
ar
X

iv
:2

20
6.

05
71

6v
1

 [
cs

.P
L

]
 1

2
Ju

n
20

22

D
R
A
FT

Divergences on Monads for Relational Program Logics

Tetsuya Sato Shin-ya Katsumata

June 14, 2022

Abstract

Several relational program logics have been introduced for integrating reasoning about
relational properties of programs and measurement of quantitative difference between com-
putational effects. Towards a general framework for such logics, in this paper, we formalize
quantitative difference between computational effects as divergence on monad, then develop
a relational program logic acRL that supports generic computational effects and divergences
on them. To give a categorical semantics of acRL supporting divergences, we give a method
to obtain graded strong relational liftings from divergences on monads. We derive two in-
stantiations of acRL for the verification of 1) various differential privacy of higher-order
functional probabilistic programs and 2) difference of distribution of costs between higher-
order functional programs with probabilistic choice and cost counting operations.

1 Introduction

Comparing behavior of programs is one of the fundamental activities in the verification and
analysis of programs, and many concepts, techniques and formal systems have been proposed for
this purpose, such as product program construction ([11]), relational Hoare logic ([14]), higher-
order relational refinement types ([9]) and so on.

Several recent relational program logics integrate compositional reasoning about relational
properties of programs and over-approximation of quantitative difference between computational
effects of programs; the latter is done in the style of effect system ([36]). One successful logic
of this kind is Barthe et al.’s approximate probabilistic relational Hoare logic (apRHL for short)
designed for verifying differential privacy of probabilistic programs ([12]). A judgment of apRHL
is of the form c ∼ǫ,δ c

′ : Φ ⇒ Ψ, and its intuitive meaning is that for any state pair (ρ, ρ′) related
by Φ, the ǫ-distance between two probability distributions of final states [[c]]ρ and [[c′]]ρ′ is below δ,
and final states satisfy Ψ. Another relational program logic that measures the difference between
computational effects of programs is Çiçek et al.’s RelCost ([18]). The target of the reasoning
is a higher-order programming language equipped with cost counting effect. When we derive a
judgment ∆;Ψ; Γ ⊢M1 ⊖M2 - n : Φ in RelCost, the sound semantics ensures that the difference
of cost counts by M1 and M2 is bound by n.

A high-level view on these relational program logics is that they integrate the feature of mea-
suring quantitative difference between computational effects into relational program logic. We
are interested in extracting mathematical essence of this design and making relational program
logics versatile. Towards this goal, we contribute the following development.

• We introduce a structure called divergence on monad for measuring quantitative difference
between computational effects (Section 4, 5). This generalizes various statistical diver-
gences, such as Kullback-Leibler divergence and total variation distance on probability

1

http://arxiv.org/abs/2206.05716v1

D
R
A
FT

distributions. After exploring examples of divergence on monads, we introduce a method
to transfer divergences on a monad to those on another monad through monad opfunctors.

• The key structure to integrate divergences on monads and relational program logics is
something called graded strong relational lifting of monads that extends given divergences.
We present a general construction of such liftings from divergences on monads in Section
7. This generalization shows that the development of relational program logics with quan-
titative measurement on computational effects can be done with various combinations of
monads and divergences on them.

• We introduce a generic relational program logic (called acRL) over Moggi’s computational
metalanguage (the simply-typed lambda calculus with monadic types) in Section 8. Inside
acRL, we can use graded strong relational liftings constructed from divergences on a monad,
and reason about relational properties of programs together with quantitative difference
of computational effects. To illustrate how the reasoning works in acRL, we instantiate it
with the computational metalanguage having effectful operations for continuous random
sampling (Section 9) and cost counting operation (Section 10).

2 Preliminaries

We assume basic knowledge about category theory ([37]) and Moggi’s model of computational
effects ([42]). The definition of monad [37, Chapter VI] and Kleisli category [37, Section VI.5]
are omitted.

In this paper, a Cartesian category (CC for short) is specified by a category C with a desig-
nated final object 1 and a binary product functor (×) : C2 → C. The associated pairing operation
and projection morphisms are denoted by 〈−,−〉, π1, π2, respectively. The unique morphism to
the terminal object is denoted by !I : I → 1. A Cartesian closed category (CCC for short) is a CC
(C, 1, (×)) with a specified exponential functor (⇒) : Cop × C → C. The associated evaluation
morphism and currying operation is denoted by ev, λ(−) respectively.

Let (C, 1, (×)) be a CC. A global element of I ∈ C is a morphism of type 1 → I. For a
category C, we define the functor UC : C → Set by UC = C(1,−). When C is obvious, UC

is denoted by C. Morphisms in C act on global elements by the composition. To emphasize
this action, we introduce a dedicated notation (•) whose type is C(I, J)×UI → UJ . Of course,
f•x , f◦x = (Uf)(x). We also define the partial application of a binary morphism f : I×J → K
to a global element i ∈ UI by fi , f ◦ 〈i◦!J , idJ〉 : J → K. When C is a CCC, there is an evident
isomorphism ⌊−⌋ : U(I ⇒ J) ∼= C(I, J). We write ⌈−⌉ for its inverse.

A monad (T, η, µ) on a category C determines the operation (−)♯ : C(I, TJ) → C(TI, TJ)
called Kleisli extension. It is defined by f ♯ , µJ ◦ Tf . A monad may be given as a Kleisli triple
[42, Definition 1.2]. A strong monad on a CC (C, 1, (×)) is a pair of a monad (T, η, µ) and a
natural transformation θI,J : I × TJ → T (I × J) called strength. It should satisfy four axioms;
see [42, Definition 3.2] for detail.

In a CC-SM (C, 1, (×), T, η, µ, θ), the application of the strength to a global element can be
expressed by the unit and the Kleisli extension of T [42, Proof of Proposition 3.4]:

θI,J • 〈i, c〉 = ((ηI×J)i)
♯ • c (i ∈ UI, c ∈ U(TJ)). (1)

We will use this fact in Proposition 7 and Proposition 1.
There are plenty of examples of C(C)Cs. For the models of probabilistic computation, we

will later use CC Meas of measurable spaces and CCC QBS of quasi-Borel spaces ([28]). Their
definitions are deferred to Section 13.

2

D
R
A
FT

2.1 Category of Binary Relations

We next introduce the category BRel(C) of binary relations over C-objects. This category is
equivalent to subscones of C2 ([41]). It offers an underlying category for relational reasoning
about programs interpreted in C.

• An object in BRel(C) is a triple (I1, I2, R) where R ⊆ UI × UJ .

• A morphism from (I1, I2, R) to (J1, J2, S) in BRel(C) is a pair of C-morphisms f1 : I1 → J1
and f2 : I2 → J2 such that for any (i1, i2) ∈ R, we have (f1 • i1, f2 • i2) ∈ S.

When X is a name of a BRel(C)-object, by X1, X2 we mean its first and second component,
and by RX we mean its third component; so X = (X1, X2, RX). By (x1, x2) ∈ X we mean
(x1, x2) ∈ RX . For objects X,Y ∈ BRel(C) and a morphism (f1, f2) : (X1, X2) → (Y1, Y2) in
C2, by

(f1, f2) : X →̇ Y

we mean that (f1, f2) ∈ BRel(C)(X,Y), that is, for any (x1, x2) ∈ X , we have (f1 •x1, f2 •x2) ∈
Y . We say that X ∈ BRel(C) is an endorelation (over I) if X1 = X2(= I).

We next define the forgetful functor pC : BRel(C) → C2 by

pCX , (X1, X2), pC(f1, f2) , (f1, f2).

For (I1, I2) ∈ C2, byBRel(C)(I1,I2) we mean the complete boolean algebra {X ∈ BRel(C) |X1 =
I1 ∧X2 = I2} with the order given by X ≤ Y ⇐⇒ RX ⊆ RY .

When C is a C(C)C, so is BRel(C) [41, Proposition 4.3]. We specify a final object, a binary
product functor and an exponential functor (in case C is a CCC) on BRel(C) by:

1̇ , (1, 1, {(id1, id1)})
X ×̇ Y , (X1 × Y1, X2 × Y2, {(〈x1, y1〉, 〈x2, y2〉) | (x1, x2) ∈ X, (y1, y2) ∈ Y })
X ⇒̇ Y , (X1 ⇒ Y1, X2 ⇒ Y2, {(f1, f2) | ∀(x1, x2) ∈ X . (ev ◦ 〈f1, x1〉, ev ◦ 〈f2, x2〉) ∈ Y }).

3 Divergences on Objects

We introduce the concept of divergence on objects in a CC C. Major differences between diver-
gence and metric are threefold: 1) it is defined over objects in C, 2) no axioms is imposed on it,
and 3) it takes values in a partially ordered monoid called divergence domain, which we define
below.

Definition 1. A divergence domain Q = (Q,≤, 0, (+)) is a partially ordered commutative
monoid whose poset part is a complete lattice.

The monoid addition (+) is only required to be monotone; no interaction with the sup /
inf is required. We reserve the letter Q to denote a general divergence domain. Examples of
divergence domains are:

N = (N ∪ {∞},≤, 0, (+)), R+ = ([0,∞],≤, 0, (+)),

R× = ([0,∞],≤, 1, (×)), R+
1 = ([0,∞],≤, 0, λ(p, q) . p+ q + pq),

Z = (Z ∪ {∞,−∞},≤, 0, (+̄)), R = ([−∞,∞],≤, 0, (+̄))

Here, +̄ is an extension of the addition by r +̄ (−∞) = (−∞) +̄ r = −∞.

3

D
R
A
FT

Definition 2. Let C be a CC. A Q-divergence on an object I ∈ C is a function d : (UI)2 → Q.

A suitable notion of morphism between C-objects with divergences is nonexpansive morphism.

Definition 3. Let C be a CC. We define the category DivQ(C) of Q-divergences on C-objects
and nonexpansive morphisms between them by the following data.

• An object is a pair (I, d) of an object I ∈ C and a Q-divergence d on I.

• A morphism from (I, d) to (J, e) is a C-morphism f : I → J such that for any x1, x2 ∈ UI,
e(f • x1, f • x2) ≤ d(x1, x2) holds.

For an object X ∈ DivQ(C), by dX we mean its Q-divergence part. We also define the forgetful
functor VQ,C : DivQ(C) → C by VQ,C(I, d) , I and VQ,C(f) , f .

We remark that the forgetful functor VQ,Set : DivQ(Set) → Set is a (Grothendieck) fibration,

and the functor U : DivQ(C) → DivQ(Set) defined by U(I, d) , (UI, d) and U(f) , f makes the
following commutative square a pullback in CAT (the large category of categories and functors
between them):

DivQ(C)

VQ,C

��

❴

✤

U // DivQ(Set)

VQ,Set

��

C
U

// Set

Therefore this pullback diagram asserts that VQ,C : DivQ(C) → C arises from the change-of-base
of the fibration VQ,Set along the global section functor U : C → Set ([29]).

4 Divergences on Monads

We introduce the concept of divergence on monad as a quantitative measure of difference between
computational effects. This is hinted from Barthe and Olmedo’s composable divergences on
probability distributions ([13]). Divergences on monads are defined upon two extra data called
grading monoid and basic endorelation.

Definition 4. A grading monoid is a partially ordered monoid (M,≤, 1, (·)).
Definition 5. A basic endorelation is a functor E : C → BRel(C) such that EI is an endorelation
on I.

Grading monoids will be used when formulating (ε, δ)-differential privacy as a divergence on
a monad. Basic endorelations specify which global elements are regarded as identical. Any CC
C has at least two basic endorelations of equality relations and total relations:

EqI , (I, I, {(i, i) | i ∈ UI}) TopI , (I, I, UI × UI).

Other examples of basic endorelations can be found in concrete categories.

• The categoryDivQ(C) ofQ-divergences on C-objects has a basic relation Eδ parameterized
by δ ∈ Q. It collects all pairs of global elements whose divergence is bound by d. That is,
Eδ(I, d) , (I, I, {(x1, x2) | d(x1, x2) ≤ δ}).

• The category of preorders and monotone functions has the basic endorelation Eeq collecting

equivalent global elements: Eeq(I,≤) , (I, I, {(x, y) | x ≤ y ∧ y ≤ x}).

4

D
R
A
FT

Definition 6. Let (C, 1, (×), T, η, µ, θ) be a CC-SM, Q be a divergence domain, (M,≤, 1, (·))
be a grading monoid and E : C → BRel(C) be a basic endorelation. An E-relative M -graded
Q-divergence (when M = 1, we drop “M -graded”) on the monad T is a doubly-indexed family
of Q-divergences ∆ = {∆m

I : (U(TI))2 → Q}m∈M,I∈C satisfying the following conditions:

Monotonicity For any m ≤ m′ in M , I ∈ C and c1, c2 ∈ U(TI),

∆m
I (c1, c2) ≥ ∆m′

I (c1, c2).

E-unit Reflexivity For any I ∈ C,

sup
(x1,x2)∈EI

∆1
I(ηI • x1, ηI • x2) ≤ 0.

E-composability For any m1,m2 ∈M , I, J ∈ C, c1, c2 ∈ U(TI) and f1, f2 : I → TJ ,

∆m1·m2

J (f ♯
1 • c1, f ♯

2 • c2) ≤ ∆m1

I (c1, c2) + sup
(x1,x2)∈EI

∆m2

J (f1 • x1, f2 • x2).

We write Div(T,E,M,Q) for the collection of E-relative M -graded Q-divergences on T . We
introduce a partial order � on Div(T,E,M,Q) by:

∆1 � ∆2 ⇐⇒ ∀m ∈M, I ∈ C, c1, c2 ∈ U(TI) . (∆1)
m
I (c1, c2) ≥ (∆2)

m
I (c1, c2).

The E-composability condition is a generalization of the composability of differential privacy
stated as [13, Theorem 1]. What is new in this paper is that 1) we introduce a condition on
the monad unit (E-unit reflexivity), and that 2) the sup computed in E-unit reflexivity and
E-composability scans global elements related by E, while [13] only considers the case where
E = Eq. We will later show that both E-unit reflexivity and E-composability play an important
role when connecting divergences, relational liftings of T , and the monad structure of T - these
conditions are necessary and sufficient to construct strong graded relational liftings of T satisfying
fundamental property with respect to divergences (Proposition 2).

5 Examples of Divergences on Monads

5.1 Cost Difference for Deterministic Computations

To aid in understanding the E-unit reflexivity and E-composability conditions, we illustrate a
few divergences on an elementary monad: the cost count monad T = N×− on Set. Its unit and
Kleisli extension are defined by

ηI(x) , (0, x) f ♯(i, x) , (i+ π1(f(x)), π2(f(x))) (x ∈ I, i ∈ N, f : I → TJ).

The monad T can be used to record the cost incurred by deterministic computations. For
instance, consider the quick sort algorithm qsort and the insertion sort algorithm isort, both of
which are modified so that they tick a count whenever they compare two elements to be sorted.
These two modified sort programs are interpreted as functions [[qsort]], [[isort]] : N∗ → T (N∗), so
that the first component of [[qsort]](x) and that of [[isort]](x) report the number of comparisons
performed during sorting x.

We first define an N -divergence CI on TI, for each I ∈ Set, by

CI((i, x), (j, y)) , |i− j|.

5

D
R
A
FT

This divergence CI computes the difference of costs between two computations (i, x), (j, y) ∈ TI,
ignoring their return values. The family C = {CI}I∈Set forms a Top-relative N -divergence on
T . The Top-unit reflexivity of C means that the difference of costs between pure computations
is zero:

CI(ηI(x), ηI (y)) = CI((0, x), (0, y)) = 0.

The Top-composability of C says that we can limit the cost difference of two runs of programs
f ♯(i, x) and g♯(j, y) by the sum of cost difference of the preceding computations (i, x), (j, y) and
that of two programs f, g : I → TJ . The latter is measured by taking the sup of cost difference
of f(x) and g(y), where (x, y) range over the basic endorelation TopI.

CI(f
♯(i, x), g♯(j, y)) = CI(i+ π1(f(x)), π2(f(x)), j + π1(g(y)), π2(g(y)))

≤ |i − j|+ sup
x,y∈I

|π1(f(x)) − π1(g(y))|

= CI((i, x), (j, y)) + sup
(x,y)∈TopI

CJ(f(x), g(y)).

We remark that C is not an Eq-relativeN -divergence on T because the Eq-composability fails:
when f(x) = (0, w), f(y) = (1, w) and f(z) = (0, v) (for z 6= x, y) we have CI((0, x), (0, y)) = 0
and sup(x,y)∈EqI CJ(f(x), f(y)) = 0, but we have CJ(f

♯(0, x), f ♯(0, y)) = CJ((0, w), (1, w)) = 1.
Alternatively, we may consider the following N -divergence C′

I on TI for each I ∈ Set:

C′
I((i, x), (j, y)) ,

{
|i − j| x = y

∞ x 6= y
.

This divergence is sensitive on return values of computations. When return values of two com-
putations agree, C′ measures the cost difference as done in C, but when they do not agree, the
cost difference is judged as ∞. This divergence is an Eq-relative N -divergence on T .

5.2 Cost Difference for Nondeterministic Computations

Deterministic and nondeterministic computations with cost counting can be respectively modeled
by the monads (N×−) and P (N× −) on Set.

We define the divergences for cost difference as in Table 1. These divergences extract the
upper bound of cost difference between two computations. The divergences C and NC measure
the usual distance of costs for deterministic and nondeterministic computations respectively.
The divergence NCI measures the subtraction of costs of two nondeterministic computations. For
results of two nondeterministic computations A,B ∈ P (N× I), the divergence NCII(A,B) is an
upper bound of i − j for all possible choices of (i, x) ∈ A and (j, y) ∈ B, where a lower bound
of i− j is also given by −NCII(B,A). The same idea to measure the difference of costs between
two programs by subtraction also appears in ([18, 47]). If either A or B is empty, we fail to get
an information of costs. We then have NCII(A,B) = −∞. On the other hand, if both A and B
are not empty, their cost intervals are defined by

[lA, hA] , [inf
(i,x)∈A

i, sup
(i,x)∈A

i], [lB, hB] , [inf
(j,y)∈B

j, sup
(j,y)∈B

j].

We then have NCII(A,B) = hA − lB and −NCII(B,A) = lA − hB.

6

D
R
A
FT

Table 1: (1-graded) Top-relative Q-divergences for cost counting monads
∆ ∈ Div(T,Top, 1,Q) T Q Definition of ∆I(c1, c2)

C N×− N CI((i, x), (j, y)) = |i− j|
NC P (N×−) N NCI(A,B) = sup(i,x)∈A,(j,y)∈B |i− j|
NCI P (N×−) Z NCII(A,B) = sup(i,x)∈A,(j,y)∈B i− j

5.3 Divergences for Differential Privacy

Differential privacy (DP for short) is a quantitative definition of privacy of randomized queries in
databases. DP is based on the idea of noise-adding anonymization against background-knowledge
attacks. In the study of DP, a query is modeled by a measurable function c : I → GJ , where I
and J are measurable spaces of inputs and outputs respectively, and GJ is the measurable space
of all probability measures over J ; here G itself refers to the Giry monad ([26]; see also Section
13).

Definition 7 (Differential Privacy, ([21])). Let c : I → GJ be a morphism in Meas, representing
a randomized query. The query c satisfies (ε, δ)-differential privacy (ǫ, δ ≥ 0 are reals) if for any
adjacent datasets (d1, d2) ∈ Radj

1, the following holds:

∀S ⊆measurable J. Pr[c(d1) ∈ S] ≤ exp(ε) Pr[c(d2) ∈ S] + δ.

To express this definition in terms of divergence on monad, we introduce a doubly-indexed
family of R+-divergence DP = {DPε

J}ε∈[0,∞],J∈Meas on GJ by

DPε
J(µ1, µ2) , sup

S∈ΣJ

(µ1(S)− exp(ε)µ2(S)) (µ1, µ2 ∈ GJ).

Then the query c : I → GJ satisfies (ε, δ)-DP if and only if

∀(d1, d2) ∈ Radj . DP
ε
J (c(d1), c(d2)) ≤ δ.

The pair (ε, δ) indicates the difference between output probability distributions c(d1) and c(d2)
of the query c for given datasets d1 and d2. Intuitively, the parameter ε is an upper bound of
the ratio Pr[c(d1) = s]/Pr[c(d2) = s] of probabilities which indicates the leakage of privacy. If ε
is large, attackers can distinguish the datasets d1 and d2 from the outputs of the query c. The
parameter δ is the probability of failure of privacy protection.

The family DP forms an Eq-relative R+-graded R+-divergence on the Giry monad G [52,
Lemma 6]. This is proved by extending the composability of the divergence for DP on discrete
probability distributions shown as [12, Lemmas 3 and 6] and [13, Proposition 5], based on the
composition theorem of DP [22, Section 3.5].

The conditions in Definition 6 on DP corresponds to the following basic properties of DP:

(monotonicity) The monotonicity of DP corresponds to weakening the differential privacy of
queries: if c satisfies (ε, δ)-DP and ε ≤ ε′ and δ ≤ δ′ holds, then c satisfies (ε′, δ′)-DP.

(Eq-unit reflexivity) The Eq-unit reflexivity of DP implies DP0
J (ηJ ◦ h(x), ηJ ◦ h(x)) = 0 for

any measurable function h : I → J and x ∈ I. This, together with the composability

1Strictly speaking, differential privacy depends on the definition of adjacency of datasets. The adjacency
relation Radj is usually defined as {(d1, d2)|ρ(d1, d2) ≤ 1} with a metric ρ over I.

7

D
R
A
FT

below, ensures the robustness of DP of a query c : I → GJ with respect to deterministic
postprocessing:

∀h : J → K . c is (ǫ, δ)-DP =⇒ Gh ◦ c is (ǫ, δ)-DP. (2)

In fact, the divergence DP is reflexive: we have DP0
J (µ, µ) = 0 for every µ ∈ GJ . Therefore

h : J → K and Gh in (2) can be replaced by h : J → GK and h♯; the replaced condition
states the robustness of DP of a query with respect to probabilistic postprocessing.

(Eq-composability) The Eq-composability of DP corresponds to the known property of DP
called the sequential composition theorem ([22]). If c1 : I → GJ ′ and c2 : J

′ → GJ are

(ε1, δ1)-DP and (ε2, δ2)-DP respectively, then the sequential composition c♯2 ◦ c1 : I → GJ
of the queries c1 and c2 is (ε1 + ε2, δ1 + δ2)-DP.

A Non-Example: Pointwise Differential Privacy. We stated above that a parameter
(ε, δ) of DP intuitively gives an upper bound of the probability ratio Pr[c(d1) = s]/Pr[c(d2) = s]
and the probability of failure of privacy protection. However, strictly speaking, there is a gap
between the definition of (ε, δ)-DP and this intuition of ε and δ. Pointwise differential privacy
([46, Definition 3.2] and [27, Proposition 1.2.3]) is a finer definition of DP that is faithful to the
intuition.

Definition 8. A measurable function c : I → GJ (regarded as a query) is pointwise (ε, δ)-
differentially private if whenever d1 and d2 are adjacent, for some A ∈ ΣJ with Pr[c(d1) /∈ A] ≤ δ,
we have

∀s ∈ A. Pr[c(d1) = s] ≤ exp(ε) Pr[c(d2) = s],

which is equivalent to 2

∀S ⊆measurable A. Pr[c(d1) ∈ S] ≤ exp(ε) Pr[c(d2) ∈ S].

To express this definition in terms of divergence on monad, we introduce a doubly-indexed
family of R+-divergences pwDP = {pwDPε

J}ε∈R+,J∈Meas called pointwise indistinguishability:

pwDPε
J(µ1, µ2) , inf {µ1(J \A) | A ∈ ΣX ∧ (∀S ∈ ΣJ .S ⊆ A =⇒ µ1(S) ≤ exp(ε)µ2(S))} .

Then c : I → GJ is pointwise (ε, δ)-differentially private if and only if

∀(d1, d2) ∈ Radj . pwDP
ε
J(c(d1), c(d2)) ≤ δ.

The family pwDP is obviously reflexive: pwDPε
J(µ, µ) = 0 holds for any µ ∈ GJ and ε ≥ 0. Hence

it is Eq-unit reflexive too. However, it is not Eq-composable. We let 3 = {0, 1, 2} and 2 = {0, 1}
be discrete spaces, and let α = exp(ε). We define two probability distributions µ1, µ2 ∈ G3 by

µ1 ,
1

10
d0 +

9

10
d1, µ2 ,

9

10α
d1 + (1− 9

10α
)d2.

We then have pwDPε
3(µ1, µ2) =

1
10 with A = {1, 2} since 1

10 > exp(ε) · 0, 9
10 ≤ exp(ε) · 9

10α , and
0 ≤ exp(ε) · (1 − 9

10α). Next, we define f : 3 → G2 by

f(0) ,
1

10
d0 +

9

10
d1, f(1) ,

9

10
d0 +

1

10
d1, f(2) , d1.

2Remark that Pr[c(d1) = s] and Pr[c(d2) = s] are Radon-Nikodym derivatives of c(d1) and c(d2) with respect
to a measure ν such that c(d1), c(d2) ≪ ν. [=⇒] Obvious. [⇐=] By Radon-Nikodym theorem we can take the
Radon-Nikodym derivatives Pr[c(d1) = s] and Pr[c(d2) = s] with respect to ν = c(d1) + c(d2). The inequality
does not depend on the choice of ν.

8

D
R
A
FT

Table 2: Eq-relative M -graded Q- (Qs-)divergences on G (Gs)
∆ M Q Qs Definition of ∆m

I (µ1, µ2) Composability proof
DP R+ R+ R+ supS∈ΣI

(µ1(S)− exp(ε)µ2(S)) ([13])
αRe 1 R+ R 1

α−1 log
∫
I

(
µ1(x)
µ2(x)

)α
µ2(x) dx. ([40])

zCDP R+ R+ R sup1<α
1
α
(αReI(µ1, µ2)−m) ([17])

wtCDP 1 R+ R sup1<α<w
1
α
(αReI(µ1, µ2)) ([16])

Table 3: Statistical divergences that are Eq-relative Q- (resp. Qs-) divergences on G (resp. Gs)
Name ∆ Q Qs Definition of ∆m

I (µ1, µ2)

Total variation distance TV R+ R+ 1
2

∫
I
|µ1(x)− µ2(x)| dx

Kullback-Leibler divergence KL R+ ?
∫
I
µ1(x) log

(
µ1(x)
µ2(x)

)
dx

Hellinger distance HD R+ ? 1
2

∫
I

(√
µ1(x) −

√
µ2(x)

)2
dx

χ2-divergence Chi R+
1 ?

∫
I

(µ1(x)−µ2(x))
2

µ2(x)
dx

We then calculate

f ♯(µ1) =
82

100
d0 +

18

100
d1, f ♯(µ2) =

81

100α
d0 + (

100α− 90 + 9

100α
)d1.

Then, we obtain pwDPε
2(f

♯(µ1), f
♯(µ2)) = 82

100 with A = {0} since 82
100 > exp(ε) 81

100α . Hence
pwDPε

2(f
♯(µ1), f

♯(µ2)) =
82
100 >

1
10 = pwDPε

3(µ1, µ2). Thus pwDP is not Eq-composable, because

by the reflexivity of pwDP, we have sup(x,y)∈Eq3
pwDP0(f(x), f(y)) = 0.

Various Relaxations of Differential Privacy Since the seminal work on DP by [21], various
relaxations of differential privacy have been proposed: Rényi DP ([40]), zero-concentrated DP
([17]) and truncated zero-concentrated DP ([16]). They give tighter bounds of differential privacy.
These relaxations of differential privacy can be expressed by suitable divergences on the Giry
monad G and sub-Giry monad Gs; see Table 2 for their definitions. There, α,w ∈ (1,∞) are
non-grading parameters for Re and tCDP. Each row of the table represents that ∆ is an Eq-
relative Q- (resp. Qs-) divergences on G (resp. Gs), and the definition of ∆I(µ1, µ2) follows.

5.4 Statistical Divergences and Composablity of f-Divergences

Apart from differential privacy, various distances between (sub-)probability distributions are
introduced in probability theory. They are called statistical divergences. Examples include: total
variation distance TV, Hellinger distance HD, Kullback-Leibler divergence KL, and χ2-divergence
Chi; they are defined in Table 3. These statistical divergences are Eq-relative divergences on
the Giry monad G (and Gs for TV); see the same table for their divergence domains. Question
marks in the column of Qs means that we do not know with which monoid structure the Eq-
composability holds. We remark that these divergences are also reflexive, that is, ∆(c, c) = 0.
Eq-composability of these divergences in discrete form are proved in ([13, 45]). Later, [52] extends
their results to the composability of divergences in continuous form.

Each of four divergences in Table 3 can be expressed as an f -divergence fDiv ([19, 20, 43]):

fDivI(µ1, µ2) ,

∫

I

µ2(x)f

(
µ1(x)

µ2(x)

)
dx.

9

D
R
A
FT

Table 4: Parameters for Proposition 1
fDiv Weight function f γ α β β′

TV f(t) = |t− 1|/2 0 0 1 0
KL f(t) = f log(t)− t+ 1 0 −1 1 1

HD f(t) = (
√
t− 1)2/2 0 −1/4 1/2 1/2

Chi f(t) = (t− 1)2/2 1 −2 2 2

Here, f is a parameter called weight function, and has to be a convex function f : [0,∞) →
R, continuous at 0 and satisfying limx→+0 xf(x) = 0. Weight functions for four divergences
TV,KL,HD,Chi are in Table 4. In fact, DPε is also an f -divergence with weight function f(t) =
max(0, t− exp(ε)); see [13, Proposition 2]. We also remark that Rényi divergence αRe of order
α is the logarithm of the f -divergence with weight function f(t) = tα.

f -divergences have several nice properties such as reflexivity, postprocessing inequality, joint-
convexity, duality and continuity ([20, 35]). However, the Eq-composability of f -divergences is
not guaranteed in general. Here we provide a sufficient condition for the Eq-composability of
fDiv over a specific form of divergence domain.

Proposition 1. Let γ ≥ 0 be a nonnegative real number, R+
γ = ([0,∞],≤, 0, λ(p, q) . p+q+γpq)

be the divergence domain, and f be a weight function such that f ≥ 0 and f(1) = 0. If there
exists α, β, β′ ∈ R such that, for all x, y, z, w ∈ [0, 1], the following hold (suppose 0f(0/0) = 0):

0 ≤ (β′z + (1− β′)x) + γxf (z/x)

xyf (zw/xy) ≤ (βw + (1− β)y)xf (z/x) + (β′z + (1 − β′)x)yf (w/y)

+ γxyf (z/x) f (w/y) + α(x− z)(w − y),

then fDiv is an Eq-relative R+
γ -divergence on the Giry monad G. When α = 0 and β, β′ ∈ [0, 1],

G can be replaced with the sub-Giry monad Gs.

The proof of this proposition generalizes and integrates the proofs given in [45, Section 5.A.2].
This proposition is applicable to prove the composability of divergences in Table 3 by choosing
suitable parameters; see Table 4.

5.5 Divergences on the Probability Monad on QBS via Monad Op-
functors.

We have seen various divergences on the Giry monad G. It would be nice if they are transferred
to the probability monad P on QBS (Section 13). For this, we first develop a generic method
for transferring divergences on monads.

Let (C, S) and (D, T) be two CC-SMs. A monad opfunctor [53, Section 4] is a functor
p : C → D together with a natural transformation λ : p◦S → T ◦p making the following diagrams
commute:

p

p◦ηS

��

ηT ◦p

##●
●

●

●

●

●

●

●

●

●

p ◦ S ◦ S λ◦S //

p◦µS

��

T ◦ p ◦ S T◦λ // T ◦ T ◦ p

µT ◦p
��

p ◦ S
λ

// T ◦ p p ◦ S
λ

// T ◦ p

10

D
R
A
FT

Proposition 2. Let (C, S), (D, T) be two CC-SMs, (p : C → D, λ : p ◦ S → T ◦ p) be a monad
opfunctor, and assume that UD ◦ p = UC holds, and basic endorelations F : C → BRel(C)
and E : D → BRel(D) satisfy RFpI = REI for all I ∈ C (we here use UD ◦ p = UC). Then
for any ∆ ∈ Div(T,E,M,Q), the following doubly-indexed family of Q-divergences 〈p, λ〉∗∆ =
{(〈p, λ〉∗∆)mI }m∈M,I∈C on SI is an F -relative M -graded Q-divergence on S:

(〈p, λ〉∗∆)mI (ν1, ν2) , ∆m
pI(λI • ν1, λI • ν2) = ∆m

pI((U
DλI)(ν1), (U

DλI)(ν2)).

The left adjoint L : QBS → Meas of the adjunction L ⊣ K : Meas → QBS and the natural
transformation l : LP ⇒ GL defined by lX([α, µ]∼X

) = µ(α−1(−)) forms a monad opfunctor
from the probability monad P on QBS to the Giry monad G on Meas [28, Prop. 22 (3)].
Through this monad opfunctor (L, l), we can convert Eq-divergences on G to those on P . This
conversion can be applied to all the statistical divergences in Table 2 and 3.

In addition, for any standard Borel space, we can view such converted divergences 〈L, l〉∗∆ as
the same thing as the original∆. When Ω ∈ Meas is standard Borel, we have an equality LKΩ =
Ω, and lKΩ is an isomorphism. Therefore we obtain an isomorphism lKΩ : LPKΩ ∼= GLKΩ =
GΩ [28, Prop. 22 (4)]. A concrete description of its inverse is l−1

KΩ • µ = [γ′, µ(γ−1(−))]∼KΩ
,

where γ′ : R → Ω and γ : Ω → R are a section-retraction pair (i.e. γ′ ◦ γ = idΩ) that exists for
any standard Borel Ω.

Theorem 1. For any ∆ ∈ Div(G,Eq,M,Q) and standard Borel Ω ∈ Meas,

(〈L, l〉∗∆)mKΩ(l
−1
KΩ • µ1, l

−1
KΩ • µ2) = ∆m

Ω (µ1, µ2) (µ1, µ2 ∈ U(GΩ)).

5.6 Divergences on State Monads

The state monad TS , S ⇒ (− × S) with a state space S is used to represent programs that
update the state. We construct divergences on TS using divergences dS on the state space S in
several ways.

5.6.1 Lipschitz Constant on States

We first consider the state monad TS on Set. We also consider a function dS : S
2 → [0,∞]

satisfying dS(s, s) = 0. The following R×-divergence ∆
lip,dS

I (f1, f2) on TSI measures how much
the function pair (π2 ◦ f1, π2 ◦ f2) extends the distance between two states before updated. In
short, ∆lip,dS measures the Lipschitz constant on state transformers.

Proposition 3. The family ∆lip,dS = {∆lip,dS

I }I∈Set of R×-divergences on TSI defined by

∆
lip,dS

I (f1, f2) , sup
s1,s2∈S

dS(π2(f1(s1)), π2(f2(s2)))

dS(s1, s2)
(f1, f2 ∈ TSI, we suppose 0/0 = 1)

is a Top-relative R×-divergence on TS.

For state transformers f1, f2 ∈ TSI, their state-updating part is given as functions π2 ◦f1, π2◦
f2 ∈ S ⇒ S. When f1 = f2 = g, ∆lip,dS

I (g, g) is exactly the Lipschitz constant of π2 ◦ g.

5.6.2 Distance between State Transformers with the Same Inputs

Suppose that the function dS also satisfies the triangle inequality. The following R+-divergence
∆

met,dS

I (f1, f2) on TSI estimates the distance between updated states after the state transformers
f1 and f2 are applied to the same input.

11

D
R
A
FT

Proposition 4. Suppose that the function dS also satisfy the triangle-inequality. The family
∆met,dS = {∆met,dS

I }I∈Set of R+-divergences on TSI defined by:

∆
met,dS

I (f1, f2) ,





sups∈SdS(π2(f1(s)), π2(f2(s))) π1 ◦ f1 = π1 ◦ f2 and

π2 ◦ f1, π2 ◦ f2 : nonexpansive
∞ otherwise

is an Eq-relative R+-divergence on TS.

5.6.3 Sup-Metric on the State Monad on the Category of Generalized Ultrametric
Spaces

The category Gum of generalized ([0, 1]-valued) ultrametric spaces3 and nonexpansive functions
is Cartesian closed [49, Section 2.2]. We consider the state monad TS = S ⇒ (− × S) on Gum
for a fixed space (S, dS) ∈ Gum. From the definition of exponential objects in Gum, TS(I, dI)
consists of the set of nonexpansive state transformers with the sup metric between them. In fact,
the metric part of all TS(I, dI) forms a divergence on TS .

Proposition 5. The family {dTSI : (TS(I, dI))
2 → [0, 1]}(I,dI)∈Gum consisting of the metric part

of the spaces TS(I, dI), given by

dTSI(f1, f2) , sup
s∈S

max (dI(π1(f1(s)), π1(f2(s))), dS(π2(f1(s)), π2(f2(s))))

forms an Eq-relative ([0, 1],≤,max, 0)-divergence on TS.

In the category Gum, instead of Eq, there is another basic endorelation Dist0:

Dist0(I, dI) , {(x1, x2) | dI(x1, x2) = 0}.

By modifying the divergence dTS(−), we obtain a Dist0-relative ([0, 1],≤,max, 0)-divergence as
below:

Proposition 6. The following forms a Dist0-relative ([0, 1],≤,max, 0)-divergence on TS.

∆Dist0
(I,dI)

(f1, f2) , sup
dS(s1,s2)=0

max(dS(π1(f1(s1)), π1(f2(s2))), dI(π2(f1(s1)), π2(f2(s2)))).

5.7 Combining Divergence with Cost

In Section 5.2, we have introduced a divergence on the monad P (N×−) modeling nondetermin-
istic choice and cost counting. In this section we construct a divergence on the combination of a
general computational effect and cost counting.

Let (C, T) be a CC-SM and∆ ∈ Div(T,Eq, 1,Q) be a divergence and (N, 1N : 1 → N, (⋆) : N×
N → N) be a monoid object in C (for cost counting). Then the composite T (N × −) of the
monad T and the monoid action monad N×(−) again carries a monad structure. We now define
a family C(∆, N) = {C(∆, N)I : (U(T (N × I)))2 → Q}I∈C of Q-divergences by

C(∆, N)I(c1, c2) ,

{
∆N (Tπ1 • c1, T π1 • c2) ∆N×I(c1, c2) ≤ ∆N (Tπ1 • c1, T π1 • c2)
⊤Q otherwise

.

3Recall that an ultrametric space (I, dI) is a set I together with a function dI : I
2 → [0, 1] such that dI(x, x) = 0

and dI (x, z) ≤ max(dI (x, y), dI(y, z)).

12

D
R
A
FT

Proposition 7. The family C(∆, N) is an Eq-relative Q-divergence on T (N ×−).

For example, the divergence C(KL,R) on the composite monad G(R×−) on Meas describes
Kullback-Leibler divergence between distributions of costs in the probabilistic computations with
real-valued costs. Intuitively, the side condition KLR×I(µ1, µ2) ≤ KLR(Gπ1 • µ1, Gπ1 • µ2) in the
definition of C(KL,R) means that the difference between µ1 and µ2 lies only in the costs.

5.8 Preorders on Monads

To explore the generality of our framework, we look at the case where the divergence domain
is B = ({0 ≥ 1}, 1,×); here × is the numerical multiplication. We identify an indexed family
∆ = {∆I : (U(TI))2 → B}I∈C of B-divergences and a family of adjacency relations ∆̃(1)I ,
{(c1, c2) | ∆I(c1, c2) ≤ 1}.

We point out a connection between Eq-relative B-divergences and preorders on monads stud-
ied in ([32, 50]). A preorder on a monad T on Set assigns a preorder ⊑I on TI for each I ∈ Set,
and this assignment satisfies:

Substitutivity For any function f : I → TJ and c1, c2 ∈ TI, c1 ⊑I c2 implies f ♯(c1) ⊑J f
♯(c2).

Congruence For any function f1, f2 : I → TJ , if f1(x) ⊑J f2(x) holds for any x ∈ I, then

f ♯
1(c) ⊑J f

♯
2(c) holds for any c ∈ TI.

Proposition 8. A preorder on a monad T on Set bijectively corresponds to an Eq-relative
B-divergence ∆ on T such that each ∆̃(1)I is a preorder.

For a preorder ⊑ on a monad T on Set, by ∆⊑ we mean the divergence corresponding to ⊑ by

Proposition 8 (in fact, we have ∆̃⊑(1)I = ⊑I for all set I).

6 Properties of Divergences on Monads

6.1 Divergences on Monads as Structures in DivQ(C)

In this section we examine divergences on monads from the view point of monoidal structure of
DivQ(C). For any CC C, the category DivQ(C) has a symmetric monoidal structure, whose
unit and tensor product are given by

I , (1, λ(x1, x2) . 0),

(I, d)⊗ (J, e) , (I × J, λ(〈x1, y1〉, 〈x2, y2〉) . d(x1, x2) + e(y1, y2)).

The coherence isomorphisms of this symmetric monoidal structure are inherited from the Carte-
sian monoidal structure on C. Moreover, VQ,C : DivQ(C) → C becomes a symmetric strict
monoidal functor of type (DivQ(C), I,⊗) → (C, 1, (×)).

6.1.1 Enrichments of Kleisli Categories Induced by Divergences

Let (C, T) be a CC-SM. We first show that a (non-graded) divergence on a monad T attaches
a DivQ(Set)-enrichment on the Kleisli category CT of T . What we mean by attaching an
enrichment to an ordinary category is formulated as follows.

13

D
R
A
FT

Definition 9. A DivQ(Set)-enrichment of a category D is a family {dI,J : D(I, J)2 → Q}I,J∈D

of Q-divergences on the homset D(I, J) such that the following inequalities hold:

dI,I(idI , idI) ≤ 0, (3)

dI,K(g1 ◦ f1, g2 ◦ f2) ≤ dJ,K(g1, g2) + dI,J(f1, f2). (4)

Such an enrichment determines a DivQ(Set)-enriched category Dd, whose object collection
and homobjects are given by

Obj(Dd) , Obj(D), Dd(I, J) , (D(I, J), dI,J).

The identity and composition morphisms of Dd:

jI : I → Dd(I, I), mI,J,K : Dd(J,K)⊗ Dd(I, J) → Dd(I,K)

are inherited from D; they are guaranteed to be nonexpansive by the conditions (3) and (4). The
change of base of enrichment of Dd by the symmetric strict monoidal functor VQ,D : DivQ(D) → D

coincides with D. 4

We relate conditions (3) and (4) with the unit reflexivity and composability conditions in the
definition of divergence on monad (Definition 6).

Theorem 2. Let (C, T) be a CC-SM, E : C → BRel(C) be a basic endorelation such that
RE1 6= ∅ 5 , Q be a divergence domain and ∆ = {∆I : (U(TI))2 → Q}I∈C be a family of
Q-divergences on TI. Define a family d = {dI,J}I,J∈C of Q-divergences on the homset CT (I, J)
of the Kleisli category CT by

dI,J(f1, f2) , sup
(x1,x2)∈EI

∆J (f1 • x1, f2 • x2). (5)

Then d is a DivQ(Set)-enrichment of CT if and only if ∆ is an E-relative Q-divergence on T .

6.1.2 Internalizing Divergences as Structures in DivQ(C)

One might wonder how the Q-divergence (5) given to each homset of CT arises. Under a strength-
ened assumption, we derive it from the closed structure with respect to the monoidal product of
DivQ(C). This allows us to internalize divergences on monads as structures in DivQ(C).

Let (C, T) be a CCC-SM andQ be a divergence domain whose monoid operation (+) preserves
the largest element ⊤ ∈ Q, that is, x +⊤ = ⊤. A consequence of this strengthened assumption
is the following:

Lemma 1. Let (I, d) ∈ DivQ(C) be an object such that d(x1, x2) takes only values in {0,⊤} ⊆ Q.
Then the functor (−) ⊗ (I, d) : DivQ(C) → DivQ(C) has a right adjoint, which we denote by
(I, d) ⊸ (−). Moreover, VQ,C : DivQ(C) → C is a map of adjunction of type:

VQ,C : ((−)⊗ (I, d) ⊣ (I, d) ⊸ (−)) → ((−)× I ⊣ I ⇒ (−)).

The proof of this lemma exhibits that the Q-divergence h associated to the internal hom
object (I, d) ⊸ (J, e) measures the divergence between f1, f2 ∈ U(I ⇒ J) by

h(f1, f2) = sup
x1,x2∈UI,d(x1,x2)=0

e(⌊f1⌋ • x1, ⌊f2⌋ • x2),

4The underlying category of Dd [34, Section 1.3] does not coincide with D.
5RE1 = ∅ happens if and only if REI = ∅ for any I ∈ C. Therefore nontrivial basic endorelations always

satisfy RE1 6= ∅.

14

D
R
A
FT

which almost coincides with the sup part of (5); here ⌊−⌋ : U(I ⇒ J) → C(I, J) is the bijection
given in Section 2. We use this coincidence to characterize the unit-reflexivity and composability
conditions in the definition of divergence on monad (Definition 6). First, we define the internal
Kleisli extension morphism klI,J : TI × (I ⇒ TJ) → TJ by

klI,J , TI × (I ⇒ TJ)
〈π2,π1〉

// (I ⇒ TJ)× TI
θI⇒TJ,I

// T ((I ⇒ TJ)× I)
ev#

// TJ . (6)

Next, for a basic endorelation E : C → BRel(C), we define the functor E′ : C → DivQ(C) by

E′I , (I, dE′I), E′f , f, where dE′I(x1, x2) ,

{
0 (x1, x2) ∈ E
∞ (x1, x2) 6∈ E.

Theorem 3. Let (C, T) be a CCC-SM, (M,≤, 1, (·)) be a grading monoid, Q be a divergence
domain whose monoid operation (+) satisfies x+⊤ = ⊤, and E : C → BRel(C) be a basic en-
dorelation. Let ∆ = {∆m

I }m∈M,I∈C be a doubly-indexed family of Q-divergences on TI, regarded
as DivQ(C)-objects. Then

1. ∆ satisfies the E-unit reflexivity condition if and only if for any I ∈ C, the following
nonexpansivity holds on the global element ⌈ηI⌉ : 1 → I ⇒ TI corresponding to the monad
unit:

⌈ηI⌉ ∈ DivQ(C)(I, E
′I ⊸ ∆1

I).

2. ∆ satisfies the E-composablity condition if and only if for any I, J ∈ C and m,n ∈M , the
following nonexpansivity holds on the internal Kleisli extension morphism klI,J : TI×(I ⇒
TJ) → TJ :

klI,J ∈ DivQ(C)(∆
m
I ⊗ (E′I ⊸ ∆n

J),∆
m·n
J).

[5] formalized families of composable divergences as parameterized assignment in weakly closed
monoidal refinement. Roughly speaking, they adopted the equivalence (2) of Theorem 3 as the
definition of parameterized assignment. However, divergence on monads and parameterized
assignments are built on slightly different categorical foundations, and their generalities are in-
comparable. Notable differences from parameterized assignment are: 1) divergences on monads
are defined in relative to basic endorelations, and 2) the underlying category of divergences on
monads is any CCs, while parameterized assignments requires closed structure on their under-
lying category. In this sense divergences on monads are a mild generalization of parameterized
assignments.

6.1.3 Divergences on Monads and Divergence Liftings of Monads

We next relate graded divergences on monads and monad-like structures on the categoryDivQ(C)
of Q-divergences on C-objects. What we mean by monad-like structures is graded divergence lift-
ings of monads on C, which we introduce below. It is a graded monad on DivQ(C) ([31]) whose
unit and multiplication are inherited from a monad on C.

Definition 10. Let (C, T) be a CC-SM, M be a grading monoid and Q be a divergence domain.
AnM -gradedQ-divergence lifting of T is an mapping Ṫ :M×Obj(DivQ(C)) → Obj(DivQ(C))
such that (below V stands for the forgetful functor VQ,C : DivQ(C) → C)

1. V (ṪmX) = T (V X)

2. m ≤ n implies ṪmX ≤ Ṫ nX

15

D
R
A
FT

3. ηVX ∈ DivQ(C)(X, Ṫ1X)

4. µVX : DivQ(C)(Ṫm(Ṫ nX), Ṫ (m · n)X).

Let E : C → BRel(C) be a basic endorelation. We say that an M -graded Q-divergence lifting
Ṫ of T is E-strong if the strength θ of T satisfies

θV X,J ∈ DivQ(C)(X ⊗ Ṫm(E′J), Ṫm(X ⊗ E′J)).

We write SGDLift(T,E,M,Q) for the collection of E-strong M -graded Q-divergence liftings of
T . We introduce a partial order � on SGDLift(T,E,M,Q) by

Ṫ � Ṡ ⇐⇒ ∀m ∈M,X ∈ DivQ(C), c1, c2 ∈ U(T (V X)) . dṪmX(c1, c2) ≥ dṠmX(c1, c2).

We will later see a similar concept of strong graded relational lifting of monad in Definition
15. Divergence lifting and relational lifting are actually instances of a common general definition
of strong graded lifting of monad ([31]), but in this paper we omit this general definition.

The following theorem relates that every divergence can be expressed as the composite of a
graded divergence lifting and the divergence corresponding to a basic endorelation.

Theorem 4. Let (C, T) be a CC-SM, M be a grading monoid, Q be a divergence domain and
E : C → BRel(C) be a basic endorelation. For any ∆ ∈ Div(T,E,M,Q), define a mapping
[∆] : M ×Obj(DivQ(C)) → Obj(DivQ(C)) by, for X = (I, d), [∆]mX , (TI, d[∆]mX) where

d[∆]mX(c1, c2) , sup
J∈C,n∈M,f∈DivQ(C)(X,∆n

J)

∆m·n
J (f ♯ • c1, f ♯ • c2).

Then [∆] is an M -graded Q-divergence lifting Ṫ such that ∆m
I = [∆]m(E′I).

When M = 1, Theorem 4 implies that the assignment I 7→ ∆I extends to the E′-relative
monad [∆] ◦ E′ : C → DivQ(C) in the sense of [3].

When we strengthen the assumptions on (C, T) and Q as done in Section 6.1.2, we obtain a
sharper correspondence between divergences on monads and strong graded divergence liftings of
monads.

Theorem 5. Let (C, T) be a CCC-SM, M be a grading monoid, Q be a divergence domain such
that (+) satisfies x + ⊤ = ⊤ and E : C → BRel(C) be a basic endorelation. Then there exists
an adjunction between partial orders:

(SGDLift(T,E,M,Q),�)
〈−〉

//
⊥oo
[−]

(Div(T,E,M,Q),�)

where 〈Ṫ 〉mI , Ṫm(E′I)

6.2 Generation of Divergences

It has been shown that DP can be interpreted as hypothesis testing ([54, 30]). Given a query
c : I → GJ and adjacent datasets (d1, d2) ∈ Radj ⊆ I2, we consider the following hypothesis
testing with the null and alternative hypotheses:

H0 : The output y comes from the dataset d1,

H1 : The output y comes from the dataset d2.

16

D
R
A
FT

For any rejection region S ∈ ΣJ , the Type I and Type II errors are then represented by Pr[c(d1) ∈
S] and Pr[c(d2) /∈ S], respectively. [30] showed that c is (ε, δ)-DP if and only if for any adjacent
datasets (d1, d2) ∈ Radj ⊆ I2, the pair of Type I error and Type II error lands in the privacy
region R(ε, δ):

∀S ∈ ΣJ . (Pr[c(d1) ∈ S],Pr[c(d2) /∈ S]) ∈ {(x, y) ∈ [0, 1]2|(1 − x) ≤ exp(ε)y + δ}︸ ︷︷ ︸
,R(ε,δ)

.

They also showed that this is equivalent to the testing using probabilistic decision rules [30,
Corollary 2.3]:

∀k : J → G{Acc,Rej} . (Pr[k♯c(d1) = Acc],Pr[k♯c(d2) = Rej]) ∈ R(ε, δ).

Later [7] generalized this probabilistic variant of hypothesis testing to general statistical diver-
gences, and arrived at a notion of k-generatedness of statistical divergences (k ∈ N ∪ {∞}).
Following their generalization, we introduce the concept of Ω-generatedness of divergences on
monads.

Definition 11. Let Ω ∈ C. A divergence ∆ ∈ Div(T,E,M,Q) is Ω-generated if for any m ∈M ,
I ∈ C and c1, c2 ∈ U(TI),

∆m
I (c1, c2) = sup

k : I→TΩ
∆m

Ω (k♯ • c1, k♯ • c2).

An equivalent definition of ∆ ∈ Div(T,E,M,Q) being Ω-generated is: the following holds
for any m ∈M, I ∈ C, c1, c2 ∈ U(TI), v ∈ Q:

∆m
I (c1, c2) ≤ v ⇐⇒ ∀k : I → TΩ . (k♯ • c1, k♯ • c2) ∈ ∆̃(m, v)Ω.

Here ∆̃(m, v)Ω is the binary relation {(c1, c2) | ∆m
Ω (c1, c2) ≤ v}; see also (9). For an Ω-generated

divergence ∆, its component ∆m
Ω at Ω is an essential part that determines all components ∆m

I of
∆. When a divergence is shown to be Ω-generated, the calculation of the codensity lifting T [∆]

given in Section 7 will be simplified (Section 7.1).
We illustrate Ω-generatedness of various divergences. First, we show the Ω-generatedness of

divergences on the Giry monad G in Tables 2 and 3.

• Divergence DP is generated over the two-point discrete space 2 [7, Section B.7]. The binary

relation (D̃P(ε, δ)2) coincides with the privacy region R(ε, δ).

• Divergence TV is also generated over 2 [7, Section C.1].

• Divergences Reα, Chi, HD and KL are generated over the countably infinite discrete space
N. In contrast, they are not N -generated for every finite discrete space N [7, Sections B.5
and B.9].

On the sub-Giry monad Gs, the divergence DP is 1-generated, and the total variation distance
TV is 2-generated.

Proposition 9. The divergence DP ∈ Div(Gs,Eq,R+,R+) is 1-generated.

Proposition 10. The divergence TV ∈ Div(Gs,Eq, 1,R+) is not 1-generated but 2-generated.

17

D
R
A
FT

Ω-Generatedness of Preorders on Monads We relate Ω-generatedness of divergences and
preorders on monads studied in ([32]). Let T be a monad on Set and Ω be a set. [32] introduced
the concept of congruent and substitutive preorders on TΩ as those satisfying:

Substitutivity For any function f : Ω → TΩ and c1, c2 ∈ TΩ, c1 ≤ c2 implies f ♯(c1) ≤ f ♯(c2).

Congruence For any function f1, f2 : J → TΩ, if f1(x) ≤ f2(x) holds for any x ∈ J , then

f ♯
1(c) ≤ f ♯

2(c) holds for any c ∈ TΩ.

For instance, any component of a preorder on T at Ω forms a congruent and substitutive preorder
on TΩ. We write CSPre(T,Ω) for the set of all congruent and substitutive preorders on TΩ, and
Pre(T) for the collection of all preorders on T . [32] gave a construction [−]Ω : CSPre(T,Ω) →
Pre(T) of preorders on T from congruent and substitutive preorders on TΩ:

c1[≤]ΩJ c2 ⇐⇒ ∀g : J → TΩ . g♯(c1) ≤ g♯(c2)

The constructed preorders on T are Ω-generated in the following sense:

Proposition 11. For any ≤ ∈ CSPre(T,Ω), the B-divergence ∆[≤]Ω corresponding to the pre-

order [≤]Ω on T is Ω-generated (see Proposition 8 for the correspondence).

Applying this proposition, we can determine Ω-generatedness of preorders on monads:

• If the monad T has a rank α, the construction [−]α is bijective [32, Theorem 7]. Hence for
such a monad, each preorder on T corresponds to an α-generated B-divergence.

• For the subprobability distribution monad Ds on Set, [50] identified all preorders on Ds:
there are 41 preorders onDs. Among them, 25 preorders are 1-generated, while 16 preorders
are 2-generated [50, Proposition 6.3].

6.3 An Adjunction between Quantitative Equational Theories and Di-
vergences

[39] introduced a concept of quantitative equational theory as an algebraic presentation of mon-
ads on the category of (pseudo-)metric spaces. A quantitative equational theory is an equational
theory with indexed equations t =ε u having the axioms of pseudometric spaces, plus suitable ax-
ioms reflecting properties of quantitative algebras. A quantitative equational theory determines
a pseudometric on the set of Ω-terms.

Consider a set Ω of function symbols of finite arity. If n is the arity of a function f ∈ Ω, we
write f : n ∈ Ω. Let X be a set of variables, and let TΩX be the Ω-term algebra over X . For
f : n ∈ Ω and t1, . . . , tn ∈ TΩX , we write f(t1, . . . , tn) for the term obtained by applying f to
t1, . . . , tn. The constructionX 7→ TΩX forms a (strong) monad on Set whose unit sends variables
to terms, that is, ηX(x) = x, and Kleisli extension h♯ : TΩI → TΩX of function h : I → TΩX is
defined inductively by

h♯(x) , h(x), h♯(f(t1, . . . , tn)) , f(h♯(t1), . . . , h
♯(tn)).

A substitution of Ω-terms over X is a function σ : X → TΩX . For t ∈ TΩX , we call σ♯(t) the
substitution of σ to t. We define the set of indexed equations of terms by

V(TΩX) , {t =ε u | t, u ∈ TΩX, ε ∈ Q+}.

18

D
R
A
FT

∅ ⊢ t =0 t ∈ U (Ref)

{t =ε u} ⊢ u =ε t ∈ U (Sym)

{t =ε u, u =ε′ v} ⊢ t =ε+ε′ v ∈ U (Tri)

∀ε′ ∈ Q+ . {t =ε u} ⊢ t =ε+ε′ u ∈ U (Max)

∀ε ∈ Q+ . {t =ε′ u|ε < ε′} ⊢ t =ε u ∈ U (Arch)

∀f : n ∈ Ω . {ti =ε ui|1 ≤ i ≤ n} ⊢ f(t1, . . . , tn) =ε f(u1, . . . , un) (Nonexp)

∀σ : X → TΩX . Γ ⊢ t =ε u ∈ U =⇒ σ(Γ) ⊢ σ♯(t) =ε σ
♯(u) ∈ U (Subst)

Γ′ ⊢ t =ε u ∈ U ∧ ∀ψ ∈ Γ′ . Γ ⊢ ψ ∈ U =⇒ Γ ⊢ t =ε u ∈ U (Cut)

t =ε u ∈ Γ =⇒ Γ ⊢ t =ε u ∈ U (Assumpt)

Figure 1: Quantitative Equational Theory Rules

Here the index ε runs over non-negative rational numbers. A conditional quantitative equation
is a judgment of the following form

{ti =εi ui | i ∈ I} ⊢ t =ε u (I : countable, ti =εi ui, t =ε u ∈ V(TΩX));

the left hand side of turnstile (⊢) is called hypothesis and the right hand side conclusion. We
denote by E(TΩX) the set of conditional quantitative equations. For any countable subset Γ of
V(TΩX) and any substitution σ : X → TΩX , we define σ(Γ) , {σ♯(ti) =εi σ

♯(ui) | ti =εi ui ∈ Γ}.

Definition 12 (Quantitative Equational Theory [39, Definition 2.1]). A quantitative equational
theory (QET for short) of type Ω over X is a set U ⊆ E(TΩX) closed under the rules summarized
as Figure 1. We write QET(Ω, X) for the set of QETs of type Ω over X . We regard it as a poset
(QET(Ω, X),⊆) by the set inclusion order. Given a set U0 of conditional quantitative equations

of type Ω over X , by U0
QET(Ω,X)

we mean the least QET containing U0.

We state an adjunction between quantitative equational theories and divergences on free-
algebra monads on Set. More specifically, we construct the following adjunction and isomorphism
between posets:

(QET(Ω, X),⊆) (CSEPMet(TΩ, X),�)
U [−]

oo ⊥
//

d[−] Gen //∼= (DivEPMet(TΩ, X),�)
(−)X

oo . (7)

By combining these, a QET of type Ω over X determines an X-generated Eq-relative R+-
divergence on TΩ and vice versa. The poset in the middle is that of congruent and substitutive
pseudometrics, which are a quantitative analogue of congruent and substitutive preorders.

Definition 13. Let T be a monad on Set and X ∈ Set. A congruent and substitutive pseu-
dometric (CS-EPMet for short) on TX is an extended pseudometric6 d : (TX)2 → R+ on TX
satisfying

Substitutivity For all function fX → TX and c1, c2 ∈ TX , d(f ♯(c1), f
♯(c2)) ≤ d(c1, c2).

6A function d : A2 → R+ is called an extended pseudometric on A if d(a, a) = 0 (reflexivity), d(b, a) = d(a, b)
(symmetry) and d(a, c) ≤ d(a, b) + d(b, c) (triangle-inequality) hold for all a, b, c ∈ A.

19

D
R
A
FT

Congruence For all set I, function f1, f2 : I → TX and c ∈ TI, d(f ♯
1(c), f

♯
2(c)) ≤ supi∈I d(f1(i), f2(i)).

We denote by CSEPMet(T,X) the set of CS-EPMets on TX . We then make it into a poset
(CSEPMet(T,X),�) by the following pointwise opposite order:

d � d′ ⇐⇒ ∀c1, c2 ∈ TX . d(c1, c2) ≥ d′(c1, c2).

Definition 14. Let T be a monad on Set and X ∈ Set. We denote by DivEPMet(T,X)
the collection of X-generated Eq-relative R+-divergences ∆ on T such that each component
∆I is an extended pseudometric. We restrict the partial order � on Div(T,Eq, 1,R+) to
DivEPMet(T,X).

We next introduce various monotone functions appearing in (7).

d[U](t, u) , inf
{
ε ∈ Q+

∣∣ ∅ ⊢ t =ε u ∈ U
}

Gen(d)I(c1, c2) , sup
k : I→TX

d(k♯(c1), k
♯(c2))

U [d] , {∅ ⊢ t =ε u | ε ∈ Q+, d(t, u) ≤ ε}QET(Ω,X)
(∆)X , ∆X

Proposition 12. The functions d[−], U [−],Gen, (−)X defined above are all well-defined mono-
tone functions having types given in (7).

That d[U] is an extended pseudometric is shown in the beginning of [39, Section 5]. Here
we additionally show that it enjoys congruence and substitutivity of Definition 13. The function
Gen is taken from the right hand side of the definition of Ω-generatedness (Definition 11). The
function (−)X simply extracts the X-th component of a given divergence.

Theorem 6. For any set Ω of function symbols with finite arity and set X, the following holds
for the monotone functions in (7):

1. Gen is the inverse of (−)X .

2. We have an adjunction satisfying d[U [−]] = id:

(QET(Ω, X),⊆) (CSEPMet(TΩ, X),�)
U [−]

oo ⊥
//

d[−]

(8)

In the proof of this theorem, we used the definition of models of QET ([6]). Intuitively,
the right adjoint d[−] extracts the pseudometric on TΩX from a given QET. The left adjoint
U [−] constructs the least QET containing all information of a given pseudometric on TΩX . The
adjunction (8) also implies that we can construct monads on the category of extended metric
spaces from CS-EPMets by Mardare et al.’s metric term monad construction ([39]). Overall
adjunction (7) says that X-generated divergences can be axiomatized with QETs whose variable
set is X .

The range of U [−] is a subset of UQET(Ω, X) of unconditional QETs defined below (See
also [38, Section 3]):

UQET(Ω, X) ,
{
V ∈ QET(Ω, X)

∣∣∣ ∃S ⊆ {∅ ⊢ t =ε u | t, u ∈ TΩX, ε ∈ Q+}. V = S
QET(Ω,X)

}
.

Unconditional QETs of type Ω overX are equivalent to X-generated divergence on TΩ: restricting
QETs to unconditional QETs, the adjunction (8) becomes a pair of isomorphisms.

Theorem 7. (UQET(Ω, X),⊆) ∼= (CSEPMet(TΩ, X),�) ∼= (DivEPMet(TΩ, X),�).

20

D
R
A
FT

7 Graded Strong Relational Liftings for Divergences

We have introduced the concept of divergence on monad for measuring quantitative difference
between two computational effects. To integrate this concept with relational program logic, we
employ a semantic structure called graded strong relational lifting of monad. It is introduced for
the semantics of approximate probabilistic relational Hoare logic for the verification of differential
privacy ([12]), then later used in various program logics ([13, 8, 9, 51, 52]). Independently, it is
also introduced as a semantic structure for effect system ([31]). Liftings introduced in the study
of differential privacy are designed to satisfy a special property called fundamental property [12,
Theorem 1]: when we supply the equivalence relation to the lifting, it returns the adjacency
relation of the divergence. This special property is the key to express the differential privacy of
probabilistic programs in relational program logics.

In this paper, we present a general construction of graded strong relational liftings from
divergences on monads. First, we recall its definition ([31, 24]).

Definition 15. Let (C, T) be a CC-SM and (M,≤, 1, (·)) be a grading monoid. An M -graded
strong relational lifting Ṫ of T is a mapping Ṫ :M×Obj(BRel(C)) → Obj(BRel(C)) satisfying
the following conditions:

1. pC(ṪmX) = (TX1, TX2), and m ≤ m′ implies ṪmX ≤ Ṫm′X .

2. (ηX1
, ηX2

) : X →̇ Ṫ1(X).

3. (f1, f2) : X →̇ Ṫm(Y) implies (f ♯
1 , f

♯
2) : Ṫm

′X →̇ Ṫ (m ·m′)Y .

4. (θX1,Y1
, θX2,Y2

) : X ×̇ ṪmY →̇ Ṫm(X ×̇ Y).

Our interest is in the graded strong relational lifting that carries the information of a given
divergence∆ ∈ Div(T,E,M,Q). We identify such liftings by the following fundamental property.
First define the adjacency relation of ∆ by

∆̃(m, v)I , (TI, T I, {(c1, c2) | ∆m
I (c1, c2) ≤ v}) (m ∈M, v ∈ Q, I ∈ C). (9)

Note that ∆̃ is monotone on m and v.

Definition 16. We say that an M × Q-graded strong relational lifting Ṫ of T satisfies the
fundamental property with respect to ∆ ∈ Div(T,E,M,Q) if the following holds:

Ṫ (m, v)(EI) = ∆̃(m, v)I (m ∈M, v ∈ Q, I ∈ C).

Theorem 8. Let (C, T) be a CC-SM, (M,≤, 1, (·)) be a grading monoid, Q be a divergence
domain and ∆ = {∆m

I : (U(TI))2 → Q}m∈M,I∈C be a doubly-indexed family of Q-divergences
satisfying monotonicity on m (Definition 6). Define the following mapping T [∆] : (M × Q) ×
Obj(BRel(C)) → Obj(BRel(C)):

T [∆](m, v)X , (TX1, TX2, {(c1, c2) | ∀I ∈ C, n ∈M,w ∈ Q, (k1, k2) : X →̇ ∆̃(n,w)I .

(k♯1 • c1, k♯2 • c2) ∈ ∆̃(m · n, v + w)I})

1. The mapping T [∆] is an M ×Q-graded strong relational lifting of T .

2. Let E : C → BRel(C) be a basic endorelation. Then

∆ is E-unit-reflexive ⇐⇒ ∀I ∈ C, (m, v) ∈M ×Q . T [∆](m, v)(EI) ≤ ∆̃(m, v)I (S)

∆ is E-composable ⇐⇒ ∀I ∈ C, (m, v) ∈M ×Q . T [∆](m, v)(EI) ≥ ∆̃(m, v)I. (C)

21

D
R
A
FT

The construction of T [∆] is a graded extension of the codensity lifting ([51, 33]). The remainder
of this section is the proof of Theorem 8.

Proof. (Proof of (1)) Proving conditions 1-3 of graded strong relational lifting (Definition 15) are
routine generalization of [33] and [31, Section 5]; thus omitted here (see Lemma 4 in appendix).

However, condition 4 of Definition 15 needs a special attention because in general codensity
lifting does not automatically lift strength. The current setting works because of our particular
choice of the category of binary relations over C. We prove condition 4 as follows. Since fi • j =
f • 〈i, j〉 for any j ∈ UJ holds, we have the equivalence

(f, g) : X ×̇ Y →̇ Z ⇐⇒ ∀(x, x′) ∈ X, (y, y′) ∈ Y.(f • 〈x, y〉, g • 〈x′, y′〉) ∈ Z

⇐⇒ ∀(x, x′) ∈ X, (y, y′) ∈ Y. ((fx) • y, (gx′) • y′) ∈ Z

⇐⇒ ∀(x, x′) ∈ X.(fx, gx′) : Y →̇ Z.

From this, condition 3 (law of graded Kleisli extension), and the equation (1) on the strength of
a CC-SM, we prove condition 4 from condition 2 (unit law): for all m ∈M and v ∈ Q, we have

(ηX1×Y1
, ηX2×Y2

) : X ×̇ Y →̇ T [∆](1, 0)(X ×̇ Y)

⇐⇒ ∀(x, x′) ∈ X . ((ηX1×Y1
)x, (ηX2×Y2

)x′) : Y →̇ T [∆](1, 0)(X ×̇ Y)

=⇒ ∀(x, x′) ∈ X . (((ηX1×Y1
)x)

♯, ((ηX2×Y2
)x′)♯) : T [∆](m, v)Y →̇ T [∆](m, v)(X ×̇ Y)

⇐⇒
(
∀(x, x′) ∈ X, (c1, c2) ∈ T [∆](m, v)Y .

(((ηX1×Y1
)x)

♯ • c1, ((ηX2×Y2
)x′)♯ • c2) ∈ T [∆](m, v)(X ×̇ Y)

)

⇐⇒
(
∀(x, x′) ∈ X, (c1, c2) ∈ T [∆](m, v)Y .

(θX1,Y1
• 〈x, c1〉, θX2,Y2

• 〈x′, c2〉) ∈ T [∆](m, v)(X ×̇ Y)

)

⇐⇒ ∀(x, x′) ∈ X . ((θX1,Y1
)x, (θX2,Y2

)x′) : T [∆](m, v)Y →̇ T [∆](m, v)(X ×̇ Y)

⇐⇒ (θX1,Y1
, θX2,Y2

) : X ×̇ T [∆](m, v)Y →̇ T [∆](m, v)(X ×̇ Y).

(Proof of (2)-(S)) We show the equivalence of ∆ being E-unit-reflexive and the implication

∀I ∈ C,m ∈M, v ∈ Q, c, c′ ∈ U(TI) .

(∀J ∈ C,m′ ∈M, v′ ∈ Q, (k, l) : EI →̇ ∆̃(m′, v′)J . ∆m·m′

J (k♯ • c, l♯ • c′) ≤ v + v′) (10)

=⇒ ∆m
I (c, c′) ≤ v.

We suppose that the above implication holds. We fix I ∈ C. Let (i, j) ∈ EI. By instantiating
the whole implication with m = 1, v = 0, c = ηI • i, c′ = ηI • j, the middle part of (10) becomes

∀J ∈ C,m′ ∈M, v′ ∈ Q, (k, l) : EI →̇ ∆̃(m′, v′)J . ∆m′

J (k • i, l • j) ≤ v′,

which is trivially true. Therefore we conclude ∆m
I (ηI • i, ηI • j) ≤ 0 for any (i, j) ∈ EI, that is,

E-unit reflexivity holds.
Conversely, we suppose that ∆ satisfies the unit-reflexivity. We take I,m, v, c, c′ of appropri-

ate type and assume the middle part of (10). By instantiating it with J = I,m′ = 1, v′ = 0, k =
l = ηI , we conclude ∆m

I (c, c′) ≤ v.
(Proof of (2)-(C)) We show the equivalence of ∆ being E-composable and the implication

∀I ∈ C,m ∈M, v ∈ Q . ∆̃I(m, v) ≤ T [∆]I(m, v)(EI) as follows:

∀I ∈ C,m ∈M, v ∈ Q . ∆̃I(m, v) ≤ T [∆]I(m, v)(EI)

22

D
R
A
FT

⇐⇒




∀I ∈ C,m ∈M, v ∈ Q, c, c′ ∈ U(TI) .

∆m
I (c, c′) ≤ v =⇒

∀J ∈ C,m′ ∈M, v′ ∈ Q, (k, l) : EI →̇ ∆̃(m′, v′)J .

(k♯ • c, l♯ • c′) ∈ ∆̃(m ·m′, v + v′)J




⇐⇒



∀I, J ∈ C,m ∈M, v ∈ Q, c, c′ ∈ U(TI),m′ ∈M, v′ ∈ Q, k, l ∈ C(I, TJ) .

∆m
I (c, c′) ≤ v =⇒

(∀(i, j) ∈ EI . (k • i, l • j) ∈ ∆̃(m′, v′)I) =⇒ ∆m·m′

I (k♯ • c, l♯ • c′) ≤ v + v′




⇐⇒



∀I, J ∈ C,m ∈M, v ∈ Q, c, c′ ∈ U(TI),m′ ∈M, v′ ∈ Q, k, l ∈ C(I, TJ) .

∆m
I (c, c′) ≤ v =⇒

sup(i,j)∈EI ∆
m′

J (k • i, l • j) ≤ v′ =⇒ ∆m·m′

J (k♯ • c, l♯ • c′) ≤ v + v′




⇐⇒
(
∀I, J ∈ C,m ∈M, c, c′ ∈ U(TI),m′ ∈M,k, l ∈ C(I, TJ) .

∆m·m′

I (k♯ • c, l♯ • c′) ≤ ∆m
I (c, c′) + sup(i,j)∈EI ∆

m′

I (k • i, l • j).

)
.

The first two equivalences are obtained by expanding the definitions of BRel(C), T [∆] and ∆̃,
the last two equivalences hold because Q is a divergence domain.

Combining the fundamental property and the strength of T [∆], we recover a strength law of
divergences.

Proposition 13. Let (C, T) be a CC-SM, E : C → BRel(C) be a basic endorelation, (M,≤
, 1, (·)) be a grading monoid and Q be a divergence domain. Suppose also that EI×̇EJ ⊆ E(I×J)
holds for all I, J ∈ C. Then each divergence ∆ ∈ Div(T,E,M,Q) satisfies: for all (x1, x2) ∈ EI
and c1, c2 ∈ U(TI),

∆m
I×J (θI,J • 〈x1, c1〉, θI,J • 〈x2, c2〉) ≤ ∆m

J (c1, c2).

7.1 Simplifying Codensity Liftings by Ω-Generatedness of Divergences

We here show that for an Ω-generated divergence ∆, the calculation of the codensity lifting T [∆]

can be simplified. For an object I ∈ C, we define T [∆],I by

(c1, c2) ∈ T [∆],I(m, v)X

⇐⇒ ∀n,w, (k1, k2) : X →̇ ∆̃(n,w)I . (k♯1 • c1, k♯2 • c2) ∈ ∆̃(m · n, v + w)I.

The original calculation of T [∆] is a large intersection T [∆] =
∧

I∈C
T [∆],I where I runs over all

C-objects, but if ∆ is Ω-generated, the parameter I can be fixed at Ω.

Proposition 14. For any Ω-generated divergence ∆ ∈ Div(T,E,M,Q), we have T [∆] = T [∆],Ω.

Proof. We show the equivalence T [∆]X = T [∆],ΩX for each X ∈ BRel(C).
(⊇) Immediate from T [∆] =

∧
I∈C

T [∆],I .
(⊆) By the Ω-generatedness of ∆, we have for all I ∈ C and c′1, c

′
2 ∈ U(TI),

(c′1, c
′
2) ∈ ∆̃(m′, v′)I ⇐⇒ ∀k : I → TΩ . (k♯ • c′1, k♯ • c′2) ∈ ∆̃(m′, v′)Ω

Therefore, for any (c2, c2) ∈ U(TX1)× U(TX2), we have

(c1, c2) ∈ T [∆],ΩX

23

D
R
A
FT

⇐⇒ ∀n ∈M,w ∈ Q, (k1, k2) : X →̇ ∆̃(n,w)Ω . (k♯1 • c1, k♯2 • c2) ∈ ∆̃(m · n, v + w)Ω

=⇒
(
∀I ∈ C, n ∈M,w ∈ Q, (l1, l2) : X →̇ ∆̃(n,w)I, k : I → TΩ .

(k♯ ◦ l♯1 • c1, k♯ ◦ l♯2 • c2) ∈ ∆̃(m · n, v + w)Ω

)

⇐⇒ ∀I ∈ C, n ∈M,w ∈ Q, (l1, l2) : X →̇ ∆̃(n,w)I . (l♯1 • c1, l♯2 • c2) ∈ ∆̃(m · n, v + w)I

⇐⇒ (c1, c2) ∈ T [∆]X.

This completes the proof.

For example, the generatedness of DP shown in Section 6.2 implies that G[DP] = G[DP],2 and

G
[DP]
s = G

[DP],1
s . In fact, the simplification G

[DP],1
s is equal to the (R+)2-graded relational lifting

G⊤⊤
s for DP given in [51, Section 2.2], which is defined by, for each (X1, X2, RX) ∈ BRel(Meas),

G⊤⊤
s (ε, δ)(X1, X2, RX)

, (Gs(X1), Gs(X2), {(ν1, ν2) | ∀A ∈ ΣX1
, B ∈ ΣX2

. RX(A) ⊆ B =⇒ ν1(A) ≤ exp(ε)ν2(B) + δ}).
For detail, see the proof of equalities (†) and (‡) in the proof of [51, Theorem 2.2(iv)].

7.2 Two Lifting Approaches: Codensity and Coupling

We briefly compare two lifting approaches: graded codensity lifting and coupling-based lifting
employed in ([12, 13, 8, 9, 52]).

We compare the role of the unit-reflexivity and composability in the codensity graded lifting
and the coupling-based graded lifting. Consider the CCC-SM (Set, D), whereD is the probability
distribution monad. Given an Eq-relative M -graded Q-divergence ∆ on D, the coupling-based
graded lifting is defined by

Ḋ∆(m, v)X , {(Dp1 • µ1, Dp2 • µ2) | (µ1, µ2) ∈ (DRX)2,∆m
RX

(µ1, µ2) ≤ v} (11)

where pi : RX → Xi is the projection (i = 1, 2) from the binary relation. The pair (µ1, µ2) of
probability distributions collected in the right hand side of (11) is called a coupling.

The fundamental property Ḋ∆(EqI) = ∆̃(m, v)I immediately follows from the definition of
Ḋ∆, while the composability and unit-reflexivity of ∆ are used to make Ḋ∆ a strong M × Q-
graded lifting [13, Proposition 9]. On the other hand, the codensity graded lifting D[∆] is always
an M × Q-graded lifting; this does not rely on the unit-reflexivity and composability of ∆

(Proposition 1). These properties are used to show that D[∆] satisfies the fundamental property
(Proposition 2).

The coupling-based lifting (11) can be naturally generalized to any Set-monad T . However,
at this moment we do not know how to generalize the coupling technique to any CC-SM (C, T).
As the prior study by [52] pointed out, there is already a difficulty in extending it to the CC-SM
(Meas, G).

We illustrate how the problem arises. Let X ∈ BRel(Meas). We would like to pick two
probability measures over RX as couplings, but RX is merely a set. We therefore equip it
with the subspace σ-algebra of X1 × X2, and let HX be the derived measurable space (hence
|HX | = RX). We write pi : HX → Xi for measurable projections (i = 1, 2). We then define a
candidate M ×Q-graded lifting of G by

Ġ(m, v)X = {(Gp1 • µ1, Gp2 • µ2) | (µ1, µ2) ∈ (UGHX)2,∆m
HX

(µ1, µ2) ≤ v}.

We now verify that Ġ also lifts the Kleisli extension of G, that is,

(f, g) : Y →̇ Ġ(m′, v′)X =⇒ (f ♯, g♯) : Ġ(m, v)Y → Ġ(mm′, v + v′)X.

24

D
R
A
FT

Let (f, g) : Y →̇ Ġ(m′, v′)X be pair of measurable functions. Then for each (x, y) ∈ RY , we

have (f • x, g • y) ∈ RĠ(m,v)X . Therefore there exists (µ
(x,y)
1 , µ

(x,y)
2) ∈ (UGHX)2 such that

Gπ1•µ(x,y)
1 = f•x andGπ2•µ(x,y)

2 = g•y. Using the axiom of choice, we turn this relationship into
functions µ1, µ2 : RY → UGHX . If they were measurable functions of type HY → GHX , then
from the composability of ∆, we would have ∆mm′

HX
(µ♯

1 •w1, µ
♯
2 •w2) ≤ v+ v′ for w1, w2 ∈ UGHY

such that ∆m′

HY
(w1, w2) ≤ v′. This gives (f ♯, g♯) : Ġ(m, v)Y →̇ Ġ(mm′, v + v′)X . However, in

general, ensuring the measurability of µ1, µ2 is not possible, especially because they are picked
up by the axiom of choice. A solution given in [52] is to use the category Span(Meas) of spans,
that guarantees the existence of good measurable functions h1, h2 : HY → GHX .

8 Approximate Computational Relational Logic

We introduce a program logic called approximate computational relational logic (acRL for short).
It is a combination of Moggi’s computational metalanguage and a relational refinement type sys-
tem ([9]). The strong graded relational lifting of a monad constructed from a divergence will be
used to relationally interpret monadic types, and gradings give upper bounds of divergences be-
tween computational effects caused by two programs. acRL is similar to the relational refinement
type system HOARe2 ([9]), which is designed for verifying differential privacy of probabilistic
programs. Compared to HOARe2, acRL supports general monads and divergences, while it does
not support dependent products nor non-termination.

The relational logic acRL adopts the extensional approach (cf. [44, Chapter 9.2]):

• Relational assertions between contexts Γ and ∆ are defined as binary relations between
U [[Γ]] and U [[∆]], or equivalently BRel(C)-objects φ such that pC(φ) = ([[Γ]], [[∆]]). Logical
connectives and quantifications are defined as operations on such BRel(C)-objects. This
is in contrast to the standard design of logic where assertions are defined by a BNF.

• Let Γ ⊢ M : τ and ∆ ⊢ N : σ be well-typed terms, φ be a relational assertion between
Γ,∆, and ψ be an assertion between τ, σ. The main concern of acRL is the statement
“∀(γ, δ) ∈ φ.([[M]] • γ, [[N]] • δ) ∈ ψ” (equivalently ([[M]], [[N]]) : φ →̇ ψ). In this section we
denote this statement by φ ⊢ (M,M ′) : ψ.

• Inference rules of the logic consists of the facts about the statement φ ⊢ (M,M ′) : ψ.
We remark that in the standard logic, proving these facts corresponds to the soundness of
inference rules.

8.1 Moggi’s Computational Metalanguage

8.1.1 Syntax of the Computational Metalanguage

For the higher-order programming language, we adopt Moggi’s computational metalanguage
([42]). It is an extension of the simply typed lambda calculus with monadic types. For a
set B, we define the set Typ(B) of types over B by the first BNF in Figure 2. We then define
the set Typ1(B) of first-order types to be the subset of Typ(B) consisting only of b, 1,×,+.

We next introduce computational signatures for specifying constants in the computational
metalanguage. A computational signature is a tuple (B,Σv,Σe) where B is a set of base types,
and Σv and Σe are functions whose range is Typ1(B)2. The domains of Σv,Σe are sets of value
operation symbols and effectful operation symbols, and are denoted by Ov, Oe, respectively. These
functions assign input and output types to these operations.

25

D
R
A
FT

Figure 2: Syntax of Types and Raw Terms of the Computational Metalanguage

Typ(B) ∋ τ ::=b | 1 | τ × τ | 0 | τ + τ | τ ⇒ τ | Tτ (b ∈ B)

M ::=x | o(M) | c(M) | () | (M,M) | π1(M) | π2(M) (o ∈ Ov, c ∈ Oe)

|ι1(M) | ι2(M) |M with ι1(x : τ).M ι2(x : τ).M

|(λx : τ . M) | (MM) | ret(M) | letx : τ =M inM

Figure 3: Data for the Categorical Semantics of Metalanguage

1. (C, T) is a CCC-SM and C has finite coproducts.

2. [[b]] ∈ C for each b ∈ B

3. [[o]] : [[b]] → [[b′]] for each o ∈ Ov such that Σv(o) = (b, b′)

4. [[c]] : [[b]] → T [[b′]] for each c ∈ Oe such that Σe(c) = (b, b′)

Fix a countably infinite set V of variables. A context is a function from a finite subset of
V to Typ(B); contexts are often denoted by capital Greek letters Γ,∆. For contexts Γ,∆ such
that dom(Γ) ∩ dom(∆) = ∅, by Γ,∆ we mean the join of Γ and ∆.

The set of raw terms is defined by the second BNF in Figure 2. The type system of the
computational metalanguage has judgments of the form Γ ⊢ M : τ where Γ is a context, M a
raw term and τ a type. It adopts the standard rules for products, coproducts, implications and
monadic types; see e.g. [42]. The typing rules for value operations and effectful operations are
given by

o ∈ Ov Σv(o) = (b, b′) Γ ⊢M : b

Γ ⊢ o(M) : b′
o ∈ Oe Σe(c) = (b, b′) Γ ⊢M : b

Γ ⊢ c(M) : Tb′

A simultaneous substitution from Γ to Γ′ is a function θ from the set dom(Γ′) of variables
to raw terms such that the well-typedness Γ ⊢ θ(x) : Γ′(x) holds for each x ∈ dom(Γ′). The
application of θ to a term Γ′ ⊢ M : τ is denoted by Mθ, which has a typing Γ ⊢ Mθ : τ . For
disjoint contexts Γi (i = 1, 2), we define the projection substitutions Γ1,Γ2 ⊢ πΓ1,Γ2

i : Γi by

πΓ1,Γ2

i (x) = x.

8.1.2 Categorical Semantics of the Computational Metalanguage

The interpretation of the computational metalanguage over a computational signature (B,Σv,Σe)
is given by the data specified by Figure 3.

We first inductively extend the interpretation of base types to all types using the bi-Cartesian
closed structure and the monad. Next, for each context Γ, we fix a product diagram ([[Γ]], {πx :
[[Γ]] → [[Γ(x)]]}x∈dom(Γ)); when dom(Γ) = {x}, we assume that [[Γ]] = [[Γ(x)]] with πx = id. Lastly
we interpret a typing derivation of Γ ⊢ M : τ as a morphism [[M]] : [[Γ]] → [[τ]] in the standard

26

D
R
A
FT

way, using the interpretations of operations given in Figure 3. We further extend this to the
interpretation of each simultaneous substitution Γ ⊢ θ : Γ′ as a morphisms [[θ]] : [[Γ]] → [[Γ′]].

8.2 Approximate Relational Computational Logic

8.2.1 Relational Logic in External Form

A relational assertion φ between disjoint contexts Γ and ∆ is a binary relation between U [[Γ]]
and U [[∆]]. We denote such a relational assertion by Γ

∆ ⊢ φ, and identify it as a BRel(C)-object
φ such that pC(φ) = ([[Γ]], [[∆]]). Similarly, a relational assertion between types τ and σ is defined
to be a relational assertion u:τ

d:σ ⊢ φ; here u, d are reserved and fixed variables.
Relational assertions between contexts Γ and ∆ carry a boolean algebra structure ∧,∨,¬ given

by the set-intersection, set-union and set-complement (see the boolean algebra BRel(C)([[Γ]],[[∆]])

in Section 2.1). The pseudo-complement φ ⇒ ψ is defined to be ¬φ ∨ ψ. For Γ,x:τ
∆,y:σ ⊢ φ, by

Γ
∆ ⊢ ∀xy . φ and Γ

∆ ⊢ ∃xy . φ we mean the relational assertions defined by the following equivalence:

(γ, δ) ∈ ∀xy . φ ⇐⇒ ∀γ′ ∈ U [[Γ, x : τ]], δ′ ∈ U [[∆, y : σ]] .

([[πΓ,x:τ
1]] • γ′ = γ) ∧ ([[π∆,y:σ

1]] • δ′ = δ) ⇒ (γ′, δ′) ∈ φ

(γ, δ) ∈ ∃xy . φ ⇐⇒ ∃γ′ ∈ U [[Γ, x : τ]], δ′ ∈ U [[∆, y : σ]] .

([[πΓ,x:τ
1]] • γ′ = γ) ∧ ([[π∆,y:σ

1]] • δ′ = δ) ∧ (γ′, δ′) ∈ φ

The boolean algebra structure and the above quantifier operations allow us to interpret first-
order logical formulas as relational assertions; we omit its detail here. In addition to these stan-
dard logical connectives, we will use graded strong relational lifting T [∆] to form relational asser-
tions. That is, for any basic endorelation E : C → BRel(C), grading monoid M , divergence do-
main Q and divergence ∆ ∈ Div(T,E,M,Q), we obtain a relational assertion u:Tτ

d:Tσ ⊢ T [∆](m, v)φ
from any u:τ

d:σ ⊢ φ, m ∈M and v ∈ Q.

For substitutions Γ ⊢ θ : Γ′,∆ ⊢ θ′ : ∆′ and an assertion Γ
∆ ⊢ φ, by Γ′

∆′ ⊢ φ[θ; θ′] we mean the
relational assertion {(γ, δ) | ([[θ]] • γ, [[θ′]] • δ) ∈ φ}. For disjoint context pairs Γ,Γ′ and ∆,∆′ and

relational assertions Γ
∆ ⊢ φ and Γ′

∆′ ⊢ ψ, by the juxtaposition Γ,Γ′

∆,∆′ ⊢ φ, ψ we mean the relational

assertion Γ,Γ′

∆,∆′ ⊢ φ[πΓ,Γ′

1 ;π∆,∆′

1] ∧ ψ[πΓ,Γ′

2 ;π∆,∆′

2].

8.2.2 Inference Rules for acRL

For well-typed computational metalanguage terms Γ ⊢ M : τ and ∆ ⊢ N : σ, and relational
assertions Γ

∆ ⊢ φ and u:τ
d:σ ⊢ ψ, by the judgment

φ ⊢ (M,N) : ψ

we mean the inclusion φ ⊆ ψ[[M/u]; [N/d]] of binary relations. This is equivalent to ([[M]], [[N]]) :
φ →̇ ψ. We show basic facts about judgments φ ⊢ (M,N) : ψ.

Proposition 15. 1. φ ⊢ (M,N) : ψ and [[M]] = [[M ′]] and [[N]] = [[N ′]] implies φ ⊢ (M ′, N ′) : ψ.

2. φ ⊢ (M,N) : ψ and φ′ ⊆ φ and ψ ⊆ ψ′ implies φ′ ⊢ (M,N) : ψ′.

3. φ ⊢ (M,N) : T [∆](m, v)ψ and m ≤ n and v ≤ w and ψ ≤ ψ′

implies φ ⊢ (M,N) : T [∆](n,w)ψ′.

4. φ ⊢ (M,N) : ψ implies φ ⊢ (ret(M), ret(N)) : T [∆](1, 0)ψ.

27

D
R
A
FT

5. φ ⊢ (M,N) : T [∆](m, v)ψ and φ, ψ[[x/u]; [x′/d]] ⊢ (M ′, N ′) : T [∆](n,w)ρ
implies φ ⊢ (letx =M inM ′, letx′ = N inN ′) : T [∆](m · n, v · w)ρ.

We next establish relational judgments on effectful operations. We present a convenient way
to establish such judgments using the fundamental property of the graded relational lifting T [∆].

Proposition 16. For any c ∈ Oe such that Σe(c) = (b, b′), relational assertion u:b
d:b ⊢ φ and m ∈

M , putting v = sup{∆m
[[b′]]([[c]]•x, [[c]]•y) | (x, y) ∈ φ}, we have φ ⊢ (c(u), c(d)) : T [∆](m, v)(E[[b′]]).

Proof. Take an arbitrary pair (x, y) ∈ φ. We have ∆m
[[b′]]([[c]] • x, [[c]] • y) ≤ v by definition of v.

Thanks to the fundamental property of T [∆] (Theorem 8), it is equivalent to ([[c]] • x, [[c]] • y) ∈
T [∆](m, v)(E[[b′]]).

9 Case Study I: Higher-Order Probabilistic Programs

We represent a higher-order probabilistic programming language with sampling commands from
continuous distributions as a computational metalanguage. For now we assume that the language
supports sampling from Gaussian distribution and Laplace distribution. This computational
metalanguage is specified by the computational signature:

C = ({R},Σv, {norm : (R× R, R), lap : (R × R, R)}),

where Σv is some chosen signature for value operations over reals. We interpret this computa-
tional metalanguage by filling Figure 3 as follows:

1. for the CCC-SM, we take (C, T) = (QBS, P) (see Section 13),

2. for the interpretation [[R]] of R, we take the quasi-Borel space KR associated with the
standard Borel space R,

3. the interpretation of value operations is given as expected (we omit it here); for example
when Σv contains the real number addition operator + as type (R×R, R), its interpretation
is the QBS morphism [[+]](x, y) = x+ y : [[R× R]] → [[R]],

4. for the interpretation of effectful operations, we put

[[norm]](x, σ) = [id,N (x, σ2)]∼KR
, [[lap]](x, λ) = [id,Lap(x, λ)]∼KR

.

Here, N (x, σ2) ∈ GR is the Gaussian distribution with mean x and variance σ2. Lap(x, λ) ∈ GR
is the Laplacian distribution with mean x and variance 2λ2 7. Every probability (Borel-)measure
µ ∈ GR on R can be converted to the probability measure [id, µ]∼KR

∈ PKR on the quasi-Borel
space KR (see Section 5.5).

9.1 A Relational Logic Verifying Differential Privacy

To formulate differential privacy and its relaxations in the quasi-Borel setting, we convert statis-
tical divergences ∆ on the Giry monad G in Table 2 to Eq-relative divergences 〈L, l〉∗∆ on the
probability monad P on QBS by the construction in Section 5.5. Then, we construct the graded
relational lifting P [〈L,l〉∗∆] by Theorem 8. Using this, as an instantiation of acRL, we build a

7If σ = 0 (or λ ≤ 0), N (x, σ2) (resp. Lap(x, λ)) is not defined, thus we replace it by the Dirac distribution dx

at x instead.

28

D
R
A
FT

relational logic reasoning about differential privacy and its relaxations, supporting higher-order
programs and continuous random samplings. Basic proof rules can be given by Proposition 15.

For effectful operations, we import basic proof rules on noise-adding mechanisms given in
prior studies ([21, 22, 40, 16]) via Theorem 1 and Proposition 16. For example, consider the
Eq-relative R+-graded R+-divergence ∆ = 〈L, l〉∗DP on P . Proposition 16 with an effectful
operation c = lap and a relational assertion (below we identify global elements in KR and real
numbers)

u:R×R

d:R×R
⊢ φ = {(〈x, 1/ε〉, 〈y, 1/ε〉) | |x− y| ≤ 1},

together with Theorem 1 and the prior result [21, Example 1] yields the following judgment:

φ ⊢ (lap(u), lap(d)) : P [〈L,l〉∗DP](0, ǫ)(EqKR).

By letting diffr be the relational assertion u:R
d:R ⊢ {(x, y) | |x − y| ≤ r}, the above judgment is

equivalent to:
diff1 ⊢ (lap(u, 1/ǫ), lap(d, 1/ǫ))) : P [〈L,l〉∗DP](0, ǫ)(EqKR). (12)

This rule corresponds to the rule [LapGen] of the program logic apRHL+ ([11]) for differential
privacy. For another example, by the reflexivity of DP, 〈L, l〉∗DP is also reflexive, hence we
obtain the following judgments (below succr is the relational assertion u:R

d:R ⊢ {(x, y) | y = x+ r}):

succ1 ⊢ (lap(u, λ), lap(d, λ)) : P [〈L,l〉∗DP](0, 0)(succ1) (13)

succ1 ⊢ (norm(u, σ), norm(d, σ)) : P [〈L,l〉∗DP](0, 0)(succ1). (14)

The judgment (13) correspond to [LapNull] of apRHL+. Similarly, the following judgments about
the DP, Rényi-DP, zero-concentrated DP of the Gaussian mechanism can be derived as (15)–(17).

diff1 ⊢ (norm(u, σ), norm(d, σ)) : P [〈L,l〉∗DP](ǫ, δ)(EqKR) (15)

diffr ⊢ (norm(u, σ), norm(d, σ)) : P [〈L,l〉∗αRe](αr2/2σ2)(EqKR) (16)

diffr ⊢ (norm(u, σ), norm(d, σ)) : P [〈L,l〉∗zCDP](0, r2/2σ2)(EqKR) (17)

In (15) we require σ ≥ max((1+
√
3)/2,

√
2 log(0.66/δ)/ǫ). The derivation is done via Proposition

16, Theorem 1 and prior studies ([51, 40, 17]).

10 Case Study II: Probabilistic Programs with Costs

We further extend the computational signature C in the previous section with an effectful oper-
ation tick such that Σe(tick) = (R, 1). The intention of tick(r) is to increase cost counter by
r during execution8. To interpret this extended metalanguage, we fill Figure 3 as follows:

1. for the CCC-SM, we take (C, T) = (QBS, Pc) where Pc , P (KR × −) is the monad for
modeling probabilistic choice and cost counting (see Section 5.7).

2. interpretation of b ∈ B is the same as Section 9,

3. interpretation of value operations is also the same as Section 9,

8To make examples simpler, we allow negative costs.

29

D
R
A
FT

4. for the interpretation of effectful operations, put

[[norm]](x, σ) = [(0, id),N (x, σ2)]∼KR×KR
,

[[lap]](x, λ) = [(0, id),Lap(x, λ)]∼KR×KR
,

[[tick]](r) = ηPKR×[[1]](r, ∗) = [const(r, ∗), µ]∼KR×1
.

We derive a closed term ntick : R ⇒ R ⇒ T1 for ticking with a cost sampled from Gaussian
distribution:

ntick , (λs.λr. letx = norm(r, s) in tick(x)).

The term ntick s r adds cost counter by a random value sampled from the Gaussian distribution
norm(r, s2).

10.1 Relational Reasoning on Probabilistic Costs

We convert the total valuation distance TV ∈ Div(G,Eq, 1,R+) to the divergence∆c , C(〈L, l〉∗TV,KR) ∈
Div(Pc,Eq, 1,R+) on Pc by Propositions 2 and 7. We also prove basic facts on effectful opera-
tions. First, the following relational judgments on tick can be easily given:

⊤ ⊢ (tick(u), tick(d)) : T [∆c](1)(⊤) (18)

u = d ⊢ (tick(u), tick(d)) : T [∆c](0)(⊤)

Remark that Eq1 = ⊤ and [[tick(0)]] = [[ret(∗)]] holds. Next, in the similar way as (13), by
the reflexivity of TV, we have the reflexivity of 〈L, l〉∗TV, and we obtain, for each real number
constant σ, λ,

succr ⊢ (norm(u, σ), norm(d, σ)) : T [∆c](0)(succr)

succr ⊢ (lap(u, λ), lap(d, λ)) : T [∆c](0)(succr) (19)

We also directly verify the following judgment on ntick using Theorem 1 and Proposition 16:

diff1 ⊢ (ntick σ u, ntick σ d) : T [∆c](Prr∼N (0,σ2)[|r| < 0.5])(⊤). (20)

10.1.1 An Example of Relational Reasoning

We give examples of verification of difference (of distributions) of costs between two runs of a
probabilistic program whose output and cost depend on the input. We consider the following
program:

M , λr : R. λt : R → T 1. letx = lap(r, 5) in let = t(r) in ret(x− r).

It first samples a real number x from the Laplacian distribution centered at the input r, call the
(possibly effectful) closure t with r and return x− r. Since the return type of t is T 1, it can only
probabilistically tick the counter. We show that the following two judgments in acRL:

⊢ (M 0 (λx.tick(x)),M 1 (λx.tick(x))) : T [∆c](1)(Eq[[R]]), (A)

⊢ (M 0 (ntick(2)),M 1 (ntick(2))) : T [∆c](0.20)(Eq[[R]]) (B)

In judgment (A), we pass the tick operation t = λx.tick(x) itself to M 0 and M 1. By the
fundamental property of T [∆c], the difference of costs between two runs of M 0 t and M 1 t

30

D
R
A
FT

is 1, because each of these programs reports cost 0 and 1 deterministically. In contrast, in
judgment (B), we pass to M 0 and M 1 the probabilistic tick function t′ = ntick(2) that ticks
a real number sampled from the Gaussian distribution with variance 22 = 4. Therefore the cost
reported by the runs of programs M 0 t′ and M 1 t′ follow the Gaussian distributions N (0, 4)
and N (1, 4), whose difference by TV is bounded by 0.20.

We first show (A). By (18) and 2 of Proposition 15, we have,

succ1 ⊢ (tick(u), tick(d)) : T [∆c](1)(⊤). (21)

By (21), and 4, 5 of Proposition 15, we obtain,

succ1 ⊢(let = tick(u) in ret(u),

let = tick(d) in ret(d− 1)) : T [∆c](1)(Eq[[R]]). (22)

By (19), (22), and 1 and 5 of Proposition 15 again, we conclude (A).
To show (B), it suffices to replace (21) by the following judgment proved by (20), the inequality

Prr∼N (0,4)[|r| < 0.5] ≤ 0.20 and 2 of Proposition 15:

succ1 ⊢ (ntick 2 u, ntick 2 d) : T [∆c](0.20)(⊤).

The rest of proof is the same as (A).

11 Related Work

This work is based on the frameworks for verifying the differential privacy of probabilistic pro-
grams using relational logic, summarized in Table 5. Composable divergences employed in these
frameworks include the one for differential privacy, plus its recent relaxations, such as, Rényi
DP, zero-concentrated DP, and truncated-concentrated DP ([16, 17, 40]).

Table 5: Approximate Probabilistic Relational Logic
Work Monad Relation Lifting Method Supported divergences

[8, 10, 12] Dist BRel(Set) coupling DP

[13] Dist BRel(Set) coupling f -divergences

[52] Giry Span(Meas) coupling (spans) composable ones

[51] Giry BRel(Meas) codensity DP

This work Generic BRel(C) codensity composable ones

The key semantic structure in these frameworks is graded relational liftings of the probability
distribution monad. Barthe et al. gave a graded relational lifting of the distribution monad based
on the existence of two witnessing probability distributions (called coupling) ([12]). Since then,
coupling-based liftings have been refined and used in several works ([8, 10, 13, 52]). They can be
systematically constructed from composable divergences on the probability distribution monad
([13]). One advantage of coupling-based liftings is that, to relate two probability distributions,
it suffices to exhibit a coupling; this is exploited in the mechanized verification of differential
privacy of programs ([1, 2]). These coupling-based liftings, however, are developed upon discrete
probability distributions, and measure-theoretic probability distributions, such as Gaussian or
Cauchy distributions, were not supported until the work ([52]).

The relational Hoare logic supporting sampling from continuous probability measures is given
in the study by [51]. In his work, the graded relational lifting for (ǫ, δ)-DP is given in the style

31

D
R
A
FT

of codensity lifting ([33]), which does not rely on the existence of coupling. Yet, it has been an
open question [52, Section VIII] how to extend his graded relational lifting to support various
relaxations of differential privacy. This paper answers to this question as Theorem 8. Later,
coupling-based liftings has also been extended to support samplings from continuous probability
measures ([52]). This extension is achieved by redefining the concept of binary relations as spans
of measurable functions. Comparison of these approaches is in the next section.

The verification of differential privacy in functional programming languages has also been
pursued ([48, 23, 9, 5]). [48] introduced a linear functional programming language with a
graded monadic type that supports reasoning about ǫ-differential privacy. Later, Gaboardi et al.
strengthen Reed-Pierce type system with dependent types ([23]). A category-theoretic account
of Reed and Pierce type system is given in [5], where general (ǫ, δ)-differential privacy is also
supported. These works basically regard types as metric spaces, allowing us to reason about
sensitivity of programs with respect to inputs. The coupling-based lifting techniques are also
employed in the relational models of higher-order probabilistic programming language ([9]).

The study [5] gives a categorical definition of composable divergences in a general framework
called weakly closed refinements of symmetric monoidal closed categories [5, Definition 1]. A
comparison is given in Section 6.1.2.

[39] introduced a quantitative refinement of algebraic theory called quantitative equational
theory, and studied variety theorem for quantitative algebras. [6] discussed tensor products of
quantitative equational theories. QETs and divergences on monads share the common interest
of measuring quantitative differences between computational effects. Divergences on monads are
derived as a generalization of the composability condition of statistical divergences studied by
[13]. To make a precise connection between these two concepts, in Section 6.3, we have given
an adjunction between QETs of type Ω over X and X-generated divergences on the free monad
TΩ. The adjunction cuts down to the isomorphism between unconditional QETs of type Ω over
X and X-generated divergences on TΩ.

The use of metric-like spaces in the semantics is seen in several recent work. [25] studies
quantitative refinements of Abramsky’s applicative bisimilarity for Reed-Pierce type system.
He introduces a monadic operational semantics of the language and formalized quantitative
applicative bisimilarity using monad liftings to the category of quantale-valued relations. [15] also
used metric-like spaces to study bisimulations and up-to techniques in the category of quantale-
valued relations. In this work our interest is relational program verification of effectful programs,
and it is carried out in the relational category BRel(C), rather than DivQ(C). The quantitative
difference of computational effects measured by a divergence ∆ is represented by the binary
relation ∆̃ graded by upper bounds of distance.

12 Future Work

The framework for relational cost analysis given in ([47])(extension of RelCost ([18])) consists of
the relational logic verifying the difference of costs between two programs and the unary logic
verifying the lower and upper bound of costs (i.e. cost intervals) in one program. We expect
that the relational logic can be reformulated by an instantiation of acRL with the divergence
NCI on P (N × −) (or its variant). However to reformulate the unary logic, we want a unary
version of divergence on P (N × −) for cost intervals. To establish the connection between the
unary logic and relational logic, we want a conversion from the unary version of divergence (for
cost intervals) to NCI (for cost difference).

There might be many other examples and applications of divergences on monads. In this
paper, we mainly discussed examples of divergences with basic endorelations Top and Eq, but

32

D
R
A
FT

various other basic endorelations can be considered.

13 Measurable Spaces and Quasi-Borel Spaces

Measurable Spaces. For the treatment of continuous probability distributions, we employ
the category Meas of measurable spaces and measurable functions. For a measurable space I
we write |I| and ΣI for the underlying set and σ-algebra of I respectively. The category Meas is
a (well-pointed) CC, and it has all small limits and small colimits that are strictly preserved by
the forgetful functor |−| : Meas → Set. It is naturally isomorphic to the global element functor
Meas(1,−).

Standard Borel Spaces. A standard Borel space is a special measurable space (|Ω|,ΣΩ)
whose σ-algebra ΣΩ is the coarsest one containing the topology σΩ of a Polish space (|Ω|, σΩ). In
particular, the real line R forms a standard Borel space. In fact, a measurable space Ω is standard
Borel if and only if there are γ : Ω → R and γ′ : R → Ω in Meas forming a section-retraction
pair, that is, γ′ ◦ γ = idΩ. For example, [0, 1], [0,∞], N, Rk (k ∈ N) are standard Borel.

The Giry Monad. We recall the Giry monad G ([26]). For every measurable space I, GI is
the set |GI| of all probability measures over I with the coarsest σ-algebra induced by functions
evA : |GI| → [0, 1] (A ∈ ΣX) defined by evA(µ) = µ(A). The unit ηI : I → GI assigns to each
x ∈ I the Dirac distribution dx centered at x. For every f : I → GJ , the Kleisli extension
f ♯ : GI → GJ is given by (f ♯(µ))(A) =

∫
x
f(x)(A) dµ(x) for each µ ∈ GI. We also denote by

Gs the subprobabilistic variant of G (called sub-Giry monad), where the underlying set |GsI| of
GsI is relaxed to the set of subprobaility measures over I.

The Giry monad G (resp. the sub-Giry monad Gs) carries a (commutative) strength θI,J : I×
GJ → G(I × J) over the CC (Meas, 1, (×)). It computes the product of measures ((x, µ) 7→
dx ⊗ µ). Therefore (Meas, G) and (Meas, Gs) are (well-pointed) CC-SMs.

Quasi-Borel Spaces. The category Meas is not suitable for the semantics of higher-order
programming languages since it is not Cartesian closed ([4]). For the treatment of higher-order
probabilistic programs with continuous distributions, we employ the Cartesian closed category
QBS of quasi-Borel spaces and morphisms between them, together with the probability monad
P on QBS ([28]). A quasi-Borel space is a pair I = (|I|,MI) of a set |I| and a subset MI of the
function space R ⇒ |I| satisfying

1. for α ∈MI and a measurable function f : R → R, α ◦ f ∈MI .

2. for any x ∈ I, (λr ∈ R.x) ∈MI .

3. for all P : R → N and a family {αi}i∈N of functions αi ∈MI , (λr ∈ R.αP (r)(r)) ∈MI .

A morphism f : (|I|,MI) → (|J |,MJ) is a function f : |I| → |J | such that f ◦ α ∈ MJ holds for
all α ∈ MI . The category QBS is a (well-pointed) CCC, and has all countable products and
coproducts that are strictly preserved by the forgetful functor |−| : QBS → Set. It is naturally
isomorphic to the global element functor QBS(1,−).

Connection to Measurable Spaces: an Adjunction We can convert measurable spaces
and quasi-Borel spaces using an adjunction L ⊣ K : Meas → QBS. They are given by

LI , (|I|, {U ⊆ |I| | ∀α ∈MX .α
−1(I) ∈ ΣR}) Lf , f

33

D
R
A
FT

KI , (|I|,Meas(R, I)) Kf , f

For any standard Borel space Ω ∈ Meas, we have LKΩ = Ω. The right adjoint K is full-
faithful when restricted to the standard Borel spaces [28, Proposition 15-(2)]. The right adjoint
K preserves countable coproducts and function spaces (if exists) of standard Borel spaces [28,
Proposition 19].

Probability Measures and the Probability Monad. A probability measure on a quasi-
Borel space I is a pair (α, µ) ∈MI×GR. We introduce an equivalence relation∼I over probability
measures on I by

(α, µ) ∼I (β, ν) ⇐⇒ µ(α−1(−)) = ν(β−1(−)).

Using this, we introduce a probability monad P on QBS as follows:

• On objects, we define P : Obj(QBS) → Obj(QBS) by

|P (I)| , (MI ×GR)/ ∼I , MP (I) , {λr.[(α, g(r))]∼I
| α ∈MI , g ∈ Meas(R, GR)}.

• The unit is defined by ηI(x) , [λr.x, µ]∼I
for an arbitrary µ ∈ GR.

• The Kleisli extension of f : I → P (J) is defined by f ♯[α, µ]∼I
, [β, g♯µ] where there are

β ∈MJ and g ∈ Meas(R, GR) satisfying f ◦α = λr ∈ R.[β, g(r)]∼J
by definition ofMP (J).

The monad P is (commutative) strong with respect to the CCC (QBS, 1, (×)).

Acknowledgments

Tetsuya Sato carried out this research under the support by JST ERATO HASUO Metamath-
ematics for Systems Design Project (No. JPMJER1603) and JSPS KAKENHI Grant Number
20K19775, Japan. Shin-ya Katsumata carried out this research under the support by JST ER-
ATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603) and JSPS
KAKENHI Grant Number 18H03204, Japan. The authors are grateful to Ichiro Hasuo providing
the opportunity of collaborating in that project. The authors are grateful to Satoshi Kura, Justin
Hsu, Marco Gaboardi, Borja Balle and Gilles Barthe for fruitful discussions.

References

[1] Aws Albarghouthi and Justin Hsu. Constraint-based synthesis of coupling proofs. In Com-
puter Aided Verification - 30th International Conference, CAV 2018, Proceedings, Part I,
volume 10981 of LNCS, pages 327–346. Springer, 2018.

[2] Aws Albarghouthi and Justin Hsu. Synthesizing coupling proofs of differential privacy.
PACMPL, 2(POPL):58:1–58:30, 2018.

[3] Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. Monads need not be endofunc-
tors. Log. Methods Comput. Sci., 11(1), 2015.

[4] Robert J. Aumann. Borel structures for function spaces. Illinois J. Math., 5(4):614–630, 12
1961.

34

D
R
A
FT

[5] Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, and Shin-ya Katsumata. Prob-
abilistic relational reasoning via metrics. In 34th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2019, pages 1–19. IEEE, 2019.

[6] Giorgio Bacci, Radu Mardare, Prakash Panangaden, and Gordon Plotkin. Tensor of Quanti-
tative Equational Theories. In Fabio Gadducci and Alexandra Silva, editors, 9th Conference
on Algebra and Coalgebra in Computer Science (CALCO 2021), volume 211 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 7:1–7:17, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[7] Borja Balle, Gilles Barthe, Marco Gaboardi, Justin Hsu, and Tetsuya Sato. Hypothesis test-
ing interpretations and renyi differential privacy. In Silvia Chiappa and Roberto Calandra,
editors, Proceedings of the Twenty Third International Conference on Artificial Intelligence
and Statistics (AISTATS 2020), volume 108 of Proceedings of Machine Learning Research,
pages 2496–2506, Online, 26–28 Aug 2020. PMLR.

[8] Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, César Kunz, and
Pierre-Yves Strub. Proving differential privacy in Hoare logic. In IEEE 27th Computer
Security Foundations Symposium, CSF 2014, pages 411–424. IEEE Computer Society, 2014.

[9] Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and
Pierre-Yves Strub. Higher-order approximate relational refinement types for mechanism
design and differential privacy. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January
15-17, 2015, pages 55–68. ACM, 2015.

[10] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub.
Proving differential privacy via probabilistic couplings. In Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, pages 749–758. ACM,
2016.

[11] Gilles Barthe, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. Coupling proofs are
probabilistic product programs. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, pages 161–174, New York, NY, USA,
2017. Association for Computing Machinery.

[12] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. Probabilistic
relational reasoning for differential privacy. In Proceedings of the 39th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2012, pages 97–110.
ACM, 2012.

[13] Gilles Barthe and Federico Olmedo. Beyond differential privacy: Composition theorems
and relational logic for f-divergences between probabilistic programs. In Automata, Lan-
guages, and Programming - 40th International Colloquium, ICALP 2013, Proceedings, Part
II, volume 7966 of LNCS, pages 49–60. Springer, 2013.

[14] Nick Benton. Simple relational correctness proofs for static analyses and program transfor-
mations. SIGPLAN Not., 39(1):14–25, January 2004.

[15] Filippo Bonchi, Barbara König, and Daniela Petrisan. Up-To Techniques for Behavioural
Metrics via Fibrations. In 29th International Conference on Concurrency Theory (CONCUR
2018), volume 118 of Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1–
17:17, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

35

D
R
A
FT

[16] Mark Bun, Cynthia Dwork, Guy N. Rothblum, and Thomas Steinke. Composable and
versatile privacy via truncated CDP. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, pages 74–86, New York, NY, USA, 2018.
Association for Computing Machinery.

[17] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, exten-
sions, and lower bounds. In Theory of Cryptography, pages 635–658, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg.

[18] Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. Relational
cost analysis. SIGPLAN Not., 52(1):316–329, January 2017.

[19] Imre Csiszár. Eine informationstheoretische Ungleichung und ihre Anwendung auf den
beweis der ergodizitat von markoffschen ketten. Magyar. Tud. Akad. Mat. Kutato Int.
Kozl., 8:85–108, 1963.

[20] Imre Csiszár. Information-type measures of difference of probability distributions and indi-
rect observations. Studia Sci. Math. Hungar., 2:299–318, 1967.

[21] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography, volume 3876 of LNCS,
pages 265–284. Springer Berlin Heidelberg, 2006.

[22] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foun-
dations and Trends® in Theoretical Computer Science, 9(3-4):211–407, 2013.

[23] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce.
Linear dependent types for differential privacy. In The 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’13, pages 357–370.
ACM, 2013.

[24] Marco Gaboardi, Shin-ya Katsumata, Dominic Orchard, and Tetsuya Sato. Graded hoare
logic and its categorical semantics. In Nobuko Yoshida, editor, Programming Languages
and Systems - 30th European Symposium on Programming, ESOP 2021, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg
City, Luxembourg, March 27 - April 1, 2021, Proceedings, volume 12648 of Lecture Notes in
Computer Science, pages 234–263. Springer, 2021.

[25] Francesco Gavazzo. Quantitative behavioural reasoning for higher-order effectful programs:
Applicative distances. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS ’18, pages 452–461, New York, NY, USA, 2018. Association for
Computing Machinery.

[26] Michèle Giry. A categorical approach to probability theory. In B. Banaschewski, editor,
Categorical Aspects of Topology and Analysis, volume 915 of LNM, pages 68–85. Springer,
1982.

[27] Rob Hall. New Statistical Applications for Differential Privacy. PhD thesis, Machine Learn-
ing Department School of Computer Science Carnegie Mellon University, 2012.

[28] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A convenient category
for higher-order probability theory. In 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2017, pages 1–12, 2017.

36

D
R
A
FT

[29] B. Jacobs. Categorical Logic and Type Theory. Elsevier, 1999.

[30] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for differ-
ential privacy. In Proceedings of the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015, pages 1376–1385, 2015.

[31] Shin-ya Katsumata. Parametric effect monads and semantics of effect systems. In The 41st
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’14, pages 633–646. ACM, 2014.

[32] Shin-ya Katsumata and Tetsuya Sato. Preorders on monads and coalgebraic simulations.
In Frank Pfenning, editor, Foundations of Software Science and Computation Structures,
pages 145–160, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[33] Shin-ya Katsumata, Tetsuya Sato, and Tarmo Uustalu. Codensity lifting of monads and its
dual. Logical Methods in Computer Science, 14(4), 2018.

[34] Max Kelly. Basic Concepts of Enriched Category Theory, volume 64. Cambridge University
Press, 1982. Republished in: Reprints in Theory and Applications of Categories, No. 10
(2005) pp.1-136.

[35] Friedrich Liese and Igor Vajda. On divergences and informations in statistics and information
theory. IEEE Transactions on Information Theory, 52(10):4394–4412, Oct 2006.

[36] John M. Lucassen and David K. Gifford. Polymorphic effect systems. In Conference Record
of the Fifteenth Annual ACM Symposium on Principles of Programming Languages, pages
47–57. ACM Press, 1988.

[37] Saunders Mac Lane. Categories for the Working Mathematician (Second Edition), volume 5
of Graduate Texts in Mathematics. Springer, 1998.

[38] R. Mardare, P. Panangaden, and G. Plotkin. On the axiomatizability of quantitative alge-
bras. In 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1–12, Los Alamitos, CA, USA, jun 2017. IEEE Computer Society.

[39] Radu Mardare, Prakash Panangaden, and Gordon Plotkin. Quantitative algebraic reasoning.
In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’16, page 700–709, New York, NY, USA, 2016. Association for Computing Machinery.

[40] Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer Security Foundations
Symposium (CSF), pages 263–275, Aug 2017.

[41] John C. Mitchell and Andre Scedrov. Notes on sconing and relators. In Computer Science
Logic, 6th Workshop, CSL ’92, volume 702 of LNCS, pages 352–378. Springer, 1992.

[42] Eugenio Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991.

[43] Tetsuzo Morimoto. Markov processes and the H-theorem. Journal of the Physical Society
of Japan, 18(3):328–331, 1963.

[44] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: An Appetizer.
Springer-Verlag, Berlin, Heidelberg, 2007.

37

D
R
A
FT

[45] Federico Olmedo. Approximate Relational Reasoning for Probabilistic Programs. PhD thesis,
Technical University of Madrid, 2014.

[46] Shiva Prasad and Kasiviswanathan Adam Smith. A note on differential privacy: Defining
resistance to arbitrary side information. Journal of Privacy and Confidentiality, 6(1), 2014.

[47] Ivan Radiček, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Florian Zuleger. Monadic
refinements for relational cost analysis. Proc. ACM Program. Lang., 2(POPL):36:1–36:32,
December 2017.

[48] Jason Reed and Benjamin C. Pierce. Distance makes the types grow stronger: a calculus
for differential privacy. In Proceeding of the 15th ACM SIGPLAN international conference
on Functional programming, ICFP 2010, pages 157–168. ACM, 2010.

[49] J. J. M. M. Rutten. Elements of generalized ultrametric domain theory. Theor. Comput.
Sci., 170(1-2):349–381, December 1996.

[50] Tetsuya Sato. Identifying all preorders on the subdistribution monad. In Bart Jacobs,
Alexandra Silva, and Sam Staton, editors, Proceedings of the 30th Conference on the Math-
ematical Foundations of Programming Semantics, MFPS 2014, Ithaca, NY, USA, June 12-
15, 2014, volume 308 of Electronic Notes in Theoretical Computer Science, pages 309–327.
Elsevier, 2014.

[51] Tetsuya Sato. Approximate relational hoare logic for continuous random samplings. In
The Thirty-second Conference on the Mathematical Foundations of Programming Semantics,
MFPS 2016, volume 325 of Electronic Notes in Theoretical Computer Science, pages 277–
298. Elsevier, 2016.

[52] Tetsuya Sato, Gilles Barthe, Marco Gaboardi, Justin Hsu, and Shin-ya Katsumata. Approx-
imate span liftings: Compositional semantics for relaxations of differential privacy. In 34th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, pages 1–14.
IEEE, 2019.

[53] Ross Street. The formal theory of monads. Journal of Pure and Applied Algebra, 2(2):149
– 168, 1972.

[54] Larry Wasserman and Shuheng Zhou. A statistical framework for differential privacy. Jour-
nal of the American Statistical Association, 105(489):375–389, 2010.

38

D
R
A
FT

A Proofs for Section 5 (Examples of Divergences on Mon-
ads)

Proposition 17. The family C′ = {C′
I : (N× I)2 → N}I∈Set of N -divergences defined by

C′
I((i, x), (j, y)) ,

{
|i− j| x = y

∞ x 6= y
.

is a Eq-relative N -divergence on the monad N×−.

Proof. The monotonicity of C′ is obvious.
We show the Eq-unit-reflexivity of C′. For all (x, y) ∈ EqI (that is, x = y ∈ I), we have

C′
I(ηI(x), ηI (y)) = C′

I((0, x), (0, y)) = 0.

We show the Eq-composability of C′. Let (i, x), (j, y) ∈ N× I and f, g : I → N× J . We write
f(z) = (iz, fz) and g(z) = (jz, gz) for each z ∈ Z.

• If x = y and xz = yz for all z ∈ I, we have

C′
J (f

♯(i, x), g♯(j, y)) = C′
J(i + ix, fx), (j + jx, gx))

= |(i+ ix)− (j + jx)| ≤ |i− j|+ |ix − jx|
≤ C′

I((i, x), (j, y)) + sup
(x,y)∈EqI(⇐⇒ x=y∈I)

C′
J(f(x), g(y))

• If x 6= y or fz 6= gz for some z ∈ I, we have

C′
J(f

♯(i, x), g♯(j, y)) ≤ ∞ = C′
I((i, x), (j, y)) + sup

(x,y)∈EqI(⇐⇒ x=y∈I)

C′
J (f(x), g(y)).

This completes the proof.

Proposition 18. The family NC = {NCI : (P (N× I))2 → N}I∈Set of N -divergences defined by

NCI(A,B) , sup
(i,x)∈A,(j,x)∈B

|i− j|

is a Top-relative N -divergence on the monad P (N×−).

Proof. The monotonicity of NC is obvious.
We show the Top-unit-reflexivity of NC . For all (x, y) ∈ TopI (that is, x, y ∈ I), we have

NCI(ηI(x), ηI(y)) = NCI({(0, x)}, {(0, y)}) = |0− 0| = 0.

We show the Top-composability of NC. For all f, g : I → P (N× J) and A,B ∈ P (N× I), we
have

NCJ (f
♯A, g♯B) = sup{|i− j| | (i, x) ∈ f ♯(A), (j, y) ∈ g♯(B)}

= sup

{
|i1 + i2 − j1 − j2|

∣∣∣∣
(i1, x) ∈ A, (j1, y) ∈ B,
(i2, x

′) ∈ f(x), (j2, y
′) ∈ g(y)

}

≤ sup{|i1 − j1| | (i1, x) ∈ A, (j1, y) ∈ B}
+ sup

(x,y)∈TopI(⇐⇒ x,y∈I)

{|i2 − j2| | (i2, x′) ∈ f(x), (j2, y
′) ∈ g(y)}

= NCI(A,B) + sup
(x,y)∈TopI(⇐⇒ x,y∈I)

NCJ(f(x), g(y)).

This completes the proof.

39

D
R
A
FT

Proposition 19. The family NCI = {NCII : (P (N× I))2 → N}I∈Set of Z-divergences defined by

NCII(A,B) , sup
(i,x)∈A,(j,y)∈B

i− j

is a Top-relative Z-divergence on the monad P (N×−).

Proof. The monotonicity of NCI is obvious.
We show the Top-unit-reflexivity of NCI . For all (x, y) ∈ TopI (that is, x, y ∈ I), we have

NCII(ηI(x), ηI(y)) = NCII({(0, x)}, {(0, y)}) = 0− 0 = 0.

We show the Top-composability of NCI. For all f, g : I → P (N× J) and A,B ∈ P (N× I), we
have

NCIJ(f
♯A, g♯B) = sup{i− j | (i, x) ∈ f ♯(A) ∧ (j, y) ∈ g♯(B)}

= sup

{
i1 + i2 − j1 − j2

∣∣∣∣
(i1, x) ∈ A, (j1, y) ∈ B,
(i2, x

′) ∈ f(x), (j2, y
′) ∈ g(y)

}

≤ sup{i1 − j1 | (i1, x) ∈ A, (j1, y) ∈ B}
+ sup

(x,y)∈TopI(⇐⇒ x,y∈I)

{i2 − j2 | (i2, x′) ∈ f(x), (j2, y
′) ∈ g(y)}

= NCII(A,B) + sup
(x,y)∈TopI(⇐⇒ x,y∈I)

NCIJ (f(x), g(y)).

This completes the proof.

Proof. (Proof of Proposition 1) We have Eq-unit reflexivity because the reflexivity fDivI(µ, µ) =
0 is obtained from f(1) = 0. We show Eq-composability. To show this, we prove a bit stronger
statement. Consider three positive weight functions f, f1, f2 ≥ 0 with f(1) = f1(1) = f2(1) = 0.
Assume that there are some α, β, β′ ∈ R satisfying the following conditions:

(A’)✓ ✏
for all x, y, z, w ∈ [0, 1], 0 ≤ (β′z + (1− β′)x) + γxf1 (z/x) and

xyf (zw/xy) ≤ (βw + (1− β)y)xf1 (z/x) + (β′z + (1− β′)x)yf2 (w/y)

+ γxyf1 (z/x) f2 (w/y) + α(x− z)(w − y).

✒ ✑
Let µ1, µ2 ∈ GsI, and let h, k : I → GsJ . We want to show the composability in the sense of [45,
Definition 5.2]:

fDivJ(h
♯µ1, k

♯µ2)

≤ f1DivI(µ1, µ2) + sup
x∈I

f2DivJ(h(x), k(x)) + γf1DivI(µ1, µ2) · sup
x∈I

f2DivJ(h(x), k(x)).
(23)

We first fix a measurable partition {Ai}ni=0 of J , that is a family {Ai}ni=0 of measurable subsets
Ai ∈ ΣJ satisfying i 6= j =⇒ Ai ∩ Aj = ∅ and

⋃n
i=0 Ai = J . For each 0 ≤ i ≤ n, we fix two

monotone increasing sequences {hil}∞l=0 and {kil}∞l=0 of simple functions that converge uniformly
to measurable functions h(−)(Ai) : I → [0, 1] and k(−)(Ai) : I → [0, 1] respectively. The above
composability (23) is then equivalent to

lim
l→∞

n∑

i=0

(

∫

X

kil dµ2)f

(∫
X
hil dµ1∫

X
kil dµ2

)

≤ f1DivI(µ1, µ2) + sup
x∈I

f2DivJ(h(x), k(x)) + γf1DivI(µ1, µ2) sup
x∈I

f2DivJ(h(x), k(x)).

(24)

40

D
R
A
FT

We fix l ∈ N. We suppose hil =
∑m

j=0 α
i
jχBj

and kil =
∑m

j=0 β
i
jχBj

for some αi
j , β

i
j ∈ [0, 1]

(0 ≤ j ≤ m) and a measurable partition {Bj}mj=0 of I.
Thanks to the condition (A’), we calculate as follows:

n∑

i=0

(

∫

X

kil dµ2)f

(∫
X
hil dµ1∫

X
kil dµ2

)

≤
n∑

i=0

m∑

j=0

βi
jµ2(Bj)f

(
αi
jµ1(Bj)

βi
jµ2(Bj)

)

≤
n∑

i=0

m∑

j=0

(βαi
j + (1− β)βi

j) µ2(Bj)f1

(
µ1(Bj)

µ2(Bj)

)

︸ ︷︷ ︸
,V1

+

n∑

i=0

m∑

j=0

(
β′µ1(Bj) + (1 − β′)µ2(Bj)) + γµ2(Bj)f1

(
µ1(Bj)

µ2(Bj)

))
βi
jf2

(
αi
j

βi
j

)

︸ ︷︷ ︸
,V2

+

n∑

i=0

m∑

j=0

α(µ2(Bj)− µ1(Bj))(α
i
j − βi

j)

︸ ︷︷ ︸
,V3

We evaluate the above three subexpressions V1, V2, V3 as follows.
We evaluate V1 as follows:

V1 ≤
(

sup
0≤j≤m

n∑

i=0

(βαi
j + (1− β)βi

j)

)
·

m∑

j=0

µ2(Bj)f1

(
µ1(Bj)

µ2(Bj)

)

= sup
x∈I

(
β

n∑

i=0

hil(x) + (1 − β)

n∑

i=0

kil(x)

)
·

m∑

j=0

µ2(Bj)f1

(
µ1(Bj)

µ2(Bj)

)

≤ sup
x∈I

(
β

n∑

i=0

hil(x) + (1 − β)

n∑

i=0

kil(x)

)
· f1DivI(µ1, µ2)

l→∞−−−−→ sup
x∈I

(βh(x)(J) + (1− β)k(x)(J)) · f1DivI(µ1, µ2)

≤ f1DivI(µ1, µ2)

Here, the first inequality is given from the non-negativity of each µ2(Bj)f1

(
µ1(Bj)
µ2(Bj)

)
; the equality

is given by definition of αi
j and βi

j ; the second inequality can be given by the continuity of f1Div

([35, Theorem 16]; [52, Theorem 3] for the sub-Giry monad Gs):

f1DivI(µ1, µ2) = sup





m∑

j=0

µ2(Bj)f1

(
µ1(Bj)

µ2(Bj)

)∣∣∣∣∣∣
{Bj}mj=0 : measurable partition of I



 ;

the last inequality is derived by βh(x)(J) + (1 − β)k(x)(J) ∈ [0, 1] from the assumption that
either β ∈ [0, 1] or h(x)(J) = k(x)(J) for all x ∈ I holds.

41

D
R
A
FT

We next evaluate V2 as follows:

V2 ≤
(

sup
0≤j≤m

n∑

i=0

βi
jf2

(
αi
j

βi
j

))
m∑

j=0

(
β′µ1(Bj) + (1− β′)µ2(Bj)) + γµ2(Bj)f1

(
µ1(Bj)

µ2(Bj)

))

=

(
sup
x∈I

n∑

i=0

kil (x)f2

(
hil(x)

kil (x)

))
β′µ1(I) + (1− β′)µ2(I) + γ

m∑

j=0

µ2(Bj)f1

(
µ1(Bj)

µ2(Bj)

)


≤
(
sup
x∈I

n∑

i=0

kil (x)f2

(
hil(x)

kil (x)

))(
β′µ1(I) + (1− β′)µ2(I) + γf1DivI(µ1, µ2)

)

l→∞−−−−→
(
sup
x∈I

n∑

i=0

k(x)(Ai)f2

(
h(x)(Ai)

k(x)(Ai)

))(
β′µ1(I) + (1− β′)µ2(I) + γf1DivI(µ1, µ2)

)

≤ sup
x∈I

f2DivJ(h(x), k(x))
(
β′µ1(I) + (1− β′)µ2(I) + γf1DivI(µ1, µ2)

)

≤ sup
x∈I

f2DivJ(h(x), k(x)) · γf1DivI(µ1, µ2)

= γf1DivI(µ1, µ2) · sup
x∈I

f2DivJ(h(x), k(x)).

Here, the first inequality is derived from the non-negativity of each

(β′µ1(Bj) + (1− β′)µ2(Bj)) + γµ2(Bj)f1

(
µ1(Bj)

µ2(Bj)

)
; (25)

the first equality is given by definition of αi
j and βi

j and the countable additivity of µ1 and µ2;

the second inequality is given by the continuity of f1Div and 0 ≤ γ; the last inequality is derived
by β′µ1(I) + (1 − β′)µ2(I) ∈ [0, 1] from the assumption that either β′ ∈ [0, 1] or µ1(I) = µ2(I)
holds. We prove the third inequality. Since f2 is convex function, and sequences {hil(x)}∞l=0

and {kil(x)}∞l=0 are monotone increasing at each x ∈ I, By Jensen’s inequality, the sequence{∑n
i=0 k

i
l(x)f2

(
hil(x)/k

i
l(x)

)}∞
l=0

is monotone increasing for each x ∈ I. Then, the sequence{
supx∈I

∑n
i=0 k

i
l(x)f2

(
hil(x)/k

i
l(x)

)}∞
l=0

of supremums is also monotone increasing, because each∑n
i=0 k

i
l+1(x)f2

(
hil+1(x)/k

i
l+1(x)

)
is always greater than

∑n
i=0 k

i
l (x)f2

(
hil(x)/k

i
l(x)

)
. Hence,

lim
l→∞

sup
x∈I

n∑

i=0

kil (x)f2

(
hil(x)

kil (x)

)
= sup

l∈N

sup
x∈I

n∑

i=0

kil(x)f2

(
hil(x)

kil (x)

)

= sup
x∈I

sup
l∈N

n∑

i=0

kil(x)f2

(
hil(x)

kil (x)

)

= sup
x∈I

n∑

i=0

k(x)(Ai)f2

(
h(x)(Ai)

k(x)(Ai)

)

≤ sup
x∈I

f2Div(h(x), k(x)).

Finally, we evaluate V3 as follows:

V3 =

m∑

j=0

α(µ2(Bj)− µ1(Bj))(

n∑

i=0

αi
j − βi

j)

42

D
R
A
FT

= α

(∫

I

hil dµ2 −
∫

I

kil dµ2 +

∫

I

kil dµ1 −
∫

I

hil dµ1

)

l→∞−−−−→ α

(∫

I

h(−)(J) dµ2 −
∫

I

k(−)(J) dµ2 +

∫

I

k(−)(J) dµ1 −
∫

I

h(−)(J) dµ1

)
.

Here, if either α = 0 or h(x)(J) = k(x)(J) for any x ∈ I holds then the limit will be 0. To sum
up the above evaluations of V1, V2, V3, we obtain the inequality (24) if we have either

1. µ1(I) = µ2(I) = 1 and ∀x ∈ I. h(x)(J) = k(x)(J) = 1, or

2. α = 0 and β, β ∈ [0, 1].

This completes the proof.

Parameters for Proposition 1 for for weight functions of TV, KL, HD and Chi are shown in
Table 4. Below, we check the conditions in Proposition 1.

• For the weight function f(t) = |t − 1|/2 of TV, the tuple (γ, α, β, β′) = (0, 0, 1, 0) satisfies
for all x, y, z, w ∈ [0, 1], we have

0 ≤ w + xf(z/x),

xyf(zw/xy) = |zw − xy|/2 ≤ |zw − wx|+ |xw − xy|/2 = wxf(z/x) + xf(|w/y)/2.

• For the weight function f(t) = t log(t) − t + 1 of KL, the tuple (γ, α, β, β′) = (0,−1, 1, 1)
satisfies for all x, y, z, w ∈ [0, 1], we have

0 ≤ z + xf(z/x),

xy((zw/xy) log(zw/xy)− zw/xy + 1)

= zw log(w/y) + zw log(z/x)− zw + xy

= xw((z/x) log(z/x)− z/x+ 1) + zy((w/y) log(w/y)− w/y + 1)− (x − z)(w − y).

• For the weight function f(t) = (
√
t−1)2/2 of HD, the tuple (γ, α, β, β′) = (0,−1/4, 1/2, 1/2)

satisfies for all x, y, z, w ∈ [0, 1],

0 ≤ (z + x)/2 + f(z/x),

xyf(zw/xy) = (zw + xy)/2− ((x+ z)− (
√
x−√

z)2)((y + w)− (
√
y −√

w)2)/4

= (zw + xy)/2− ((x+ z)− xf(z/x))((y + w) − yf(w/y))/4

≤ (y + w)/2 · xf(z/x) + (x+ z)/2 · yf(w/y)− (x− z)(w − y)/4.

• For the weight function f(t) = (t − 1)2/2 of Chi, The tuple (γ, α, β, β′) = (1,−2, 2, 2)
satisfies for all x, y, z, w ∈ [0, 1],

0 ≤ (2z − x) + xf(z/x) = (2z − x) + ((z/x)− 1)(z − x) = z + (z2/x),

xyf(zw/xy) = z2w2/xy + xy − 2zw

= (xf(z/x) + 2z − x)(yf(w/y) + 2w − y)− 2zw + xy

= (2w − y)xf(z/x) + (2z − x)yf(w/y) + xyf(z/x)f(w/y)− 2(x− z)(w − y).

43

D
R
A
FT

Proof. (Proof of Proposition 2)
We first show the monotonicity of 〈p, λ〉∗∆. Assume m ≤ m′. From the monotonicity of the

original ∆, we obtain for each ν1, ν2 ∈ UC(SI)),

(〈p, λ〉∗∆)mI (ν1, ν2) = ∆m
pI((U

DλI)(ν1), (U
DλI)(ν2))

≥ ∆m′

pI ((U
DλI)(ν1), (U

DλI)(ν2))

= (〈p, λ〉∗∆)m
′

I (ν1, ν2).

Second, we show the F -unit-reflexivity of 〈p, λ〉∗∆. For FI = (I, I, RFI), we have EpI =
(p = (pI, pI, RFI) for all I ∈ C. We can calculate for all (x, y) ∈ RF ,

(〈p, λ〉∗∆)1MI (ηSI • x, ηSI • y) = ∆1M
pI (UDλI ◦ UCηSI ◦ x, UDλI ◦ UCηSI ◦ y)

= ∆1M
pI ((λI ◦ pηSI) • x, (λI ◦ pηSI) • y)

= ∆1M
pI (ηTpI • x, ηTpI • y) ≤ 0.

Finally, we show the F -composability of 〈p, λ〉∗∆. For all J ∈ C, c1, c2 ∈ UCTI, and
f1, f2 : I → SJ we can calculate

(〈p, λ〉∗∆)mn
J (f ♯

1 • c1, f ♯
2 • c2) = ∆mn

pJ (UDλJ ◦ UDp(f ♯
1) ◦ c1, UDλJ ◦ UDp(f ♯

2) ◦ c2)
= ∆mn

pJ (UD((λJ ◦ pf1)♯) ◦ UDλI ◦ c1, UD((λJ ◦ pf2)♯) ◦ UDλI ◦ c2)
= ∆mn

pJ ((λJ ◦ pf1)♯ • (λI • c1), (λJ ◦ pf2)♯ • (λI • c2))
≤ ∆m

pI(λI • c1, λI • c2) + sup
(x,y)∈EpI

∆n
pJ((λJ ◦ pf1) • x, (λJ ◦ pf2) • x)

= (〈p, λ〉∗∆)mI (c1, c2) + sup
(x,y)∈FI

(〈p, λ〉∗∆)nJ (f1 • x, f2 • y).

To prove the second equality, we calculate

UDλJ ◦ UDp(f ♯
i) = UD(λJ ◦ pµS

J ◦ pSfi) = UD(µT
pJ ◦ TλJ ◦ λSJ ◦ pSfi)

= UD(µT
pJ ◦ TλJ ◦ Tpfi ◦ λI) = UD((λJ ◦ pfi)♯ ◦ λI).

This completes the proof.

Proof. (Proof of Proposition 3)
It suffices to show Top-unit reflexivity and Top-composability:

∆
lip,dS

I (ηI(x), ηI(y)) = sup
s′,s∈S

dS(π2(s, x), π2(s
′, y))

dS(s, s′)
=
dS(s, s

′)
dS(s, s′)

= 1,

∆
lip,dS

J (F ♯
1 (f1), F

♯
1 (f2))

= sup
s′,s∈S

dS(π2(F1(π1f1(s))(π2f1(s))), π2(F2(π1f2(s
′))(π2f2(s′))))

dS(s, s′)

= sup
s′,s∈S

dS(π2f1(s), π2f2(s
′))

dS(s, s′)
· dS(π2(F1(π1f1(s))(π2f1(s))), π2(F2(π1f2(s

′))(π2f2(s′))))

dS(π2f1(s), π2f2(s′))

≤ sup
s′,s∈S

dS(π2f1(s), π2f2(s
′))

dS(s, s′)
· sup
t′,t∈S

dS(π2(F1(π1f1(s))(t)), π2(F2(π1f2(s
′))(t′)))

dS(t, t′)

≤ ∆
lip,dS

I (f1, f2) · sup
x,y∈I

∆
lip,dS

J (F1(x), F2(y))

Here F1, F2 : I → TSJ and f1, f2 ∈ TSI.

44

D
R
A
FT

Proof. (Proof of Proposition 4)
It suffices to show Eq-unit reflexivity and Eq-composability:

∆
met,dS

I (ηI(x), ηI(x)) = sup
s∈S

dS(π2(x, s), π2(x, s)) = sup
s∈S

dS(s, s) = 0.

∆
met,dS

J (F ♯
1 (f1), F

♯
1 (f2)) = sup

s∈S

dS(π2(F1(π1f1(s))(π2f1(s))), π1(F2(π1f2(s))(π2f2(s))))

≤ sup
s∈S

dS(π2(F1(π1f1(s))(π2f1(s))), π2(F2(π1f1(s))(π2f1(s))))

+ sup
s∈S

dS(π2(F2(π1f1(s))(π2f1(s))), π2(F2(π1f1(s))(π2f2(s))))

≤ sup
x∈I

∆
met,dS

J (F1(x), F2(x)) +∆
met,dS

I (f1, f2)

Here F1, F2 : I → TSJ and f1, f2 ∈ TSI. Without loss of generality, we may assume π1f1 = π1f2
holds and π2f1 and π2f2 are nonexpansive, and for every x ∈ I, π1F1(x) = π1F2(x) holds and
π2F1(x) and π2F2(x) are nonexpansive.

Proof. (Proof of Proposition 5) We first show the Eq-unit reflexivity of dTS(−). For any s ∈ S,
we calculate

dTSI(ηI(x), ηI(x)) = sup
s∈S

max (dI(π1(x, s), π1(x, s)), dS(π2(x, s), π2(x, s))

= sup
s∈S

max(dI(x, x), dS(s, s)) = 0.

We next show the Eq-composability of dTS(−). For any f1, f2 ∈ TS(I, dI) and nonexpansive
functions F1, F2 : (I, dI) → TS(J, dJ), we compute

dTSJ(F ♯
1 (f1), F

♯
1 (f2)) = sup

s∈S

max

(
dJ (π1(F1(π1f1(s))(π2f1(s))), π1(F2(π1f2(s))(π2f2(s))),

dS(π2(F1(π1f1(s))(π2f1(s))), π2(F2(π1f2(s))(π2f2(s)))

)

≤ sup
s∈S

max




dJ(π1(F1(π1f1(s))(π2f1(s))), π1(F2(π1f1(s))(π2f1(s))),

dJ(π1(F2(π1f1(s))(π2f1(s))), π1(F2(π1f2(s))(π2f2(s))),

dS(π2(F1(π1f1(s))(π2f1(s))), π2(F2(π1f1(s))(π2f1(s))),

dS(π2(F2(π1f1(s))(π2f1(s))), π2(F2(π1f2(s))(π2f2(s)))




= sup
s∈S

max




dJ(π1(F2(π1f1(s))(π2f1(s))), π1(F2(π1f2(s))(π2f2(s))),

dS(π2(F2(π1f1(s))(π2f1(s))), π2(F2(π1f2(s))(π2f2(s))),

dJ(π1(F1(π1f1(s))(π2f1(s))), π1(F2(π1f1(s))(π2f1(s))),

dS(π2(F1(π1f1(s))(π2f1(s))), π2(F2(π1f1(s))(π2f1(s)))




≤ sup
s∈S

max




dI(π1(f1(s)), π1(f2(s))),

dS(π2(f1(s)), π2(f2(s))),

sup
x∈I

sup
s′∈S

max

(
dJ (π1(F1(x)(s

′)), π1(F2(x)(s
′)),

dS(π2(F1(x)(s
′)), π2(F2(x)(s

′))

)




= max




sup
s∈S

max(dI(π1(f1(s)), π1(f2(s))), dS(π2(f1(s)), π2(f2(s)))),

sup
x∈I

sup
s′∈S

max

(
dJ (π1(F1(x)(s

′)), π1(F2(x)(s
′)),

dS(π2(F1(x)(s
′)), π2(F2(x)(s

′))

)




= max(dTSI(f1, f2), sup
x∈I

dTSJ(F1(x), F2(x)).

45

D
R
A
FT

We note here that the nonexpansivity of F2 : (I, dI) → (S, dS) ⇒ (S, dS) × (J, dJ) is equivalent
to the one of its uncurrying F2 : (S, dS)× (I, dI) → (S, dS)× (J, dJ).

Proof. (Proof of Proposition 6) We first show the Dist0-unit reflexivity of ∆Dist0 . For (x1, x2) ∈
Dist0(I, dI) (i.e. dI(x1, x2) = 0), we calculate

∆Dist0
(I,dI)

(ηI(x1), ηI(x2)) = sup
dS(s1,s2)=0

max (dI(π1(x1, s2), π1(x2, s2)), dS(π2(x1, s1), π2(x2, s2))

= sup
dS(s1,s2)=0

max(dI(x1, x2), dS(s1, s2)) = 0.

Next, we show the Dist0-composability of ∆Dist0 . For any f1, f2 ∈ TS(I, dI) and nonexpansive
functions F1, F2 : (I, dI) → TS(J, dJ), we compute

∆Dist0
J (F ♯

1 (f1), F
♯
1 (f2))

= sup
dS(s1,s2)=0

max

(
dJ (π1(F1(π1f1(s1))(π2f1(s1))), π1(F2(π1f2(s2))(π2f2(s2))),

dS(π2(F1(π1f1(s1))(π2f1(s1))), π2(F2(π1f2(s2))(π2f2(s2)))

)

≤ sup
dS(s1,s2)=0

max




dJ(π1(F1(π1f1(s1))(π2f1(s1))), π1(F2(π1f1(s1))(π2f1(s1))),

dJ(π1(F2(π1f1(s1))(π2f1(s1))), π1(F2(π1f2(s2))(π2f2(s2))),

dS(π2(F1(π1f1(s1))(π2f1(s1))), π2(F2(π1f1(s1))(π2f1(s1))),

dS(π2(F2(π1f1(s1))(π2f1(s1))), π2(F2(π1f2(s2))(π2f2(s2)))




= sup
dS(s1,s2)=0

max




dJ(π1(F2(π1f1(s1))(π2f1(s1))), π1(F2(π1f2(s2))(π2f2(s2))),

dS(π2(F2(π1f1(s1))(π2f1(s1))), π2(F2(π1f2(s2))(π2f2(s2))),

dJ(π1(F1(π1f1(s1))(π2f1(s1))), π1(F2(π1f1(s1))(π2f1(s1))),

dS(π2(F1(π1f1(s1))(π2f1(s1))), π2(F2(π1f1(s1))(π2f1(s1)))




≤ sup
dS(s1,s2)=0

max




dI(π1(f1(s1)), π1(f2(s2))),

dS(π2(f1(s1)), π2(f2(s2))),

sup
(x1,x2)∈Dist0(I,dI)

sup
dS(s′1,s

′
2)=0

max

(
dJ (π1(F1(x)(s

′
1)), π1(F2(x)(s

′
2)),

dS(π2(F1(x)(s
′
1)), π2(F2(x)(s

′
2))

)




= max




sup
dS(s′1,s

′
2)=0

max(dI(π1(f1(s1)), π1(f2(s2))), dS(π2(f1(s1)), π2(f2(s2)))),

sup
(x1,x2)∈Dist0(I,dI)

sup
dS(s′1,s

′
2)=0

max

(
dJ(π1(F1(x1)(s

′
1)), π1(F2(x2)(s

′
2)),

dS(π2(F1(x1)(s
′
1)), π2(F2(x2)(s

′
2))

)




= max(∆Dist0
I (f1, f2), sup

(x1,x2)∈Dist0(I,dI)

∆Dist0
J (F1(x), F2(x)).

This completes the proof.

Proof. (Proof of Proposition 7) The monotonicity of C(∆, N) is obvious since M = 1.
We show the Eq-unit reflexivity of C(∆, N). For all x ∈ UI, we have

Tπ1 • (ηT (N×−)
I • x) = (Tπ1 ◦ ηT (N×−)

I) • x = (Tπ1 ◦ Tη(N×−)
I ◦ ηTI) • x

= (T (1N◦!I) ◦ ηTI) • x = (ηT ◦ 1N◦!I) • x
= ηT • ((1N◦!I) • x) = ηT • (1N • (!I • x))
= ηT • 1N

46

D
R
A
FT

Hence,

C(∆, N)I(η
T (N×−) • x, ηT (N×−) • x) = C(∆, N)I(η

T (N×−) • x, ηT (N×−) • x)
= ∆N (Tπ1 • (ηT (N×−) • x), T π1 • (ηT (N×−) • x)
= ∆N (ηT • 1N , ηT • 1N)

≤ 0Q.

We next show the Eq-composability of C(∆, N). For any f : I → T (N × I), we define
hf : N × I → T (N) by hf = T (⋆) ◦ θN,N ◦ (N × (Tπ1 ◦ f)). Then, we have Tπ1 • f ♯(T (N×I)) • ν =

h♯Tf • ν for any ν ∈ U(T (N × I)). First, for all m,n ∈ UN , we have

(T (⋆) ◦ (ηN×N)n) •m = T (⋆) • (ηN×N • 〈n,m〉) = (T (⋆) ◦ ηN×N) • 〈n,m〉)
= (ηN ◦ ⋆) • 〈n,m〉) = ηN • (⋆ • 〈n,m〉)
= ηN • (⋆n •m) = (ηN ◦ ⋆n) •m.

From this and the equality (1), we can calculate as follows:

hf • 〈n, i〉
= (T (⋆) ◦ θN,N ◦ (N × (Tπ1 ◦ f))) • 〈n, i〉 = (T (⋆) ◦ θN,N) • ((N × (Tπ1 ◦ f)) • 〈n, i〉)
= (T (⋆) ◦ θN,N) • (U(N × (Tπ1 ◦ f))(n, i)) = (T (⋆) ◦ θN,N) • ((U(N)× U(Tπ1 ◦ f))(n, i))
= (T (⋆) ◦ θN,N) • 〈U(N)(n), U(Tπ1 ◦ f)(i)〉 = (T (⋆) ◦ θN,N) • 〈n, (Tπ1 ◦ f) • i〉
= T (⋆) • (θN,N • 〈n, (Tπ1 ◦ f) • i〉) = T (⋆) • ((θN,N)n • ((Tπ1 ◦ f) • i))
= T (⋆) • (((ηN×N)n)

♯ • ((Tπ1 ◦ f) • i)) = (T (⋆) ◦ ((ηN×N)n)
♯) • ((Tπ1 ◦ f) • i)

= (T (⋆) ◦ (ηN×N)n)
♯ • ((Tπ1 ◦ f) • i) = (ηN ◦ (⋆n))♯ • ((Tπ1 ◦ f) • i).

From the assumption∆N×I(c1, c2) ≤ C(∆, N)I(c1, c2), the Eq-unit-reflexivity and Eq-composability
of the original divergence ∆, we obtain the Eq-composability of C(∆, N) as follows:

C(∆, N)J(f
♯(T (N×I))
1 • c1, f ♯(T (N×I))

2 • c2)
= ∆N (Tπ1 • f ♯(T (N×I))

1 • c1, T π1 • f ♯(T (N×I))
2 • c2)

= ∆N (h♯Tf1 • c1, h♯Tf2 • c2)
≤ ∆N×I(c1, c2) + sup

〈n,i〉∈U(N×I)

∆N (hf1 • 〈n, i〉, hf2 • 〈n, i〉)

= ∆N×I(c1, c2)

+ sup
〈n,i〉∈U(N×I)

∆N ((ηN ◦ (⋆)n)♯T • ((Tπ1 ◦ f) • i), (ηN ◦ (⋆)n)♯T • ((Tπ1 ◦ f) • i))

≤ ∆N×I(c1, c2)

+ sup
〈n,i〉∈U(N×I)



∆N ((Tπ1 ◦ f) • i, (Tπ1 ◦ f) • i)

+ sup
m∈UN

∆N (ηN ◦ (⋆)n) •m, (ηN ◦ (⋆)n) •m)




≤ ∆N×I(c1, c2) + sup
〈n,i〉∈U(N×I)

∆N ((Tπ1 ◦ f) • i, (Tπ1 ◦ f) • i)

= ∆N×I(c1, c2) + sup
i∈UI

∆N ((Tπ1 ◦ f1) • i, (Tπ1 ◦ f2) • i)

≤ C(∆, N)I(c1, c2) + sup
i∈UI

C(∆, N)J(f1 • i, f2 • i).

This completes the proof.

47

D
R
A
FT

Proof. (Proof of Proposition 8)
We consider a preorder ⊑ on a monad T . We define the B-divergence ∆⊑ on TI by

∆
⊑
I (c1, c2) ,

{
0 c1 6⊑I c2

1 c1 ⊑I c2

Each ∆̃(1)I is a preorder because ∆̃(1)I = ⊑I holds for each I.
The Eq-unit reflexivity of ∆⊑ is derived from the reflexivity of ⊑. For all set I and c ∈ TI,

(∆⊑
I (c, c) ≤ 1) ⇐⇒ (c ⊑I c).

Since ⊑ is a preorder on T , for all set I, J , c1, c2 ∈ TI and f, g : I → TJ ,

(∆⊑
I (c1, c2)× sup

x∈I

∆
⊑
J (f(x), g(x))) = 1

⇐⇒ (∆⊑
I (c1, c2) = 1) ∧ (sup

x∈I

∆
⊑
J (f(x), g(x)) = 1)

⇐⇒ (c1 ⊑I c2) ∧ (∀x ∈ I. f(x) ⊑J g(x))

=⇒ (f ♯(c1) ⊑J f
♯(c2)) ∧ (f ♯(c2) ⊑J g

♯(c2))

=⇒ (f ♯(c1) ⊑J g
♯(c2))

⇐⇒ (∆⊑
J (f

♯(c1), g
♯(c2)) = 1)

Hence, we have the Eq-composability

∆
⊑
J (f

♯(c1), g
♯(c2)) ≤ ∆

⊑
I (c1, c2)× sup

x∈I

∆
⊑
J (f(x), g(x)).

Conversely, we consider an Eq-relative B-divergence ∆ on T such that each ∆̃(1)I is a pre-
order. We show that the family ⊑∆= {⊑∆

I }I∈Set defined by ⊑∆
I , ∆̃(1)I forms a preorder on

monad T .
Each component ⊑∆

I of ⊑∆ at set I is a preorder on the set TI. We here note that the
divergence ∆ must be reflexive (i.e. ∆I(c, c) ≤ 1 for all I ∈ Set, c ∈ TI) because of the
reflexivity of ⊑∆

I :

(∆I(c, c) ≤ 1) ⇐⇒ (c ⊑∆
I c), for all I ∈ Set, c ∈ TI.

From the reflexivity and Eq-composability of ∆, we have for all c1, c2, c ∈ TI and f, g : I → TJ ,

∀c1, c2 ∈ TI, f : I → TJ . ∆J(f
♯(c1), f

♯(c2)) ≤ ∆I(c1, c2), (26)

∀c ∈ TI, f, g : I → TJ . ∆J(f
♯(c), g♯(c)) ≤ sup

x∈I

∆J(f(x), g(x)). (27)

They are equivalent to the substitutivity and congruence of ⊑∆ respectively:

(26) ⇐⇒ ∀c1, c2 ∈ TI, f : I → TJ . (c1 ⊑∆
I c2 =⇒ f ♯(c1) ⊑∆

J f ♯(c2)),

(27) ⇐⇒ ∀c ∈ TI, f, g : I → TJ . (∀x ∈ I. f(x) ⊑∆
J g(x) =⇒ f ♯(c) ⊑∆

J g♯(c)).

Finally, the above conversions ∆(−) and ⊑(−) are mutually inverse:

∆
⊑∆′

I (c1, c2) ≤ 1 ⇐⇒ c1 ⊑∆′

I c2 ⇐⇒ ∆′
I(c1, c2) ≤ 1,

c1 ⊑∆⊑′

I c2 ⇐⇒ ∆
⊑′

I (c1, c2) ≤ 1 ⇐⇒ c1 ⊑′
I c2.

This completes the proof.

48

D
R
A
FT

B Proofs for Section 6 (Properties of Divergences on Mon-
ads)

Proof. (Proof of Theorem 2) First, it is easy to see that the inequality (3) is equivalent to ∆

satisfying E-unit reflexivity.
We next show that the inequality (4) is equivalent to ∆ satisfying E-composability.
(only if) Since U1 = {id1}, we have RE1 = {(id1, id1)}. Therefore it holds d1,J(c1, c2) =

∆J (c1, c2). By letting I = 1 in the inequality (4), we obtain the E-composability:

d1,K(f1 ◦CT
c1, f2 ◦CT

c2) ≤ dJ,K(f1, f2) + d1,J (c1, c2)

⇐⇒ ∆K(f ♯
1 ◦ c1, f ♯

2 ◦ c2) ≤ sup
(x1,x2)∈EI

∆K(f1 • x1, f2 • x2) +∆J (c1, c2).

(if) From the E-composability, for any f1, f2 : I → TJ and g1, g2 : J → TK and (x1, x2) ∈ EI,
we have

∆K(g♯1 • (f1 • x1), g♯2 • (f2 • x2)) ≤ dJ,K(g1, g2) +∆J (f1 • x1, f2 • x2).
Next, for any (x1, x2) ∈ EI, we have ∆J (f1 • x1, f2 • x2) ≤ dI,J (f1, f2). Thus by monotonicity
of (+) we have

∆K(g♯1 • f1 • x1, g♯2 • f2 • x2) ≤ dJ,K(g1, g2) + dI,J(f1, f2).

By discharging (x1, x2) ∈ EI, we conclude

dI,K(g♯1 ◦ f1, g♯2 ◦ f2) ≤ dJ,K(g1, g2) + dI,J(f1, f2).

Proof. (Proof of Theorem 4) [∆] is a graded variant of codensity lifting performed along the
fibration VQ,C : DivQ(C) → C ([33]; see also Definition 15). Proving that it is a graded lifting
of T is routine. We show ∆m

I = [∆]m(E′I). The direction [∆]m(E′I) ≤ ∆m
I is easy. We

show the converse. From the composability of ∆, for any c1, c2 ∈ U(TI), J ∈ C, n ∈ M and
f ∈ DivQ(C)(E′I,∆n

J), we have

∆m·n
J (f ♯ • c1, f ♯ • c2) ≤ ∆m

I (c1, c2) + sup
(x1,x2)∈EI

∆n
J (f • x1, f • x2).

Next, the nonexpansivity of f is equivalent to

sup
(x1,x2)∈EI

∆n
J(f • x1, f • x2) ≤ 0.

Therefore we conclude ∆m·n
J (f ♯ • c1, f ♯ • c2) ≤ ∆m

I (c1, c2). By discharging J, n, f , we conclude
the inequality [∆]m(EI) ≤ ∆m

I .

Proof. (Proof of Theorem 5) Let ∆ ∈ Div(T,E,M,Q). We have already shown that [∆] is an
M -graded Q-divergence lifting of T . We show that [∆] is E-strong (this proof does not need the
closedness of C). Let X , (I, d) ∈ DivQ(C) and J ∈ C be objects. We first rewrite the goal:

θ ∈ DivQ(C)(X ⊗ [∆]m(E′J), [∆]m(X ⊗ E′J))

⇐⇒
(
∀x1, x2 ∈ UI, c1, c2 ∈ U(TJ) .

d[∆]m(X⊗E′J)(θ • 〈x1, c1〉, θ • 〈x2, c2〉) ≤ d(x1, x2) + d[∆]m(E′J)(c1, c2)

)

49

D
R
A
FT

⇐⇒
(
∀x1, x2 ∈ UI, c1, c2 ∈ U(TJ),K ∈ C, n ∈M, f ∈ DivQ(C)(X ⊗ E′J,∆n

K) .

∆m·n
K (f ♯ • θ • 〈x1, c1〉, f ♯ • θ • 〈x2, c2〉) ≤ d(x1, x2) + d[∆]m(E′J)(c1, c2)

)

†⇐⇒
(
∀x1, x2 ∈ UI, c1, c2 ∈ U(TJ),K ∈ C, n ∈M, f ∈ DivQ(C)(X ⊗ E′J,∆n

K) .

∆m·n
K ((fx1

)♯ • c1, (fx2
)♯ • c2) ≤ d(x1, x2) + dm[∆](c1, c2)

)
.

In the step
†⇐⇒ , we used the equality (1). To show this goal, we proceed as follows. Let

x1, x2 ∈ UI, c1, c2 ∈ U(TJ),K ∈ C, n ∈ M and f ∈ DivQ(C)(X ⊗ E′J,∆n
K). First, from the

composability of ∆, we obtain

∆m·n
K ((fx1

)♯ • c1, (fx2
)♯ • c2) ≤ ∆m

J (c1, c2) + sup
(y1,y2)∈EJ

∆n
K(fx1

• y1, fx2
• y2).

We look at summands of the right hand side. First, we easily obtain∆m
J (c1, c2) ≤ d[∆]m(E′J)(c1, c2).

Next, from the nonexpansivity of f , for any x1, x2 ∈ UI, y1, y2 ∈ UJ , we have

∆n
K(fx1

• y1, fx2
• y2) = ∆n

K(f • 〈x1, y1〉, f • 〈x2, y2〉) ≤ d(x1, x2) + E′J(y1, y2).

Because x+⊤ = ⊤, we obtain

∀x1, x2 ∈ UI . sup
(y1,y2)∈EJ

∆n
K(fx1

• y1, fx2
• y2) ≤ d(x1, x2).

Therefore we obtain the goal:

∆m·n
K ((fx1

)♯ • c1, (fx2
)♯ • c2) ≤ d[∆]m(E′J)(c1, c2) + d(x1, x2) = d(x1, x2) + d[∆]m(E′J)(c1, c2).

Next, let Ṫ ∈ SGDLift(T,E,M,Q). We show that 〈Ṫ 〉 ∈ Div(T,E,M,Q).
The unit law of Ṫ immediately entails

ηI ∈ DivQ(C)(E
′I, Ṫ1(E′I)).

Next, under the assumption on (C, T) andQ, inDivQ(C) the functor (−)⊗E′I has a right adjoint
E′I ⊸ (−) above the adjunction (−)× I ⊣ I ⇒ (−) (Lemma 1). Therefore each component of
the internal Kleisli extension morphism kl given in (6) are nonexpansive morphisms in DivQ(C):

〈Ṫ 〉m(E′I)⊗ (E′I ⊸ 〈Ṫ 〉n(E′J))

〈π2,π1〉
��

(E′I ⊸ 〈Ṫ 〉n(E′J))⊗ 〈Ṫ 〉m(E′I)

θ

��

〈Ṫ 〉m((E′I ⊸ 〈Ṫ 〉n(E′J))⊗ E′I)

ev♯

��

〈Ṫ 〉(m · n)(E′J)

Therefore we conclude

kl ∈ DivQ(C)(〈Ṫ 〉m(E′I)⊗ (E′I ⊸ 〈Ṫ 〉n(E′J)), 〈Ṫ 〉(m · n)(E′J)).

50

D
R
A
FT

We also easily have monotonicity: 〈Ṫ 〉m(E′I) ≤ 〈Ṫ 〉n(E′I) for m ≤ n by condition 1 of graded
divergence lifting. We thus conclude that 〈Ṫ 〉mE′I ∈ Div(T,E,M,Q).

We finally show Ṫ � [〈Ṫ 〉]. Let c1, c2 ∈ U(TI). We show

sup
n∈M,J∈C,f∈DivQ(C)(X,Ṫn(E′J))

dṪ (m·n)(E′J)(f
♯(c1), f

♯(c2)) ≤ dṪmX(c1, c2). (28)

Let n ∈ M,J ∈ C, f ∈ DivQ(C)(X, Ṫn(E′J)). Since Ṫ is an M -graded Q-divergence lifting of
T , we obtain

f ♯ ∈ DivQ(C)(ṪmX, Ṫ (m · n)(E′J)).

This implies the inequality dṪ (m·n)(E′J)(f
♯(c1), f

♯(c2)) ≤ dṪmX(c1, c2) in Q. By taking the sup

for n, J, f , we obtain the inequality (28).

Proof. (Proof of Proposition 9) We write |1| = {∗}. We first check the measurable isomor-
phism Gs1 ∼= [0, 1]. The measurable functions ev{∗} : Gs1 → [0, 1] (ν 7→ ν(∗)) and the function
H : |[0, 1]| → |Gs1| (r 7→ r · d∗) are mutually inverse. For any (Borel-)measurable U ∈ Σ[0,1],

we have H−1(ev−1
{∗}(U)) = U and H−1(ev−1

∅ (U)) = [0, 1] if 0 ∈ U and H−1(ev−1
∅ (U)) = ∅ other-

wise. Since all generators of ΣGs1 are ev−1
{∗}(U) and ev−1

∅ (U) where U ∈ Σ[0,1], we conclude the

measurability of H . Thus, f : I → [0, 1] corresponds bijectively to H ◦ f : I → Gs1, and
∫

I

fdν1 =

∫

I

ev{∗} ◦H ◦ fdν1 = ((H ◦ f)♯ν1)({∗}).

We then obtain, for all I ∈ Meas, ν1, ν2 ∈ GsI

DPε
I(ν1, ν2) = sup

S∈ΣI

(ν1(S)− exp(ε)ν2(S))

≤ sup
fS : I→[0,1]

(

∫

I

fSdν1 − exp(ε)

∫

I

fSdν2)

= sup
fS : I→Gs[0,1]

(((H ◦ fS)♯ν1)(∗)− exp(ε)((H ◦ fS)♯ν2)(∗))

≤ sup
fS : I→Gs[0,1]

sup
S′∈Σ1(⇐⇒ S′={∗},∅)

((H ◦ fS)♯ν1)(S′)− exp(ε)((H ◦ fS)♯ν2)(S′))

= sup
fS : I→Gs[0,1]

DPε
1((H ◦ fS)♯ν1, (H ◦ fS)♯ν2)

= sup
g : I→Gs1

DPε
1(g

♯ν1, g
♯ν2)

≤ DP
ε
I(ν1, ν2).

The first inequality is given by ν(S) =
∫
I
χSdν where χS : I → [0, 1] is the indicator function of

S defined by χS(x) = 1 when x ∈ S and χS(x) = 0 otherwise. The last inequality is given by
the data-processing inequality which is given by the reflexivity and Eq-composability of DP.

Proof. (Proof of Proposition 10) We first prove that TV is not 1-generated. We write |2| = {0, 1}.
We define ν1, ν2 ∈ Gs2 by

ν1 =
1

2
· d0 +

1

2
· d1, ν2 =

1

3
· d0 +

2

3
· d1.

Then the total variation distance between them is calculated by

TV2(ν1, ν2) =
1

2

(∣∣∣∣
1

2
− 1

3

∣∣∣∣ +
∣∣∣∣
1

2
− 2

3

∣∣∣∣
)

=
1

6
.

51

D
R
A
FT

On the other hand, for any f : 2 → Gs1, we have

TV1(f
♯(ν1), f

♯(ν2)) =
1

2

∣∣∣∣
1

2
f(0) +

1

2
f(1)− 1

3
f(0)− 2

3
f(1)

∣∣∣∣

=
1

2

∣∣∣∣
1

6
f(0)− 1

6
f(1)

∣∣∣∣

=
1

12
|f(0)− f(1)|

≤ 1

12
.

This implies that TV is not 1-generated.
Next, we prove that TV is 2-generated. From the data-processing inequality TV which is

given by the reflexivity and Eq-composability of TV, we obtain for any ν1, ν2 ∈ GsI,

TVI(ν1, ν2) ≥ sup
g : I→Gs2

TV2(g
♯ν1, g

♯ν2).

We show that the above inequality becomes the equality for some g.
We fix ν1, ν2 ∈ GsI, a base measure µ over I satisfying the absolute continuity ν1, ν2 ≪

µ and the Radon-Nikodym derivatives (density functions) dν1
dµ
, dν2

dµ
of ν1, ν2 with respect to µ

respectively.
Let A = (dν1

dµ
− dν2

dµ
)−1([0,∞)) and B = I \ A. We define g : I → Gs2 by g(x) = d0 if x ∈ B

and g(x) = d1 otherwise. Then for any ν ∈ GsI we have

(g♯ν)({0}) =
∫

I

g(−)({0})dν =

∫

A

g(−)({0})dν +
∫

B

g(−)({0})dν =

∫

A

1dν +

∫

B

0dν = ν(A).

Similarly we have (g♯ν)({1}) = ν(B). Therefore, we obtain

1

2
TVI(µ1, µ2) =

1

2

∫

I

∣∣∣∣
dν1
dµ

(x)− dν2
dµ

(x)

∣∣∣∣ dµ(x)

=
1

2

∫

A

dν1
dµ

(x)− dν2
dµ

(x) dµ(x) +
1

2

∫

B

dν2
dµ

(x)− dν1
dµ

(x) dµ(x)

=
1

2
(ν1(A)− ν2(A) + ν2(B)− ν1(B))

=
1

2
((g♯ν1)({0})− (g♯ν2)({0}) + (g♯ν2)({1})− (g♯ν2)({1}))

=
1

2
(|(g♯ν1)({0})− (g♯ν2)({0})|+ |(g♯ν2)({1})− (g♯ν2)({1})|)

= TV2(g
♯(µ1), g

♯(µ2))

We then conclude that ∆TV is 2-generated.

Proof. (Proof of Proposition 11) For all set J and c1, c2 ∈ TJ , we have

∆
[≤]Ω

J (c1, c2) = 1 ⇐⇒ c1[≤]ΩJ c2

⇐⇒
∧

g : J→TΩ

g♯(c1) ≤ g♯(c2)

⇐⇒
∧

g : J→TΩ

g♯(c1) [≤]ΩΩ g
♯(c2)

52

D
R
A
FT

⇐⇒ sup
g : J→TΩ

∆([≤]Ω)Ω(g
♯(c1), g

♯(c2)) = 1.

This implies that ∆[≤]Ω is Ω-generated.

Lemma 2. For any U ∈ QET(Ω, X), the function d[U] : (TΩX)2 → R+ defined by

d[U](t, u) , inf
{
ε ∈ Q+

∣∣ ∅ ⊢ t =ε u ∈ U
}

is a CS-EPMet on TΩX such that d[U](t, u) ∈ Q+ =⇒ ∅ ⊢ t =d[U](t,u) u.

Proof. We first check the axioms of extended pseudometric.
By (Ref), U contains ∅ ⊢ t =0 t for each t ∈ TΩX . Hence d[U](t, t) = 0 holds for all t ∈ TΩX .
By (Sym) and (Cut), ∅ ⊢ t =ε u if and only if ∅ ⊢ u =ε t. Hence, for all t, u ∈ TΩX ,

d[U](t, u) = inf
{
ε ∈ Q+

∣∣ ∅ ⊢ t =ε u
}
= inf

{
ε ∈ Q+

∣∣ ∅ ⊢ u =ε t
}
= d[U](u, t)

By (Tri) and (Cut), if ∅ ⊢ t =ε u and ∅ ⊢ u =ε′ v then ∅ ⊢ t =ε+ε′ v. Hence, for all
t, u, v ∈ TΩX ,

d[U](t, v) = inf
{
ε∗ ∈ Q+

∣∣ ∅ ⊢ t =ε∗ v
}

≤ inf {ε+ ε′ | ∅ ⊢ t =ε u ∧ ∅ ⊢ u =ε′ v}
≤ inf

{
ε ∈ Q+

∣∣ ∅ ⊢ t =ε u
}
+ inf

{
ε′ ∈ Q+

∣∣ ∅ ⊢ u =ε′ v
}

= d[U](t, u) + d[U](u, v).

We next check the substitutivity. Let t, u ∈ TΩX and h : X → TΩX . By (Subst), we have

∅ ⊢ t =ε u ∈ U =⇒ ∅ ⊢ h♯(t) =ε h
♯(u) ∈ U.

Since ε is arbitrary, we conclude the substitutivity as follows:

d[U](h♯(t), h♯(u)) = inf
{
ε ∈ Q+

∣∣ ∅ ⊢ h♯(t) =ε h
♯(u) ∈ U

}

≤ inf
{
ε ∈ Q+

∣∣ ∅ ⊢ t =ε u ∈ U
}

= d[U](t, u).

Next, we check the congruence, Let t ∈ TΩI and h1, h2 : I → TΩX By applying (Nonexp) and
(Cut) inductively by unfolding the structure of t,

∀i ∈ I . ∅ ⊢ h1(i) =ε h2(i) ∈ U =⇒ ∅ ⊢ h♯1(t) =ε h
♯
2(t) ∈ U. (29)

If supi∈I d[U](h1(i), h2(i)) ≤ ε′ for some ε′ ∈ Q+, then we have d[U](h1(i), h2(i)) ≤ ε′ for all
i ∈ I. By (Max),(Cut) and definition of dUX , we have ⊢ h1(i) =ε′ h2(i) ∈ U for all i ∈ I. Hence,

sup
i∈I

d[U](h1(i), h2(i)) ≤ ε′ =⇒ ∀i ∈ I . ∅ ⊢ h1(i) =ε′ h2(i) ∈ U. (30)

From the above two implications (29) and (30), We conclude the congruence as follows:

d[U](h♯1(t), h
♯
2(t)) = inf

{
ε′ ∈ Q+

∣∣∣ ∅ ⊢ h♯1(t) =ε′ h
♯
2(t) ∈ U

}

≤ inf
{
ε′ ∈ Q+

∣∣ ∀i ∈ I . ∅ ⊢ h1(i) =ε′ h2(i) ∈ U
}

≤ inf

{
ε′ ∈ Q+

∣∣∣∣ sup
i∈I

dUX(h1(i), h2(i)) ≤ ε′
}

53

D
R
A
FT

= sup
i∈I

d[U](h1(i), h2(i)).

Finally, we assume d[U](t, u) ∈ Q+. By definition of d[U](t, u), for any ε ∈ Q+ such that
d[U](t, u) < ε, there is ε′ ∈ Q+ satisfying d[U](t, u) ≤ ε′ < ε and t =ε′ u ∈ U . Since ε ∈ Q+ is
arbitrary, by (Max) and (Cut), we conclude

∀ε ∈ Q+ . (d[U](t, u) < ε =⇒ t =ε u ∈ U).

Since d[U](t, u) ∈ Q+, by (Arch) and (Cut), we have t =d[U](t,u) u ∈ U .

The monotonicity of d[−] : (QET(Ω, X),⊆) → (CSEPMet(TΩ, X),�) is easy to prove:

U ⊆ V =⇒ ∀t, u ∈ TΩX . inf
{
ε ∈ Q+

∣∣ ∅ ⊢ t =ε u ∈ U
}
≥ inf

{
ε ∈ Q+

∣∣ ∅ ⊢ t =ε u ∈ V
}

⇐⇒ ∀t, u ∈ TΩX . d[U](t, u) ≥ d[V](t, u)

⇐⇒ d[U] � d[V].

Lemma 3. Let T be a monad on Set, and let X ∈ Set. For any d ∈ CSEPMet(T,X), the
family Gen(d) = {Gen(d)I : (TX)2 → R+} defined by

Gen(d)I(c1, c2) = sup
k : I→TX

d(k♯(c1), k
♯(c2))

is an X-generated Eq-relative R+-divergence on T where each Gen(d)I is a pseudometric.

Proof. From the reflexivity of d, we have the reflexivity of Gen(d)I : for each c ∈ TI,

Gen(d)I(c, c) = sup
k : I→TX

d(k♯(c), k♯(c)) = 0.

Hence, the Eq-unit-reflexivity of ∆d is already proved from the (proper) reflexivity. From the
symmetry of d, we have the symmetry of ∆d

I : for each c1, c2 ∈ TI,

Gen(d)I(c1, c2) = sup
k : I→TX

d(k♯(c1), k
♯(c2))

= sup
k : I→TX

d(k♯(c2), k
♯(c1))

= Gen(d)I(c2, c1).

From the triangle-inequality of d, we have the triangle-inequality of Gen(d)I : for all c1, c2, c3 ∈
TI,

Gen(d)I(c1, c3) = sup
k : I→TX

d(k♯(c1), k
♯(c3))

≤ sup
k : I→TX

d(k♯(c1), k
♯(c2)) + d(k♯(c2), k

♯(c3))

≤ sup
k : I→TX

d(k♯(c1), k
♯(c2)) + sup

k : I→TX

d(k♯(c2), k
♯(c3))

= Gen(d)I(c1, c2) + Gen(d)I(c2, c3).

From the reflexivity, congruence and substitutivity of d and the triangle-inequality of ∆d
I , we

next show the composability. Let c1, c2 ∈ TI and f1, f2 : I → TJ . We obtain,

Gen(d)J (f
♯
1(c1), f

♯
2(c2))

54

D
R
A
FT

≤ Gen(d)J (f
♯
1(c1), f

♯
1(c2)) + Gen(d)J (f

♯
1(c2), f

♯
2(c2))

= sup
k : J→TX

d((k♯ ◦ f1)♯(c1), (k♯ ◦ f1)♯(c2)) + sup
k : J→TX

d((k♯ ◦ f1)♯(c2), (k♯ ◦ f2)♯(c2))

≤ sup
k : J→TX

d(f ♯
1(c1), f

♯
1(c2)) + sup

k : J→TX

sup
i∈I

d(k♯ ◦ f1(i), k♯ ◦ f2(i))

= d(f ♯
1(c1), f

♯
1(c2)) + sup

k : J→TX

sup
i∈I

d(k♯ ◦ f1(i), k♯ ◦ f2(i))

≤ sup
f1 : I→TX

d(f ♯
1(c1), f

♯
1(c2)) + sup

i∈I

sup
k : J→TX

d(k♯ ◦ f1(i), k♯ ◦ f2(i))

= Gen(d)I(c1, c2) + sup
i∈I

Gen(d)J (f1(i), f2(i)).

Finally we show the X-generatedness of Gen(d) by definition

Gen(d)I(c1, c2) = sup
k : I→TX

d(k♯(c1), k
♯(c2))

= sup
h : X→TX

sup
k : I→TX

d(h♯(k♯(c1)), h
♯(k♯(c2)))

= sup
k : I→TX

sup
h : X→TX

d(h♯(k♯(c1)), h
♯(k♯(c2)))

= sup
k : I→TX

Gen(d)X(k♯(c1), k
♯(c2))

This completes the proof.

The monotonicity of Gen: (CSEPMet(TΩ, X),�) → (DivEPMet(TΩ, X),�) is easy to
prove:

d � d′ =⇒ ∀c1, c2 ∈ TI . sup
k : I→TX

d(k♯(c1), k
♯(c2)) ≥ sup

k : I→TX

d′(k♯(c1), k
♯(c2))

⇐⇒ ∀c1, c2 ∈ TI . Gen(d)I(c1, c2) ≥ Gen(d′)I(c1, c2)

⇐⇒ Gen(d) � Gen(d′).

Proof. (Proof of Theorem 6) We first show (Gen(−))X = id. Let d ∈ CSEPMet(TΩ, X). We
fix arbitrary t, u ∈ TΩX . From the substitutivity of d, we have d(k♯(t), k♯(u)) ≤ d(t, u), but we
can take k = ηX , we obtain

Gen(d)XC(t, u) = sup
k : X→TX

d(k♯(t), k♯(u)) = d(t, u).

Since d, t, u are arbitrary, we conclude (Gen(−))X = id.
We show Gen((−)X) = id. Let ∆ ∈ DivEPMet(TΩ, X). By the X-generatedness of ∆, we

have for all set I and t, u ∈ TΩI,

Gen((∆)X)I(t, u) = sup
k : I→TX

∆X(k♯(t), k♯(u)) = ∆I(t, u).

Since ∆, I, t, u are arbitrary, we conclude (Gen(−))X = id.
We show the adjointness: U [d] ⊆ V ⇐⇒ d ≥ d[V] for any V ∈ QET(Ω, X) and d ∈

CSEPMet(TΩ, X).

U [d] ⊆ V ⇐⇒ {∅ ⊢ t =ε u | ε ∈ Q+, d(t, u) ≤ ε}QET(Ω,X) ⊆ V

⇐⇒ ∀t, u ∈ TΩ, ε ∈ Q+ . d(t, u) ≤ ε =⇒ ∅ ⊢ t =ε u ∈ V

55

D
R
A
FT

⇐⇒ ∀t, u ∈ TΩ, ε ∈ Q+ . d(t, u) ≤ ε =⇒ inf
{
ε′ ∈ Q+

∣∣ ∅ ⊢ t =ε′ u ∈ V
}
≤ ε

⇐⇒ ∀t, u ∈ TΩ . inf
{
ε′ ∈ Q+

∣∣ ∅ ⊢ t =ε′ u ∈ V
}
≤ d(t, u)

⇐⇒ d ≥ d[V]

We notice that since V is closed under (Max), (Arch) and (Cut), we have the equivalence

inf
{
ε′ ∈ Q+

∣∣ ∅ ⊢ t =ε′ u ∈ V
}
≤ ε

=⇒ (∀ε′ ∈ Q+ . ε′ > ε =⇒ ∅ ⊢ t =ε′ u ∈ V)

=⇒ ∅ ⊢ t =ε u ∈ V

=⇒ inf
{
ε′ ∈ Q+

∣∣ ∅ ⊢ t =ε′ u ∈ V
}
≤ ε.

We finally show d[U [−]] = idCSEPMet(TΩ,X). From the adjointness, d[U [d]] ≤ d holds for
each d ∈ CSEPMet(TΩ, X). We can rewrite d ≤ d[U [d]] as follows:

d ≤ d[U [d]] ⇐⇒ ∀t, u ∈ TΩ . d(t, u) ≤ d[U [d]](t, u)

⇐⇒ ∀t, u ∈ TΩ . d(t, u) ≤ inf
{
ε ∈ Q+

∣∣ ∅ ⊢ t =ε u ∈ U [d]
}

⇐⇒ ∀t, u ∈ TΩ, ε ∈ Q+ . =⇒ d(t, u) ≤ ε

⇐⇒ {∅ ⊢ t =ε u ∈ u[d]} ⊆ {∅ ⊢ t =ε u|d(t, u) ≤ ε}.

Thanks to the minimality of U [d], it suffices to have a QET V ∈ QET(Ω, X) such that

{∅ ⊢ t =ε u ∈ V } = {∅ ⊢ t =ε u|d(t, u) ≤ ε}.

Inspired from the definition of models of QET ([6]), we define V as follows:

Γ ⊢ t =ε u ∈ V

⇐⇒ ∀σ : X → TΩX .
((
∀t′ =ε′ u

′ ∈ Γ . d(σ♯(t′), σ♯(u′)) ≤ ε′
)

=⇒ d(σ♯(t), σ♯(u)) ≤ ε
)
.

By the substitutivity of d and the definition of V , we obtain for all t, u ∈ TΩX and ε ∈ Q+,

∅ ⊢ t =ε u ∈ V ⇐⇒ (∀σ : X → TΩX . d(σ♯(t), σ♯(u)) ≤ ε) ⇐⇒ d(t, u) ≤ ε.

We check that V satisfies all rules of QET:
(Ref) Immediate from the reflexivity of d.
(Sym) Immediate from the symmetry of d.
(Tri) Immediate from the triangle-inequality of d.
(Max) Immediate from the transitivity of ordering ≤ and the monotonicity of +.
(Arch) Immediate from the Archimedean property and the completeness of [0,∞].
(Nonexp) Let f : |I| ∈ Ω. We then take a term tf ∈ TΩI corresponding to f . Let t, s : I →

TΩX be functions. We fix an arbitrary σ : X → TΩX . Assume d(σ♯(t(i)), σ♯(s(i))) ≤ ε for each
i ∈ I. Then this asserts supi∈I d(σ

♯(t(i)), σ♯(s(i))) ≤ ε. From the congruence of d, we conclude

d(σ♯(f(t(i)|i ∈ I)), σ♯(f(s(i)|i ∈ I))) = d(σ♯(t♯(tf)), σ
♯(s♯(tf))) ≤ sup

i∈I

d(σ♯(t(i)), σ♯(s(i))) ≤ ε.

(Subst) Immediate by definition of V :

Γ ⊢ t =ε u ∈ V

⇐⇒ ∀σ : X → TΩX .
((
∀t′ =ε′ u

′ ∈ Γ . d(σ♯(t′), σ♯(u′)) ≤ ε′
)

=⇒ d(σ♯(t), σ♯(u)) ≤ ε
)

56

D
R
A
FT

=⇒ ∀σ′ : X → TΩX . ∀σ : X → TΩX .



(
∀t′ =ε′ u

′ ∈ Γ . d(σ♯(σ′♯(t′)), σ♯(σ′♯(u′))) ≤ ε′
)

=⇒ d(σ♯(σ′♯(t)), σ♯(σ′♯(u))) ≤ ε




=⇒ ∀σ′ : X → TΩX . ∀σ : X → TΩX .

((
∀t′′ =ε′ u

′′ ∈ σ′(Γ) . d(σ♯(t′′), σ♯(u′′)) ≤ ε′
)

=⇒ d(σ♯(σ′♯(t)), σ♯(σ′♯(u))) ≤ ε

)

⇐⇒ ∀σ′ : X → TΩX . σ′(Γ) ⊢ σ′♯(t) =ε σ
′♯(u) ∈ V.

(Cut) Immediate.
(Assumpt) Immediate.

Proof. (Proof of Theorem 7) Since the range of U [−] is a subset of UQET(Ω, X), we may define
the following monotone restrictions of U [−] and d[−]:

U ′[−] : (CSEPMet(TΩ, X),�) → (UQET(Ω, X),⊆) U ′[d] , U [d] (d ∈ CSEPMet(TΩ, X)),

d′[−] : (UQET(Ω, X),⊆) → (CSEPMet(TΩ, X),�) d′[V] , d[V] (V ∈ UQET(Ω, X)).

By Theorem 6, we have U ′[−] ⊢ d′[−] and d′[U ′[−]] = id. We show U ′[d′[−]] = id. Let V ∈
UQET(Ω, X). There exists S ⊆ {∅ ⊢ t =ε u | t, u ∈ TΩX, ε ∈ Q+} such that V = S

QET(Ω,X)
.

We check U ′[d′[V]] = V . By the adjunction U ′[−] ⊣ d′[−], we have U ′[d′[V]] ⊆ V which is
equivalent to d′[V] � d′[V]. It suffices to check V ⊆ U ′[d′[V]]. We have

∅ ⊢ t =ε u ∈ S

=⇒ ∅ ⊢ t =ε u ∈ V

=⇒ d′[V](t, u) = inf{ε′ ∈ Q+ | ∅ ⊢ t =ε′ u ∈ V } ≤ ε

From the monotonicity of the closure (−)
QET(Ω,X)

, we conclude

V = S
QET(Ω,X) ⊆ {∅ ⊢ t =ε u | d′[V](t, u) ≤ ε}QET(Ω,X)

= U ′[d′[V]].

Since V ∈ UQET(Ω, X) is arbitrary, we have U ′[d′[−]] = id.

C Proofs for Section 7 (Graded Strong Relational Liftings
for Divergences)

Lemma 4. Let (C, T) be a CC-SM and ∆ = {∆m
I : (U(TI))2 → Q}m∈M,I∈C be a doubly-indexed

family of Q-divergences satisfying monotonicity on m (Definition 6). Then T [∆] is an M × Q-
graded relational lifting of T (satisfies conditions 1–3 of Definition 15).

Proof. (Condition 1) We first show that (idTX1
, idTX2

) ∈ BRel(C)(T [∆](m, v)X,T [∆](n,w)X)
for all X whenever m ≤ n and v ≤ w. From the monotonicity of ∆, for all I ∈ C, c′1, c

′
2 ∈ U(TI),

n′ ∈M ,w′ ∈ Q, we have

(c′1, c
′
2) ∈ ∆̃(m · n′, v + w′)I

⇐⇒ ∆m·n′

I (c′1, c
′
2) ≤ v + w′ =⇒ ∆n·n′

I (c′1, c
′
2) ≤ v + w′ =⇒ ∆n·n′

I (c′1, c
′
2) ≤ w + w′

⇐⇒ (c′1, c
′
2) ∈ ∆̃(n · n′, w + w′)I.

57

D
R
A
FT

Therefore, for any (c1, c2) ∈ T [∆](m, v)X , we obtain (c1, c2) ∈ T [∆](n,w)X as follows:

(c1, c2) ∈ T [∆](m, v)X

⇐⇒ ∀I ∈ C, n′ ∈M,w′ ∈ Q, (k1, k2) : X →̇ ∆̃(n′, w′)I . (k♯1 • c1, k♯2 • c2) ∈ ∆̃(m · n′, v + w′)I

=⇒ ∀I ∈ C, n′ ∈M,w′ ∈ Q, (k1, k2) : X →̇ ∆̃(n′, w′)I . (k♯1 • c1, k♯2 • c2) ∈ ∆̃(n · n′, w + w′)I

⇐⇒ (c1, c2) ∈ T [∆](n,w)X.

(Condition 2) We next show (ηX1
, ηX2

) : X →̇T [∆](1, 0)X . From the definition of morphisms
in BRel(C), for all (x1, x2) ∈ X , we have (ηX1

• x1, ηX2
• x2) ∈ T [∆](1, 0)X as follows:

(x1, x2) ∈ X

=⇒ ∀I ∈ C, n ∈M,w ∈ Q, (k1, k2) : X →̇ ∆̃(n,w)I . (k1 • x1, k2 • x2) ∈ ∆̃(n,w)I

⇐⇒ ∀I ∈ C, n ∈M,w ∈ Q, (k1, k2) : X →̇ ∆̃(n,w)I . ((k♯1 ◦ ηX1
) • x1), (k♯2 ◦ ηX2

) • x2) ∈ ∆̃(n,w)I

⇐⇒ ∀I ∈ C, n ∈M,w ∈ Q, (k1, k2) : X →̇ ∆̃(n,w)I . (k♯1 • (ηX1
• x1), k♯2 • (ηX2

• x2)) ∈ ∆̃(n,w)I

⇐⇒ (ηX1
• x1, ηX2

• x2) ∈ T [∆](1, 0)X.

(Condition 3) Finally, we show that (f ♯
1 , f

♯
2) : T [∆](n,w)X →̇ T [∆](n · m,w + v)Y holds for

any (f1, f2) : X →̇ T [∆](m, v)Y and (n,w) ∈M ×Q. For all (f1, f2) : X →̇ T [∆](m, v)Y , we have

(f1, f2) : X →̇ T [∆](m, v)Y

⇐⇒ ∀(x1, x2) ∈ X . (f1 • x1, f2 • x2) ∈ T [∆](m, v)Y

⇐⇒
(
∀(x1, x2) ∈ X, I ∈ C, n′ ∈M,w′ ∈ Q, (k1, k2) : Y →̇ ∆̃(n′, w′)I .

(k♯1 • (f1 • x1), k♯2 • (f2 • x2)) ∈ ∆̃(m · n′, v + w′)I

)

⇐⇒
(
∀(x1, x2) ∈ X, I ∈ C, n′ ∈M,w′ ∈ Q, (k1, k2) : Y →̇ ∆̃(n′, w′)I .

((k♯1 ◦ f1) • x1), (k♯2 ◦ f2) • x2) ∈ ∆̃(m · n′, v + w′)I

)

⇐⇒
(
∀I ∈ C, n′ ∈M,w′ ∈ Q, (k1, k2) : Y →̇ ∆̃(n′, w′)I .

(k♯1 ◦ f1, k♯2 ◦ f2) : X →̇ ∆̃(m · n′, v + w′)I

)
. (a)

For all (c1, c2) ∈ T [∆](n,w)X , we have

(c1, c2) ∈ T [∆](n,w)X

⇐⇒
(
∀I ∈ C, n′ ∈M,w′ ∈ Q, (l1, l2) : X →̇ ∆̃(n′, w′)I .

(l♯1 • c1, l♯2 • c2) ∈ ∆̃(n · n′, w + w′)I

)
. (b)

We here fix (f1, f2) : X →̇T [∆](m, v)Y . We show (f ♯
1 , f

♯
2) : T

[∆](n,w)X →̇T∆(n ·m,w+ v)Y .
We also fix I ∈ C, n′′ ∈M , w′′ ∈ Q and (k1, k2) : Y →̇ ∆̃(n′′, w′′)I. From (a), we obtain

(k♯1 ◦ f1, k♯2 ◦ f2) : X →̇ ∆̃(m · n′′, v + w′′)I.

Therefore, by instantiating (b) with (n′, w′) = (m ·n′′, v+w′′) and (l1, l2) = (k♯1 ◦ f1, k♯2 ◦ f2), for
all (c1, c2) ∈ T [∆](n,w)X , we have

((k♯1 ◦ f1)♯ • c1, (k♯2 ◦ f2)♯ • c2) ∈ ∆̃(n ·m · n′′, w + v + w′′)I.

58

D
R
A
FT

Since (c1, c2) ∈ T [∆](n,w)X , I ∈ C, n′′ ∈M , w′′ ∈ Q and (k1, k2) : Y →̇∆̃(n′′, w′′)I are arbitrary,
we conclude (f ♯

1 , f
♯
2) : T

[∆](n,w)X →̇ T∆(n ·m,w + v) as follows:
(
∀(c1, c2) ∈ T [∆](n,w)X, I ∈ C,m′′ ∈M, v′′ ∈ Q, (k1, k2) : Y →̇ ∆̃(m′′, v′′)I .

((k♯1 ◦ f1)♯ • c1, (k♯2 ◦ f2)♯ • c2) : X →̇ ∆̃(n ·m ·m′′, w + v + v′′)I

)

⇐⇒
(
∀(c1, c2) ∈ T [∆](n,w)X, I ∈ C,m′′ ∈M, v′′ ∈ Q, (k1, k2) : Y →̇ ∆̃(m′′, v′′)I .

(k♯1 • (f ♯
1 • c1), k♯2 • (f ♯

2 • c2)) : X →̇ ∆̃(n ·m ·m′′, w + v + v′′)I

)

⇐⇒ ∀(c1, c2) ∈ T [∆](n,w)X . (f ♯
1 • c1, f ♯

2 • c2) ∈ T [∆](n ·m,w + v)Y

⇐⇒ (f ♯
1 , f

♯
2) : T

[∆](n,w)X →̇ T∆(n ·m,w + v).

This completes the proof.

Proof. (Proof of Proposition 13) By Theorem 8 and the assumption ∀I, J ∈ C . EI ×̇ EJ ⊆
E(I × J), we obtain for all (x1, x2) ∈ EI and c1, c2 ∈ U(TI),

(〈x1, c1〉, 〈x2, c2〉) ∈ EI ×̇ ∆̃(m, v)J

⇐⇒ (〈x1, c1〉, 〈x2, c2〉) ∈ EI ×̇ T [∆](m, v)(EJ)

=⇒ (θI,J • 〈x1, c1〉, θI,J • 〈x2, c2〉) ∈ T [∆](m, v)(EI ×̇ EJ)

=⇒ (θI,J • 〈x1, c1〉, θI,J • 〈x2, c2〉) ∈ T [∆](m, v)E(I × J)

⇐⇒ (θI,J • 〈x1, c1〉, θI,J • 〈x2, c2〉) ∈ ∆̃(m, v)(I × J).

This completes the proof.

D Proofs for Section 9 (Case Study I: Higher-Order Prob-

abilistic Programs)

Lemma 5. The mapping

(x, σ) 7→
{
N (x, σ2) σ2 > 0

dx σ = 0

forms a measurable function of type R× R → GR.

Proof. We show that for all A ∈ ΣR, the mapping fA(x, σ) = N (x, σ2)(A) forms a measurable
function of type R × R 6=0 → [0, 1] where R 6=0 is the subspace of R whose underlying set is
{r ∈ R|r 6= 0}. We have

N (x, σ2)(A) =
∑

k∈Z

N (x, σ2)(A ∩ [k, k + 1]) =
∑

k∈Z

∫

A∩[k,k+1]

1√
2πσ2

exp

(
− (x− r)2

σ2

)
dr

The mapping h(x, σ, r) = 1√
2πσ2

exp
(
− (x−r)2

σ2

)
forms a continuous function of type R× R 6=0 ×

R → R, hence it is uniformly continuous on the compact set I1 × I2 × [k, k + 1] where I1 and I2
are arbitrary closed intervals in R and R 6=0 respectively. Then, for all 0 < ε, there exists 0 < δ
such that |h(x, σ, r) − h(x′, σ′, r′)| < ε holds wherever |x − x′| + |σ − σ′| + |r − r′| < δ. Hence,
for all 0 < ε, there is 0 < δ such that whenever |x− x′|+ |σ − σ′| < δ,
∣∣∣∣∣

∫

A∩[k,k+1]

h(x, σ, r)dr −
∫

A∩[k,k+1]

h(x′, σ′, r)dr

∣∣∣∣∣ ≤ |
∫

[k,k+1]

|h(x, σ, r) − h(x′, σ′, r′)|dr ≤ ε.

59

D
R
A
FT

Since the closed intervals I1 and I2 are arbitrary, we conclude that the function fA∩[k,k+1] : R×
R 6=0 → [0, 1] is continuous, hence measurable. Hence, the mapping fA =

∑
k∈Z

fA∩[k,k+1] is
measurable. Since A is arbitrary and fA(x, σ

2) = evA ◦ N (x, σ2), the mapping g(x, σ2) =
N (x, σ2) forms a measurable function of type R× R 6=0 → GR. The rest of proof is routine.

Corollary 1. [[norm]] ∈ QBS(KR×KR, PKR).

Lemma 6 (Measurability of [[lap]]). The mapping

(x, λ) 7→
{
Lap(x, λ) λ > 0

dx λ ≤ 0

forms a measurable function of type R× R → GR.

Proof. We have, for all A ∈ ΣR,

Lap(x, λ)(A) =

∫

A

1

2λ
exp

(
−|x− r|

λ

)
dr

The density function h(x, λ, r) = 1
2λ exp

(
− |x−r|

λ

)
is continuous function of type R×R0≤×R → R

where R0≤ is the subspace of R whose underlying set is {r ∈ R|0 ≤ r}. The measurability of
Lap(x, λ) is proved in the same way as N (x, σ2). The rest of proof is routine.

Corollary 2. [[lap]] ∈ QBS(KR×KR, PKR).

60

	1 Introduction
	2 Preliminaries
	2.1 Category of Binary Relations

	3 Divergences on Objects
	4 Divergences on Monads
	5 Examples of Divergences on Monads
	5.1 Cost Difference for Deterministic Computations
	5.2 Cost Difference for Nondeterministic Computations
	5.3 Divergences for Differential Privacy
	5.4 Statistical Divergences and Composablity of f-Divergences
	5.5 Divergences on the Probability Monad on QBS via Monad Opfunctors.
	5.6 Divergences on State Monads
	5.6.1 Lipschitz Constant on States
	5.6.2 Distance between State Transformers with the Same Inputs
	5.6.3 Sup-Metric on the State Monad on the Category of Generalized Ultrametric Spaces

	5.7 Combining Divergence with Cost
	5.8 Preorders on Monads

	6 Properties of Divergences on Monads
	6.1 Divergences on Monads as Structures in DivQ(C)
	6.1.1 Enrichments of Kleisli Categories Induced by Divergences
	6.1.2 Internalizing Divergences as Structures in DivQ(C)
	6.1.3 Divergences on Monads and Divergence Liftings of Monads

	6.2 Generation of Divergences
	6.3 An Adjunction between Quantitative Equational Theories and Divergences

	7 Graded Strong Relational Liftings for Divergences
	7.1 Simplifying Codensity Liftings by -Generatedness of Divergences
	7.2 Two Lifting Approaches: Codensity and Coupling

	8 Approximate Computational Relational Logic
	8.1 Moggi's Computational Metalanguage
	8.1.1 Syntax of the Computational Metalanguage
	8.1.2 Categorical Semantics of the Computational Metalanguage

	8.2 Approximate Relational Computational Logic
	8.2.1 Relational Logic in External Form
	8.2.2 Inference Rules for acRL

	9 Case Study I: Higher-Order Probabilistic Programs
	9.1 A Relational Logic Verifying Differential Privacy

	10 Case Study II: Probabilistic Programs with Costs
	10.1 Relational Reasoning on Probabilistic Costs
	10.1.1 An Example of Relational Reasoning

	11 Related Work
	12 Future Work
	13 Measurable Spaces and Quasi-Borel Spaces
	A Proofs for Section 5 (Examples of Divergences on Monads)
	B Proofs for Section 6 (Properties of Divergences on Monads)
	C Proofs for Section 7 (Graded Strong Relational Liftings for Divergences)
	D Proofs for Section 9 (Case Study I: Higher-Order Probabilistic Programs)

