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Place/Transition (PT) Petri nets are one of the most widely used models of concurrency. However,
they still lack, in our view, a satisfactory semantics: on the one hand the ‘token game’ is too
intensional, even in its more abstract interpretations in terms of nonsequential processes and
monoidal categories; on the other hand, Winskel’s basic unfolding construction, which provides a
coreflection between nets and finitary prime algebraic domains, works only for safe nets.
In this paper we extend Winskel’s result to PT nets. We start with a rather general categoryPTNets

of PT nets, we introduce a categoryDecOcc of decorated (nondeterministic) occurrence nets and
we define adjunctions betweenPTNets andDecOcc and betweenDecOcc andOcc, the category of
occurrence nets. The role ofDecOcc is to provide natural unfoldings for PT nets, i.e., acyclic safe
nets where a notion of family is used for relating multiple instances of the same place.
The unfolding functor fromPTNets to Occ reduces to Winskel’s when restricted to safe nets;
moreover, the standard coreflection betweenOcc andDom, the category of finitary prime algebraic
domains, when composed with the unfolding functor above, determines a chain of adjunctions
betweenPTNets andDom.

Introduction

Petri nets, introduced by C.A. Petri in (Petri 1962) (see also Petri 1973; Reisig 1985), are a
widely used model of concurrency. This model is attractive from a theoretical point of view
because of its simplicity and because of its intrinsically concurrent nature, and has often been
used as a semantic basis on which to interpret concurrent languages (see for example Winskel
1982; Olderog 1987; van Glabbeek and Vaandrager 1987; Degano et al.1988).

ForPlace/Transition (PT) nets, having a satisfactory semantics—one that does justice to their
truly concurrent nature, yet is abstract enough—remains inour view an unresolved problem.
Certainly, many different semantics have been proposed in the literature; we briefly discuss some
of them below.

At the most basic operational level we have of course the ‘token game’. To account for com-
putations involving many different transitions and for thecausal connectionsbetween transition
events, various notions ofprocesshave been proposed (Petri 1977; Goltz and Reisig 1983; Best
and Devillers 1987), but process models do not provide a satisfactory semantic denotation for
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a net as a whole. In fact, they specify only the meaning of single, deterministic computations,
while the accurate description of the fine interplay betweenconcurrency and nondeterminism is
one of the most valuable features of nets.

Other semantic investigations have capitalized on thealgebraic structureof PT nets, first no-
ticed by Reisig (Reisig 1985) and later exploited by Winskelto identify a sensible notion of
morphismbetween nets (Winskel 1984; Winskel 1987). More recently, adifferent interpreta-
tion of the algebraic structure of PT nets in terms of monoidal categories has been proposed
in (Meseguer and Montanari 1990). Alternative interestingalgebraic/categorical approaches are
(Brown and Gurr 1990; Brownet al.1991; Martı́-Oliet and Meseguer 1991; Engberg and Winskel
1993), based on ideas from linear logic, and (Mukund 1992), which provides an account of net
behaviours in terms of (step) transition systems.

One particular advantage of the algebraic approaches basedon category theory is that they
provide useful net combinators, associated to standard categorical constructions such as product
and coproduct, which can be used to give a simple account of corresponding compositional
operations at the level of a concurrent programming language, such as various forms of parallel
and non-deterministic composition (Winskel 1987; Meseguer and Montanari 1990; Brownet al.
1991; Mukund 1992).

A unification of the process-oriented and algebraic viewpoints has recently been proposed
in (Deganoet al. 1989; see also the related Sassone 1996; Sassone 1995) by showing that the
commutative processes(Best and Devillers 1987) of a netN are isomorphic to the arrows of a
symmetric monoidal categoryT [N]. Moreover, they introduced theconcatenable processesof
N—a slight variation of Goltz-Reisig processes (Goltz and Reisig 1983) on which sequential
composition is defined—and structured them as the arrows of the symmetric monoidal category
P [N]. That would individuate in the category of the symmetric monoidal categories a semantic
domain for PT nets. However, in spite of accounting for algebraic and process aspects in a simple
unified way, this semantics is still too concrete, and a more abstract semantics—one allowing
greater semantic identifications between nets—would be clearly preferable in many applications.

A very attractive formulation for the semantics that we seekwould be anadjoint functoras-
signing an abstract denotation to each PT net and preservingcertain compositional properties in
the assignment. This is exactly what Winskel has done for thesubcategory of safe nets (Winskel
1986). In that work—which builds on the previous important work (Nielsenet al. 1981)—the
denotation of a safe net is aScott domain(Scott 1970), and Winskel shows that there exists a
coreflection—a particularly nice form of adjunction—between the categoryDom of (coherent)
finitary prime algebraic domainsand the categorySafe of safe Petri nets. Winskel’s coreflection
factorizes through the chain of coreflections

Safe
//

U [ ]

Occoo ? _
//

E [ ]

PESoo

N [ ]

//
L [ ]

Domoo

P r[ ]

wherePES is the category ofprime event structures(with binary conflict), which is equivalent
to Dom, Occ is the category ofoccurrence nets(Winskel 1986),←֓ is the inclusion functor, and
the lower arrows are left adjoints.

This construction is completely satisfactory: from the intuitive point of view it gives the‘truly
concurrent’semantics of safe nets in the most universally accepted typeof model, while from
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the formal point of view the existence of an adjunction guarantees its‘naturality’ . In fact, it
follows directly from the choice of the denotational modelsthat this semantics is suited to a
precise description of causality: every causal interaction among transitions, in principle a history-
dependent concept, must be resolved to the global, static relations of causality and conflict of
event structures. In other words, the unfolding amounts to translating the‘dynamic’structure of
nets to the‘static’ structure of occurrence nets and event structures, i.e., to‘compiling’ transitions
to events. Under this translation events are to be thought ofas unique occurrences of transitions
which bear unique, static causal links to each other. It is worth observing that such a causal
semantics is incompatible with the idea of indistinguishability of tokens: different tokens in the
same place can carry different causal histories and, therefore, give rise to different events, even
when consumed by the same transition. In other words, it could be said that the very purpose of
a causal semantics for nets is to distinguish tokens according to their causal history.

The existence of adjoints to the unfolding functors guarantees the adequacy of the semantics.
In fact, starting from the natural assumption that a possible denotation ofN in PES is an event
structureES together with mapN [ES]→ N which ‘labels’ the events with the transitions they
correspond to, by the universal property of adjunctions, each possible explanation ofN in PES

factorsuniquelythrough the one assigned by the unfolding, viz.,N EU [N]→N. Intuitively, this
can be interpreted as saying thatEU [N] is the ‘best possible’, the ‘most complete’ explanation
of N in PES, the one which unambiguously subsumes all the (partial) others and, moreover, it is
(up to isomorphisms) the unique event structure which enjoys such a property.

Recently, various attempts have been made to extend this chain or, more generally, to identify a
suitable semantic domain for PT nets. Among them, we recall (Pratt 1991), where, in order to ob-
tain a model ‘mathematically more attractive than Petri nets’, ageometricmodel of concurrency
based onn-categories as models of higher dimensional automata is introduced, but the modelling
power obtained does not seem to be greater than that of ordinary PT nets, though the framework
is highly elegantly linked to algebraic topology (Goubaultand Jensen 1992; Goubault 1993; see
also Cattani and Sassone 1996), (Hoogerset al.1992), in which the authors give semantics to PT
nets in terms of generalized trace languages and discuss howusing their work it could perhaps be
possible to obtain a concept of unfolding for PT nets; and (Engelfriet 1991), where the unfolding
of Petri nets is given in term of a branching process. However, the nets considered inloc. cit.
are not general PT nets because their transitions are restricted to have pre and post-sets where
all places have no multiplicities. A yet more recent approach is (Hoogerset al.1993), where the
unfolding is explained in terms of a new notion of local eventstructure. Finally, we would like
to cite in this context (Gunawardena 1993).

The present work extends Winskel’s approach from safe nets to the category of PT nets. We de-
fine theunfoldingsof PT nets and relate them by anadjunctionto occurrence nets and therefore—
exploiting the already existing adjunctions—to prime event structures and finitary prime alge-
braic domains. The adjunctions so obtained are extensions of the corresponding Winskel’s core-
flections. We follow strictly the intuitions of (Winskel 1986) discussed above. Of course, here
we need to take care of the multiplicities in pre- and post-sets, which, respectively, consume
and produce multiple concurrent tokens in the same place. Although such tokens have the same
history, they must be distinguished, since, potentially, they give rise to different events, e.g., mul-
tiple concurrent activations of the same transition. This is calledindividual token interpretation
in (van Glabbeek and Plotkin 1995).
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The categoryPTNets that we consider is quite general. Objects are PT nets in which mark-
ings may be infinite and transitions are allowed to have infinite pre- and post-sets, but, as usual,
with finite multiplicities. The only technical restrictionwe impose, with respect to the natural
extension to nets with infinite markings of the general formulation in (Meseguer and Montanari
1990), is the usual condition that transitions must have non-empty pre-sets. Actually, the objects
of PTNets strictly include those of the categories considered in (Winskel 1986; Winskel 1987).
Although a technical restriction applies to the morphisms—they are required to map places be-
longing to the initial marking or to the post-set of the same transition to disjoint multisets—they
are still quite general. The categoryPTNets hasinitial andterminalobjects, and hasproductsand
coproductswhich model, respectively, the operations of parallel and non-deterministic composi-
tion of nets. It is worth remarking that, while coproducts donotexist in the categories of generally
marked, non-safe PT nets considered in (Winskel 1987; Meseguer and Montanari 1990), they do
in PTNets. In addition, in (Brownet al. 1991) and in (Mukund 1992), where coproducts exist,
they seem not to have a neat computational intepretation.

Concerning the organization of the paper, in Section 1 we define the categoryPTNets and in
Section 2 we show that it has products and coproducts. In Section 3 we introduce a new kind
of nets, thedecorated occurrence nets, which naturally represent the unfoldings of PT nets and
can account for the multiplicities of places in transitions. They are occurrence nets in which
places belonging to the post-set of the same transition are partitioned intofamilies. Families are
used to relate places corresponding in the unfolding to multiple instances of the same place in
the original net. When all the families of a decorated occurrence net have cardinality one, we
have (a net isomorphic to) an ordinary occurrence net. Therefore,Occ is (isomorphic to) a full
subcategory ofDecOcc, the category of decorated occurrence nets.

In Section 4, we show an adjunction〈( )+,U [ ]〉 :DecOcc ⇀ PTNets whose right adjointU [ ]

gives the unfoldings of PT nets. This adjunction restricts to Winskel’s coreflection fromOcc to
Safe as shown by the commutative diagrams:

PTNets //
U [ ]

DecOcc

Safe

OO

?�

//

Uw[ ]
Occ

OO

?�

PTNets DecOccoo
( )+

Safe

OO

?�

Occoo ? _

OO

?�

i.e., the left and the right adjoint, when restricted respectively to Safe andOcc, coincide with
the corresponding adjoints of Winskel’s coreflection. We also consider the full subcategory
SWNets of PTNets consisting of those nets whose initial markings and whose post-sets are
sets. Since weights are allowed only on the arcs from places to transitions, we refer to them
assemiweightednets. Concerning them, we show that whenU [ ] is restricted toSWNets the
adjunction〈( )+,U [ ]〉 restrict to a coreflection〈→֒,U [ ]〉 :Occ ⇀ SWNets.

Then, in Section 5, we relate decorated occurrence nets to occurrence nets by showing an
adjunction〈D [ ],F [ ]〉 :Occ ⇀ DecOcc, whereF [ ] is theforgetful functor which forgets about
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families. Moreover, the diagram below commutes.

PTNets //
U [ ]

DecOcc

��

F [ ]

Safe

OO

?�

//

Uw[ ]
Occ

(1)

Therefore, we get the desired adjunction betweenDom andPTNets as the composition of the
chain of adjunctions

PTNets
//

U [ ]

DecOccoo

( )+

��

F [ ]

Occ

OO

D [ ]

//
E [ ]

PESoo

N [ ]

//
L [ ]

Domoo

P r[ ]

It follows from the commutative diagram (1) that, whenPTNets is restricted toSafe, all the
right adjoints in the above chain coincide with the corresponding functors defined by Winskel.
Furthermore, because of the coreflection fromOcc toSWNets, whenU [ ] is restricted toSWNets

alsoF U [ ], EF U [ ], andLE F U [ ] give rise to coreflections of, respectively,Occ, PES, and
Dom in SWNets. In this sense, this work generalizes the work of Winskel andgives an abstract,
truly concurrent semantics for PT nets. The existence of left adjoints for all the functors we
consider guarantees the ‘naturality’ of this generalization. More precisely, as for safe nets, the
adequate treatment of causal and true concurrency issues follows from the choice of event struc-
tures as denotational model, while the adjunctions guarantee that such a semantics is ‘as good as
possible’, given the chosen categories. A further assessment of adequacy of the unfolding con-
struction is provided by (Mesegueret al.1996), where the present construction is proved to bear
close relationships to the standard notion of processes forPT nets; more details about this are
discussed in the concluding section. Another source of evidence is provided by the results about
SWNets proving that for semiweighted nets, which can exhibit fairly more complicated causal
behaviours than safe nets, the extension on Winskel’s semantics is the smoothest possible one.

We remark that, of course, the semantics presented in this paper is one of the possible se-
mantics for PT nets. In particular, it is characterized by the choice of prime event structures
as ‘denotations’ of PT nets, i.e., by the choice of explaining the behaviour of PT nets in terms
of the primitive notions ofevent, causalityandconflict. Such a choice has the clear advantage
of yielding a fully causalexplanation of net computations, which is our declared aim.In fact,
the unfolding functor associates to a PT netN an occurrence net whose transitions represent
exactly the instances of the transitions ofN in all the possible causal contexts and which can
therefore account for concurrent multiple instances of thesame element ofN, that is forauto-
concurrency. Of course, by its very purpose, the unfolding will then contain several instances
of the same transition, including both concurrent pairs accounting for autoconcurrency and con-
flicting pairs arising from incompatible causal contexts. Clearly, this may be a disadvantage in
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some applications. These pros and cons are clearly sides of the same coin, and are both due to
the ‘primitiveness’ of prime event structures.

This paper is a full and extend version of (Mesegueret al.1992). With respect to that extended
abstract version, the present paper provides the results concerningSWNets, further comments,
and all the relevant proofs. In addition, here we also prove that the categoryPTNets has good
structural properties by proving the existence of productsand coproducts inPTNets and by
providing a computational interpretation for them.

Acknowledgements. We cordially thank Narciso Martı́-Oliet for his careful reading of the manuscript and
his valuable suggestions for improving the exposition.

1. Place/Transition Nets

In this section we define the categoriesPTNets of Place/Transition (PT) nets, Safe of safe nets
andOcc of occurrence nets.

We recall that apointed setis a pair(S,s) whereSis a set ands∈Sis the pointed element. Mor-
phisms of pointed sets are functions that preserve the pointed elements. Looking at the pointed
element as the undefined value, pointed sets provide a convenient way to treat partiality. More
precisely, the category of sets and partial functions and the category of pointed sets and pointed
set morphisms are isomorphic.

Given a setS, we denote bySM the set ofmultisetsonS, i.e., the set of all functions fromS to
the set of natural numbersω, and bySM ∞ the set ofmultisetswith (possibly)infinite multiplici-
ties, i.e., the functions fromS to ω∞ = ω∪{∞}. We shall regardSM also as a pointed set whose
pointed element is the empty multiset, i.e., the function which always yields zero, that, in the
following, we shall denote by 0.

Notation. For µ∈ SM ∞ , we write [[µ]] to denote the support ofµ, i.e., the subset ofS consisting of those
elementss such thatµ(s) > 0. A multisetµ∈ SM ∞ can be represented as a formal sum

L

s∈Sµ(s) · s. In
the sequel, we shall often denoteµ∈ SM ∞ by

L

i∈I ηisi where{si | i ∈ I} = [[µ]] andηi = µ(si), i.e., as a
sum whose summands are all nonzero. In case of multisets inSM , instead ofηi , we shall useni ,mi , . . ., the
standard variables for natural numbers. Moreover, givenS′ ⊆S, we will write

L

S′ for
L

s∈S′ 1·s=
L

s∈S′ s.

Given an arbitrary indexing setI and{ηi ∈ ω∞ |i ∈ I}, we defineΣi∈I ηi to be the usual sum
in ω if only finitely manyηi are nonzero and∞ otherwise. Then, we can give meaning to linear
combinations of multisets, i.e., multisets of multisets, by defining

M

µ∈SM ∞

ηµ ·µ=
M

µ∈SM ∞

ηµ ·
(

M

s∈S

µ(s) ·s
)

=
M

s∈S

(

∑
µ∈SM ∞

ηµµ(s)
)

·s.

As usual, we use the infix notationu⊕v when the above combination involves only the multisets
u andv with multiplicities one.

A ( )M ∞–homomorphism fromSM ∞
0 to SM ∞

1 is a functiong:SM ∞
0 → SM ∞

1 such that

g(µ) =
M

s∈S0

µ(s) ·g(s).

Remark. ( )M ∞ extends to an endofunctor on the category of sets and, as such, it defines acommuta-
tive monad, whose multiplication is the operation of linear combination of multisets described above, and
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whose unit mapss∈ S to 1· s∈ SM ∞ . In these terms,SM ∞ is the free( )M ∞–algebra onS and a( )M ∞ –
homomorphism is a morphism of( )M ∞ -algebras.

Definition 1.1. (PT Nets)A PT netis a structureN =
(
∂0

N,∂1
N:(TN,0)→ SMN ,uN

)
whereSN is a

set whose elements are calledplaces; TN is a pointed set whose elements are calledtransitions;
∂0

N,∂1
N arepointed set morphismsgiving, respectively, sources and the targets of transitions; and

uN ∈ SMN is the initial marking. Moreover, we assume the standard constraint that if∂0
N(t) = 0

thent = 0.
A morphismof PT nets fromN0 to N1 consists of a pair〈 f ,g〉 such that:

(i) f :TN0 → TN1 is a pointed set morphism;

(ii ) g:SM ∞
N0
→ SM ∞

N1
is a( )M ∞–homomorphism;

(iii ) g(uN0) = uN1, i.e.,g respects the initial marking;
(iv) ∂0

N1
◦ f = g◦ ∂0

N0
, and∂1

N1
◦ f = g◦ ∂1

N0
, i.e., f respects source and target;

(v) ∀a,b ∈ [[uN1]] and∀a,b ∈ [[∂1
N0

(t)]], t ∈ TN0, if [[g(a)]]∩ [[g(b)]] 6= ∅, thena = b, i.e., g
acts ‘disjointly’ on places belonging to the initial marking or to the postset of the same
transition.

This, with the obvious componentwise composition of morphisms, defines the categoryPTNets.

A PT net is thus a graph whose arcs are the transitions and whose nodes are the multisets
on the set of places, i.e.,markingsof the net. As usual, transitions have pre- and post-sets, i.e.,
sources and targets, in which each place has only finitely many tokens, i.e., finite multiplicity.
The same applies to the initial marking. Consistency with the use of zero transitions to treat
partial maps is provided by the fact that∂0

N and∂1
N are pointed set morphisms, i.e., they assign

empty pre- and post-sets to zero transitions. Moreover, these are the only transitions which can
have empty pre-sets. This limitation is needed in any unfolding semantics since transitions with
empty pre-sets are highly degenerated; in particular, any number of parallel copies of them can
fire at any marking. Observe thatPTNets contains also the empty net, i.e., in our setting the net
with empty set of places and having the unique transition 0. This is an interesting net, since it is
theterminalobject in the category. Theinitial object ofPTNets is the net consisting of a unique
places, of no transitions, and whose initial marking is 1·s.

Morphisms of PT nets are graph morphisms in the precise senseof respecting source and target
of transitions, i.e., they make the two diagrams below commute.

TN0

��

f

//

∂0
N0 SMN0

//� � SM ∞
N0

��

g

TN1
//

∂0
N1

SMN1
//� � SM ∞

N1

TN0

��

f

//

∂1
N0 SMN0

//� � SM ∞
N0

��

g

TN1
//

∂1
N1

SMN1
//� � SM ∞

N1

Moreover, they respect the pointed set structure of transitions, i.e., they are consistent with our
use of ‘zero’ transitions, the( )M ∞ -algebraic structures of states, and the initial markings.

The last condition in the definition means that morphisms arenot allowed to map two different
places in the initial marking or in the post-set of the same transition to two multisets having a
place in common. This is pictorially described in the figure below, where dashed arrows represent
the forbidden morphisms. We use the standard graphical representation of nets in which circles
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are places, boxes are transitions, the initial marking is given by the number of ‘tokens’ in the
places, and sources and targets are directed arcs whose weights represent multiplicities. Unitary
weights are omitted.

l l-@
@
�

� l l l
l

��	

-

@@R ?
-@

@
�

�

...
...

2
• • ••

This requirement strengthen conditions (iii ) and (iv), implying that multiplicities in the initial
marking and in post-sets are ‘reflected’ by morphisms. It canbe reformulated by saying that for
all placesb∈ [[uN1]], there exists exacly onea∈ [[uN0]] such thatb∈ [[g(a)]] and, similarly, for all
placesb∈ [[∂1

N1
( f (t))]], for t ∈ TN0, there exists exactly onea∈ [[∂1

N0
(t)]] such thatb∈ [[g(a)]]. It

is worth remarking that (v) is a ‘local’ condition: it constrains the action of morphisms only on
places belonging to the initial marking or to the same post-set. Such a condition will play an im-
portant role in establishing the adjunction betweenPTNets andDecOcc and, therefore, between
PTNets and the other categories we consider. In fact, it is crucial for showing the (uniqueness
condition in the definition of)universalityof thecounitof the adjunction. Moreover, it is exactly
the part of this condition concerning the places in the initial marking which makes coproducts
exist inPTNets.

Remark. Our choice of morphisms forPTNets is very close to those for the general categories of marked
nets considered in (Winskel 1986; Winskel 1987; Meseguer and Montanari 1990) and in related works.
Actually, the only difference with (Winskel 1986; Winskel 1987) is condition (v) in Definition 1.1.

Notation. Since in the rest of the paper we will often state and check conditions on both∂0
N and∂1

N, we
will use ∂i

N ranging over them. Moreover, in order to simplify notation,we shall sometimes use a single
letter to denote a morphism〈 f ,g〉. In these cases, the type of the argument will identify whichcomponent
we are referring to. A( )M ∞ –homomorphismg:SM ∞

N0
→ SM ∞

N1
, which constitutes the place component of

a morphism〈 f ,g〉, is completely defined by its behaviour onSN0, the generators ofSM ∞
N0

. Therefore, we

will often define morphisms between nets by giving their transition components and a mapg:SN0 → SM ∞
N1

for their place components: it is implicit that they have to be thought of as lifted to the correspondent
( )M ∞ –homomorphisms.

Transitions are the basic units of computation in a PT net. A transitiont with ∂0
N(t) = u and

∂1
N(t) = v—usually writtent:u→ v—performs a computationconsumingthe tokens inu and

producingthe tokens inv.
A finite number of transitions can be composed in parallel to form astep, which, therefore, is

a finite multiset of transitions. We writeu[α〉v to denote a stepα with sourceu and targetv. The
setS [N] of steps ofN is generated by the rules:

t:u→ v in N andw in SM ∞

(u⊕w)[t〉(v⊕w) in S [N]

u[α〉v andu′[β〉v′ in S [N]

(u⊕u′)[α⊕β〉(v⊕v′) in S [N]
.

Observe that the pointed transition 0:0→ 0 provides the empty step at anyu∈ SM ∞ .
A finite number of steps from the initial marking can be sequentially composed thus yielding
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a step sequence. The set of step sequences, denotedS S [N], is given by the rule:

uN[α0〉v0, . . . ,un[αn〉vn in S [N] andui = vi−1, i = 1, . . . ,n
uN[α0〉[α1〉 · · · [αn〉vn in S S [N]

.

The setR [N] of reachable markingsof N is the set of markings which are target of some step
sequence, i.e.,

R [N] =
{

v | ∃(uN[α0〉 · · · [αn〉v) in S S [N]
}

.

Since step sequences are of finite length, and each step consists of finitely many transitions,
from the conditions onuN, ∂0

N and∂1
N in Definition 1.1, it is easy to see thatR [N]⊆ SMN .

In the following we shall also consider the category of thosePT nets whose initial markings
and whose post-sets are sets, as opposed to multisets.

Definition 1.2. (SemiWeighted Nets)A PT netN is semiweightedif uN is a set and, for all
t ∈ TN, ∂1

N(t) is a set. This defines the categorySWNets as a full subcategory ofPTNets.

It is interesting to notice that for the morphisms inSWNets condition (v) is redundant, i.e., it
is already implied by the structure of semiweighted nets.

Proposition 1.3. (Characterization of SemiWeighted Net Morphisms) Let N0 andN1 be semi-
weighted nets. A pair of〈 f ,g〉, wheref :TN0 → TN1 andg:SM ∞

N0
→ SM ∞

N1
, is a morphismN0→N1

in SWNets if and only if conditions (i), (ii ), (iii ) and (iv) of Definition 1.1 hold.

Proof. It is very easy to prove that condition (v) follows from the others. In fact if there were
b in [[uN1]] or in [[∂1

N1
( f (t))]] anda,a′ respectively in[[uN0]] or in [[∂1

N0
(t)]] such thatb∈ [[g(a)]]∩

[[g(a′)]], by definition of morphism, it would beg(uN0)(b) = uN1(b) ≥ 2 or g(∂1
N0

(t))(b) =

∂1
N1

( f (t))(b)≥ 2. But this is impossible, sinceN1 is a semiweighted net.

The important class ofsafenets is obtained fromSWNets by extending the required absence
of multiplicities also to pre-sets and to all reachable markings.

Definition 1.4. (Safe Nets)A PT netN is safeif

∀t ∈ TN, ∂i
N(t) is a set, and ∀v∈ R [N], v is a set.

This defines the categorySafe as a full subcategory ofPTNets.

SinceSafe is clearly a full subcategory ofSWNets, Proposition 1.3 applies also to safe net
morphisms. Moreover, the morphisms inSafe admit the following characterization in terms of
their action on initial markings, pre- and post-sets.

Proposition 1.5. (Characterization of Safe Net Morphisms)Let N0 andN1 be safe nets. A
pair 〈 f ,g〉 is a morphismN0→ N1 in Safe if and only if f :TN0 → TN1 is a morphism of pointed

sets,g:SM ∞
N0
→ SM ∞

N1
is a ( )M ∞–homomorphism such that∀a∈ [[uN0]]∪ [[∂0

N0
(t)]]∪ [[∂1

N0
(t)]], for

t ∈ TN0, g(a) is a set, and

(i) [[g(uN0)]]⊆ [[uN1]] and∀b∈ [[uN1]], ∃!a∈ [[uN0]] such thatb∈ [[g(a)]];
(ii ) ∀t ∈ TN0, [[g(∂i

N0
(t))]]⊆ [[∂i

N1
( f (t))]] and

∀b∈ [[∂i
N1

( f (t))]], ∃!a∈ [[∂i
N0

(t)]] such thatb∈ [[g(a)]].

Proof. (⇒) Trivial.
(⇐) Conditions (i), (ii ) and (v) in the definition of PT net morphisms are already present. Points
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(i) and (ii ) above imply that

[[uN1]] =
[{

[[g(a)]] |a∈ [[uN0]]
}

and[[∂i
N1

( f (t))]] =
[{

[[g(a)]] |a∈ [[∂i
N0

(t)]]
}

.

Now, since
L

[[g(a)]] = g(a) and all the[[g(a)]] in the unions are disjoint, we obtaing(uN0) = uN1

andg(∂i
N0

(t)) = ∂i
N1

( f (t)).

Corollary 1.6. (Correspondence with Winskel’s Safe Nets)Winskel’s category of safe nets
(Winskel 1986), calledNet, is a full subcategory ofSafe.

Proof. The conditions given in the above proposition are a characterization of morphisms
in Net (Winskel 1986, Proposition 3.1.9), while the objects inSafe strictly contain the objects
in Net. In fact, the objects ofNet are the objects ofSafe with sets of places, initial markings
and post-sets which are non-empty, and withoutisolated places—places belonging neither to the
initial marking nor to the pre- or post-set of any transition.

Another important class of nets is that ofoccurrence nets. They are safe nets which a nicely
stratified structure whose minimal elements constitute theinitial marking.

Notation. For a ∈ SN, we use•a to indicate the set{t ∈ TN | a ∈ [[∂1
N(t)]]}. Dually, a• is {t ∈ TN | a ∈

[[∂0
N(t)]]}. These notations are extended in the obvious way to sets of places.

Definition 1.7. (Occurrence Nets)An occurrence netis a safe netΘ such that

(i) a∈ [[uΘ]] if and only if •a = ∅;
(ii ) ∀a∈ SΘ, |•a| ≤ 1, where| | gives the cardinality of sets;
(iii ) ≺ is irreflexive, where≺ is the transitive closure of the relation

≺1= {(a, t) | a∈ SΘ, t ∈ TΘ, t ∈ a•}∪{(t,a) | a∈ SΘ, t ∈ TΘ, t ∈ •a};

moreover,∀t ∈ TΘ, {t ′ ∈ TΘ | t ′ ≺ t} is finite;
(iv) the binary ‘conflict’ relation # onTΘ∪SΘ is irreflexive, where

∀t1, t2 ∈ TΘ, t1 #m t2⇔ [[∂0
Θ(t1)]]∩ [[∂0

Θ(t2)]] 6= ∅ andt1 6= t2,

∀x,y∈ TΘ∪SΘ, x # y⇔∃t1,t2 ∈ TΘ : t1 #m t2 andt1� x andt2� y,

where� is the reflexive closure of≺.

This defines the categoryOcc as a full subcategory ofSafe.

From Definition 1.7 and Corollary 1.6, it is immediate to see that Winskel’s category of occur-
rence nets (Winskel 1986), sayOccW, is a full subcategory ofOcc. However, since all the results
in (Winskel 1986) easily extend toSafe andOcc, in the following we will ignore any difference
betweenSafe andNet and betweenOcc andOccW.

2. Composition of PT Nets

Products and coproducts are important constructions for nets, and generally in categories of mod-
els for concurrency, due to their natural role, respectively, in the operations of parallel and non-
deterministic composition (Winskel 1987). In this section, we show that the categoryPTNets has
both products and coproducts and, studying the relationships between the computations of the
composed nets and those of the original nets, we clarify in what sense products and coproducts
are related to the operations of parallel and non-deterministic composition.
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While in the categories of safe nets and of occurrence nets products and coproducts exist
(Winskel 1987), the category of PT nets with initial markings introduced in (Winskel 1987) has
products but does not have coproducts. In (Meseguer and Montanari 1990), it is shown that co-
products exist in the full subcategory of PT nets whose initial markings are sets rather than mul-
tisets. However, due to the additional condition (v) in Definition 1.1, we can prove the existence
of coproducts of any pair of objects inPTNets.

Definition 2.1. (Product of Nets)Given the PT netsN0 andN1, we define

N0×N1 =
(

∂0
N0
×∂0

N1
,∂1

N0
×∂1

N1
:
(
TN0×TN1,(0,0)

)
→ SMN0

×SMN1
,(uN0,uN1)

)

.

SinceSMN0
×SMN1

∼= (SN0 + SN1)
M , andSM ∞

N0
×SM ∞

N1
∼= (SN0 + SN1)

M ∞ , where+ is the disjoint
union of sets, we have thatN0×N1 is indeed a net with placesSN0 +SN1. Example 2.2 illustrates
the above definition in a simple case.

Example 2.2.
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2
2

2

t0 (t0,0)t1 (0,t1)(t0,t1)

• • •
• • • • •

• •a b a b

c d c d

The PT netsN0 andN1 and their productN0×N1

Now, consider the projectionsπ0:N0×N1→N0 andπ1:N0×N1→N1 defined byπi ((t0,t1)) =

ti andπi ((u0,u1)) = ui . It is easy to see that they are morphisms inPTNets.

Proposition 2.3. (Product of Nets)N0×N1, with projectionsπ0 andπ1, is the product ofN0 and
N1 in PTNets.

Proof. Observe that, given any PT netN and two morphismsh0:N→N0 andh1:N→N1, the
map〈h0,h1〉:N→ N0×N1 defined by

〈h0,h1〉(t) =
(
h0(t),h1(t)

)
and〈h0,h1〉(u) =

(
h0(u),h1(u)

)

is a PT net morphism. Clearly,πi ◦ 〈h0,h1〉 = hi , and〈h0,h1〉 is the unique morphism for which
that happens.

The product of the netsN0 andN1 is theirparallel composition withsynchronization, in the
precise sense that each step sequence ofN0×N1 is the parallel composition of a step sequence
of N0 and a step sequence ofN1, and viceversa. Since transitions ofN0×N1 are of the forms
(t0,0), (0, t1) or (t0, t1), for ti ∈ TNi , i = 0,1, the product models bothasynchronousandsyn-
chronousinteractions ofN0 andN1, where transitions of the form(t0,0) or (0,t1) correspond to
eitherN1 or N0 staying idle, while transitions of the form(t0,t1) correspond to steps in which
bothN0 andN1 proceed together, synchronizing to each other. This result, formally stated in the
next proposition, coincides with those in (Winskel 1987; Meseguer and Montanari 1990).
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In the following, given a PT net morphismh:N0→N1, we will denote byh⊕ the unique( )M ∞–
homomorphism fromTM ∞

N0
to TM ∞

N1
generated by the transition component ofh. Observe that,

since such a component is a function,h⊕ maps finite multisets to finite multisets. In particular,
h⊕ can be defined on such multisets simply by:h⊕(t) = h(t) andh⊕(α⊕β) = h⊕(α)⊕h⊕(β).

Proposition 2.4. (Product and Parallel Composition)The sequenceuN0×N1[α0〉 · · · [αn〉v be-
longs toS S [N0×N1] if and only if the sequenceπi(uN0×N1)[π

⊕
i (α0)〉 · · · [π⊕i (αn)〉πi(v) belongs

to S S [Ni ], for i = 0,1. Therefore,v∈ R [N0×N1] if and only if πi(v) ∈ R [Ni ] for i = 0,1.

Proof. It suffices to show thatu[α〉v is in S [N0×N1] if and only if πi(u)[π⊕i (α)〉πi(v) is in
S [Ni ], i = 0,1.
Supposeα =

L

j(t
j
0, t

j
1). The ‘only if’ implication follows directly from the fact that π0 andπ1

are PT net morphisms. In fact, by definition ofS [N], u[α〉v in S [N0×N1] if and only if u =

w⊕
L

j u j , v = w⊕
L

j v j , and(t j
0, t

j
1):u j → v j are transitions ofN0×N1. Thus, we have that

πi(t
j
0,t

j
1):πi(u j)→ πi(v j) is a transition (possibly 0) ofNi . Therefore, fori = 0,1,

(
πi(w)⊕

L

j πi(u j)
)[

L

j πi(t
j
0,t

j
1)

〉(
πi(w)⊕

L

j πi(v j)
)

is in S [Ni ],

i.e.,πi(u)[π⊕i (α)〉πi(v) belongs toS [Ni ].
In order to show the ‘if’ implication, observe thatt0:π0(u)→ π0(v) in N0 andt1:π1(u)→ π1(v)
in N1 imply (t0, t1):u→ v in N0×N1. Now assume thatπi(u)[π⊕i (α)〉πi(v) in S [Ni ], i = 0,1,
u=(u0,u1), andv= (v0,v1). By definition ofS [Ni ], we haveui = wi⊕

L

j u
i
j , vi = wi⊕

L

j v
i
j , and

πi(t
j
0,t

j
1):u

i
j → vi

j in Ni . Now consideru j = (u0
j ,u

1
j ), v j = (v0

j ,v
1
j ), andw = (w0,w1). Clearly, we

haveu = w⊕
L

j u j , v = w⊕
L

j v j andπi(t
j
0,t

j
1):πi(u j)→ πi(v j) in Ni . Therefore,(t j

0,t
j
1):u j →

v j in Ni , and we have
(
w⊕

L

j u j
)[

L

j(t
j
0,t

j
1)

〉(
w⊕

L

j v j
)

in S [N0×N1],

i.e.,u[α〉v in S [N0×N1].

Example 2.5. (Parallel Computations)Consider again the nets of Example 2.2.
The step(2a,3b)[(t0, t1)〉(c,2b⊕ 2d) of N0×N1 corresponds to the steps 2a[t0〉c of N0 and
3b[t1〉2b⊕ 2d of N1, while (2a,3b)[(t0,0)〉[(0,t1)〉(c,2b⊕ 2d) corresponds to 2a[t0〉[0〉c and to
3b[0〉[t1〉2b⊕2d.

We now consider coproducts inPTNets. To this purpose, letting⊕ stand for the coproduct
in the category of multisets (with possibly infinite multiplicities) and( )M ∞–homomorphisms,
observe thatSM ∞

0 ⊕SM ∞
1
∼= (S0 + S1)

M ∞ . Given the PT netsN0 andN1, let uN0 =
L

i niai and
uN1 =

L

j mjb j , and consider the setSN0+N1 =
(
SN0− [[uN0]]

)
+

(
SN1− [[uN1]]

)
+

(
[[uN0]]× [[uN1]]

)

and the( )M ∞–homomorphismsαi :
(
[[uNi ]]

)M ∞ →
(
[[uN0]]× [[uN1]]

)M ∞ , i = 0,1, defined by

α0(ai) =
L

j
lcm(ni ,mj)

ni
(ai ,b j)

α1(b j) =
L

i
lcm(ni ,mj)

mj
(ai ,b j),

where lcm denotes the least common multiple. Fori = 0,1, letγi beαi⊕βi:S
M ∞
Ni
→ SM ∞ where

βi is the injection of(SNi − [[uNi ]])
M ∞ in

(
SN0− [[uN0]]+SN1− [[uN1]]

)M ∞ , and letδi
Nj

be γ j ◦

∂i
Nj

:(TNj ,0)→ SMN0+N1
, for i, j = 0,1.
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Definition 2.6. (Coproduct of Nets)ForN0 andN1 PT nets, define

N0 +N1 =
(

[δ0
N0

,δ0
N1

], [δ1
N0

,δ1
N1

]:(T,0)→ SMN0+N1
,γ0(uN0) = γ1(uN1)

)

,

where(T,0) is the coproduct of pointed sets(TN0,0) and(TN1,0), i.e., the quotient of their disjoint
union obtained by identifying the two pointed elements, and[δi

N0
,δi

N1
] denotes the unique pointed

set morphism induced from the coproduct(T,0) by δi
N0

andδi
N1

.

Example 2.7.
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The PT netsN0 andN1 and their coproductN0 +N1

The injectionsini :Ni →N0 +N1, i = 0,1, are defined as

ini = 〈κi ,γi〉,

whereκi is the injection of(TNi ,0) in (T,0). It is immediate to see that theini are PT net mor-
phisms.

Given a PT netN and a pair of morphismsh0:N0→N andh1:N1→N, let [h0,h1]:N0+N1→N
be the map such that

[h0,h1](t) = hi(t ′) if t = ini(t ′) for t ′ ∈ TNi

[h0,h1](c) = hi(c′) if c = ini(c′) for c′ ∈ SNi − [[uNi ]]

[h0,h1](ai,b j) =
L

{
nk

lcm(ni ,mj)
ck

∣
∣
∣ ck ∈ [[h0(ai)]]∩ [[h1(b j)]]

}

wherenk is the coefficient ofck in uN. To simplify the notation, in the proof of the following
proposition we will denote[[h0(ai)]]∩ [[h1(b j)]] by [[ℑ(ai ,b j)]].

Proposition 2.8. (Coproduct of Nets)N0 + N1, with injectionsin0 andin1, is the coproduct of
N0 andN1 in PTNets.

Proof. We show that for any PT netN and for any pair ot PT net morphismsh0:N0→ N,
h1:N1 → N, [h0,h1] is the unique morphism inPTNets such that[h0,h1] ◦ ini = hi . First we
have to show that[h0,h1] is well-defined, i.e., thatnk/lcm(ni ,mj) is actually a natural number.
If ck ∈ [[h0(ai)]] thenh0(ai) = rkck⊕u and soh0(niai) = nirkck⊕niu. Thus, by definition of PT
net morphisms, we know thatuN(ck) = nirk and so it must benirk = nk. In the same way, there
existsqk such thatmjqk = nk. Thereforenk is divisible by lcm(ni,mj ).
Now, observe that[h0,h1]◦ ini = hi. This is clear for transitions and for places inSNi − [[uNi ]]. So,
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considerai ∈ [[uN0]]. We have

[h0,h1]
(
in0(ai)

)
= [h0,h1]

(
L

j
lcm(ni ,mj)

ni
(ai ,b j)

)

=
L

j
lcm(ni ,mj)

ni
[h0,h1]

(
(ai ,b j)

)

=
L

j
lcm(ni ,mj)

ni

L

{
nk

lcm(ni ,mj )
ck

∣
∣
∣ ck ∈ [[ℑ(ai ,b j)]]

}

=
L

j

{nk
ni

ck

∣
∣ ck ∈ [[ℑ(ai,b j)]]

}
.

Since for eachck ∈ [[h0(ai)]] there exists a uniqueb j such thatck ∈ [[h1(b j)]], the last term is equal
to

L

{
nk
ni

ck

∣
∣
∣ ck ∈ [[h0(ai)]]

}

=
L

{rkck | h0(ai) = rkck⊕u′}= h0(ai).

The same argument goes through forb j ∈ [[uN1]].
To prove uniqueness, suppose that there existsh such thath◦ ini = hi . Clearly,h = [h0,h1] on
the transitions and on places inSN0 − [[uN0]] and in SN1 − [[uN1]]. Therefore, in order to show
thath coincides with[h0,h1] we need to show that it does so for(ai ,b j) ∈ [[uN0]]× [[uN1]]. Since
h(in0(ai)) = h0(ai) andh is a morphism, we have

L

j
lcm(ni ,mj)

ni
h(ai ,b j) =

L

{nk
ni

ck

∣
∣ ck ∈ [[h0(ai)]]

}

=
L

j

{nk
ni

ck

∣
∣ ck ∈ [[ℑ(ai ,b j)]]

}

=
L

j
lcm(ni ,mj)

ni

·
(

L

{
nk

lcm(ni ,mj)
ck

∣
∣
∣ ck ∈ [[ℑ(ai ,b j)]]

})

.

In the same way, we obtain that

L

i
lcm(ni ,mj)

mj
h(ai,b j) =

L

i
lcm(ni ,mj )

mj

L

{
nk

lcm(ni ,mj)
ck

∣
∣
∣ ck ∈ [[ℑ(ai,b j)]]

}

.

Now fix i and j. Sinceck ∈ [[ℑ(ai ,b j)]] for a unique pair(ai ,b j), the summands in the above
equalities are all distinct except for

L

{
nk

lcm(ni ,mj)
ck | ck ∈ [[ℑ(ai ,b j)]]}, which appears in both.

Therefore it must be

h(ai,b j) =
L

{
nk

lcm(ni ,mj)
ck

∣
∣
∣ ck ∈ [[ℑ(ai ,b j)]]

}

which is[h0,h1](ai ,b j).

The last thing we have left to show is that[h0,h1] is a morphism inPTNets. But now this task is
trivial and is therefore omitted.

The coproduct ofN0 andN1 is theirnon-deterministiccomposition in the sense that the two
nets are put side by side to compete for common resources (tokens). Differently from the CCS
non-deterministic operator (Milner 1989), the result of such a composition cannot be seen simply
as the system which performs an initial choice between passing the control toN0 or to N1 and
discards the net which has not been chosen. Nevertheless, wethink that it gives the right notion
of non-deterministic composition of PT nets. In fact, sincea resource can be consumed and
produced several times during a single computation, it is possible that the composed net returns
several times to a state in which common resources are present and the two nets compete for
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them. Clearly, there is no reason why the outcome of such competitions should always favor the
same net.

Example 2.9.
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t0

•(a,b)
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6
t1

N0 +N1

The initial marking(a,b) of N0 + N1 is a state in which a resource is non-deterministically as-
signed either tot0 or to t1. This state is reached again and again, and each time the choice is
repeated.

It is easy to think of pratical situations which can be successfully described by this kind compo-
sition. For instance, in the example above,t0 may be a process locking, accessing, and unlocking
a file (whose local name isb), while t0 may be a process trying to lock the same file (with local
namea, though) in order to remove it. Whent0 succeeds, it makes the file not available anymore
to t1.

The kind of behaviour illustrated above is characteristic of the coproduct in many categories of
models which admit cyclic behaviours, like, for instance, transition systems. In addition to that,
since the resources are present in multiple instances (multiple tokens in a place), while the com-
putations ofN0 andN1 are also computations ofN0 +N1, they are not the only computations that
the coproduct net can perform: the non-deterministicinteractionbetweenN0 andN1 gives rise to
joint computations which are not purelyinjectionsof computations from one of the original nets.
In other words, since providingN0 with the resources it needs does not necessarily consume all
the available instances of such resources, it is possible that N1 can also have, at the same time,
other instances of the same resources. This is shown by the following example.

Example 2.10. (Non-Deterministic Computations)
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The steps 6(a,b)[2t0〉2c and 6(a,b)[3t1〉3d of N0 +N1 correspond to the step 2a[2t0〉2c of N0 and
to the step 3b[3t1〉3d of N1, respectively.
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The step 6(a,b)[t0⊕ t1〉c⊕d is a computation ofN0+N1 which is not the image of a computation
in one of the original nets.

Another practical example modelled by this construction may be the following. Suppose
that 2a and 3b both model a memory of 6Mb whicht0 sees as partitioned in two blocks by 3Mb
andt1 as partitioned in three blocks by 2Mb. Then, a firing oft0 (of t1) represents the consump-
tion of 2Mb (of 3Mb) of memory assigned tot0 (to t1). When the processes are put side by side
to compete for the available resources, i.e., 6MB of memory,the possible outcomes are exactly
described by the netN0+N1 above, where the tokens now represent a partition of the memory in
six blocks by 1Mb.

As anticipated above, all the computations which eitherN0 or N1 can perform are computations
which N0 + N1 can perform; viceversa, all the computations ofN0 + N1 consisting of markings
and steps fromNi are actually computations ofNi . This is stated in the next proposition, whose
proof simply follows from the fact thatin0 and in1 are PT net morphisms and is, therefore,
omitted.

Proposition 2.11. (Coproduct and Non-Deterministic Composition) The sequence of steps
ini(uNi )[in

⊕
i (α0)〉 · · · [in

⊕
i (αn)〉ini(v) belongs toS S [N0 +N1] if and only if the sequence of steps

uNi [α0〉 · · · [αn〉v belongs toS S [Ni ].

In order to strengthen the intuition about the coproduct construction, it is worth recalling that
in the case of safe nets all the resources are present in a unique copy. This fact can be thought of
as forcing a choice between the two nets in the assignment of resources. Therefore, for safe nets,
the computations ofN0 +N1 are alternating sequences of computations of the original nets, i.e.,
each step is either a step ofN0 or a step ofN1. This is stated in the next proposition, which is a
rephrasing in the present context of (Winskel 1987, Theorem5.11, pg. 219) and whose proof is,
therefore, omitted.

Proposition 2.12. (Coproduct and Safe Nets)Let N0 andN1 be safe nets. Thenu[α〉v is in
S [N0 + N1], for u∈ R [N0 + N1], if and only if there existi ∈ {0,1}, u′ ∈ R [Ni ], andu′[α′〉v′ in
S [Ni ] such thatini(u′) = u, ini(v′) = v, in⊕i (α′) = α.
It follows that all the step sequences ofN0 +N1 are of the form

ini0(uNi0
)[in⊕i0(α0)〉[in

⊕
i1
(α1)〉 · · · [in

⊕
i(k−1)

(α(k−1))〉[in
⊕
ik
(αk)〉inik(vik),

wherei1, . . . , ik ∈ {0,1}, vik ∈ R [Nik], andα j is a step ofNi j , j = 1, . . . ,k.
Therefore,u∈ R [N0 +N1] if and only if u = ini(ui) for ui ∈ R [Ni ] andi ∈ {0,1}.

It is interesting to observe how in this case the standard coproduct construction actually im-
plements a sophisticated mechanism ofdistributedchoice. Consider two safe netsN0 andN1

whose initial markings are respectivelya1⊕·· ·⊕an andb1⊕·· ·⊕bm. Then, the initial marking
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of N0+N1 can be thought of as ann×mmatrix whose(i, j)th entry represents the token(ai ,b j).

b1 b j bm

a1 · · · · · ·

...
. . .

...
. . .

...

ai · · · · · ·

...
. . .

...
. . .

...

an · · · · · ·

It follows from the definition of∂0
N0+N1

that if ai is in the pre-set of a transitiont0 in N0, then
the pre-set oft0 in N0 +N1 contains(ai ,b1)⊕·· ·⊕ (ai,bm), i.e., a whole row of the matrix. Now,
since a transitiont0 of N0 enabled atuN0 requires at least one of the tokens inuN0 in order to
fire, sayai , the firing oft0 in N0 + N1 will consume all the tokens in theith row of the matrix.
It follows that no transition ofN1 can be enabled, since for anyj = 1, . . . ,m, the token(ai ,b j)

is missing. Therefore, the firing oft0 prevents any transition ofN1 from firing until the possibly
cyclic behaviour ofN0 +N1 eventually generates again the tokens inuN0+N1.

We conclude this discussion about coproducts considering the case of occurrence nets. Since
cyclic behaviours are not possible in occurrence nets, the coproduct net, after having performed
the first step, cannot reach anymore a state in which common resources are available. In this case,
therefore, the coproduct net can be seen as the system which performs an initial choice between
the original nets—by assigning to one of them the resources it needs—and forgets about the
other. This is formally stated in the following proposition.

Proposition 2.13. (Coproduct and Occurrence Nets)Let Θ0 andΘ1 be occurrence nets. Then,
all the step sequences ofΘ0 + Θ1 from the initial marking are of the form

ini(uΘi )[in
⊕
i (α0)〉 · · · [in

⊕
i (αk)〉ini(vi),

wherei ∈ {0,1}, vi ∈ R [Θi ], andα j is a step ofΘi , j = 1, . . .k.

We conclude this section with some remarks about the relationships between products and
coproducts in the other categories of nets introduced in Section 1.

It is easy to see that products and coproducts ofsemiweightedandsafenets viewed as objects in
PTNets are again, respectively, semiweighted and safe nets. Therefore, products and coproducts
exist inSWNets andSafe and they are given by the corresponding constructions we defined for
PTNets. The same applies tocoproductsin Occ.

However, the product of two occurrence nets inPTNets is not necessarily an occurrence net.
This can be seen by looking back at Example 2.2, which shows that condition (ii ) in Definition 1.7
of occurrence nets is not preserved by the product construction. Nevertheless, products exist
in Occ. In particular, the result that theproductof two occurrence nets is (isomorphic to) the
unfoldingof their product in as safe nets (Winskel 1987) can be immediately extended to our
setting by considering that the unfolding of PT nets defined here coincides on safe nets with
Winskel’s (see the following Theorem 4.8).
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3. Decorated Occurrence Nets

In this section, we introduceDecOcc, the category ofdecorated occurrence nets, a type of oc-
currence nets in which places are grouped into families. They allow a convenient treatment of
multiplicity issues in the unfolding of PT nets. We shall usethe following notational conventions:

[n,m] for the segment{n, . . . ,m} of ω;

[n] for [1,n];

[k]i for the ith block of lengthk of ω−{0}, i.e.,[ik]− [(i−1)k].

Definition 3.1. (Block Functions)We call a functionf : [n]→ [m] a block functionif and only if
n = kmand f ([k]i) = {i}, for i = 1, . . . ,m.

In other words, a block function from[n] = [km] to [m] is a function making the diagram

m times
︷ ︸︸ ︷

[n] ∼= [k] + · · · + [k]

f





y

!





y





y

!

[m] ∼= [1] + · · · + [1]

commute, where the upper isomorphism maps the segment[k]i to the ith copy of [k], and the
lower mapsi to theith copy of[1].

The place componentg of a PT net morphism〈 f ,g〉:N0→N1 can be thought of as amultirela-
tion (with possibly infinite multiplicities) betweenSN0 andSN1, namely the multirelationg such
thatagηb if and only if g(a)(b)= η. Indeed, this is a (generalization of a) widely used formaliza-
tion of net morphisms due to Winskel (Winskel 1984; Winskel 1987). In the case of morphisms
between occurrence nets, since by definition such nets have no isolated places—i.e., places be-
longing neither to the initial marking nor to any pre- or post-set—as an immediate corollary to
Proposition 1.5, we have thatg is arelationand that the inverse relationgop, defined bybgopa if
and only ifagb, restricts to (total) functionsgop

∅
: [[uN1]]→ [[uN0]] andgop

{t}: [[∂
1
N1

( f (t))]]→ [[∂1
N0

(t)]]
for eacht ∈ TN0. We will use these functions in the next definition.

Definition 3.2. (Decorated Occurrence Nets)A decorated occurrence netis an occurrence net
Θ such that:

(i) SΘ is of the form
S

a∈AΘ
{a}× [na], for some setAΘ, where the set{a}× [na] is called the

family of a. We will useaF to denote the family ofa regarded as a multiset;
(ii ) ∀a∈ AΘ, ∀x,y∈ {a}× [na],

•x = •y.

A morphismof decorated occurrence nets〈 f ,g〉:Θ0→ Θ1 is a morphism of occurrence nets
which respects families, i.e., for each[[aF ]] ⊆ SΘ0

, givenx = •[[aF ]]—which is a singleton set or
the empty set by (ii ) above and the definition of occurrence nets—we have:

(i) g(aF) =
L

i∈Ia bF
i , for some index setIa;

(ii ) πa◦gop
i ◦ inbi is a block function, where

πa is the projection of{a}× [na] to [na],

π−1
a is the inverse bijection from[na] to {a}× [na], and
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gop
i :{bi}× [nbi ]→{a}× [na] is gop

x restricted to{bi}× [nbi ].

The composition in (ii ) can be summarized by means of the diagram

{a}× [na]

��

πa

{bi}× [nbi
]oo

gop
i

[na] [nbi
]

OO

π−1
bi

oo

πa◦g
op
i ◦π

−1
bi

This, with the obvious componentwise composition of morphisms, defines the categoryDecOcc.

A family is thus a collection of finitely many places with the same pre-set, and a decorated
occurrence net is an occurrence net where each place belongsto exactly one family. Families,
and therefore decorated occurrence nets, are capable of describing relationships between places
by grouping them together. We shall use families to relate places which are instances of the same
place obtained in a process of unfolding. Morphisms treat families in a special way: they map
families to families (conditioni) and they do that in a unique predetermined way (conditionii ).
This allows us to focus exactly on the fact that, say,aF is mapped tobF . Since the way to map a
family to another family is fixed by definition, in the following we will often define morphisms
just by saying which families are sent to which families.

Observe that the full subcategory ofDecOcc consisting of the netsΘ with SΘ =
S

a∈AΘ
{a}×

[1] is (isomorphic to)Occ. Observe also that, since the initial marking consists exactly of the
elements with empty pre-set and, by point (ii ) in Definition 3.2, elements of a family have the
same pre-set, for a decorated occurrence netuΘ is of the form

L

i∈I aF
i .

The following is a useful property of decorated occurrence net morphisms which directly
follows from their definition.

Proposition 3.3. (Decorated Occurrence Net Morphisms)Let Θ0 andΘ1 be decorated occur-
rence nets and〈 f ,g〉:Θ0→Θ1 a morphism inDecOcc. Then

∀[[bF ]]⊆ [[uN1]], ∃![[a
F ]]⊆ [[uN0]] such that[[bF ]]⊆ [[g(aF)]] and

∀t ∈ TΘ0
, ∀[[bF ]]⊆ [[∂1

N1
( f (t))]], ∃![[aF ]]⊆ [[∂1

N0
(t)]] such that[[bF ]]⊆ [[g(aF)]].

We have seen that for occurrence nets and decorated occurrence nets simple concepts of causal
dependence (≺) and conflict (#) can be defined. The orthogonal concept is that of concurrency.

Definition 3.4. (Concurrent Elements)Given a (decorated) occurrence netΘ (which defines≺,
� and #), we can define

— for x,y∈ TΘ∪SΘ, x coy if it is not the case that(x≺ y or y≺ x or x # y);
— for X ⊆ TΘ∪SΘ, Co(X) if ∀x,y∈ X, x coy, and|{t ∈ TΘ | ∃x∈ X, t � x}| ∈ ω.

As a first step in relating the categoriesDecOcc andPTNets, we define a functor from deco-
rated occurrence nets to PT nets.

Definition 3.5. (( )+: from DecOcc to PTNets) For Θ a decorated occurrence net, let the map
( )+:SM ∞

Θ → AM ∞
Θ be the( )M ∞–homomorphism such that(a, j)+ = a. Then, defineΘ+ to be

the net
(
( )+ ◦ ∂0

Θ, ( )+ ◦ ∂1
Θ:(TΘ,0)→ AMΘ ,u+

Θ
)
.

For a morphism〈 f ,g〉:Θ0→Θ1, let 〈 f ,g〉+:Θ+
0 →Θ+

1 be〈 f ,( )+ ◦g◦ρ〉 whereρ:AM ∞
Θ0
→ SM ∞

Θ0

is the( )M ∞–homomorphism such thatρ(a) = (a,1).
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The following example shows the result of applying( )+ to a decorated occurrence net. In
all the pictures to follow, a family is represented by drawing its elements from left to right in
accordance with its ordering, and enclosing them into an oval. Families of cardinality one are not
explicitly indicated.

Example 3.6.

�
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 �	 �
 �	

�
 �	 �
 �	
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�
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2

•• aF a

b
bF

cF cdF d

t t

t1 t1t2 t2

A decorated occurrence netΘ and the netΘ+

Proposition 3.7. (( )+ is well-defined)Θ+ is a PT net and〈 f ,g〉+ is a PT net morphism.

Proof. The first statement is completely clear. Let us show the second. Conditions (i) and (ii )
are trivial while condition (v) derives directly from Proposition 3.3. Observe that, ifg(a, i) =
L

l (
L

{bl} × [kl ]i), then, by definition ofg, we haveg(a, j) =
L

l (
L

{bl} × [kl ] j) and thus
g(a, i)+ =

L

l kl b
l = g(a, j)+. Therefore,g(u)+ = (( )+ ◦g◦ρ)(u+).

(iii). (( )+ ◦g◦ρ)(uΘ+
0
) = (( )+ ◦g◦ρ)(u+

Θ0
) = g(uΘ0

)+ = u+
Θ1

= uΘ+
1
.

(iv). (( )+ ◦g◦ρ)(∂i
Θ+

0
(t)) = (( )+ ◦g◦ρ)(∂i

Θ0
(t)+)

= g(∂i
Θ0

(t))+ = ∂i
Θ1

( f (t))+ = ∂i
Θ+

1
( f (t)).

Proposition 3.8. (( )+:DecOcc→ PTNets) ( )+:DecOcc→ PTNets is a functor.

Proof. Clearly,〈idTΘ , idSΘ〉
+ = 〈idTΘ , idAΘ〉. Moreover, given〈h,k〉◦ 〈 f ,g〉:Θ0→Θ1, we have

that for eachu∈ AM ∞
Θ0

(( )+ ◦ k◦ρ)◦ (( )+ ◦g◦ρ)(u) = (( )+ ◦ k◦ρ)
(
(g◦ρ)(u)+

)

= k((g◦ρ)(u))+ =
(
( )+ ◦ (k◦g)◦ρ

)
(u).

So,(〈h,k〉 ◦ 〈 f ,g〉)+ = 〈h,k〉+ ◦ 〈 f ,g〉+.

Nets obtained via( )+ from decorated occurrence nets have a structure very similar to that of
occurrence nets. We will denote byDecOcc

+ the full subcategory ofPTNets consisting of (nets
isomorphic to) nets of the formΘ+.

Proposition 3.9. (Structure of Decorated Occurrence Nets)If Θ is a decorated occurrence net,
thenΘ+ is a PT net such that:

(i) a∈ [[uΘ+ ]] if and only if •a = ∅;
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(ii ) ∀a∈ SΘ+ , |•a| ≤ 1;
(iii ) the relation≺ is irreflexive and∀t ∈ TΘ+ , {t ′ ∈ TΘ+ | t ′ ≺ t} is finite.

Moreover, ifΘ is (isomorphic to) an occurrence net,Θ+ is an occurrence net isomorphic toΘ.

Let B range overOcc, DecOcc andDecOcc
+. Thanks to the stratified structure of the nets

in B , for them we can define the concepts ofdepthof elements and, consequently, ofsubnet of
depth n. Essentially, this will allow us to work on such nets by induction.

Definition 3.10. (Depth) Let Θ be a net inB . The depthof elements inTΘ ∪SΘ is defined
inductively by:

— depth(b) = 0 if b∈ [[uΘ]];
— depth(b) = depth(t) if {t}= •b;
— depth(t) = max{depth(b) | b≺ t}+1.

Definition 3.11. (Subnets of a Net)Given a netΘ in B define itssubnetof depthn, Θ(n), as

— TΘ(n) = {t ∈ TΘ | depth(t)≤ n};
— SΘ(n) = {b∈ SΘ | depth(b)≤ n};
— ∂0

Θ(n) and∂1
Θ(n) are the restrictions of∂0

Θ and∂1
Θ to TΘ(n) ;

— uΘ(n) = uΘ.

Clearly, Θ(n) is a net inB , wheneverΘ is such. For eachn ≤ m there exists a morphism
inn,m:Θ(n)→Θ(m) whose components are both set inclusions. In the following we shall call such
net morphisms simplyinclusions. Observe that, if〈 f ,g〉:Θ0→ Θ1 is an inclusion, we obviously
haveuΘ0

= uΘ1
and, for eacht ∈ TΘ0

, ∂i
Θ0

(t) = ∂i
Θ1

(t), i = 0,1.

The sequence of netsΘ(n), n∈ ω, can be seen as a sequence of finite approximations which,
together with the corresponding inclusions, determinesΘ uniquely (up to isomorphisms). We
shall formalize this intuition by means of the categorical notion of colimit. The following results
will allow us in Section 4 to define the unfolding of a PT netN in terms of finite unfoldings, viz.
its subnets of depthn. We first need to show thatB possesses the required colimits. Consider
the categoryω= {0→ 1→ 2→ 3· · ·} and the classD of diagramsD:ω→ B such thatD(n→
n+1)= inn:D(n)→D(n+1) is an inclusion. For such a class we have the following results. The
reader is referred to (MacLane 1971, III.3) for the definition of the categorical concepts involved.

Proposition 3.12. (Colim(D) exists)For anyD ∈ D , the colimit ofD in B exists.

Proof. Consider the netΘ =
(
∂0

Θ,∂1
Θ:(TΘ,0)→ SMΘ ,uΘ

)
where

TΘ =
S

nTD(n) SΘ =
S

nSD(n) uΘ = uD(0)

∂i
Θ(t) = ∂i

D(n)(t) for anyn such thatt ∈ TD(n).

Clearly,Θ is well-defined, is a net, and belongs toB .
Now, for anyn, letµn:D(n)→Θ be the obvious inclusion. By definition we haveµn = µn+1◦ inn.
Now consider a family of morphismsτn:D(n)→ Θ′, n ∈ ω, such thatτn = τn+1 ◦ inn. Define
σ:Θ→Θ′ as follows.

σ(t) = τn(t) for n such thatt ∈ TD(n)

σ(a) = τn(a) for n such thata∈ SD(n).
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Clearly,σ is a morphism inB . Now considerσ◦µn:D(n)→ Θ′. We have that, for anyt ∈ TD(n),
σ(t) = τn(t) and for anya ∈ SD(n), σ(a) = τn(a). Therefore, sinceµn is an inclusion, we have
σ◦µn = τn for eachn∈ ω.
Given anyσ′:Θ→Θ′, suppose thatσ′ ◦µn = τn for eachn∈ ω. Sincet ∈ TΘ (a∈ SΘ) belongs to
TD(n) (to SD(n)) for somen, we have thatσ′(t) = τn(t) = σ(t) (σ′(a) = τn(a) = σ(a)). Therefore,
σ′ = σ.

Proposition 3.13. (Θ is the colimit of its subnets)Given a netΘ in B , letDΘ:ω→B be the func-
tor such thatDΘ(n) = Θ(n) andDΘ(n→ n+1) = inn,n+1:Θ(n)→Θ(n+1). ThenΘ = Colim(DΘ).

Proof. SinceDΘ ∈ D , we are in the conditions of the previous proposition. So, itis enough to
observe that the colimit construction for diagrams inD in the proof of that proposition gives a
family µn:D(n)→Θ, n∈ ω, whereµn:Θ(n)→ Θ is the inclusion ofΘ(n) in Θ.

The next proposition shows that( )+ behaves well with respect toD , namely to apply( )+ to
Θ in DecOcc is to apply it pointwise toDΘ and then take the colimit inDecOcc

+ of the resulting
diagram.

Proposition 3.14. (( )+ preserves the colimit ofDΘ) If B = DecOcc, then Colim(DΘ)+ =

Colim(D+
Θ).

Proof. Since the previous proposition states that eachΘ is completely identified by the di-
agramDΘ, it is enough to observe thatD+

Θ is exactlyDΘ+ . So, Colim(D+
Θ) = Colim(DΘ+) =

Θ+ = Colim(DΘ)+.

4. PT Net Unfoldings

In this section, we define theunfoldingof PT nets in terms of decorated occurrence nets and
show that it is a functor fromPTNets to DecOcc which is right adjoint to( )+.

We start by giving the object component of such a functor. To this end, given a netN, we
define a sequence of decorated occurrence nets, whosenth element approximates the unfolding
of N up to depthn, i.e., it reflects the behaviour of the original net up to stepsequences of length
at mostn. Clearly, the unfolding ofN will be defined as the colimit of an appropriateω-diagram
built on the sequence of approximating nets.

The purpose of the following inductive definition is to generate all the possible instances of
places and transitions ofN by decorating them with their ‘history’. The families of places in the
approximating nets represent instances of places ofN with the same history. Precisely, they are
pairs(x,b), whereb∈ SN andx is a set encoding the history of these instances ofb. Therefore,
the places are triples((x,b), i), i determining the position of the place in its family. Analogously,
the transitions are pairs(B, t) wheret ∈ TN and the setB represents the history of the instance
of t.

Definition 4.1. (PT Nets Unfoldings:U [ ](k)) Let N =
(
∂0

N,∂1
N:(TN,0)→ SMN ,uN

)
be a net in

PTNets. We define the netsU [N](k) =
(
∂0

k,∂
1
k:(Tk,0)→ SMk ,uk

)
, for k∈ ω, where:

— S0 =
S

{
{(∅,b)}× [n]

∣
∣ uN(b) = n

}
;

— T0 = {0}, and the∂i
0 with the obvious definitions;

— u0 =
L

S0;

for k > 0,
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—
B =

{(
(x j ,b j), i j

) ∣
∣ j ∈ J

}
⊆ Sk−1, Co(B), t ∈ TN,

L

j∈J b j = ∂0
N(t)

(B, t) ∈ Tk and ∂0
k(B,t) =

L

B

—
t0 = (B, t) ∈ Tk, ∂1

N(t) =
L

j∈J n jb j
{(
{t0},b j

)}
× [n j ]⊆ Sk, ∀ j ∈ J, and ∂1

k(t0) =
L

j ,1≤i≤n j

((
{t0},b j

)
, i
)

— uk =
L

j

(
(∅,b j), i j

)
=

L

S0 = u0.

Therefore, informally speaking, the netU [N](0) is obtained by exploding in families the initial
marking ofN, andU [N](n+1) is obtained, inductively, by generating a new transition for each
possible subset of concurrent places ofU [N](n) whose corresponding multiset of places ofN
constitutes the source of some transitiont of N; the target oft is also exploded in families which
are added toU [N](n+1). Clearly, we shall defineU [N] as the colimit of the sequence of the
U [N](n), n∈ ω. To do that, we first need to prove the following lemma.

Lemma 4.2. (U [N](n) is a decorated occurrence net)For all n∈ ω, U [N](n) is a decorated oc-
currence net of depthn. Moreover, for eachn∈ω there is an inclusioninn:U [N](n)→U [N](n+1).

Proof. ThatU [N](n) has depthn and that there exists an inclusion fromU [N](n) toU [N](n+1)

is obvious from the definition. We have to show thatU [N](n) is a decorated occurrence net. For
eacht ∈ Tn, ∂i

n(t) is a multiset where all the elements have multiplicity one, i.e., a set. The same
happens forun.

(i) Observe that for each((x,b), i) ∈ Sn,
•((x,b), i) = x which is the empty set or a singleton.

So|•((x,b), i)| ≤ 1.
(ii ) Moreover,((x,b), i) ∈ [[un]] iff x = ∅ iff •((x,b), i) = ∅.
(iii ) By definition ofU [N](n), wheneverx≺1 y≺1 z, depth(z) = depth(x)+ 1. Sincex,z∈ Tn

or x,z∈ Sn implies that there exists at least oney such thatx≺ y≺1 z we have depth(x) <

depth(z). Sox 6= zand≺ is irreflexive. This, together with (i) and (ii ), implies that, in each
reachable marking, every place has multiplicity at most one. In fact, since that happens
in un, since each place has only one pre-event and each transitionoccurs at most once
in any computation, there is no way to generate multiple tokens in a place. Moreover,
∀t ∈ Tn, {t ′ ∈ Tn | t ′ ≺ t} is finite, because of the definition of Co.

(iv) # is irreflexive. Recall thatx # x iff ∃t,t ′ ∈ Tn, t 6= t ′ andt #m t ′ such thatt �n x andt ′ �n x.
So, by (i), x cannot be a place, otherwise we would have backward branching. This means
that there existb,b′ ∈ [[∂0

n(x)]], b 6= b′ such thatb cob′, i.e.,x = (B,t) andnot Co(B). This
is impossible.

The other conditions of decorated occurrence nets obviously hold.

Definition 4.3. (PT Net Unfoldings:U [ ]) We defineU [N] to be the colimit of the diagram
D:ω→DecOcc such thatD(n) = U [N](n) andD(n→ n+1) = inn. By Lemma 4.2D belongs to
D and so, by Proposition 3.12, the colimit exists and is a decorated occurrence net.
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Example 4.4.
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A PT NetN and (part of) its unfoldingU [N]

The correspondence between elements of the unfolding and elements of the original net is
formalized by the folding morphism, which will also be the counit of the adjunction.

Proposition 4.5. (Folding Morphism) Consider the mapεN = 〈 fε,gε〉:U [N]+→N defined by

— fε(B, t) = t and fε(0) = 0;
— gε(

L

i(xi ,yi)) =
L

i yi .

Then,εN is a morphism inPTNets, called thefoldingof U [N] into N.

Proof. Since the transitions ofU [N]+ are of the formt0 = (B,t):(
L

B)+ → (
L

C)+, where
B = {((x j ,b j), i j ) | j ∈ J} ⊆ SU [N], C = {({t0},ck), ik) | k ∈ K}, t ∈ TN,

L

j∈J b j = ∂0
N(t), and

L

k∈K ck = ∂1
N(t), we immediately obtain

gε

(

∂i
U [N]+(B,t)

)

= ∂i
N ( fε(B,t)) .

SinceuU [N]+ =
L

b∈SN
uN(b) · (∅,b), we havegε(uU [N]+) =

L

b∈SN
uN(b) ·b = uN. Concerning

condition (v) in Definition 1.1, observe that[[gε(x,a)]]∩ [[gε(y,b)]] 6= ∅ implies a = b. So, if
(x,a) 6= (y,b), then(x,a) 6∈ [[uU [N]+ ]] or (y,b) 6∈ [[uU [N]+ ]], because eitherx or y must be non-
empty, and•(x,a)∩ •(y,b) = x∩y = ∅.

The next lemma is the final ingredient we need to prove thatU [ ] is right adjoint to( )+.

Lemma 4.6. (Occurrence Net Morphisms preserve Concurrency) Let Θ0 andΘ1 be (deco-
rated) occurrence nets and let〈 f ,g〉:Θ0→ Θ1 be a morphism. Then, for eacht0 ∈ TΘ0

, we have

Co
(

[[∂0
Θ0

(t0)]]
)

and Co
(

[[g(∂0
Θ0

(t0))]]
)

.

Proof. Since, by definition of (decorated) occurrence nets,{t ′ � t} is finite, we havenot
Co([[∂0

Θ0
(t0)]]) iff ∃b,b′ ∈ [[∂0

Θ0
(t0)]] such thatb # b′. This would mean that∃t,t ′ ∈ TΘ0

, t 6= t ′ and
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t #m t ′ such thatt � b andt ′ � b′. Thus, sincet � t0 andt ′ � t0, we would havet0 # t0 which
is impossible sinceΘ0 is a (decorated) occurrence net. Furthermore,g(∂0

Θ0
(t0)) = ∂0

Θ1
( f (t0)),

which is the pre-set of a transition of a (decorated) occurrence net and so, by the first part of this
proposition, Co([[g(∂0

Θ0
(t0))]]).

Theorem 4.7. (( )+ ⊣ U [ ]) The pair〈( )+,U [ ]〉 :DecOcc ⇀ PTNets constitutes an adjunction.

Proof. Let N be a PT Net andU [N] its unfolding. By (MacLane 1971, Theorem 2, pg. 81),
it is enough to show that the foldingεN:U [N]+ → N is universal from( )+ to N, i.e., for any
decorated occurrence netΘ and any morphismk:Θ+ → N in PTNets, there exists a unique
h:Θ→ U [N] in DecOcc such thatk = εN ◦h+.

6 6

-

�
�

�
�

�
��36

Θ+

∃!h s.t. commutes.∀k

N U [N]+

Θ+

N
εN

h+

k

U [N]

Θ

Consider the diagram inDecOcc given byDΘ(n) = Θ(n), the subnet ofΘ of depthn andDΘ(n→
n+1) = inn:Θ(n)→ Θ(n+1). We define a sequence of morphisms of netshn:Θ(n)→ U [N], such
that for eachn, hn = hn+1◦ inn. SinceΘ = Colim(DΘ), there is a uniqueh:Θ→ U [N] such that
h◦µn = hn for eachn. At the same time, we show that

∀n∈ ω, k◦µ+
n = εN ◦h+

n (1)

and that thehn form the unique sequence of morphismshn:Θ(n) → U [N] such that (1) holds.
Now, by functoriality of( )+, we have that

∀n∈ ω, k◦µ+
n = εN ◦h+ ◦µ+

n .

Then, since by Proposition 3.14( )+ ◦DΘ = DΘ+ , and, by Proposition 3.13,Θ+ = Colim(D+
Θ) =

Colim(( )+ ◦DΘ), by the universal property of the colimit we must havek = εN ◦h+. To show
the uniqueness ofh, let h′ be such thatk = εN ◦h

′+. Then we havek◦µ+
n = εN ◦h

′+ ◦µ+
n . But hn

is the unique morphism for which this happens. Therefore, for eachn, hn = h′ ◦µn and so, by the
universal property of the colimit,h = h′.
Let us now definehn and thereforeh:Θ→ U [N], and show that thehn, n∈ ω, form the unique
sequence of morphisms for which (1) above holds.
depth 0. Suppose thatuΘ+ =

L

i niai . SouΘ =
L

i(
L

{ai}× [ni]). Assume further thatk(a j) =
L

l mj
l b

j
l . By definition ofk, sincek does not merge different places in the initial marking and

k(uΘ+) = uN, we haveuN = v⊕
L

l n jm
j
l b

j
l , with b j

l 6∈ [[v]]. Thus, inU [N] we have the places
S

l

{
(∅,b j

l )
}
× [n jm

j
l ]. So, we define

h0(a j , i) =
L

l

(
L

{
(∅,b j

l )
}
× [mj

l ]i

)

.

We have h+
0 (a j) = (h0(a j , i))+ =

L

j m
j
l (∅,b j

l ) and

εN ◦h+
0 (a j) =

L

l mj
l b

j
l = k(a j) = k◦µ+

0 (a j).



J. Meseguer, U. Montanari, and V. Sassone 26

Observe thath0 so defined, lifting its place component to a( )M ∞–homomorphism, is a morphism
Θ(0)→U [N] and that it is completely determined byk and the conditions of decorated occurrence
net morphisms.
depth n+1. Let us suppose that we have definedhn:Θ(n) → U [N] and that it is a morphism.
Suppose that for eachm≤ n, hm is the unique morphism such thatεN ◦ h+

m = k◦ µm. Let hn+1

behn on the elements of depth less or equal ton. Now, we definehn+1 on the elements of depth
n+1. Lett1 ∈ TΘ such that depth(t1) = n+1 andk(t1) = t. Since[[∂0

Θ(t1)]] is a set of elements of
depth less or equal ton, hn(∂0

Θ(t1)) is defined. Sincehn is a morphism, by Lemma 4.6, we have
Co([[hn(∂0

Θ(t1))]]). Moreover, sinceεN ◦h+
n = k◦µ+

n , we have that

∂0
N(t) = k(∂0

Θ(t)) = εN ◦h+
n

(
∂0

Θ+(t1)
)

= εN ◦h+
n

(
(∂0

Θ(t1))+
)

= εN ◦hn(∂0
Θ(t1))+ =

L

j∈J b j ,

for J such that
{
((x j ,b j), i j ) | j ∈ J

}
= [[hn(∂0

Θ(t1))]].

Thereforet0 =
(
[[hn(∂0

Θ(t1))]], t
)

=
(
[[hn+1(∂0

Θ(t1))]],t
)
∈ TU [N]. Now, sincehn+1 has to make the

diagram commute,hn+1(t1) must be of the form(B,t) and, since it has to be a morphism, it
must be∂0

U [N]((B, t)) =
L

B = hn+1(∂0
Θ(t1)). Thereforehn+1(t1) = t0. Observe that there is only

one choice forhn+1(t1), givenk andhn by inductive hypothesis. Obviously,εN ◦h+
n+1(t1) = t =

k(t1) = k◦µ+
n+1(t1). Now, let∂1

Θ+(t1) =
L

i niai . So∂1
Θ(t1) =

L

i(
L

{ai}× [ni]) in Θ. Suppose

thatk(a j) =
L

l mj
l b

j
l . By definition ofk, since it does not merge different places in the post-set

of a transition andk(∂1
Θ+(t1)) = ∂1

N(k(t1)), we have∂1
N(k(t1)) = v⊕

L

l n jm
j
l b

j
l , with b j

l 6∈ [[v]].

Thus inU [N] we have the places
S

l

{
({t0},b

j
l )

}
× [n jm

j
l ]. We define

hn+1(a j , i) =
L

l

(
L

{
({t0},b

j
l )

}
× [mj

l ]i

)

.

So h+
n+1(a j) = (hn+1(a j , i))+ =

L

l mj
l ({t0},b

j
l ) and

εN ◦h+
n+1(a j) =

L

mj
l b

j
l = k(a j) = k◦µ+

n+1(a j).
Observe thathn+1(a j , i) is completely determined byk and by the conditions of decorated occur-
rence net morphisms.
Finally, we have to show thathn+1 is a morphismΘ(n+1)→ U [N]. But this task is really trivial
because, by its own construction,hn+1 preserves source, target and initial marking and respects
families.

Theorem 4.8. (Correspondence with Winskel’s Safe Net Unfoldings (Winskel 1986))Let
N be asemiweightednet. Then, the unfoldingU [N] is (isomorphic to) an occurrence net and
therefore, by Proposition 3.9,U [N]+ ∼= U [N]. Moreover, ifN is asafenet,U [N] is (isomorphic
to) Winskel’s unfolding ofN. Finally, wheneverN is (isomorphic to) an occurrence net, the unit
of the adjunction〈( )+,U [ ]〉:DecOcc ⇀ PTNets, ηN:N→ U [N+]∼= U [N], is an isomorphism.

Therefore,〈( )+,U [ ]〉 restricts to a coreflection
〈
→֒,U [ ]

〉
:Occ ⇀ SWNets and to Winskel’s

coreflection
〈
→֒,U [ ]

〉
:Occ ⇀ Safe.

Proof. Concerning the claimed correspondence, it is enough to observe that, whenN is safe,
our definition ofU [N] is such that(b,1) is a place inU [N] if and only if b is a condition in
Winskel’s unfolding. SoU [N]+ andεN are exactly Winskel’s unfolding and folding morphism
for N. The other statements are evident.

Observe that the coreflection betweenOcc and SWNets allows us to extend immediately
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Winskel’s chain of coreflections toSWNets, namely by composition with the coreflections be-
tweenDom andPES and betweenPES andOcc. The following example shows the semantics
associated by such a chain to a simple, well-known, non-safesemiweighted net.

Example 4.9.
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Observe that the unfolding contains two concurrent copies of t. These correspond to the occur-
rences oft in two possible ‘causal contexts’, namelyt caused byt1 andt caused byt2. In the
picture below, which shows the event structure and the primealgebraic domain associated toN,
the four events so arising are labelled by the transition they correspond to.

t t

t1 t2

EU [N]

{t1,t2,t,t}

{t1,t2,t}

zzzzzzzz
{t1,t2,t}

DDDDDDDD

{t1, t}

zzzzzzzz
{t1,t2}

DDDDDDDD

zzzzzzzz
{t2,t}

DDDDDDDD

{t1}

DDDDDDDD

zzzzzzzz
{t2}

DDDDDDDD

zzzzzzzz

∅

DDDDDDDDD

zzzzzzzzz

LEU [N]

5. PT Nets, Event Structures and Domains

In this section, we show an adjunction between occurrence nets and decorated occurrence nets.
Composing this adjunction with that given in Section 4, we obtain an adjunction betweenOcc and
PTNets. Moreover, exploiting Winskel’s coreflections in (Winskel1986), we obtain adjunctions
betweenPES andPTNets and betweenDom andPTNets, as explained in the Introduction.

We first define a functor from decorated occurrence nets to occurrence nets. It is simply the
forgetfulfunctor which forgets about the structure of families.
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Definition 5.1. (F [ ]: from DecOcc to Occ) Given a decorated occurrence netΘ defineF [Θ] to
be the occurrence netΘ. Furthermore, given〈 f ,g〉:Θ0→ Θ1, defineF [〈 f ,g〉] to be〈 f ,g〉.

In order to define a left adjoint forF [ ], we need to identify, for each occurrence netΘ, a
decorated occurrence netD [Θ] which is, informally speaking, a ‘place-saturated’ version ofΘ,
in the sense that, whilst exhibiting the same behaviour asΘ, it contains exactly enough families
to match in auniqueway the structure of any decorated occurrence net whose transitions are
‘similar’ to those ofΘ. More precisely, the existence of an adjunction requiresD [Θ] to be such
that, for any occurrence netΘ′,

Occ[Θ,F [Θ′]]∼= DecOcc[D [Θ],Θ′]

i.e., the set of morphisms fromΘ to F [Θ′] in Occ and the set of morphisms fromD [Θ] to Θ′ in
DecOcc are isomorphic. It follows from this condition that each transition ofD [Θ] must have
enough families in its post-set to ‘cover’ those in the post-set of any transition ofΘ′ to which
it could be mapped by an occurrence net morphism and, at the same time, it must not have too
many of them so that such a covering is realized by a unique decorated occurrence net morphism
fromD [Θ] to Θ′.

Because of the uniqueness requirement, saturating occurrence nets is a delicate matter: we
need to identify a suitable set of families which can ‘represent’ uniquelyall the possible others.
To this aim are devoted the following definition and lemma, where the relation7→ is introduced
to capture the behaviour of decorated occurrence net morphisms on families—which will be
represented as strings on appropriate alphabets—andprime stringsare meant to represent—in a
sense that will be clear later—exactly the families which wemust add toΘ in order to saturate it.

In the following, given a strings on an alphabetΣ, we denote theith element ofs by si and
its length by|s|. We shall useσi , i ∈ ω, to range overΣ. For n ∈ ω, σn

i will denote the string
consisting of the symbolσi repeatedn times. Writing a strings as σn1

1 · · ·σ
nk
k we imply that

σi 6= σi+1, i = 1, . . . ,k−1.

Definition 5.2. (Prime Strings)Let Σ be an alphabet, i.e., a set of symbols. Define the binary
relation 7→ onΣ+, the language of non-empty strings onΣ, by

σn1
1 · · ·σ

nk
k 7→ σm1

1 · · ·σ
mk
k ⇐⇒ ∃q∈ ω, qni = mi , i = 1, . . . ,k.

Define the language ofprime stringson Σ to be

ΣP = Σ+−
{

σn1
1 σn2

2 · · ·σ
nk
k

∣
∣ σi ∈ Σ, gcd(n1, . . . ,nk) > 1

}

,

where gcd is the greatest common divisor.

Lemma 5.3. (Prime Strings are primes)Givens′ ∈ Σ+ there exists a uniques∈ ΣP such that
s 7→ s′.

Proof. Let s′ = σm1
1 · · ·σ

mk
k , whereσi 6= σi+1. Considerh = gcd(m1, . . . ,mk). Sinceh is the

unique integer such thatmi is divisible byh for 1≤ i ≤ k and gcd(m1
h , . . . , mk

h ) = 1, and sinceh

always exists (possiblyh = 1) we have thats= σm1/h
1 · · ·σmk/h

k is the unique prime string such
thats 7→ s′.

We start relating strings and nets by looking at sets of places as alphabets and at families
as strings on such alphabets. Given a (decorated) occurrence netΘ and a transitiont ∈ TΘ, we
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denote byΣ{t} the alphabet[[∂1
Θ(t)]]. By analogy, since the places in the initial marking are in the

post-set of no transition,Σ∅ will consist of the places[[uΘ]]; following the analogy, in the rest of
the sectionuΘ will also be denoted by∂1

Θ(∅).
Since a familybF of a decorated occurrence netΘ is nothing but an ordered subset of the

initial marking or of the post-set of a transition, it corresponds naturally to a string inΣ+
x where

x = •[[bF ]], namely, the string of length|[[bF ]]| whoseith element is(b, i). We will write b
F

to
indicate such a string.

Now, we can define the saturated net corresponding to an occurrence netΘ. It is the netD [Θ]

whose transitions are the transitions ofΘ, and whose families in the post-set of a transitiont are
the prime strings on the alphabets defined byt in Θ. It is immediate to see that this construction
is well-defined, i.e., thatD [Θ] is a decorated occurrence net.

Definition 5.4. (D [ ]: from Occ to DecOcc) Let Θ be a net inOcc. We define the decorated

occurrence netD [Θ] to be the net
(

∂0
D [Θ],∂

1
D [Θ]:(TΘ,0)→ SM

D [Θ],uD [Θ]

)

, where

— SD [Θ] =
S

{

{s}×
[

|s|
] ∣

∣
∣ s∈ ΣP

x and(x = {t} ⊆ TΘ or x = ∅)
}

;

— ∂0
D [Θ](t) =

L

{

(s, i) ∈ SD [Θ]

∣
∣
∣ si ∈ [[∂0

Θ(t)]]
}

;

— ∂1
D [Θ](t) =

L

{

(s, i) ∈ SD [Θ]

∣
∣
∣ si ∈ [[∂1

Θ(t)]]
}

=
L

{

sF
∣
∣
∣ s∈ ΣP

{t}

}

;

— uD [Θ] =
L

{

sF
∣
∣
∣ s∈ ΣP

∅

}

.

Example 5.5.
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An occurrence netΘ and (part of) the decorated occurrence netD [Θ]

We now select a candidate for the unit of the adjunction.

Proposition 5.6. (Unit Morphism) Given an occurrence netΘ consider the mapηΘ:Θ →
F D [Θ] defined by

ηΘ(t) = t;
ηΘ(a) =

L

{(s, i) ∈ SD [Θ] | si = a}.

ThenηΘ is a morphism inOcc.

Proof. The non-trivial case is that of condition (iv) in the definition of morphisms:
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ηΘ(∂i
Θ(t)) =

L

(
{ηΘ(a)

∣
∣ a∈ [[∂i

Θ(t)]]}
)

=
L

{
(s, i)

∣
∣ si = a anda∈ [[∂i

Θ(t)]]
}

= ∂i
F D [Θ](t).

In order to illustrate the above definition, considering again the netΘ of Example 5.5. For such
a net we have that

ηΘ(σ1) = (σ1,1)⊕ (σ1σ2,1)⊕ (σ2σ1,2)⊕ (σ2
1σ2,1)⊕ (σ2

1σ2,2)⊕·· · ;
ηΘ(σ2) = (σ2,1)⊕ (σ1σ2,2)⊕ (σ2σ1,1)⊕ (σ2

1σ2,2)⊕·· · .

Before showing thatηΘ is universal, we need to develop further the relation between nets
and strings. Since a morphism maps post-sets to post-sets, it naturally induces a (contravariant)
mapping between the languages associated to transitions related by the morphism. To simplify
the exposition, in the rest of this section, fork a morphism of nets,k({t}) andk(∅), denote,
respectively,{k(t)} and∅; moreover,∂1

Θ({t}) denotes∂1
Θ(t).

Definition 5.7. (S xk: from Σ+
k(x) to Σ+

x ) Let Θ0 andΘ1 be (decorated) occurrence nets, letk =

〈 f ,g〉:Θ0→ Θ1 be a morphism and letx = {t} ⊆ TΘ0
or x = ∅ andy be such thatf (x) = y.

Thenk induces a unique semigroup homomorphismS xk from Σ+
y to Σ+

x defined on the generators
b∈ [[∂1

Θ1
(y)]] by

S xk(b) = a such thata∈ [[∂1
Θ0

(x)]] andg(a) = b.

It follows from the properties of safe net morphisms in Proposition 1.5 thatS xk is well-defined,
i.e., there exists one and only onea∈ [[∂1

Θ0
(x)]] such thatg(a) = b.

To clarify the relation between7→ and decorated occurrence net morphisms, observe that, in
the condition of the previous definition, ifΘ is a decorated occurrence net andk is a decorated
occurrence net morphism, thenaF 7→ S xk(b

F
) if and only if k(aF) = bF .

Example 5.8.Consider the nets in the following figure, where the morphism〈 f ,g〉 is such that
g(σ1) = s2⊕s3 andg(σ2) = s1.
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Then, for instance, we have thatS {t}
〈 f ,g〉(s1s2s3s2s1) = σ2σ3

1σ2.

Finally, we show thatD [ ] extends to a functor which is left adjoint toF [ ].

Theorem 5.9. (D [ ] ⊣ F [ ]) The pair〈D [ ],F [ ]〉 :Occ ⇀ DecOcc constitutes an adjunction.

Proof. LetΘ be an occurrence net. By (MacLane 1971, Theorem 2, pg. 81) it is enough to show
that the morphismηΘ:Θ→ F D [Θ] is universal fromΘ to F , i.e., for any decorated occurrence
netΘ′ and anyk:Θ→ F [Θ′] in Occ, there exists a unique〈 f ,g〉:D [Θ]→Θ′ in DecOcc such that
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k = F [〈 f ,g〉]◦ηΘ.

? ?

Z
Z

Z
ZZ~

-

?

∀k

Θ

F [Θ′]

∃!〈 f ,g〉

D [Θ]

Θ′

s.t.

Θ

k

ηΘ

F [Θ′]

F D [Θ]

F [〈 f ,g〉] commutes.

GivenΘ′ andk, we define〈 f ,g〉:D [Θ]→Θ′ as follows:

f (t) = k(t)

[[bF ]]⊆ [[g(sF)]] ⇐⇒ s 7→ S xk(b
F
), wherex = •[[sF ]] andk(x) = •[[bF ]]

First remark that〈 f ,g〉 is well-defined: ifs= σn1
1 · · ·σ

nr
r 7→ S

x
k(b

F
) then there is one and only one

way to have[[bF ]]⊆ [[g(sF)]], namely

g(s, i) =
L

{b}× [q]i,

whereq is the unique integer such thatσqn1
1 · · ·σ

qnr
r = S xk(b

F
).

Let x = {t0} or x = ∅. Observe that∀a∈ [[∂1
Θ′(x)]]

∀(b, j) ∈ [[k(a)]] ∃!(s, i) such that(s, i) ∈ [[∂1
D [Θ](x)]] and(b, j) ∈ [[g(s, i)]]. (1)

Moreover,(s, i) is the unique place inD [Θ] such thatsi = a and(b, j) ∈ [[g(s, i)]]. In fact, for

x = •a, by Lemma 5.3, there exists a uniques∈ ΣP
x such thats 7→ S xk(b

F
). If (b, j) ∈ [[k(a)]]

then, sincek is a morphism,k(x) = •[[bF ]] and so there exists a uniquesF in ∂1
D [Θ](x) such

that [[bF ]] ⊆ [[g(sF)]], i.e.,∃!(s, i) ∈ [[∂1
D [Θ](x)]] such that(b, j) ∈ [[g(s, i)]]. Obviouslysi = a, by

definition ofS xk and7→. Moreover, if there were another such(s′, j), thens′ ∈ ΣP
x sincea belongs

only to Σx. So by the previous lemmas′ = sand, sinceg respects families,j = i.
Now, if (b, j) ∈ [[g(s, i)]], thens 7→ S xk(b

F
) and, therefore,S xk(b

F
)(i−1)q+1, . . . ,S

x
k(b

F
)iq = si , by

definition of 7→. Thus, by definition ofS xk, {b}× [q]i ⊆ [[k(si)]]. So we have
S

{[[g(s, i)]] | si =

a} = [[k(a)]]. Obviously, all the[[g(s, i)]] are disjoint and
L

[[g(s, i)]] = g(s, i), since the families
are disjoint. Therefore,

L

{
g(s, i)

∣
∣ si = a

}
= k(a).

It is now easy to see that the diagram commutes. For transitions this is clear. Concerning places,
we have:

F [〈 f ,g〉]◦ηΘ(a) = g
(

L

{
(s, i)

∣
∣ si = a

})

= k(a).

Now, consider any morphismh:D [Θ]→ N which makes the diagram commute. Because of the
definition ofηΘ on the transitions,h must be of the form〈 f ,g′〉. We have to show that, necessarily
g = g′.
Let [[bF ]] ⊆ [[g′(sF)]]. So, the family ofb must be{b}× [qn] for someq, wheren = |s|. Since
〈 f ,g′〉 is a morphism, givenx = •[[sF ]] andy = •[[bF ]], it must be f (x) = y. Since the diagram
must commute andsF is the unique family in∂1

D [Θ](x) whose image containsbF , it must be

{b}× [q]i ⊆ [[k(si)]] for i = 1, . . . ,n. Therefore, we haveS xk(b
F
) = sq

1 · · ·s
q
n and sos 7→ S xk(b

F
),
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which means, by definition ofg, that[[bF ]]⊆ [[g(sF)]]. Hence, we have[[g′(sF)]]⊆ [[g(sF)]]. On the

other hand, suppose[[bF ]]⊆ [[g(sF)]]. Thens 7→ S xk(b
F
), for somex. Necessarily, it must exists′F

with s′ ∈ ΣP
x such that[[bF ]]⊆ [[g′(s′F)]]. Then, by Lemma 5.3, such ans′ cannot be anything but

s. Therefore[[g(sF)]]⊆ [[g′(sF)]] and, reasoning as before,g′(sF ) = g(sF). We can then conclude
thatg′ = g andh = 〈 f ,g〉.
Let us now show that〈 f ,g〉 is a morphism. It is enough to verify conditionsi andii in Proposi-
tion 1.5. Letx = {t0} or x = ∅ and f (x) = y. If [[bF ]] ⊆ [[g(∂1

D [Θ](x))]], then by definition ofg,

we have[[bF ]]⊆ [[∂1
Θ′(y)]]. So[[g(∂1

D [Θ](x))]]⊆ [[∂1
Θ′(y)]]. Observe that this, together with property

(1), proves the required conditions both on the initial markingand on∂1
D [Θ]. We still have to

check that〈 f ,g〉 respects sources.
Supposef (t0) = t1. Let (s, i) ∈ [[∂0

D [Θ]
(t0)]] and(b, j) ∈ [[g(s, i)]]. Thensi ∈ [[∂0

Θ(t0)]] and since
L

{g(s, i) | si = a} = k(a), we have(b, j) ∈ [[k(si)]] ⊆ [[∂0
Θ′(t1)]], sincek is a morphism and

k(t0) = t1. So[[g(∂0
D [Θ](t0))]]⊆ [[∂0

Θ′( f (t0))]]. Now, if (b, j) ∈ [[∂0
Θ′(t1)]] then there exists a unique

a ∈ [[∂0
Θ(t0)]] such that(b, j) ∈ [[k(a)]]. Therefore, there exists a unique(s, i) such that(b, j) ∈

[[g(s, i)]] andsi = a. Thus,(s, i) ∈ [[∂0
D [Θ](t0)]]. Now, if (s′, j) ∈ [[∂0

D [Θ](t0)]] is such that(b, j) ∈

[[g(s′, j)]] it must bes′j = a, otherwisea would not be the unique element in[[∂0
Θ(t0)]] whose

image contains(b, j). Therefore,(s′, j) = (s, i).

The next corollary summarizes the results we obtain via the adjunctions〈D [ ],F [ ]〉 :Occ ⇀

DecOcc and〈( )+,U [ ]〉 :DecOcc ⇀ PTNets introduced here, and via Winskel’s coreflections
〈N [ ],E [ ]〉 :PES ⇀ Occ and〈P r[ ],L [ ]〉 :Dom ⇀ PES.

Corollary 5.10. (Extensions of Winskel’s coreflections (Winskel 1986))The following are
adjunctions whose right adjoints relate PT nets to, respectively, occurrence nets, prime event
structures and prime algebraic domains.

— 〈( )+D [ ],F U [ ]〉 :Occ ⇀ PTNets;
— 〈( )+DN [ ],EF U [ ]〉 :PES ⇀ PTNets;
— 〈( )+DN P r[ ],LE F U [ ]〉 :Dom ⇀ PTNets.

In addition,F U [ ]Safe = Uw[ ] and, thus,EF U [ ]Safe = EU w[ ] andLE F U [ ]Safe = LEU w[ ],
i.e., the semantics given to safe nets by the chain of adjunctions presented in this work coincides
with the semantics given to them by Winskel’s chain of coreflections.
Also, the functorsF U [ ]:SWNets→Occ,EF U [ ]:SWNets→PES, andLE F U [ ]:SWNets→

Dom admit coreflection left adjoints.

Finally, the following example shows the semantics associated to the net of Example 4.4 by
the adjunction〈( )+DN [ ],EF U [ ]〉
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Example 5.11.

t1 # t2 t2 # t1 t1 # t2 t2 # t1

t

MMMMMMMMM

2222
����

qqqqqqqqq t

MMMMMMMMM

2222
����

qqqqqqqqq

t1

2222

# t2 t2 # t1

����

t

MMMMMMMMM

2222
����

qqqqqqqqq

The event structureEF U [N] corresponding to the netN of Example 4.4

Conclusion and Related Work

In this paper we have presented an extension to the case of PT nets of Winskel’s semantics for
safe nets (Winskel 1986). This extended semantics is given by a chain ofadjunctionsbetween the
categories of finitary prime algebraic domains, of prime event structures and of occurrence nets.
These results have been achieved by identifying a suitable adjunction between the category of
PT nets and the category of occurrence nets, and by exploiting the existing adjunctions between
occurrence nets, prime event structures and prime algebraic domains.

As already mentioned in the introduction, our purpose here was to describe the behaviour of
PT nets by means of prime event structures, i.e., at the levelof abstraction at which the identity
of every event occurring in a computation and its causal interactions with the other events are
unambiguous. This yields an explanation of net behaviours in which causality is the primary
interest.

The existence of left adjoints to the unfolding functors guarantees theuniversalityof the con-
structions, which in turn means that our semantics is as goodas possible, given the chosen cat-
egories. In the present context this is precisely the relevance we attribute to such functors. In
particular,D [ ] is a rather complicated construction. Nevertheless, we remark that the important
fact remains that such a functor exists.

In (Winskel 1988), Winskel shows that, in the case of safe nets, the domain associated toN
via the unfolding construction can be equivalently obtained by unfoldingN to a Mazurkiewicz
trace language(Mazurkiewicz 1988) whose alphabet consists exactly of thetransitions ofN.
Such a construction is clearly not possible in the case of general PT nets; an immediate reason
for that is provided by theautoconcurrencywhich PT nets can exhibit, and which cannot be
handled properly by trace languages. On the other hand, it isequally clear that one can build
such a trace language by choosing appropriately the underlying alphabet. However, it seems
that a satisfactory solution to this issue has to deal with a generalization of trace languages, e.g.
(Hoogerset al.1992; Sassoneet al.1993b).

The adjunction betweenPTNets andOcc factorizes through two adjunctions involving a cat-
egory ofdecorated occurrence nets, DecOcc. Although this factorization may at first seem to be
just a convenient technical solution, there in fact are someinsights on the semantics given by the
present unfolding construction which can be gained by looking more closely at decorated occur-



J. Meseguer, U. Montanari, and V. Sassone 34

rence nets. In fact, the semantics we have introduced here issomehow close to both Goltz-Reisig
processes (Goltz and Reisig 1983) and to concatenable processes (Deganoet al.1989), without
coinciding precisely with either of them. In (Mesegueret al. 1994; Mesegueret al. 1996), the
present authors give aprocess-orientedaccount of the unfolding construction. More precisely,
we introduce a new notion of process, whose definition is suggested by the idea of families in
decorated occurrence nets, and which are therefore calleddecorated processes, and we show that
they capture the unfolding semantics, in the precise sense that there is a one-to-one translation
between decorated processes ofN and finite configurations ofEF U [N]. Then, following the ap-
proach of (Deganoet al.1989), we axiomatize the notion of decorated (concatenable) process in
terms of monoidal categories. More precisely, we define an abstract symmetric monoidal cate-
goryD P [N] and we show that its arrows representdecorated concatenable processes. Then, we
have that the following diagram commutes (up to equivalence)

HHHHHHj

������*

������*

HHHHHHj

U [ ] LFEF [ ]

D P ∗[ ] 〈 ↓ 〉

PreOrd

DecOcc

MSMonCat

MPetri
∗

whereMPetri
∗ is the full subcategory ofPTNets consisting of the nets with finite pre- and post-

sets,MSMonCat is the category of the ‘marked’ symmetric strict monoidal categories, i.e., sym-
metric strict monoidal categoriesC with a distinguished objectc∈ C, D P ∗[ ] maps the marked
net (N,uN) to (uN,D P [N]), PreOrd is the category of preorders,〈 ↓ 〉 is the comma category
functor (c,C) 7→ 〈c↓C〉, andLF returns the finite configurations of prime event structures or-
dered by inclusion. We remark that an analogous result is proved in (Nielsenet al.1990) in the
case of elementary net systems—a particular class of safe nets without self-looping transitions.

We think that this is an interesting result, since it provides a unified account of thealgebraic,
theprocess-oriented, and thedenotationalviews of net semantics. Moreover, it shows that dec-
orated (deterministic) occurrence nets and their algebraic formalization in terms of monoidal
categories, being the key to achieve such a unification, are structures of some relevance on their
own.

To conclude, we would like to mention that the correspondence of semantics discussed above
can be lifted smoothly toinfinite computations. In (Sassoneet al. 1993a), the present authors
show that the symmetric monoidal categoryP [N]ω obtained as the completion ofP [N] by colim-
its of ω-diagrams can be understood as the category of possiblyinfinite concatenable processes
of N. Working analogously, one can see that the arrows of the symmetric strict monoidal cat-
egoryD P [N]ω are possiblyinfinite decorated concatenable processes. Then, one can prove the
commutativity (up to equivalence) of a diagram analogous tothe one above involving all the con-
figurations ofEF U [N] and the comma category〈uN↓D P [N]ω〉. The details of this construction
can be found in (Sassone 1994).
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