there is a corresponding independence generator in Py, and given a
configuration of cells of (P<3)* as in the first or the second line of (7), there is a corresponding
interchange naturality generator in Py.

Our notion of Gray presentation is correct, in the sense that:

Theorem 2.3.2. Given a Gray presentation P, the presented precategory P is canonically a laz
Gray category.

Proof. See Appendix B. O

Corollary 2.3.3. Given a Gray presentation P, ﬁ—r is canonically a (3,2)-Gray category.
Proof. By Theorem 2.3.2 and Proposition 2.2.1. O

3 Rewriting

In this section, we get to the heart of the matter and introduce our tools in order to show coherence
results for presented Gray categories. These are obtained as generalizations of techniques developed
in rewriting theory by rewriting morphisms in free precategories, and having a relation = on
pairs of parallel rewriting 3-cells which plays the role of witness for confluence. We first define
coherence and show how coherence can be obtained from a property of confluence on 3-precate-
gories (Section 3.1). Then, we adapt the elementary notions of rewriting to the setting of 3-prepoly-
graphs (Section 3.2) together with classical results: a criterion for termination based on reduction
orders (Section 3.3), a critical pair lemma together with a finiteness property on the number of
critical branchings (Section 3.4). Our main result of this section is a coherence theorem for Gray
presentations (Theorem 3.4.4), together with an associated coherence criterion (Theorem 3.4.5)
that will be our main tool for the examples of the next section.
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3.1 Coherence in Gray categories

The aim of this article is to provide tools to study the coherence of presented Gray categories,
by which we mean the following. A 3-precategory C' is coherent when, for every pair of parallel
3-cells Fi,Fy: ¢ = ¢ € C3, we have F} = F,. By extension, a Gray presentation P is coherent
when the underlying (3, 2)-precategory of the (3,2)-Gray category P' is coherent (remember that
P is a lax Gray category by Theorem 2.3.2, which implies that ﬁT is a (3,2)-Gray category by
Proposition 2.2.1). Gray presentations P with no other 4-generators than the independence gener-
ators and the interchange naturality generators are usually not coherent. For example, in the Gray

presentation P of pseudomonoids given in Example 2.3.1, we do not expect the following parallel
3-cells

Wyl esw

to be equal in 5T. For coherence, we need to add “tiles” in P4 to fill the “holes” created by parallel
3-cells as the ones above. A trivial way to do this is to add a 4-generator R: Fy = F» for every pair
of parallel 3-cells F} and F» of P*. However, this method gives quite big presentations, whereas
we aim at small ones, so that the number of axioms to verify in concrete instances is as little as
possible. We expose a better method in Section 3.4, in the form of Theorem 3.4.5: we will see that
it is enough to add a tile of the form

A
01 02
AN . 4,

1 2

for every critical branching (57, .S2) of P for which we chose 3-cells Fy, F> that make the branching
(S1, S2) joinable (definitions are introduced below).

We now show how the coherence property can be obtained starting from a 3-precategory whose
3-cells satisfy a property of confluence, motivating the adaptation of rewriting theory to 3-prepo-
lygraphs in later sections in order to study the coherence of Gray presentations. In fact, we can
already prove an analogous of the Church-Rosser property coming from rewriting theory in the
context of confluent categories.

A 3-precategory C' is confluent when, for 2-cells ¢, ¢1, pa € Co and 3-cells

Fi: 9= ¢1 and F: 9= ¢
of C, there exist a 2-cell ¥ € Cy and 3-cells
Gi: 1= v eC3 and Ga: ¢ = p€Cs
of C such that I} xo G1 = F5 %9 Go: 5
7 N\
o1 ¢2
ol Ko,

The 3-cells of a (3, 2)-precategory associated to a confluent 3-precategory admits a simple form, as
in:

Proposition 3.1.1. Given a confluent 3-precategory C, every 3-cell F: ¢ = ¢ € CT can be
written F = G %o H™! for some G: ¢ = € C3 and H: ¢/ = 9 € Cs.
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The above property says that confluent categories satisfy a “Church-Rosser property” ([2, Def. 2.1.3],
for example), and is analogous to the classical result stating that confluent rewriting systems are
Church-Rosser ([2, Thm. 2.1.5], for example).

Proof. By the definition of C'T, a 3-cell F: ¢ = ¢’ € C'T can be written
F =Gy %o Hy %o+ 4o Gyt 5o Hy,
for some k >0, G;: x; = ¢;_1 and H;: x; = ¢; for 1 < i < k with ¢g = ¢ and ¢ = ¢/, as in
X1 Xk
G H, G Hi—1 Gy, H
®o ¢ e Pk

We prove the property by induction on k. If & = 0, F' is an identity and the result follows.
Otherwise, since C' is confluent, there exists ¢, G}.: ¢p—1 — ¥ and Hj: ¢, — 1y, with

Xk
Gy, Hy
7 "
¢k§ ) )/bk |
G, H],
k ’l/}k; k
By induction, the morphism

-1 -1 -1 !
Gl *9 H1 X9 v 0 v ko Gk72 *9 Hk_g *9 kal *9 (Hk—l *9 Gk)

can be written G, H ~! for some 1) in Cy and G': ¢g = 1, H: 1y, = 1 in C3. Since Grx2G), = HyxoHJ,,
we have G,;l xo Hy, = G, %o H,’;l. Hence,

F=Gxo H ' 5o H ' = Gy (Hy %o H)™?
which is of the wanted form. O

Starting from a confluent 3-precategory, we have the following simple criterion to deduce the
coherence of the associated (3, 2)-precategory:

Proposition 3.1.2. Let C' be a confluent 3-precategory which moreover satisfies that, for every
FI,Fy: ¢ = ¢ € Cs, we have Fy = Fy in the localization CT. Then, CT is coherent. In
particular, if C is a confluent 3-precategory satisfying that, for every Fy, Fy: ¢ = ¢ € Cs, there
is G: ¢ = ¢ € Cy such that Fy x5 G = Fy %9 G in C3, then CT is coherent.

Proof. Let [y, Fy: ¢ = ¢/ € CJ . By Proposition 3.1.1, for i € {1,2}, we have F; = G; o H; ' for
some 1; € Co, G;: ¢ = 1p; € C3 and H;: ¢’ = 1; € C3, as in

(3
o ¢ -
o\ i,
(>
By confluence, there are ¢ € Cy and K;: ¢; = 9 € Cs for i € {1,2}, such that Gy 2 K1 = G232 Ko.
By the second hypothesis, we have Hy x5 K1 = Hs %9 K5 so that
G1 *9 Hfl = G1 *9 Kl *9 (H1 *9 Kl)_l
= Gy %9 Ko o (Ha %9 K3)™*
== G2 *9 H;l

Hence, F; = F5. For the last part, note that if Fy %2 G = Fb #2 G, then n(Fy) = n(Fy), where 7 is
the canonical 3-prefunctor C' — C'T. O
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3.2 Rewriting on 3-prepolygraphs

As we have seen in the previous section, coherence can be deduced from a confluence property on
the 3-cells of 3-precategories. Since confluence of classical rewriting systems is usually shown using
tools coming from rewriting theory, it motivates an adaptation of it in the context of 3-prepoly-
graphs for the aim of studying the coherence of Gray presentations.

Given a 3-prepolygraph P, a rewriting step of P is a 3-cell S € P§ of the form

Ay (Lo Axog 1) %1 p

for some [, € P;, A\, p € P4 and A € P3, with [, A, r O-composable and A, [xg A7, p 1-composable.
For such S, we say that A is the inner 3-generator of S. A rewriting path is a 3-cell F: ¢ = ¢/
in P5. Such a rewriting path has a length |F| € N which is defined as in Section 1.8. Also, by
Theorem 1.8.3, it can be uniquely written as a composite of rewriting steps 1 *2 - - - x2 S| |, since
rewriting steps are exactly 3-dimensional whiskers. Given ¢, € P53, ¢ rewrites to 1) when there
exists a rewriting path F': ¢ = 1. A normal form is a 2-cell ¢ € P4 such that for all ¢ € P% and
F: ¢ = 4, we have F' = idy. P is terminating when there does not exist an infinite sequence of
rewriting steps F;: ¢; = ¢;41 for i > 0;

A branching is a pair rewriting paths Fi: ¢ = ¢1 and Fa: ¢ = ¢o with the same source.
The symmetric branching of a branching (Fy, F3) is (Fa, F1). A branching (Fy, Fy) is local when
both F; and F» are rewriting steps. A branching (Fy, Fy) is joinable when there exist rewriting
paths G1: ¢1 = ¥ and Ga: ¢2 = ; moreover, given a congruence = on P*, if we have that
F1 *9 G1 = F2 *9 GQ, as in

'\
b1 P2
A K5,

<

we say that the branching is confluent (for =).

A rewriting system (P,=) is the data of a 3-prepolygraph P together with a congruence =
on P*. (P,=) is (locally) confluent when every (local) branching is confluent. It is convergent
when it is locally confluent and P is terminating. Given a 4-prepolygraph P, there is a canonical
rewriting system (P<s,~F) (recall the definition of ~F given in Section 1.6) where ~F intuitively
witnesses that the “space” between two parallel 3-cells can be filled with elementary tiles that are
the elements of P4. In the following, most of the concrete rewriting systems we study are of this
form.

The analogues of several well-known properties of abstract rewriting systems can be proved in
our context. In particular, the classical proof by well-founded induction of Newman’s lemma ([2,
Lem. 2.7.2], for example), can be directly adapted in order to show that:

Theorem 3.2.1. A rewriting system which is convergent is confluent.

Proof. Let (P,=) be a rewriting system which is convergent. Let =7TC P} x P4 be the partial
order such that ¢ =7 1 if there exists a rewriting path F: ¢ = ¢ € P} with |F| > 0. Since the
underlying rewriting system is terminating, =7 is well-founded. Thus, we can prove the theorem
by induction on =*. Suppose given a branching Fi: ¢ = ¢ € P} and Fy: ¢ = ¢ € P5. If
|F1] = 0 or |F»| = 0, then the branching is confluent. Otherwise, F; = S; *o F! with S;: ¢ = ¢/
a rewriting step and F}: ¢, = ¢; a rewriting path for ¢ € {1,2}. Since the rewriting system
is locally confluent, there are ¢ € P} and rewriting paths G;: ¢, = ¢ for ¢ € {1,2} such that
S1 %9 G1 = S5 *9 Ga. Since the rewriting system is terminating and = is stable by composition, by
composing the G;’s with a path G: ¥ = ' where ¢’ is a normal form, we can suppose that 1 is a
normal form. By induction on ¢} and ¢4, there are rewriting paths H;: ¢; = o) and F!': ¢ = )
such that F} %o H; = G, %9 F!' for i € {1,2}. Since ¢ is in normal form, F! = id,, and we have
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H;: ¢; =1 fori e {1,2} as in

/N’J

2

Moreover,
Fy %o Hy = Sy % (Fy %2 Hi)
= Sl *9 Gl
= S5 %5 Gy
= SQ *9 (FQI *9 HQ)
= FQ *9 HQ. O
Theorem 3.2.1 implies that, up to post-composition, all the parallel paths of a convergent rewriting

system are equivalent. Later, this will allow us to apply Proposition 3.1.2 for showing the coherence
of Gray presentations.

*

Lemma 3.2.2. Given a convergent rewriting system (P, =) and rewriting paths Fy, Fa: ¢ = ¢' € P}

as in
¢
Fl( >F2
(b/
there exists G: ¢ = 1 € P§ such that Fy xo G = Fs %2 G, i.e.,
F}% \?

Proof. Given F1, F5 as above, since the rewriting system is terminating, there is a rewriting path
G: ¢’ = 1 where v is a normal form. By confluence, there exist G1: ¢ = v’ and Ga: ¢ = o'
such that F} %o G %9 G1 = Fy %9 G x9 G3. Since v is a normal form, we have G; = G = idw. Hence,
Fl*QGgFQ*QG. O

Note that, in Lemma 3.2.2, we do not necessarily have

Fy 6 i >F2

which explains why the method we develop in this section for showing coherence will only apply
to (3, 2)-precategories, but not to general 3-precategories.

/

©-

3.3 Termination

Here, we show a termination criterion for rewriting systems (P, =) based on a generalization of the
notion of reduction order in classical rewriting theory where we require a compatibility between
the order and the composition operations of cells.

A reduction order for a 3-prepolygraph P is a well-founded partial order < on P} such that:

— given A: ¢ = ¢’ € P3, we have ¢ > ¢/,
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— given [,r € P} and parallel ¢, ¢’ € P} such that I, ¢, r are O-composable and ¢ > ¢, we have
Ixgpxgr >1xgd *or,

— given 1-composable A, ¢, p € P35, and ¢’ € P} parallel to ¢ such that ¢ > ¢’, we have
A*1 @ x1 p > Ak @ %1 p.

The termination criterion is then:

Proposition 3.3.1. If (P, =) is a rewriting system such that there exists a reduction order for P,
then (P,=) is terminating.

Proof. The definition of a reduction order implies that, given a rewriting step Ax1 (I %9 A xg 1) *1 p
with [,r € P, \,p € P5 and A: ¢ = ¢’ € P3 suitably composable, we have

A1 (Lkg dxo 1) %1 p > Xx1 (Ix0 @' %o T) %1 p.

So, given a sequence of 2-composable rewriting steps (F});<, where k € NU{oo}, F;: ¢; = ¢;41 € P3
for i < k, we have ¢; > ¢;41 for i < k. Since > is well-founded, it implies that k£ € N Hence, the
rewriting sytem (P,=) is terminating. O

In order to build a reduction order for a Gray presentation P, we have to build in particular
a reduction order for the subset of Ps made of interchange generators. We introduce below a
sufficient criterion for the existence of such a reduction order. The idea is to consider the lengths
of the 1-cells of the whiskers in the decompositions of 2-cells and show that they are decreasing in
some way when an interchange generator is applied.

Let N<¢ be the set of finite sequences of elements of N. We order N<¥ by <, where

(al,...,ak) <w (bl,...,bl)

when k = [ and there exists ¢ € N with 1 < ¢ < k such that a; = b; for some j < i and a; < b;.
Note that <, is well-founded. Given a 2-prepolygraph P, there is a function N, : P5 — N<¢ such
that, given ¢ € P35, decomposed uniquely (using Theorem 1.8.3) as

¢ = (I %0 a1 %0 71) *1 -+ %1 (Ip *0 Qg %0 Tk)
for some k € N, I;,7; € P} and o; € P for i € {1,...,k}, Nint(¢) is defined by
Nine(¢) = (kl; [le=1l, -5 [la])-

Then, Nyt induces a partial order <jnt on P} by putting ¢ <in ¥ when 95(¢) = 95(¢) fore € {—, +}
and Nint(¢) < Nint (’L/)) for d), ’(/) S P;

Given a Gray presentation P, we say that P is positive when 0] (a)| > 0 for all a € Py. Under
positiveness, the order <, can be considered as a reduction order for the subset of 3-generators
of a Gray presentation made of interchangers, as in

Proposition 3.3.2. Let P be a positive Gray presentation. The partial order <int has the following
properties:

(i) for every «, 8 € Py and f € PT such that o, f, B are 0-composable,
0 (Xa.z.8) >int 03 (Xa.1,0),
(i) for ¢,¢" € Ps and l,r € Pt such that I, ¢,r are 0-composable, if ¢ >int ¢, then
Lxo ¢ %o 1T >int L %0 ¢ %o 1,
(iii) for ¢, ¢, N, p € P such that \, ¢, p are 1-composable, if ¢ >in; ¢, then

A*1¢*1p>int )\*1¢/*1P~
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Proof. Given a, 8 € Py and f € P% with a, f, 8 are O-composable, recall that X s.s is such that
Xof.5: (ko fro0 07 (B)) %1 (95 () *o f 0 B) = (97 (@) %0 f *0 B) %1 (e 0 [ x0 OF (B))
Then, we have
Nint (95 (Xa.f.6)) = (107 (@) +[f1,0)  and  Nint(95 (Xa,1.6)) = (0|07 ()] + |

Since P is positive, we have [0} (a)| > 0 so that Nin (95 (Xa.£.5)) >int Nint(03 (Xa.r.5)). Now,
(ii) and (iii) can readily be obtained by considering the whisker representations of ¢ and ¢’ and
observing the action of [ g — %o 7 and X *; — %1 p on these representations and the definition
of Nint- O

The positiveness condition is required to prevent 2-cells with “floating components”, since Gray
presentations with such 2-cells might not terminate. For example, given a Gray presentation P
where Py and P; have one element and Py has two 2-generators \_/ and /™, there are 2-cells
of P* with “floating bubbles” which induce infinite reduction sequence with interchange generators
as the following one:

83003@0300383

3.4 Critical branchings

In term rewriting systems, a classical result called the “critical pair lemma” states that local con-
fluence is a consequence of the confluence of a subset of local branchings, called critical branchings.
The latter can be described as pairs of rewrite rules that are minimally overlapping, see [2, Sec. 6.2]
for details. Note that we used this result earlier in the proof of Lemma 1.8.2.

Here, we show a similar result for rewriting on Gray presentations (introduced in Section 2.3).
For this purpose, we give a definition of critical branchings which is similar to term rewriting
systems, i.e., as minimally overlapping local branchings, where we moreover filter out some branch-
ings that involve interchange generators and that are automatically confluent by our definition of
Gray presentation. Then, we give a coherence theorem for Gray presentation based on the analysis
critical branchings together with an associated coherence criterion, and we finish the section by
stating a finiteness property on the critical branchings.

Let P be a 3-prepolygraph. Given a local branching (S1: ¢ = ¢1,S52: ¢ = ¢2) of P, we say
that the branching (S, S2) is

— trivial when S; = So,
— minimal when for all other local branching (57, S5) such that
Si=X#1 (L0 S, xg7)*1p
for ¢ € {1,2} for some 1-cells [, and 2-cells A, p, we have that [, r, A, p are all identities,

— independent when

S1 = ((li %0 A1 %0 1) *1 X *1 (I2 *0 P2 %0 72))
and

So = ((I1 %0 @1 %0 1) *1 X *1 (l2 0 A2 %0 72))
for some I;,r; € P and A;: ¢; = ¢} € Ps for i € {1,2} and x € P3.

If moreover P = Q<3, where Q is a Gray presentation, we say that the the branching (51, S2) is
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— natural when
S1 = ((Axogx*oh)*1 (f *09g*0¢))
for some A: ¢ = ¢': f = f' € P3, ¢: h=h' € P5 and g € Pf, and

So = [Xuwlpgeoy With w=1... 151 and v=ra.. 1y
and similarly for the situation on the second line of (7),

— critical when it is minimal, and both its symmetrical branching and it are neither trivial nor
independent nor natural.

In the following, we suppose given a Gray presentation Q and we write (P, =) for (Q<3,~®). Our
next goal is to show an adapted version of the critical pair lemma. We start by two technical
lemmas:

Lemma 3.4.1. For every local branching (S1,S2) of P, there is a minimal branching (S1,S5) and
1-cells I,7 € Py and 2-cells A\, p € P5 such that S; = A x1 (I %0 S, %o 1) %1 p for i € {1,2}.

Proof. We show this by induction on N(S1) where N(S1) = |05 (S1)|+197 (S1)]. Suppose that the
property is true for all local branchings (S}, 5%) with N(S7) < N(S1). If (S1,S2) is not minimal,
then there are rewriting steps S1, .55 € P%, I, € Pi and A, p € P} such that S; = Asxq (%0 Si*o7)*1 p
for i € {1,2}, such that I,r, A\, p are not all identities. Since

07 (SOl = [l + 107 (Sl + |7 and |65 (S1)| = [A] + 105 (S1)] + e,

we have N(S7) < N(S1) so there is a minimal branching (57, S%) and I',r' € P}, X, p’ € P} such
that S; = N %1 (I' %9 S’ %9 1") %1 p/ for i € {1,2}. By composing with A, p,l,r and normalizing as
in Theorem 1.8.3, we obtain the conclusion of the lemma. o

Lemma 3.4.2. A local branching of P which is either trivial or independent or natural is confluent.

Proof. A trivial branching is, of course, confluent. Independent and natural branching are confluent
thanks respectively to the independence generators and interchange naturality generators of a Gray
presentation. O

The critical pair lemma adapted to our context is then:

Theorem 3.4.3 (Adapted critical pair lemma). The rewriting system (P,=) is locally confluent
if and only if every critical branching is confluent.

Proof. If the rewriting system is locally confluent, then, in particular, every critical branching is
confluent. For the converse implication, by Lemma 3.4.1, to check that all local branchings are
confluent, it is enough to check that all minimal local branchings are confluent. Among them, by
Lemma 3.4.2, it is enough to check the confluence of the critical branchings. O

We now state the main result of this section, namely a coherence theorem for Gray presentations
based on the analysis of the critical branchings:

Theorem 3.4.4 (Coherence). Let Q be a Gray presentation and (P,=) = (Q<3,~R) be the asso-
ciated rewriting system. If P is terminating and all the critical branchings of (P, =) are confluent,
then Q is a coherent Gray presentation.

Proof. By Theorem 3.4.3, the rewriting system (P, =) is locally confluent, and by Theorem 3.2.1
it is confluent. Since Q = P*/ =, it implies that Q is a confluent 3-precategory. To conclude, it is
sufficient to show that the criterion in the last part of Proposition 3.1.2 is satisfied. But the latter
is a consequence of Lemma 3.2.2. O

Note that Theorem 3.4.4 requires the rewriting system (P, =) to be confluent. If it is not the case,
one can try to first apply a modified version of the classical Knuth-Bendix completion procedure [18]
(see also [2, Sec. 7]) which, in addition to adding new 3-generators in order to make the system
confluent, also adds 4-generators in order to make it confluent up to =, in order to hopefully
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obtain a confluent Gray presentation. Such a procedure is detailed in the closely related setting of
coherent presentations of monoids in [16], where it is called the Knuth-Bendix-Squier completion
procedure.

Our coherence theorem implies a coherence criterion similar to the ones shown by Squier, Otto
and Kobayashi [27, Thm. 5.2] and Guiraud and Malbos [13, Prop. 4.3.4], which states that adding
a tile for each critical branching is enough to ensure coherence:

Theorem 3.4.5. Let Q be a Gray presentation, such that Q<s is terminating and, for every critical
branching (S1: ¢ = ¢1,52: ¢ = ¢2) of Q<s, there exist € Qb, Fi: ¢ = v € Qf fori € {1,2}
and G: S1 %o I % So %9 Fy € Qq. Then, Q is a coherent Gray presentation.

Proof. The definition of Q4 ensures that all the critical branchings are confluent, so that Theorem 3.4.4
applies. O

Note that, in Theorem 3.4.5, we do not need to add a 4-generator G as in the statement for a
critical branching (51, S2) if there is already a generator G’ for the symmetrical branching (S2, S1),
so that a stronger statement holds.

To finish this section, we mention a finiteness property for critical branchings of Gray presen-
tations. This property contrasts with the case of strict n-categories, where finite presentations can
have an infinite number of critical branchings [21, 13].

Theorem 3.4.6. Given a Gray presentation Q where Qa2 and Qs are finite and |05 (A)| > 0 for
every A € Qs, there is a finite number of local branchings (S1, S2) with rewriting steps S1,S2 € Q}
such that (S1,S2) is a critical branching.

Proof. See Appendix C. O

The proof of Theorem 3.4.6 happens to be constructive, so that we can extract an algorithm to
compute the critical branchings for such Gray presentations. An implementation of this algorithm
was used to compute the critical branchings of the examples of the next section.

4 Applications

We now illustrate the techniques of the previous section and show the coherence of Gray presenta-
tions corresponding to several well-known algebraic structures. For each structure, we introduce a
Gray presentation and study the confluence of the critical branchings of the associated rewriting
system. Then, when the rewriting system is terminating, we can directly apply Theorem 3.4.5 to
deduce the coherence of the presentation. This will be the case for pseudomonoids, pseudoadjunc-
tions and Frobenius pseudomonoids. We moreover study the example of self-dualities, where the
associated rewriting system is not terminating, for which we use specific techniques in order to
prove a weak coherence result.

4.1 Pseudomonoids

In Example 2.3.1, we introduced a Gray presentation P for the theory of pseudomonoids. The
set P4 of 4-generators contains only the required ones in a Gray presentation, so that we do
not expect P to be coherent (see (9) for an example). We will show that the rewriting system is
terminating and thus, Theorem 3.4.5, adding a 4-generator corresponding to each critical branching
will turn the presentation into a coherent one. Those branchings can be computed as in the proof
of Theorem 3.4.6, which is constructive: we obtain, up to symmetrical branchings, five critical
branchings:

o E&& (344
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We observe that each of these branchings is joinable, and we define formal new 4-generators
R1, Ry, R3, R4, R5 that fill the holes:

<
<

We then define PMon as the Gray presentation obtained from P of Example 2.3.1 by adding
Ri,...,Rs5 to Py.

As claimed above, in order to deduce coherence, we need to show the termination of PMon. For
this purpose, we use the tools of Section 3 and build a reduction order. We split the task in two
and define a first order that handles the termination of the A,L, R generators, and then a second
one that handles the termination of interchange generators. For the first task, we use a technique
similar to the one used in [19]. Given n € N, we write <. for the partial order on N” such that,
given a,b € N* a <! b when a; < b; for all i € {1,...,n} and there exists j € {1,...,n} such
that a; < b;. Let MFun be the 2-precategory

— which has only one 0-cell: MFung = {x},
— whose 1-cells are the natural numbers: MFun; = N,
— whose 2-cells m = n for m,n € N are the strictly monotone functions
¢ (N, <gp) = (N, <gy).
Moreover, id, = 0 and composition of 1-cells is given by addition. Given m € MFuny, id,, is the
identity function on N™ and given m,n,k,k’ € N and x: k — k' € MFuny, the 2-cell
migx*on:m+k+n=>m+k' +n

is the function x': N™+htn _ Nm+K+n guch that, for & = (21,..., Zmiken) € NPTFE - for
ie{l,....,m+k +n},

X (@)i = X(Tmats s Tk )iem fm<i<m-+k
Ti—k'+k ifi >m+ k'

33



and, given m,n,p € N, ¢: m = n € MFuns and ¥: n = p € MFuns, ¢ %1 ¢ is defined as 1 o ¢ and
one shows readily that these operations indeed give strictly monotone functions. One easily checks
that MFun is a strict 2-category. Given m,m’,n,n’ € N and ¢: m = n,v: m’ = n’ € MFun, we
write ¢ <2 1 when m =m/, n =n’ and ¢(x) <., ¥(z) for all z € N™. We have that:

Proposition 4.1.1. <2_is well-founded on MFuns.
Proof. We define a function N: MFuny — N by
N(@)=o¢()1+ -+ d(2)n for ¢: m = n € MFun,

where z = (0,...,0). Now, if : m = n € MFuns is such that ¢ <2_¢, then ¥(z) <l _¢(2) so that
N() < N(¢). Thus, <% on MFuny is well-founded. O

We observe that the order <2_ is compatible with the structure of MFun:

Proposition 4.1.2. Givenm,n,m',n', k' e N, u: m’ = m,v:n=n', and ¢,¢': k = k' € MFuns
such that ¢ >2,_ ¢', we have

(i) m o ¢ xon >2 mxo ¢ *om,
(i) w1 dx1 v >2 pxy @ xq v,
Proof. Given x € N™T*+n we have ¢(Tpmi1s- -, Tmak) >i & (Tmtt, - Tmtk) SO
(m *g @ %o n)(z) > (m*0 ¢ *on)(x).

Thus, (i) holds. Moreover, given y € N we have ¢(u(y)) >L. ¢'(u(y)). Since v is monotone, we
have (6((y))) >L v(@ (1(y))). Thus, (i) holds. O

We define a 2-prefunctor F': PMon; — MFun by the universal property of the 2-prepolygraph
PMon<s, i.e., F is the unique functor such that F(x) = %, F(1) = 1, F(u) = f, and F(n) = f,
where

fu: N2 — N fr: N0 = N

are defined by f.(z,y) =2z +y+ 1 for all z,y € N and f,() = 1. The interpretation exhibits the
3-generators A, L and R of PMon as decreasing operations:

Proposition 4.1.3. The followings hold:
(i) F(0y (A)) >2 F(3+( ),
(it) F(95 (L)) > F(05 (L)),
(iii) F(9; (R)) >2 F(3+( );
(iv) F(0F (Xam,p)) = F(95 (Xa,m,3)) for o, B € PMony and m € N.
Proof. Let ¢ = F(95 (A)) and ¢ = F(d5 (A)). By calculations, we get that
o(r,y,2) = 4oz +2y+2+3) and Y(x,y,2) = e +2y+2+1)

for x,y,z € N, so ¢(z,y,2) >L (x,y,2) for all 2,9,z € N. The cases (ii) and (iii) are shown
similarly. (iv) is a consequence of the fact that MFun is a strict 2-category. O

We define a partial order < on PMon} by putting, for ¢, € PMon3,
¢ < ¢ when F(¢) <%, F(¢) or [F(¢) = F(¢) and Nine(¢) <o Nine (¥)].
Proposition 4.1.4. The partial order < on PMonj is a reduction order for PMon.

Proof. Let G € PMons. If G € {A,L,R}, then, by Proposition 4.1.3, 85 (G) < 95 (G). Otherwise,
if G = Xq,up for some a, 3 € PMony and u € PMon], then, by Proposition 4.1.3(iv),

F(03(G) =F(0;(G))  and  Niue(95(G)) <w Nine(93 (G)).
So 85 (G) < 95 (G). The other requirements for < to be a reduction order are consequences of

Proposition 4.1.2 and Proposition 3.3.2(ii) (iii). O
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Finally, we can use our coherence criterion to show that:
Theorem 4.1.5. PMon is a coherent Gray presentation.

Proof. By Proposition 4.1.4, PMon has a reduction order, so the rewriting system PMon is termi-

nating by Proposition 3.3.1. Since Ry, ..., Rs € PMony, by Theorem 3.4.5, PMon ' is a coherent
(3,2)-Gray category. O

4.2 Pseudoadjunctions

We now show the coherence of the Gray presentation of pseudoadjunctions introduced below. The
way we do this is again by using Theorem 3.4.5. However, we need a specific argument to show
the termination of the interchange generators on the associated rewriting system. For this, we
introduce a notion of “connected” diagrams and we use a result of [9] stating that interchange
generators terminate on such connected diagrams.

We define the 3-prepolygraph for pseudoadjunctions as the 3-prepolygraph P such that

Po={xy} and Pi={f:x—=yg:y—=x} and Py={n:id, = fxog,e:g*f=id,}
where 1 and € are pictured as ™\ and \_J respectively, and Pj is defined by Ps = {N, N}, where
N: (n*of)*1 (frxoe) = id; and W: (g*on) *1 (€ o b) = id,

which can be represented by

N% and UW%

We then extend P to a Gray presentation by adding 3-generators corresponding to interchange
generators and 4-generators corresponding to independence generator and interchange naturality
generator, just like we did for pseudomonoids in Example 2.3.1. For coherence, we need to add
other 4-generators to P4. Provided that P is terminating, by Theorem 3.4.5, adding 4-generators
that fill the holes created by critical branchings is enough, just like for pseudomonoids.

Using the constructive proof of Theorem 3.4.6, we compute all the critical branchings of P. We
then obtain, up to symmetrical branchings, two critical branchings:

U=V [h=—nJ]
N N

We observe that each of these branchings is joinable, and we define formal new 4-generators Ry, R
that fill the holes:

W s
N N

We then define PAdj as the Gray presentation obtained from P by adding Ry, and Rs to Py.

We aim at showing that this rewriting system is terminating by exhibiting a reduction or-
der. However, we cannot use Proposition 3.3.2 to handle interchangers (as for the case of pseu-
domonoids) since P is not positive. Instead, we invoke the result of [9] which states the termination
of interchangers on “connected diagrams”. Given a 2-prepolygraph Q, a 2-cell of Q% is connected
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when, intuitively, each 2-generator on its graphical representation is accessible by a path start-
ing from a top or bottom input. For example, given Q such that Qy = {*}, Q1 = {1} and
Qe={/:0=2,\_ :2= 0}, we can build the following two 2-cells of Q3:

AN On

where the one on the left is connected whereas the one on the right is not, since the two generators
of the “bubble” cannot be accessed from the top or bottom border.

A more formal definition can be obtained by computing the “connected components” of the
diagram, together with a map between the top and bottom inputs of the diagram to the associated
connected components. This is adequatly represented by cospans of Set. Based on this idea,
we define a 2-precategory that allows us to compute the connected components of a 2-cell of Q*.
Let N, be the set {1,...,m} for m > 0.

We define the 2-precategory CoSpan as the 2-precategory such that:

— it has a unique 0-cell, denoted x,

— the 1-cells are the natural numbers, with 0 as unit and addition as composition,
— the 2-cells m = n are the classes of equivalent cospans Ny, ENyS U N,, in Set,

where two cospans A L5 Band AL 8 & B are said equivalent when there exists an iso-
morphism h: S — S’ € Set such that f' = ho f and ¢’ = h o g. The unit of m € CoSpan, is the

N,

1
cospan N, TN, &2 N,,, and, given ¢: m; = mo € CoSpan, and ©: ma = m3 € CoSpan,,
represented by the cospans

/ ’

Ny, 2+ 8 ¢- Ny, and Ny, 25 8" & Np,
respectively, their composite is represented by the cospan

S//

h .o L
f s g 1 S g’
N N
N, N, N,

where the middle square is a pushout. Given ¢: m = n € CoSpan, represented by

Ny 5§ &N,
and p, g € CoSpan,, the 2-cell p xg ¢ %¢ ¢ is represented by the cospan

N, USUN,
(1Npufu1Nq)oep,m,y ‘«\(1Npugu1Nq)oepm,,q

Np+m+q NernJrq

where 0, ;¢ Npyriq = Ny UN,. UNg, for » € N, is the obvious bijection. One easily verifies that
CoSpan is in fact a 2-category (fact that will be useful when dealing with interchange generators
later).

Given a 2-prepolygraph Q, by the universal property of 2-prepolygraphs, we define a 2-pre-
functor Cong: Q* — CoSpan such that

— the image of x € Qq is *,

— the image of a € Qq is 1,
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— the image of a: f = g € Qg is represented by the unique cospan Njy = {*} <= Ny,

We can now give our definition for connectedness: a 2-cell ¢ € Q} is connected when Cong(¢)

is represented by a cospan N,, ENYSUE N,,, with m = |97 (¢)| and n = |95 (¢)|, such that f,g
are jointly epimorphic. Since the latter property is invariant by equivalences of cospan, if ¢ is

connected, then for every representative N,, RNy N,, of Cong(¢), f,g are jointly epimorphic.

In the case of PAdj, as one can expect, the 3-generators N and W do not change connexity:

Lemma 4.2.1. We have

COnpAdj((T] *0 f) *1 (f *Q E)) = COnpAdj (idf)
and
Conpadj((g *0 1) *1 (€ %0 g)) = Conpag; (idg).

Proof. By calculations, we verify that

is a representative of both Conpadj((n *o ) *1 (f %0 €)) and Conpagj(id¢), so that
Conpadj((n *o f) %1 (f % €)) = Conpag;(id)

and similarly,
Conpagj((g *0 1) *1 (€ *0 g)) = Conpag;(idy). O

Moreover, connexity is preserved by interchangers in general:

Lemma 4.2.2. Let P be a 2-prepolygraph. Let o, € Py and g € PT such that o, g, are 0-com-
posable. Then,

Conp((a o g %0 7 (B)) *1 (87 () %0 g %0 B)) = Conp((9; (@) 0 g *0 B) *1 (a %0 g %0 07 (6)))
Proof. This is a direct consequence of the fact that CoSpan is a strict 2-category. O

We now prove a technical lemma that we will use to show the connexity of the 2-cells in PAdj5:

Lemma 4.2.3. Let P be a 2-prepolygraph and ¢, ¢’ € P5 and Ny, i> S N,,, be a representative
of Conp(¢) for some ni,na € N such that ¢, ¢’ are 1-composable and f is surjective. Then, ¢ *1 ¢’
is connected if and only if ¢’ is connected.

Proof. Let N, Lygr & N,,, be a representative of Conp(¢’) for some ng,ng € N. Then, Conp (¢*1¢")

is represented by N, oS g g0 N,,, where S”, f” and ¢” are defined by the pushout of g

and f’ as in
S//

P SN

f S g I’ o g
N, Ny, A\
Suppose that ¢’ is connected, i.e., f' and ¢’ are jointly surjective. Since f is surjective by hypoth-
esis and f” and ¢” are jointly surjective (by the universal property of pushout), we have that

f"of,g"of' g"og are jointly surjective. Moreover,

g//of/:fllog:fllofoh
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Figure 1: The different cases

where h is a factorization of g through f (that exists, since f is supposed surjective). Thus, we
conclude that f” o f,¢"” o g’ are jointly surjective.

Conversely, suppose that f” o f and ¢’ o ¢’ are jointly surjective and let y € S’. We have to
show that ¥ is in the image of f’ or ¢’. Recall that

S" = (S8 ~

where ~ is the equivalence relation induced by g(z) ~ f/(z) for z € N,,,: either y is in the image
of f’, or we have both that y is the only preimage of ¢’ (y) by ¢” and ¢”(y) is not in the image
of f”. In the former case, we conclude directly, and in the latter, since f” o f and ¢” o ¢’ are
jointly surjective, there is x € N,,; such that g’ o ¢’(x) = g”(y), so that ¢’(z) = y, which is what
we wanted. Thus, f/ and ¢’ are jointly surjective, i.e., ¢’ is connected. O

We can now prove our connectedness result for pseudoadjunctions:
Proposition 4.2.4. For every ¢ € PAdj;, ¢ is connected.

Proof. Assume by contradiction that it is not true and let N € N be the smallest natural number
such that the set S = {¢ € PAdj3 | |¢| = N and ¢ is not connected} is not empty. Given ¢ € S,
let

(f1 %0 a1 %0 h1) *1 - -+ %1 (fN %0 an *0 hn)
be a decomposition of ¢.

Note that there is at least one ¢ € {1,..., N} such that o; = ¢. Indeed, given f,h € PAdj]
such that f,n, h are 0-composable, a representative N,,, = T <~ N,, of Congq(f *o 7 *0 h) has the
property that v is an epimorphism. Since epimorphisms are stable by pushouts, given ¢’ € PAdj;
such that ¢' = (f] %o n %o h}) *1 -+ %1 (ff, %0 1 %0 h},) with f/ b} € PAdj] for i € {1,...,k}, a

U

representative N,/ KNy N,,» of Conpadj(¢’) has the property that v' is an epimorphism (by
induction on k), and in particular, ¢’ is connected. Consider the minimal index ¢y such that there
is ¢ € § with «;, = €.

Suppose first that ig = 1. Then, given a representative N,;,, & Ny, of Conpagj(fi*oa1*oh1),
we easily check that u; is an epimorphism. By Lemma 4.2.3, we deduce that

(fa %0 a2 %o ha) *1 - - - *1 (fi *0 @k *0 hk)

is not connected, contradicting the minimality of V.
Suppose ig > 1. By the definition of ig, we have o;,—1 = n. There are different cases depending
on |fi,—1| (see Figure 1):

—if | fig—1| < |fio] — 2, then, since 07 (fi,—1 %0 ig—1 *0 hig—1) = Oy (fi, *0 Qiy *0 hiy), We have
fio = fig—1 %007 (n) 0 g and  hi,—1 = g0 Oy (€) %o hi
for some g € PAdj]. By Lemma 4.2.2, we have
Conpag; (1 *0 g %0 91 (€)) *1 (9 (1) %0 g 0 €)) = Con((d1 (1) 0 g *0 €) *1 (1 *0 g %0 I (€)))
thus, by functoriality of Conpagj, the morphism ¢’ defined by
@ = (f1 %0 a1 %0 h1) *1 -+ x1 (fig—2 *0 Qig—2 *0 Nig—2)

1 (fig—1 %0 g *0 € *0 hiy) *1 (fig—1 *0 1 *0 g *0 hiy)

#1 (fig+1 %0 Qig41 *0 Pig41) *1 - - %1 ([ *0 o %0 i)
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satisfies that Conpadj(¢) = Conpagj(¢’). So ¢’ is not connected, and the (i9—1)-th 2-generator
in the decomposition of ¢’ is €, contradicting the minimality of i¢;

— if | fio—1] = |fio| + 2, then the case is similar to the previous one;
— if | fip=1| = |fio] — 1, then, since Conpadj((1) *o f) *1 (f *¢ €)) = Conpagj(id¢) by Lemma 4.2.1,
the 2-cell ¢’ defined by
@' = (f1 %0 1 %0 ha) *1 -+ #1 (fig—2 %0 Qig—2 *0 hig—2)
1 (fig+1 %0 Qg1 %0 hig+1) *1 -+ - *1 (fk *0 o %0 hu)

satisfies Conpadj(¢) = Conpagj(¢’) (by functoriality of Conpagj), so that ¢’ is not connected,
contradicting the minimality of V;

— if | fio—1| = | fio| + 1, then the situation is similar to the previous one, since, by Lemma 4.2.1,
Conpagj((g *0 ) *1 (€ *0 g)) = Conpag;(id,);
— finally, the case | fi,—1| = |fi,| is impossible since

fio—1 *0 3;(0@071) %0 Rig—1 = fio *0 01 (o) *0 hig

and
Of (cvig—1) = fxog # g *o f = 0 (a). O

We are now able to prove termination:
Proposition 4.2.5. The rewriting system PAdj is terminating.

Proof. Suppose by contradiction that there is an infinite sequence S;: ¢; = ¢;41 for i > 0 with 5;
a rewriting step in PAdj;. Since

0 (N)] =105 (W) =2 and [95 (N)| = |85 ()| = 0,
if the inner 3-generator of S; is N or U, for some i > 0, then |¢;1+1]| = |¢;] — 2. Since
05 (Xa,5,8) = 05 (Xa,1,5) = 2

for O-composable a € PAdj,, f € PAdj], 8 € PAdj,, it means that there is 79 > 0 such that for
i > g, the inner generator of S; is an interchanger. By [9, Thm. 16], there is no infinite sequence
of rewriting steps made of interchangers. Thus, by Proposition 4.2.4, there is no infinite sequence
of rewriting steps whose inner 3-generator is an interchanger of PAdj, contradicting the existence
of (Si)i>0. Thus, PAdj is terminating. O

Finally, we can apply our coherence criterion and show that:
Theorem 4.2.6. PAdj is a coherent Gray presentation.

Proof. By Proposition 4.2.5, PAdj<5 is terminating. Since Ri, Ry € PAdj,, by Theorem 3.4.5, the
conclusion follows. O

4.3 Self-dualities

We consider a variant of the preceding example, by considering the theory corresponding to pseu-
doadjunctions between an endofunctor and itself. This new example requires a special treatment
since the underlying rewriting system is not terminating, and, more fundamentally, the induced
(3,2)-Gray category is not expected to be fully coherent. We show instead a partial coherence
result.

We define the 3-prepolygraph for self-dualities as the 3-prepolygraph P such that

Po={x} and P;={l:x—%*} and Py={n:id, = 2,e:2=id,}
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where we write 7 for 1%q--- %o 1 for n € N. The 2-generators n and ¢ are pictured as (™ and
—_———
n
\_/ respectively, and P3 is defined by P3 = {N, N} where

N: (nx91) %1 (Ixge)=id; and W: (1xgn) 1 (g% 1) = id;

N% ond m*:u

As before, we then extend P to a Gray presentation by adding 3-generators corresponding to
interchange generators and 4-generators corresponding to independence generators and interchange
naturality generators. We also add the same 4-generators that we added for pseudoadjunctions

Ay

\/ /\

which is pictured again by

to P and we denote SD the resulting Gray presentation. Here, it is not possible to apply Theorem 3.4.5
to obtain a coherence result, as in previous section. Indeed, SD is not terminating, since we have

the reduction
Jp=]o=-qt

Moreover, this endomorphism 3-cell is not expected to be an identity, discarding hopes for the
presentation to be coherent. Following [10], we can still aim at showing a partial coherence result
by restricting to 2-cells which are connected, in the sense of the previous section. In this case,
termination can actually be shown by using the same arguments as for pseudoadjunctions. However,
the critical pairs are not joinable either since, for instance, we have

b+ L

for which there is little hope that a Knuth-Bendix completion will provide a reasonably small
presentation. However, one can obtain a rewriting system, introduced below, which is terminating
on connected 2-cells and confluent by orienting the interchangers. Using this rewriting system, we
are able to show a partial coherence result.

We define an alternate rewriting system Q where

Qi =P, forie{0,1,2} and Qs={N,}LQN

where QI contains the following 3-generators, called Q-interchange generators:

S Y2 V] 4 mee U2
o U2 T e [ U= U

for n € N.
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There is a morphism of 3-precategories I': Q* — P’ uniquely defined by I'(u) = u for u € Q}
with 7 € {0,1, 2} and mapping the 3-generators as follows:

N +— N n—W
’ -1 ’
Xn-,ﬁ,n = Xnyﬁ,n Xn-,ﬁys = X
’ -1 ’
Xs,ﬁ,n = Xs,ﬁ,s Xs,ﬁ,s = X87ﬁ18

for n € N. We get a rewriting system (Q, =) by putting ' = F’ if and only if I'(F') = I'(F”) for
parallel F, F’ € Q3. By inspecting the 3-generators of Qz, we can show that, given F': ¢ = ¢' € Q3,
¢ is connected if and only if ¢’ is connected. Indeed, one easily checks that for every A € Qs, we
have Congq(d; (A)) = Cong(dy (A)), so that Cong(¢) = Cong(¢').

We first show a weak termination property for Q, stating that it is terminating on connected
2-cells:

Proposition 4.3.1. Given a connected 2-cell ¢ in Qf, there is no infinite sequence Fi: ¢y = ¢iy1
of rewriting steps where ¢y = ¢.

Proof. Since any rewriting step whose inner 3-generator is N or U decreases by two the number of

2-generators in a diagram, it is enough to show that there is no infinite sequence of composable
rewriting steps made of elements of Q**. For this purpose, we combine several counting functions:

a function Ny which counts the potential number of rules X; _ . and X/ _ , which can be applied,
and functions Ny and N3 which counts the potential number of rules X, _ , and X/ _ . which can
be applied respectively. Given a 2-cell

¢ = (ml *0 (X1 *Q 77L1) LS R S | (ﬁ’Lk *0 Ok *Q ﬁk)
of Q3, with a; € Q2 and m;,n; € N for i € {1,...,k}, we define N;(¢) € N by
Ni(¢) = {(i,j) eN? |1 <i<j<kand a; =7 and o = £}|.

Moreover, if we write p,q € {0,...,k} and i1,...,%p,j1,--.,7q € N for the unique integers such
that

1§ZI<<Zp§k 1§j1<<]q§k {Zlvvlpv.]lvvjq}:{lvvk}

and o;, =nanda;, =eforr € {1,...,p}and s € {1,..., ¢}, we define NJ'(¢) € NP and N5(¢) € N4
by
NI (@) = (i, - m4,) and N3 (¢) = (nj,,...,nj,).

Finally, we define N(¢) € N1TP+4 by

N(¢) = (N1(9), N3 (¢), N5 ()

and we equip NP, N? and N'TP*¢ with the lexicographical ordering <i.x. Now, keeping ¢ as above,
let

k1 (Lxog Axor)*1p: o= ¢ € Q3
be a rewriting step for some I, € Q%, A\, p,¢' € Q4 and A € Q3 with

(bl = (mll *0 04/1 *0 ﬁll) LS R S | (m; *0 a% *Q ﬁ;c)

for some o € Q2 and m},n, € N for ¢ € {1,...,k}. We distinguish the three following cases.
~HA=X) ;. or A= X[, for some u €N, then Ny(¢') = Ni(¢) — 1.

— Otherwise, if A = X,, 3, for some v € N, then we have Ni(¢) = Ni(¢') and, writing r
for [\|+1, we have ng = n/ for s € {1,...,k}\ {r,r+1}. Moreover, we have n;.,; < n,41—2,
so that Ny (¢') <iex Ny (¢). For example, consider the application of X, - . on 9, (X, 5 )
without additional whiskering. In this case, we have that N3 (0, (X, 5 ,)) = (n +2,0) while
N3 (85 (X} 7.,)) = (0,n), so that the value of Ny/(—) is decreased with respect to <iex by the

application of X .
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— Otherwise, A = X/ . for some u € N. Then NJ/(¢) = NJ(¢') and, by a similar argument as

before, N5(¢') lex N2€(¢)

In any case, we get that N(¢) <iex N(¢'). Since <jex is well-founded, we conclude that there is no
infinite sequence of rewriting steps R;: ¢; = ¢;+1 for i € N with ¢y connected. O

We now aim at showing the confluence of the branchings of Q. The idea is to use a critical pair
lemma and a Newman’s lemma adapted to the specific setting of Q where the notion of critical
branching is different and where we only consider connected 2-cells as sources. We say that a
branching (S, S2) of Q is connected when 95 (S7) is connected. We say that it is Q-critical when
it is local, minimal, not trivial and not independent. We first state adapted versions of the critical
pair lemma and Newman’s lemma to the setting of Q:

Lemma 4.3.2. If all connected Q-critical branchings (S1,S2) of (Q,=) are confluent, then all
connected local branchings of (Q,=) are confluent.

Proof. By a direct adaptation of the proof of Theorem 3.4.3 to connected 2-cells and rewriting
steps between connected 2-cells. O

Lemma 4.3.3. If all connected local branchings of (Q,=) are confluent, then all connected branch-
ings of (Q,=) are confluent.

Proof. By a direct adaptation of Theorem 3.2.1 to connected 2-cells and rewriting steps between
connected 2-cells, using Proposition 4.3.1. O

By the above properties, in order to deduce the confluence of the branchings of Q, it is enough to
check that the critical branchings of Q are confluent, fact that we verify in the following property:

Lemma 4.3.4. The connected Q-critical branchings of (Q,=) are confluent.

Proof. We first consider the Q-critical branchings (S, S2) that are structural-structural, i.e., such
that the inner 3-generators of S1 and Sy are Q-interchange generators. We classify them as separated
and half-separated and non-separated. There are eight kinds of separated structural-structural
Q-critical branchings listed below:

UL UL L T T
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Each one can be shown confluent for = by considering the confluence of a natural branching
in (SD,~°P). For example, (5) is joinable as follows:

“IJL

I

Ik
-U

|

ﬂs»

ﬂs»

/

U

Up to inverses, it corresponds to the following confluent natural branching of (SD, ~°P):

JIJL
|

<

By the definition of =, (5) is confluent for =.

/

ﬂ<

|
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ﬂé

/

ﬂ<U T = !

9
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The other kinds of separated structural-structural
Q-critical branchings are confluent by similar arguments.

There are four kinds of half-separated structural-structural Q-critical branchings listed below
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Each one can be shown confluent for = by considering the confluence of a natural branching
in (SD, ~°P). For example, (1) is joinable as follows

eSS
Up to inverses, it corresponds to the following confluent natural branching of (SD, ~°P):
>
1 o
4
By definition of =, it implies that (1) is confluent for =.
There are two kinds of non-separated structural-structural Q-critical branchings listed below:

Y O € J= -
(2) ﬂ Q = @ = O
(11, ~ L
They are not confluent but they are not connected branchings.
We now consider structural-operational Q-critical branchings, i.e., those Q-critical branch-
ings (S1,S52) such that the inner 3-generator of S; is a Q-interchange generator and the inner

3-generator of Sy is N or . We classify them as separated and half-separated. There are four kinds
of separated structural-operational Q-critical branchings listed below:
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(4) U & U = U :
As above, each one can be shown confluent by considering a natural branching of (SD, ~°P).
There are two kinds of half-separated structural-operational Q-critical branchings listed below:

<1>J\J6%3U
(Q)Mgf\féﬂ

As above, each one of them can be proved confluent by considering the associated critical branching
in (SD, ~°P).

Note that there are no operational-operational Q-critical branching, i.e., Q-critical branchings
(S1,S2) where the inner 3-generators of both S; and S; are in {N,/}. Hence, all connected
Q-critical branchings are confluent. O

We can now show our weak confluence property:
Proposition 4.3.5. All the connected branchings of (Q,=) are confluent.
Proof. By Lemma 4.3.3, Lemma 4.3.2 and Lemma 4.3.4. o

In order to obtain a weak coherence property for SD, we first adapt several properties stated
in Section 3.1.

Lemma 4.3.6. Given F: ¢ = ¢’ € GT where either ¢ or ¢ is connected, we have F = G %9 H™!
for some G: ¢ = ¢ and H: ¢’ = 1.

Proof. By a direct adaptation of Proposition 3.1.1 involving connected 2-cells only, and using
Proposition 4.3.5. U
Lemma 4.3.7. Given Fy, Fy: ¢ = ¢/ € Qs, if ¢ is connected, then Fy = Fy in 6;

Proof. Since ¢ is connected, ¢’ is connected. By Proposition 4.3.1, there is G: ¢' = 1 € Qs such
that v is a normal form for Q. By Proposition 4.3.5, there is Hy, Ho: ¥ = 1’ € Qg such that
F1 *9 G *9 Hl = Fl *9 G *9 H2. Since ’L/) is a normal fOI‘Hl7 H1 = H2 = ldw So F1 *9 G = F2 *9 G,

thus F; = F» in Q . O

Lemma 4.3.8. Given F1,Fy: ¢ = ¢ € 6;, if ¢ is connected, then Fy = Fs in 6;

Proof. By a direct adaptation of the proof of Proposition 3.1.2, using Lemma 4.3.6 and Lemma 4.3.7.
O

We can now conclude with the weak coherence property for SD:
Theorem 4.3.9. Given Fi,Fy: ¢ = ¢ € S_D; with ¢ or ¢’ connected, we have Fy = Fs.

Proof. LetT": QT — STl_TTbe the 3—prefunctogv?ich is the factorization of I through the canonical
3-prefunctor (Q<3)* — Q . By definition of SD ', for i € {1,2}, we have

—1 1
Fi=Giaxo Hij #9- %2 Gig, 2 Hy

for some k; € N, 2-cells ¢i0,.- -, i ks Vi, .-, Vik; € Qs such that ¢;0 = ¢ and ¢, i, = ¢', and,
for j e {1,...,k;}, 3-cells

Gij: ¢ij—1 = Vi; and Hij: ¢ = Vi

of SD3. Since either ¢ or ¢’ is connected, we have that all the ¢;,;’s and the v; ;’s are connected.
Moreover, all the G; ;’s and the H; ;s are in the image of I''. So, for i € {1,2}, F; = I""(F}) for
some F/: ¢ = ¢’ € Q . By Lemma 4.3.8, we have F| = Fj, so that F} = F5. O
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4.4 Frobenius pseudomonoids

We now consider the example of Frobenius pseudomonoids [30], which categorifies the classical
notion of Frobenius monoids. Sadly, it is only a partial example since we were not able to handle
the units of the structure (if we add them, the critical branchings are not confluent) and to show
that our presentation is terminating, even though we believe that the latter is true. We nevertheless
give the computation of critical branchings for this example, hoping that a termination argument
will be found later.

We define the 3-prepolygraph P for (non-unitary) Frobenius pseudomonoids as follows. We put

Po={*} and P;={1} and Py={u:2—1,6:1—2}
where we denote 7 by 1% --- %o 1 for n € N. We picture p and § by v and A respectively,
—_———

and we define P53 by P3 = {N, 1, A, A< M, M} where
N A M
= = =
VI ACO MCO
= = =

As before, we then extend P to a Gray presentation by adding 3-generators corresponding to
interchange generators and 4-generators corresponding to independence generators and interchange
naturality generators.

Using the constructive proof of Theorem 3.4.6, we find 19 critical branchings, and we use them
to define a set of nineteen 4-generators Ry, ..., R1g that we add to P4. These critical branchings are
shown in Figure 2. We then define PFrob as the Gray presentation obtained from P by adding the
4-generators Ry, ..., Rig from above. Since we were not able to show termination, we conjecture
it:

Conjecture 4.4.1. PFrob is terminating.
From this assumption, we deduce that:
Theorem 4.4.2. If PFrob is terminating, then PFrob is a coherent Gray presentation.

Proof. This is a consequence of Theorem 3.4.5. O
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Figure 2c: The critical branchings for Frobenius pseudomonoids
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A Equivalence between definitions of precategories

We prove the equivalence between the equational and the enriched definition of precategories:

Proposition 1.4.5. There is an equivalence of categories between (n+1)-precategories and cate-
gories enriched in n-precategories with the funny tensor product.

Proof. Given C € PCat,, 11, we define an associated object D € (PCat,,)-Cat as follows. We put
DO = CO and D(:L', y) = CT(LZJ)
where C ;) is the n-precategory such that
(Ci(zy))i = {u € Ciz1 | 9y (u) = x and 95 (u) = y}

fori € {0, ...,n} and whose composition operation g ; is the operation #4111 on C for k,l € {1,...,n}.
Given z € Dy, we define the identity morphism

iz:1— D(z,x)

as the morphism which maps the unique 0-cell * of 1 to id, € C;. Given z,y,z € Cp, we define
the composition morphism

oy, D(x,y) O D(y, z) = D(z,z) € PCat,

as the unique morphism such that l; y » = ¢z .y > ©lp(z,y),D(y,2) 1S the composite

D(e,y) x D(y, 20y =  []  Dlay) —L2Me=P00, pg )
9€D(y,2)o0

and 74y, = Cgy,2 © TD(x,y),D(y,z) 1S the composite

D(w,y)oy x Dy, )= [] Dy, z) L2Zeremo, g 2.
feD(z,y)o

We verify that the composition morphism is left unital, i.e., given x,y € Dy, the diagram

i, 0D (x,
10 D(=,y) POV, p(r,2) 0D, y)

f \ %q
AD(e,y) ’

D(z,y)
commutes. We compute that
Cx,x,y © ('Lz ] D(-Ta y)) o 11,D(I,y) =Cg,z,y© lD(I,x),D(I,y) o(lw X D(:Ea y)(O))
(by definition of OJ)
= lz,z,y o ('Lz X D(ZL', y)(O))
= ID(2.y) OT2 (by unitality of id,)
£
= )‘D(z,y) o 11,D($,y)
and

Cxx,y © (Zm O D(:Ea y)) OT1 D(x,y) = Cz,2,y °TD(x,x),D(x,y) O((’LZ)(O) X D(‘Ta y))
(by definition of OJ)

= Tzzy © ((iz)0) X D(2,9))
=T (by unitality of id,)

= AD(a.4) ©T1,D(a.)
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Thus, by the colimit definition of 10 D(z,y), the above triangle commutes. Similarly, the triangle

x,y)04,
D(w,y) 01— (e y) 0 Dy, y)

f \ %1
PD(a.y) i

D(z,y)

commutes, so that the composition morphism is right unital. We now verify that it is associative,
i.e., given w, x,y, z € Dy, that the diagram

cw,m,yDD% D(w,y) O D(y, 2) L
(D(w,z) O D(z,y)) d D(y, 2) \ Dlw,2)

(10)
aD(w,as),D(z,y),D(y,z)\‘ /wrz

D(w,z) O (D(z,y) O D(y, 2)) D(w,z) O D(z, 2)

commutes. By a colimit definition analogous to (2), it is enough to show the commutation of the
diagram when precomposing with the morphisms wj, ws, ws where

@1 = 1p(ws)0D (). D(w.2) °(LD(w,2). D) XD (Y5 2)(0)),

@2 = Lp(w,x)0D(.4).D(y.2) O(CD(w.2). D) XD (s 2)0);

W3 = I'D(w,z)OD(x,y),D(y,z) -
Writing D!, D2, D? for D(w, ), D(z,y), D(y, 2), we compute that

Cuirre© (D' D s y2) 0 api p2.ps 01
= Cw,z,2 © (Dl O Cm,y,z) O Qp1 p2 p3 01D1DD2,D3 O(1D17D2 XD?@)
)

= Cyw.x.z © (Dl Dcxyz OlDl,DZDDS otp1 D(Z)
Ty Y, )

= Cw,z,z © 1D1,D(z,z) O(D1 X ((7) *0 (—))) @) O‘Dl,DQ D3

3
D(O)

(0)’77(0)
= ((=) 0 (=) o (D' x (=) %0 (=) e @p1,p2 .3
= (=) *0 (=) o (((=) *0 (=) x Dy)) (by associativity of o)

= Cu,y,z © 1p(w,y),03 o(((=) %0 (=)) X Dfpy)

= Cw,y,z e} 1D(w,y),D3 O(Cwﬁzﬁy X D(BO)) (e} (lDl,Dz XD?O)>

= Cw,y,z © (Cw,x,y O DB) o 1D1DD2,D3 O(lDl,Dz XD?O))

= Cw,y,z © (Cw,x,y O DB) o w1
so that the diagram (10) commutes when precomposed with w; and, similarly, it commutes when
precomposed with ws and ws. Thus, (10) commutes. Hence, D is a category enriched in n-pre-
categories. The operation C' — D can easily be extended to morphisms of (n+1)-precategories,

giving a functor
F: PCat,+; — (PCat,)-Cat.

Conversely, given C' € (PCat,,)-Cat, we define an associated object D € PCat,, 1. We put
Dy=Cy and Dj;i 1= H C(z,y);
z,y€Co

for i € {0,...,n}. In the following, given z,y € Cy, we write 1y ,: C(z,y); — D;11 for the
canonical coprojection. Given k € N with k <n, ¢y 4(u) € Diy1 and € € {—,+}, we put
T if k=0and e = —,
oy (u)) =y if k=0and e=+,
lay(05_1(w)) if k>0,
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so that the operations =, 0" equips D with a structure of (n+1)-globular set. Given z € Dy, we
put
id, = tgq(iz(*))

and, given k € N with £ <n —1 and ¢, ,(u) € D41, we put

idd 2 =, (idET.

tay(u)

Given i, k1, k2 € {0,...,n} with ¢ = min(k1,k2) — 1, and w = 13,4(4) € Dgy, v = 1y 4 (T) € Dy,
that are ¢-composable, we put

Lo,y (T % D) ifi>0
UiV = gy (Lo (@,id5 1)) if i =0 and ky = 1

Loy (T (1d¥2718)) if i =0 and ky = 1
where [, , . is the composite

Cz,y,z

Cla,y) % Cy, 2)(o) =229, O, y) O Oy, 2) <225 O(x, 2)

and 7, . is the composite

C(x,y)0) X Cly, z) 2@ O, ) O Oy, 2) 25 C(a, 2).

We now have to show that the axioms of (n+1)-precategories are satisfied. Note that, by the
definition of D, it is enough to prove the axioms for the id' and %o operations. Given z € Dy
and € € {—, +}, we have
95(id,) = 95(ta,z(iac(x))) = @

so that Axiom (i) holds. For k € {1,...,n+ 1}, given u = i, (@) € Dy and v = 1, () € D such
that u,v are 0-composable, if £ = 1, then

9 (w0 v) = 0y (ta,2(la,y.=(8, D)) = ,
and, similarly, 95 (u %o v) = z. Otherwise, if k > 1, then, for € € {—, +},

Op—1(u*ov) = 01 (La,- loy,-

= tg,2 (02

Analogous equalities are satisfied for 0-composable v € D; and v € Dy, so that Axiom (ii) holds.
Given k € {1,...,n+ 1} and u = 13 (@) € Dy, we have

w0 idy, = tey(le,y,y (4, 1d17( )))

(
= lz y(czyy ( ( 5y) Dly) OlC(z,y),l(ﬂ;idlj_l))
=y y(pfc(l y) © lo(e,y),1 (1, id*~ ) (by the axioms of enriched categories)
= Loy (m (3, idf ™)) (by definition of pf)
= u.
Moreover, given k € {1,...,n} and O-composable u = ¢; , (@) € Dy and v = 1, ,(0) € Dy, we have

wko idMT =0, L (rp 2 (idE1dE))
= Lz,Z(idk (rx,y,Z(idg_la 17)))
= 1d" (12 (1 y - (id571 9)))
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Analogous equalities hold when composing with identities on the left, so that Axiom (iii) holds.
Givenk € {1,...,n+1} and O-composable u1 = ty 5 (41) € Dy, ug = g4 (G2) € Dy and ug = 1y ,(li3) € D1,
we have

(ul *0 u2) *o U3z = Lw,z(lw,y,z(lw,z,y(ala 1d§2_1)a 1d§3_1))
Writing Ct, C?%, C3 for C(w, z),C(x,y),C(y, z), we compute that

huy.z © (lozy % Clo))
= Cuy,z © lo(w,y),c3 ©(Cuey X Clpy) © (lor,02 xCy)
= Cuy,z © (Cw,z,y O C%) 0lginee oo o(lor o2 XC))
(by definition of [J)
— Cw,z,z @) (Cl D Cm,y,z) @] 0401702103 o 101‘]02703 0(101102 XC(30))
(by the axioms of enriched categories)

= Cw,z,z (C ] Cx .y, z) o 101 c20c3 °Q ot C(ZU) CB

(by definition of «)

= Cue,z ©101,0(2,2) °(CF X (€ay,2)(0)) © @n C2).C3

=lwz0(CT X (lay.2)0) © e ez 03, -

Thus,

(Lo y.2)0) (15 1dET)))

(ul *0 u?) *0 U3 = Ly z(wzz(
= tw,z(lwe,2 (U (lzyz)<0)(U27UJ))>
= Uy *0 lg z((lx Y, z)(O) (UQ; U3)>
= U1 *Q Lz,z(lx,y,z(u% US))
= U1 *o (U2 *0 U3)
and similar equalities can be shown for (u1, us, uz) € (D1 X0 Dy X0 D1)U (D1 X9 D1 X0 D), so that
Axiom (iv) holds. Finally, for i, k1, ko, k € {1,...,n+1} such that i = min(kq, k2)—1, k = max(kq, k2),
given u = i, (@) € Dy and i-composable v1 =ty ,(01) € D, ,v2 = ty »(02) € Dy,, we have
U g (V1 % V2) = U kg Ly, (D1 ;-1 Ta)
.2 (1571 D1 k1 Do)

(.- (id}

= g (T (I T 1 15270, By oy D))
( @
(

= g, 2\Tz,y,z\1 dkl )*z lrzyz( dk2_1752))
=1z, (Tay,- 1d§1 ,171)) *; LLZ(TLy’Z(IdZQ_l,’DQ))
= (u*0 v1) *; (u % v2)

and an analogous equality can be shown for ((u1,us),v) € ((Dg, X; Dk,) X0 D1), so that Axiom (v)
holds. Hence, D is an (n+1)-precategory. The construction C' — D extends naturally to enriched
functors, giving a functor G: (PCat,,)-Cat — PCat,, 1.

Given C € PCat,; and ¢/ = G o F(C), there is a morphism ac: C — C’ which is the
identity between Cy and C{) and, for k € N with k < n, maps u € Ci41 t0 15 y(u) where z = 95 (u)
and y = J; (u), and one can verify that it is an isomorphism which is natural in C.

Conversely, given C € (PCat,)-Cat and C' = F o G(C), there is a morphism 5: C' — C’
which is the identity between Cy and C, and, for z,y € Cy, maps u € C(z,y) to tz4(u) € C'(x,y),
and one can verify that it is an isomorphism which is natural in C. Hence, F' is an equivalence of
categories. O
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B Gray presentations induce Gray categories

Until the end of this section, we suppose fixed a Gray presentation P. Our goal is to prove
Theorem 2.3.2, i.e., that P is a lax Gray category. We start by the exchange law for 3-cells that
we prove first on rewriting steps:

Lemma B.1. Given rewriting steps R;: ¢; = ¢; € P3 for i € {1,2}, such that Ry, Ry are 1-com-
posable, we have, in Ps,
(R1*1 ¢2) *2 (¢ *1 Ra) = (¢1 %1 R2) %2 (R1 %1 ¢)).
Proof. Let li,r; € P1, \i, pi € Py, A; € P3 such that Ri = i %0 (li x0 Ai %0 13) *; pi for i € {1,2},
and p;, i € Po such that A;: p; = w) for ¢ € {1,2}. In P3, we have
(R1 *1 ¢2) *2 (4] *1 Ra)
=\
*1 [((11 *o A1 %o 7’1) *1 P1F1 A2 *1 (12 *0 M2 *0 7"2))
*2 ((l1 *0 Mll *0 7’1) *1 P1F1 A2 *1 (12 *o Az *o 7"2))]
*1 P2 (by the axioms of precategories)
=\
*1 [((11 *0 M1 *0 7’1) *1 P11 A2 *1 (12 *o Az *o 7"2))
sg (11 %0 A1 %0 11) *1 p1 %1 A2 1 (I2 %0 g %0 72))]
*1 P2 (by independence generator)

= (¢1 %1 Ry) %2 (Ry *1 ) U
We can now conclude that the exchange law for 3-cells holds:
Lemma B.2. Given F;: ¢; = S Ps fori € {1,2} such that Fy, Fy are 1-composable, we have,
m Pg,

(Fy %1 ¢2) *2 (¢ %1 F2) = (91 %1 F) *2 (F1 %1 ¢).
Proof. As an element of Ps, F; can be written F; = Ri1 %2 - %9 R; i, where
Rij = Aij 1 (lij %o Aij *oTij) %1 pi
for some k; € N, \; j,p:5 € Ps, lij,rij € P, A; ;€ Pgforl<j<k,forie{l,2} Note that
Fi %1 ¢g = (R %1 ¢2) *2 -+ - %2 (Rig, *1 ¢2)

and

@) %1 Fo = (@] %1 Ra1) %2 -+ - %2 (@] %1 Ro ).
Then, by using Lemma B.1 kiky times as expected to reorder the Ry ;s after the Ry ;,’s for
1< j; <k; for i € {1,2}, we obtain that

(F1 #1 ¢2) *2 (6 %1 F2) = (1 %1 F) %2 (F1 *1 63). O
We now prove the various conditions on X_ _. First, a technical lemma:

Proposition B.3. Given f € Py, ¢, € P35 with f,$,v 0-composable, there is a canonical iso-
morphism (f %o ¢) WY = W and for all p € (¢ W p)T, we have

[Pl fx06,0 = f %0 [Plo,w

Similarly, given ¢, € P5 and h € Py with ¢,, h 0-composable, we have a canonical isomorphism
G (Yo h) 2Py and for all p € (¢ W (Y xo h))}, we have

[Pl weon = [Plo.w *0 b

Finally, given ¢, € P5 and g € P} with ¢, g,v 0-composable, we have a canonical isomorphism
(@ *09) WY = ¢LI(g*0¢) and for all p € ((¢ 0 g) W Y)], we have

[Plpog, = [Plg,gwow-
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Proof. Let f € Py, ¢,9 € P5 with f,¢,¢ 0-composable and let r,s > 0, f;,9; € P}, a; € P4 for
i€{l,...,r} and f},g; € Py, o/, € Py for j € {1,...,s} such that

¢ = (f1 %0 o1 %0 g1) *1 -+ *1 (fr %0 @ %0 gr)
and

Y = (f1 %0 a0 g1) %1 - %1 (f) %0 ). %0 g;.)-

By contemplating the definitions of (f ¢ ¢) W1 and ¢ W v, we deduce a canonical isomorphism
between them. Under this isomorphism, we easily verify that we have [w] .0 = f %0 [w]g,s for

w € ((f %0 @) W)o. Now, given ulyrjv € ((f %o ¢) W)y, we have
Xuolpropw = [Ulpropw %1 (f %0 fi %0 Xaigixofsar %0 95) %1 [V ropw
= [0 ([ulg,p 1 (fi 0 Xa giro g0, 0 95) 1 [V]g,0)
= [ %0 K]y

By functoriality of [—] fxo¢,5 and [—]e., we deduce that, for all p € (f %o ¢) L P*,

[Pl r+0s.0 = f %0 [Plg.u-

The two other properties are shown similarly. O
We can now conclude the most simple properties of X_ _:
Lemma B.4. Given ¢: f = f' € Py and ¥: g = ¢’ € Py, we have the following equalities in Ps:

(i) Xidf,w =1idy,, and X¢,idg = idg,,q when ¢,4 are 0-composable,

(11) Xisopp =1%o Xo.p forl € Py such that 1, ¢, are 0-composable,

(111) X psgmoap = Xopmuow for m € Pt such that ¢, m, ) are 0-composable,

() Xg pwor = Xow %0 7 for r € Py such that ¢,v,r are 0-composable.

Proof. (i) is clear, since both Xidf,w and X iq are identity paths on the unique 0-cells of (id FLU)”
and (¢ LW id,)* respectively. (ii) is a consequence of Proposition B.3, since Xy.«,¢, is sent to Xy
by the canonical isomorphism (f xg ¢) W = ¢ ). (iii) and (iv) follow similarly. O

The last required properties on X_ _ are more difficult to prove. In fact, we need a proper
coherence theorem showing that, for O0-composable ¢, € P2, Xy = [plsy for all p € (¢ W)}
parallel to Xy .. We progressively introduce the necessary material to prove this fact below.

Given a word w € (¢ LW 1)), there is a function

Findex,,: {1,...,|¢o|} = {1,...,|o| + |¥|}

defined such that, for i € {1,...,|¢[}, if w = w'l;w”, then l-index,, (i) = |w'| + 1. We have that the
function I-index characterizes the existence of path in (¢ L )*, as in:

Lemma B.5. Given 0-composable ¢, € P35 and w,w' € (¢ W), there is a path
prw—w € (W)}
if and only if I-index,, (i) < l-index, (i) for 1 <i <|¢|.

Proof. Given X, ,: ul,rsv — urgly,v € (¢ LW )1, it is clear that l-indexy ., (i) < indexyr,,.(7)
for all 1 < 4 < |@|, so that, given a path p: w — w’ € (¢ W)}, by induction on p, we have
l-index,, (i) < I-index, (i) for 1 <i < |g).

Conversely, given w,w’ € (¢ W )y such that l-index,, < l-index,, we show by induction
on N(w,w’) defined by

N(w,w'") = Z l-index,, (i) — l-index,, (7)

1<i<|¢]
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that there is a path p: w = w’ € (¢ W Y);. If N(w,w’) =0, then w = w’ and 1,: w — W' is a
suitable path. Otherwise, let imax be the largest ¢ < |¢| such that l-index,, (i) > |-index,, (7). Then,
either ipmax = || or Findexy, (imax) + 1 < l-indexy, (imax + 1) since

l-indexy, (fmax) + 1 < l-indexqy (imax)
< l-indexyy (fmax + 1)
= l-indexy, (imax + 1)

So we can write w = ul;, rjv for some words u,v and j € {1,...,|1|}. We have a path generator
Xuw: w — W € (¢ W) where @ = ur;l;, v. Then,
l-index,, (2) if 4 # imax

Findexa () = {I-indexw(imax) P10 = i
so l-index w < l-indexw’ and N(w,w") < N(w,w’). Thus, by induction, we get

plrd—w € (W)
and we build a path X, , %o p': w — w' € (¢ LW Y); as wanted. O
Given 0-composable ¢, € P35 and w = wy ... wg|4|y| € (¢ W1)o, we define Inv(w) as

Inv(w) = {(4,7) | 1 <i<j<|¢|+|¢| and w; = ry and w; =l
for some i' € {1,...,|¢|} and j' € {1,...,|¢[}}]-

We have that Inv characterizes the length of the paths of (¢ L1 )*, as in:
Lemma B.6. Given 0-composable ¢, € P35 and p: w — w' € (¢ W)}, we have

Ip| = Inv(w") — Inv(w).
In particular, given w,w' € (¢ L))o, all the paths p: w — w' € (¢ W )T have the same length.

Proof. We show this by induction on the length of p. If p = id,, then the conclusion holds.
Otherwise, p = Xy, v %o r for some u, v € Xy and r: W — w’ € (¢ W );. Then, by induction
hypothesis, |r| = Inv(w') —Inv(w). Note that, by the definition of X, ./, w = ul;rju’ and @ = ur;l;r
for some ¢ € {1,...,|¢|} and 5 € {1,...,|¢|}. Hence,

Ip| = |r| +1 = Inv(w’) — Inv(w) + Inv(w) — Inv(w) = Inv(w’) — Inv(w). O
Given 0-composable ¢, € P%, we now prove the following coherence property for (¢ LU ¢)*:

Lemma B.7. Let = be a congruence on (¢ L )*. Suppose that, for all words uq,us,us € L4 y,
i, € {1,...,|¢|} and 7,7 € {1,...,|¥|} such that uil;rjuslyrjus € (4L Y)o, we have

U1| rju2| i’ M5/ U3

Kuy uglysr; /V wllirjuz,u3

ulrjllugll/r]/ug U1|'I’jU2l’j/|i/U3

u1V7\7u2 u& /ul ugrrlrug
3

uirjliugrylyu
then, for all p1,p2: v — w € (¢ LW )T, we have p; = pa.

Proof. We prove this by induction on |p;|. By Lemma B.6, we have |p;| = |p2|. In particular, if
p1 = id,, then ps = id,. Otherwise, p; = ¢; *o 7; with ¢;: v — v; and r;: v; = w and |¢;| = 1 for
i € {1,2}. If 1 = ¢, then we conclude with the induction hypothesis on r; and ro. Otherwise,
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up to symmetry, we have ¢ = Xul,uZ|i,rj,u3 and g2 = Xuylirjuz,us for some uy,us,us € E;ﬁw,
i, € {1,...,]¢|} and j,5" € {1,...,|¥|}. Let

/ / /
¢ = Kuyrjlius,ug s 42 = Xuyugrylyugs v = uarjliugrylius.

Since we have a path v %5 v; ™% w, by Lemma B.5, we have l-index,(s) < l-index,(s) for
se{l,...,|¢|}. Moreover,

l-index, (i) < l-index,, (i) < l-index,,(i) and I-index,(i') < l-index,, (i) < l-index,, (i").

Also, for s € {1,...,|9|},

l-index,(s) + 1 if s € {4,4'},
l-index, (s) otherwise.

l-index, (s) = {

From the preceding properties, we deduce that I-index,/(s) < l-index,,(s) for s € {1,...,|¢|}. Thus,
by Lemma B.5, there is a path r': v/ — w € (¢ W )] as in

Since |r;| = |p;| — 1 for ¢ € {1,2}, by induction hypothesis, we have r; & ¢, x¢ 7’ for i € {1,2},
which can be extended to g; o 1 & ¢; *0 ¢ *o 7/, since = is a congruence. By hypothesis, we have
q1 %0 q] & q2 *0 ¢4, which can be extended to q1 *o ¢} *o 7’ & g2 *0 ¢4 *o r'. By transitivity of =, we
get that g1 %9 1 & qa *g 72, that is, p; = ps. O

We then apply this coherence property to [—]— _ and get that “all exchange methods are equiva-
lent”, as in:

Proposition B.8. Given 0-composable ¢, € Psy, for all py,pa:u — v € (¢ W)}, we have, in
P37

[prlgw = [P2]o-
Proof. By Lemma B.2, for all words ui,us,us € X4y, 4,4 € {1,...,|8|} and j,5" € {1,...,|¢|}
such that uilirjuslirjius € (¢ LW )o, we have

[uﬂl‘l’juﬂi/ I’j/U3]¢7w
[Xul,1L2|i/rj/u3]¢,1/) [Xullirqu,u:;]d),w

[ 1I’]|,u2|1/rj/u3]¢7w u1|1|’ Ul I1/u3]¢¢,

'u.lr jug, 743]¢N M“l uarrl; /713]45 P

['U,l I’J |Z'U,2I’J/| /U3]¢’w

Moreover, the relation ~ defined on parallel pi,ps € (¢ W )] by p1 = p2 when [pi]e.y = [P2]e.
is clearly a congruence. Hence, by Lemma B.7, we have that [p1]sy [p2]g,y for all parallel
p1,p2 € (P LY)T. u

The preceding property says in particular that X, = [pls,y for all O-composable ¢, € P} and
paths p € (¢ LW 1))} parallel to X qp.

Let ¢,1 € P be 0-composable 2-cells, and ¢', 1" € P5 be 0-composable 2-cells such that ¢, ¢’
and 1,1’ are 1-composable. To obtain the last required properties on X_ _, we need to relate
¢ and ¢ LY to (¢ *1 @) LW (P *1 Y'). Given w € (¢ LW 1)o, there is a functor

w-(=): (¢ W) = (¢ ¢) W (1 ¢))"
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which is uniquely defined by the mappings
u = wi(u)
Ko uz 7 Xt (ur) Huz)

for u € (¢' WY )o and Xy, u, € (¢'WY')1 and where, for v =10v1...vx € X3, ,/, T(v) € X

1/ 1’
is defined by

(0) ligl+i if v. =1; for some i € {1,...,[¢'|}
V), =
Myl+; if vp = r; for some j € {1,...,[¢'|}

for r € {1,...,k}. Similarly, given w € (¢’ L ¥)o, there is a functor
(=) w: (dW)* = (¢ 1 ¢) W (¢p#1¢))"
which is uniquely defined by the mappings
u — ut(w)
X us F* Xu17u2T(w)

for u € (¢ LW )o and Xy, 4y € (¢ LW )1 and where 1(—) is defined as above.

The functors w-(—) and (—)-w satisfy the following compatibility property:

Lemma B.9. Let ¢,¢ € P} be 0-composable 2-cells, and ¢',4' € P35 be 0-composable 2-cells such
that ¢, @' and 1, v’ are 1-composable. Given w € (¢ LU )o, we have the following equalities in P%:

(1) [w-(w)]ges g syt = (W] %1 [U]gr g for u € (¢ WY )o,

(i) [w-(P)lgwr ¢y = [Wg,w 1 [plgrgr for p € (¢ WY)T.
Similarly, given w € (¢’ W)y, we have:

(1) [(w)wlpwgr s = [ulg,y %1 [Wlgr g for u € (G )o,

(i) [(p)-wlpws g pwrnr = [Plg,w %1 [w]gr g for p € (9 L)
Proof. We only prove the first part, since the second part is similar. We start by (i). We have
(W (W) gy ¢ prpr = [wT(u)];’:@,’w*lw,. By a simple induction on w, we obtain

1,1 1,1 ¢l
)]t e = 01524 g #1 Ny

and, by other simple inductions on w and u, we get

1,1 1,1 , 1,1
WIS o e = 0lhh = W [N = 1l = [ulsw

)

so that (i) holds.
For (ii), by induction on p, it is sufficient to prove the equality for p = Xy, u, € (¢ LU )1. Let
m = |¢[, n = |¢|, and

(€1 %0 a1 %0 f1) *1 -+ *1 (€m *0 Qm *0 fm) (g1 %0 B1 %0 h1) *#1 - -+ %1 (gm *0 Bm %0 hm,)

be the unique decomposition of ¢ and 1 respectively, for some e;, f;, g;, h; € P7 and «;,3; € P2
forie{1,...,m} and j € {1,...,n}. We then have

[ (Kuy uz )1 ¢, = [XwT(ul)7T(u2)]¢*1¢'v¢*1¢'
1,1 Kok
= [wT(ul)]¢*1¢'v¢*1¢’ *1 (ei *0 Xaiafi*ogj’ﬁj *0 hJ) 1 [T(u2)]¢l*l¢,v¢*l¢,

where i, j are such that uil;rjus € (¢/ W)y and

ki =lol+i+1 kr= || +7+1.
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By simple inductions, we obtain

1,1 1,1 ,
[wT(ul)]¢*1¢’7¢*1¢’ = [w]¢*1¢’1¢*1¢' *1 [T(ul)]lﬁi|1|$[w*1¢'
1,1 1,1
= [wlgy *1 [u1]gy

1,1
= [w]g,p *1 [u1] g 4
and

ky Ky i+1,5+1
(M) g0y g = (2] 7
so that

1,1 i+1,j+1
[0 Ry s g e = (W] %1 [ty %1 (€3 %0 X, fiwogy 65 %0 1) %1 [l 7™

- [’LU]¢7¢ *1 [Xul,uz]dﬂl’/' 0
We can now conclude the last required properties on X_ _:

Lemma B.10. Given 1-composable ¢,¢' € 53, 1-composable 1,1’ € Py such that ¢,v are O-
composable, we have the following equalities in Pj:

Xgurgrp = (@50 07 (1)) %1 Xgr ) %2 (X %1 (¢ 50 OF (1))

and
X purgr = (Xgp %1 (87 () %0 1)) 2 ((87 () %0 1) %1 Xg )

Proof. We only prove the first equality, since the second one is similar. By definition of X4,/ v,
we have X¢. ¢y = [Xgx1,0]¢w14/,4- Moreover, by Proposition B.8, [Xgu, ¢ p]gx16/v = [Plowior v
in P3 for all path p € ((¢ %1 ¢') W), parallel to Xgs, ¢ ,y. In particular,

X9 ploxrsrw = [0 (Xpr,0)) %0 (Xg,p) W )gwr 07 0
where

’LU=|1...||¢| w/=|1...|‘¢/‘
are the only 0-cells of ¢’ L idy- (4) and ¢ Widy+ (4 respectively. Thus,
KXo plomror i = [(0 (Xgr ) %0 (Xgp)w)]geror,0

= [(w- X ) gwror. %2 (X ) W) ge107 0
(by functoriality of [—] g ¢r.0)

= ([Wloia,_  *1 Xorwlorw) x2 (Koplow a1 [W]pia,, )
(by Lemma B.9)
= (& %0 Oy (1)) %1 Xgr,p) %2 (X %1 (¢ %0 0 (1))
(by definition of [-]_ _ and X_ _).
Hence,
Koo = (6 %0 Oy (1)) %1 Xgr ) %2 (X, %1 (¢ %0 0 (1), O

We now prove the compatibility between 3-cells and interchangers. We start by proving the com-
patibility with 3-generators:

Lemma B.11. Given A: ¢ = ¢': f = f' € Pz and: g =g € Py such that A, are 0-compo-
sable, we have, in P3,

((Axo.g) %1 (f' %0 ) %2 Xorp = Koy %2 ((f %0 ¥) #1 (A %0 ')
Similarly, given ¢: f = f €Pyand B: = ' g = ¢ such that ¢, B are 0-composable, we have,
in P,

Xo.p*2 ((9%0 B) %1 (¢ %0 ) = (6 %0 ) #1 (f %0 B)) *2 Xo,p-
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Proof. We only prove the first part of the property, since the other one is symmetric, and we do so
by an induction on [t|. If || = 0, ¥ is an identity and the result follows. Otherwise, ¢ = w %, 1
where w = (Ixgaxor) with [,r € Py, a: h = h' € Py and ¢ € Py with || = || — 1. Let § = 9] (w).
By Lemma B.10, we have

Ko = (Xgw 1 (%0 1)) %2 ((f %0 w) 1 Xy ) (11)

Xorp = (Xgrw#1 (f %0 9)) %2 ((f xo w) ¥1 Xy 7)- (12)

Also, by Lemma B.4(iv), we have

Xow = Xop 1xoa *0T Xorw =X/ 1xga *0 T (13)
so that
((Axo g) *1 (f *0w)) *2 Xy
= [((Axo Lxg h) *1 (' *0 L %0 @)) *2 X 1xa) %0 T
= [Xp,iroa *2 ((f *0 Lo @) %1 (Axo L*g h'))] %o 7 (14)
(by interchange naturality generator)
= Xgw *2 ((f *ow) *1 (A*0 g')).
Thus,

((Ax0 g) *1 (f' %0 ¥)) *2 Xor g
(Ao g) %1 (f %0 w) *1 (' %0 %))
%2 (Xgrw %1 (f %0 9)) %2 ((f xow) #1 Xy ) (by (12))
= [(((A %0 g) *1 (' %0 w)) %2 Xgrw) 1 (' %0 )]
#2 ((f %0 w) *1 X¢,71/;)
= [(Xp,w %2 ((f *ow) ¥1 (A0 ) *1 (f %0 )]
*2 ((f *ow) x1 Xy 7) (by (14))
= (Xow#1 (f %01))
%2 ((f %0 w) %1 (Ao §) #1 (f %0 ) %2 ((f %0 w) %1 Xy )
= (Xow#1 (f %0 9))
w2 [(frow) 11 (A0 3) 51 (f 20 0) %2 X,y )]
= (Xow*1 (f %09))
(
)
(

w2 [(frow) 1 (X g %2 ((F %0 9) 1 (Axo )] (by induction)
= (Ko =1 (' %0 0)) 2 <<f w0 w) 1 (Xy )
%2 ((f xow) 1 (f %0 ¥) #1 (A0 )
= Xop #2 ((f #09) %1 (A %0 g)) (by (11)). O

Next, we prove the compatibility between interchangers and rewriting steps:

Lemma B.12. Given a rewriting step R: ¢ = ¢': f = f' € P with R = XAxq1 (Ixg Axq 1) x1 p for
some l,7 € P{, \,p € Py, A: p= p' € P3, and ¢: g = g’ € P3 such that R,+ are 0-composable,
we have, in P3,

(Rx09)*1 (f' %0 9)) %2 Xgrp = Xgp %2 (f %0 9) ¥1 (R*0 ")) (15)

Similarly, given ¢ € P3 and a rewriting step S: ¢ = 't g = g’ € P5 with S = X%y (Ixo B*o1)*1p
for some A\, p € P5, l,r € P}, B: v =1 € Pg such that ¢,S are 0-composable, we have, in P,

Xop*2 ((f %0 B) %1 (¢ %0 9")) = (9 %0 ) *1 (f' %0 B)) %2 X,y



Proof. By symmetry, we only prove the first part. Let
fo ko T h =05 () h = oy (1)
ro i o T W =0y (i) i = o7 (i)
We have

Rxg g = (Axog)*1 (Lx0 Axo7 %0 9)*1 (p*0g)

and, by Lemma B.10,
Xowp = (A1 ) %0 g) 1 Xp )
*2 (A0 9) 1 X #1 (%0 9))) (16)
*2 (X #1 (71 0) %0 9')))
Kot = (A1 1) %0 g) #1 Xp)
*2 (A0 9) %1 X %1 (p 0 9'))) (17)
*2 (X #1 ("1 p) %0 9')))-
We start the calculation of the left-hand side of (15), using (17). We get

(B0 g) *1 (f' *09)) %2 (A1 ') %0 9) *1 Xp,p)

= (Ax09)

*1 [((l 0 Axo %0 g) %1 (p*0 g) *¥1 (f' %0 ¥)) *2 (1 %0 9) %1 Xp,w)}
= (A*09)

1[50 9) 51 Xp0) %2 ((Fx0 Awo 0 9) 1 (B 50.0) 51 (00 9'))] (by Lemma B.2)

= ((A*0g) *1 (i *o0 g) *1 Xpu)

2 (A% g) ¥1 (I %0 Axor*0 g) %1 (M %0 ¢) %1 (p*0 g')).

Symmetrically, we do a step of calculation for the right-hand side of (15), using (16). We get
(X *1 (1 p) %0 ') *2 ((f %0 ¥) %1 (R*0 g'))
= ((A*09) *1 (hxo¥0) ¥1 (%0 Axo 7 %0 g") %1 (p*0 g'))
2 (Xag *1 (' %0 g') 1 (px0 9'))-

Finally, we do the last step of calculation between the left-hand side and the right-hand side of (15).
Note that

((l*oA*OT*Og>* (W %0 0)) %2 Xpr
=1x0 (((Axo7 %0 g) %1 (B %07 %0 ) %2 Xpraor,) (by Lemma B.4(ii))
=1x0 (((Axo7 %0 g) %1 (W %07 %0 0)) *2 Xyt rsgp) (by Lemma B.4(iii))
=10 (X reop %2 ((Rxo 7 %0 9) %1 (A% 7 %0 g))) (by Lemma B.11)
=10 (Xpworp %2 (hxo %0 ¥0) %1 (A%07 %0 g))) (by Lemma B.4(iii))
= Xjp#2 (hxo ) #1 (%0 Axo 70 g')) (by Lemma B.4(ii))
so that

(A0 g) *1 (Lo Axor*0 g) *1 (}Nl/ 7/’) (p*09") *2 (A *0 ) *1 Xgry %1 (p*0 9'))
= (A0 g) *1 [((L %0 Axo 7 %0 g) w1 (B % 0 X ] 1 (p %0 g')
= (A0 9) *1 [Xpp *2 (%0 9) %1 (1% Axo7 %0 9"))] %1 (p %0 ¢)

= ((A*09) *1 Xpp*1 (P*0g")) *2 (A0 g) *1 (g 1h) %1 (Lo Axor %9 g') %1 (px0 g')).

By combining the previous equations, we obtain

(R*0g)*1 (f *0v)) *2 Xgr
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= ((A*09) %1 (ILx0 Axo 7 %0 g) *1 (p*0 g) *1 (f' *0 %))
2 (A1 i) %0 g) %1 Xp )
2 (A0 9) %1 X %1 (p 0 g')))
2 (X *1 (2 %1 p) %0 9')))

= ((()\ *1 f1) %0 g) %1 Xpp)

*2 (A0 9) *1 Xpy 1 (p*0 ')

2 ((Xag *1 (%1 p) %0 9')))

2 ((f %0 1) x1 (A %0 g) *1 (L %0 A*o 7 %0 g) *1 (p*09))
= Xg.p %2 ((fro9) %1 (R*0g))

which is what we wanted. O
We can deduce the complete compatibility between interchangers and 3-cells:

Lemma B.13. Given F: ¢ = ¢': f = f' € P3 and ¢: g = ¢ € Py such that F, are 0-compo-
sable, we have

((Fx0.g) %1 (f' %0 1)) %2 Xgrp = X ¥2 ((f %0 0) ¥1 (F %0 g')).

Similarly, given ¢: f = f' € Py and G: ¢ = ¢': g = ¢’ € P3 such that ¢, G are 0-composable, we
have
Xop,p %2 ((f %0 G) #1 (¢ %0 9)) = (¢ %0 9) *1 (f *0 G)) 2 Koy

Proof. Remember that each 3-cell P can be written as a sequence of rewriting steps of P. By
induction on the length of such a sequence defining F' or GG as in the statement, we conclude using
Lemma B.12. o

We can conclude that:

Theorem 2.3.2. Given a Gray presentation P, the presented precategory P is canonically a laz
Gray category.

Proof. The axioms of lax Gray category follow from Lemma B.4, Lemma B.10, Lemma B.2 and
Lemma B.13. u

C Finiteness of critical branchings

In this section, we give a proof of Theorem 3.4.6, i.e., that Gray presentations, under some reason-
able conditions, have a finite number of critical branchings. Our proof is constructive, so that we
can extract a program to compute the critical branchings of such Gray presentations. First, we
aim at showing that there is no critical branching (51, S2) of a Gray presentation P where both
inner 3-generators of S; and Sy are interchange generators. We begin with a technical lemma for
minimal and independent branchings:

Lemma C.1. Given a minimal local branching (S1,S52) of a Gray presentation P, with
Si = Xi*1 (Li %0 Ai %0 i) *1 pi
and l;,r; € PY, N\i, pi € P, A; € P3 for i € {1,2}, the followings hold:
(i) either A1 or A2 is an identity,
(i) either p1 or pa is an identity,
(iii) (S1,S2) is independent if and only if
105 (A0)| + 105 (A < 105 (Sl and  [Aallpa] = allpa] = 0.

If (S1,S2) is moreover not independent:
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(iv) either 1y orly is an identity,
(v) either r1 or ra is an identity.

Proof. Suppose that neither A; nor Ay are identities. Then, since
)\1 *1 (l1 *Q 0 (Al) *Q 7“1) *1 p1 = )\2 *1 (12 *Q 8 (AQ) *Q 7"2) *1 P2,

we have A\; = w *1 A} for some w € P and X, € P; for ¢ € {1,2}, such that |w| > 1, contradicting
the minimality of (S7,S2). So either A1 or A2 is an identity and similarly for p; and ps, which
concludes (i) and (ii).

By the definition of independent branching, the first implication of (iii) is trivial. For the
converse, suppose that (S1,S2) is such that

102 (AD)| + 102 (A2)| <105 (S1)] and [ Aaf[pa] = [Asllp2| = 0.

We can suppose by symmetry that A\ is a unit. Since |05 (S1)| = |A1] + |95 (A1)] + |p1], we have
that |05 (A2)] < |pi].
If |p1] = 0, then
Sl = ll *Q A1 *0 T'1 and |82_(A2)| = 0,

thus, since |Az||p2| = 0, we have
either Sg = 62_(51) *1 (12 *9 A2 *9 7”2) or Sg = (12 *9 A2 *9 7"2) *1 82_(51)

In both cases, (S1,52) is independent.
Otherwise, |p1| > 0 and, by (ii), we have |p2| = 0 so that

Sl = (ll *0 Al *0 7’1) *1 P1 and SQ = AQ *1 (lg *Q A2 *0 7’2).

Since |05 (A2)] < |p1l, we have p1 = x #1 (l2 %0 05 (A2) % r2) for some x € P} and, since
05 (S1) = 05 (S2), we get

(I3 %0 O3 (A1) x0 11) *1 x *1 (I2 x0 05 (A2) %0 12) = A2 *1 (l2 *¢ O5 (A2) *o 12).
So Ay = (I3 %9 05 (A1) *0 r1) *1 x and hence (S7,.52) is an independent branching, which concludes
the proof of (iii).

Finally, suppose that (S7,.52) is not independent. By (iii), it implies that

either |95 (A1)| + 05 (A2)[ > [0 (S1)| or [Aaflpr] >0 or  |Aaf[paf > 0.

If |A1]|p1| > 0, then |A2| = |p2]| = 0 by (i) and (ii), so that
A1 #1 (I %0 Ay %o 71) %1 p1 = l2 %0 Ag %o 72
thus there exists A}, pj € P3 such that
A =la*o M| %02 and  py = 3 *q p} *q 72,

and we have
lQ *0 8+( )*0 Tro = 8+(>\1) —ll *08 (Al) *0T1.

Thus, I; and ls have the same prefix [ of size k = min(|l1],]l2|) and we can write
Slil*o;sq SQZZ*OSé

for some rewriting steps S1, Sz € P%. Since (51, S2) is minimal, we have k = 0, so |l1]|lz] = 0. We
show similarly that |rq]|r2| = 0. The case where |Az||p2| > 0 is handled similarly.
So suppose that

[Allpr] =0 and  |Aof[p2] =0 and [0y (A1)| + [0 (A2)| > 05 (S1)]- (18)
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In particular, we get that |05 (A4;)| > 0 for i € {1,2}. Let u;,v; € P§ and a; € Py foré € {1,...,r}
with 7 = |05 (S1)| such that

8{(51) = (u1 *0 (1 *q Ul) LS RS | (’LLT *0 O ¥ ’U,,n>.

The condition last part of (18) implies that there is ig such that I; and Iy are both prefix of u;,.
So, 1 and l2 have the same prefix [ of length k = min(|l1|, |i2]).
Now, we prove that Ay = [ xg A} for some \| € P5. If |\1| = 0, then

A =11 %o 8;(»51) *0 71,

s0 A = lxg A\ for some X € P5. Otherwise, if |A1| > 0, since |A\1]|p1] = 0, we have |p1] = 0 and,
by (i), [A2] = 0. Also, by the last part of (18), we have |A1| < |05 (A2)|. Thus,

A1 is a prefix of lg xg 05 (A2) *o T2,
$0 A1 = L xg A} for some A\; € P5. Similarly, there are p/, A, p5 € P35 such that
p1=1lx0p] and o =1Ilx0 ), and po=1x%¢\;.

Hence S1 = 0 .S] and Se = I %q S} for some rewriting steps S7, 55 € P5. Since (51, S2) is minimal,
we have |l1]|l2| = |I| = 0, which proves (iv). The proof of (v) is similar. O

We now have enough material to show that:

Proposition C.2. Given a Gray presentation P, there are no critical branching (S1,S2) of P such
that both the inner 3-generators of S1 and S are interchange generators.

Proof. Let (S1,52) be a local minimal branching such that, for i € {1,2},
Si = Ai #1 (li %0 X, g:,8: %0 73) *1 pi

for some 1;, 7, g; € P5, A\i, p; € P and «;, B; € Pg, and let ¢ be 95 (S1). Since |05 (Xay,g1.8,)] = 2,
we have |¢| > 2.
If |¢| = 2, then |\;| = |pi| = 0 for ¢ € {1,2}. Thus, since 95 (S1) = 95 (S2), we get

(I1 %0 a1 %0 g1 *0 07 (B1) %0 71) *1 (11 %0 95 (1) *0 g1 *0 B1 *0 1)
= (I2 *0 a2 %0 g2 *0 07 (B2) *0 72) *1 (l2 %0 OF (a2) *0 g2 *0 B2 *o 2).
By the unique decomposition property given by Theorem 1.8.3, we obtain
li=ly, 1 =ry ar=ay Bi1=pF and gi*0; (B1)*071 = g2*0 01 (B2) *o 2.

So g1 *0 91 (B1) *0 1 = g2 *0 01 (B1) *0 71, which implies that g = g2. Hence, (S1,.52) is trivial.
If |¢| = 3, then |\;| + |pi| = 1 for ¢ € {1,2}, and, by Lemma C.1,

either |p1| = [A2| =1 or |[\|=|pa| =1

By symmetry, we can suppose that |p1| = [A2| = 1, which implies that |A1| = |p2| = 0. By unique
decomposition of whiskers, since 95 (S1) = 95 (S2), we have

l1 %0 a1 %0 g1 %0 07 (B1) *0 71 = A2
l1 %0 07 (1) %0 g1 %0 B1 %0 71 = l2 %0 a2 %0 g2 *0 Of (B2) *0 T2

p1 = la 0 05 (2) %0 g2 *0 B2 *o 2

and the second line implies that I} *o 9y (a1) %0 g1 = l2, B1 = a2 and 11 = g2 %o J; (B2) *o 2.
Since (S1,52) is minimal, we have |l1| = |r2] = 0. So

S1= (Xal,ghﬁl *0 g2 *0 8;(ﬂ2)) *1 (af(X(llyglvﬁl) *0 g2 *0 52)
Sa = (a1 *0 g1 *0 07 (B1) *0 g2 *0 07 (B2)) *1 (95 (1) *0 g1 *0 X3y ,95.8,)
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thus (S, S2) is a natural branching, hence not a critical one.
Finally, if |¢| > 4, then, since |\;| + |pi| = |¢| —2 > 2 for i € {1,2}, by Lemma C.1, we have
that
cither M| = lpal = |8 =2 or 1] = [Pal = || — 2.

In either case,
[Aallon] = [Aallp2l =0 and |05 (Xay.g,,60)] + 105 (Xas.g.,8.)] = 4 <[4
so, by Lemma C.1(iii), (S1,S2) is independent, hence not critical. O

Until the end of this section, we denote by P a Gray presentation such that Py and P3 are finite and
|85 (A)| > 0 for every A € P3, i.e., a Gray presentation satisfying the hypothesis of Theorem 3.4.6.
The next result we prove is a characterization of independent branchings among minimal ones:

Lemma C.3. Given a minimal branching (S1,S2) of P with
Si = Xi *1 (li %0 Ai %0 13) %1 pi

for some l;,m; € PY, N, p;i € Py and A; € P3 for i € {1,2}, we have that (S1,S2) is independent if
and only if

either |1 = |05 (A2)| or [p1] = 05 (A2)| (resp. [Az| = 105 (A1)] or |p2| = 105 (A1)])-
Proof. If (S1,52) is independent, then, by Lemma C.1(iii),
|05 (A1) + 105 (A2)] < [A1] 4105 (A1)] + [p1] = [Xa] + 105 (A2)[ + [pal,

that is,
105 (A1) < [A2| +[p2| and |0y (A2)| < [Aa] + |pal-

By hypothesis, we have |95 (A1)| > 0, so that [Az| 4 |p2| > 0. If |A2] > 0, then, by Lemma C.1(i),
[A1] = 0 so |05 (A2)| < |p1]. Similarly, if |p2] > 0, then |05 (A2)|] < |A1], which proves the first
implication.

Conversely, if [A1] > |05 (A2)|, then, since 95 (A2) > 0 by our hypothesis on P, we have |[A1| > 0.
By Lemma C.1(i), we get that [\2] = 0. Also,

Al + 105 (An)| + (1] = 105 (A2)| + |pa| < [M] +[p2l,
80 |p2| =105 (A1)| + |p1|, thus |p1| < |p2|- By Lemma C.1(ii), we have |p;| = 0. Moreover,
105 (A1)| + 105 (A2)| < 105 (A))| + (M| = 19 (S1)]
hence, by Lemma C.1(iii), (S1,S2) is independent. O

Then, we prove that minimal non-independent branchings are uniquely characterized by a small
amount of information:

Lemma C.4. Given a minimal non-independent branching (S1,S2) of P with
Si = Ni *1 (li %0 Ai %0 13) %1 pi

for some l;,r; € Py, \i,pi € P5 and A; € P3 for i € {1,2}, we have that (S1,S2) is uniquely
determined by Ay, Aa, |\1| and |A2].

Proof. Let the unique k1, ko > 0, u;, u}, v;,v; € P§ and oy, 8; € P2 such that
8;(A1) = (u1 *0 (1 *Q ’U,/l) k1 -0k (ukl *0 gy %0 uﬁcl)

and
0y (Az) = (v1 %0 B1 %0 v1) *1 -+ *1 (Vky %0 By *0 Vg, )-

67



Let iy =14 |A1| and i3 = 1 + |A2|. Since
A1 x1 (I1 %0 Oy (A1) %0 71) %1 p1 = A2 *1 (2 %0 O3 (A2) %0 72) *1 p2, (19)
and, by Lemma C.3, |\1] < |05 (A2)] and |Aa| < |05 (A1)], we get
Iy %0 ug, *0 @iy *0 U;2 *0 11 = la %0 vy, *0 By *o Uzl-l *0 T2

so that
li /
I1 %o us, =la*0v;; and  wy, xoT1 = vy, *0 T2.

By Lemma C.1(iv), either I or I3 is an identity. Thus, if |u;,| < |vs, |, then |I1] > |l2] so Iz is a unit
and ls is the prefix of u;, of size |u;y| — |vs,|. Otherwise, if |u;,| < |vj, |, we obtain similarly that
ly is the prefix of v;, of size |v;,| — |u,| and lo is a unit. In both cases, {1 and I are completely
determined by Ay, As, |A1| and |A2]. A similar argument holds for ry and rs.

Now, if |A1| > 0, by Lemma C.1(i), |A\2| = 0. By (19) and since |A1| < |05 (A2)[, A1 is the prefix
of lax0 05 (Az) %912 of length |A1]. Otherwise, if |A1| = 0, then A\, = idll*oaf(Al)*om' In both cases,

A1 is completely determined by A;, As, |A1]. A similar argument holds for A\y. Note that, if we
prove that |p1| and |ps| are completely determined by Aj, Az, |A1] and |Az|, the above argument
also applies to p; and p2 and the lemma is proved. But

IAul 4105 (AL + [p1] = [A2] + 105 (A2)[ + [p2],
so that if |A1] + [95 (A1)] > |A2| + |95 (A2)], then, by Lemma C.1(ii), |p1| = 0 and
P2l = (A1 + 105 (A1)] = [Aa| — 05 (A2)]-
Otherwise, if [A1| 4+ |05 (A1)] < |A2| + 105 (A2)|, we get similarly that
lp1l = [X2| + 05 (A2)| — [\ — |95 (A1)

and |p2| = 0. In both cases, |p1| and |pz2| are completely determined by Ay, A, |A1| and |A2], which
concludes the proof. O

Given A € P3, we say that A is an operational generator if it is not an interchange generator.
We now prove that an operational generator can form a critical branching with a finite number of
interchange generators:

Lemma C.5. Given an operational A; € Ps, there are a finite number interchange generator
Ao € P5 so that there is a critical branching (S1,S2) of P with

Si = A %1 (li *0 Aj *o Ti) *1 P4
for some l;,r; € P¥, i, p; € PS5 fori € {1,2}.

Proof. Let o, B € Po, u € P§, Ao = Xo.u.8, li,7i € P, Ai, pi € P35 for i € {1,2}, so that (S1,52) is
a critical branching of P with

Si = X #1 (ly 0 Aj 0 73) %1 p; for i € {1,2}
for i € {1,2}. Let the unique k > 2, v;, v} € P}, v; € P2 for i € {1,...,k} such that
05 (A1) = (v1 *0 71 *0 V]) *1 -+ - *1 (Vg *0 V& *0 V)-
By Lemma C.3, since (S1, S2) is non-independent,
2 = 105 (Xaus)| > max(Ail, o))

Note that we cannot have |A1| = |p1] = 1. Indeed, otherwise, by Lemma C.1, we would have
[A2] = |p2]| =0, so that
2= 10y (Xau,p)l = [l + 105 (A1) + |pa-
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and thus |05 (A1) = 0, contradicting our hypothesis on the 3-generators of P. This leaves three
cases to handle.
Suppose that |A1| = |p1| = 0. Then,

li %0 05 (A1) %0 1 = A2 *0 (I2 %0 05 (Xa,u,8) *0 T2) *1 p2.

Thus,
, _
11 %0 V1425 *0 V14 [2| *0 Vlt|rg| ¥0T1 = la %0 @ %o u %o 07 (B) *0 T2
l1 *0 V24| A2 *0 Y2+ 22| *0 ’U;-H/\ﬂ X 11 = lg *0 8?(04) *0 U *q ﬁ *0 T2
SO
=« = lo =11 % re = vS *0 T
Y1+]A2] ) Y2+ | Az ) 2 170 Y1+|A2]» 2 24Xz 071
and u is the suffix of Iy g voy|y,| Of length |I1 g voy|n,(| — |l2 %0 05 (@)]. In particular, Xq g is

completely determined by A; and |Az]. And since
[A2| = 105 (A1)| — |05 (Xa,u,8)| — |p2| € {0, ..., 105 (A1)| — 2},

there is a finite number of possible X, ,, g which induce a critical branching (57, Sz2).
Suppose now that [A;| =1 and |p1]| = 0. Then, by Lemma C.1, |A2| = 0. So

A =9 *Qa*o’u,*oaf(ﬁ) *0 79
and
ll *0 V1 *0’}/1 *0’1}3 *0 T'1 :lg *Oaf_(a) *Ou*oﬁ*org.
In particular, we have 8 = 1 and ro = v] %o r1, so |r1]| < |rz2|. By Lemma C.1(v), we have |ri| =0
and r2 = v]. Note that we have |u| < |v1|. Indeed, otherwise u = u’ % vy for some v’ and, since
1]+ || = [la| + 187 ()] + |ul,
we get that |l2| < |l;]. By Lemma C.1(iv), it implies that |lz| = 0 and I; = 97 (a) o v/, which gives
S1 = (axo u' %0 0y (A1) *1 (97 () %0 ' %0 Ay)
and
Sa = (Xaurxgur.m %0 v1) %0 (05 () %0 u') %o ((v2 %0 Y2 %0 vh) 1 -+ 1 (U *0 Yk *0 VL))

so that (S7,.52) is a natural branching, contradicting the fact that (S7,S2) is a critical branching.

Hence, |u| < |vi| and w is a strict suffix of vq, thus there are |v1] such possible u. Moreover,
since P, is finite, there are a finite number of possible @ € P5. Hence, there are a finite number
of possible X, 4 g € P2 that induces a critical branching (Si,.52) such that [A;| = 1 and |p1] = 0.
The case where |A1] = 0 and |p1]| = 1 is similarly handled, which concludes the proof. O

We can now conclude the finiteness property for critical branchings of Gray presentations:

Theorem 3.4.6. Given a Gray presentation Q where Qg and Qs are finite and |05 (A)| > 0 for
every A € Qs, there is a finite number of local branchings (S1,S2) with rewriting steps S1,Se € Qj
such that (S1,S2) is a critical branching.

Proof. Let S; = A;*q (I; %0 A; %o ;) %1 p; with 1;,r; € QF, Ai, pi € Q5 and A; € Qg for i € {1,2} such
that (S1, S2) is a critical branching of Q. By Lemma C.4, such a branching is uniquely determined
by Ai, Az, |A1] and |A2|. By Lemma C.3,

Al <105 (A2)| and  [Ao| < [0 (A1)l

Hence, for a given pair (A4, As2), there are a finite number of tuples (I1,l2,71,72, A1, A2, p1, P2)
such that (S7,S2) is a critical branching. Moreover, by Proposition C.2, either A; or Ay is an
operational generator. By symmetry, we can suppose that A; is operational. Since Qg is finite,
there is a finite number of such A;. Moreover, there are a finite number of pairs (A;, Az) where Ay
is operational too. If As is an interchange generator, then, by Lemma C.5, there are a finite
number of possible Ay for a given A; such that (S1,S2) is a critical branching, which concludes
the finiteness analysis. O
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