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Place/Transition (PT) Petri nets are one of the most wide§dumodels of concurrency. However,
they still lack, in our view, a satisfactory semantics: oa time hand the ‘token game’ is too
intensional, even in its more abstract interpretationgims of nonsequential processes and
monoidal categories; on the other hand, Winskel's basioldirfg construction, which provides a
coreflection between nets and finitary prime algebraic domaiorks only for safe nets.

In this paper we extend Winskel's result to PT nets. We stélft avrather general categoRyT Nets
of PT nets, we introduce a categddgcOcc of decorated (nondeterministic) occurrence nets and
we define adjunctions betwe®T Nets andDecOcc and betweemecOcc andOcc, the category of
occurrence nets. The role BfecOcc is to provide natural unfoldings for PT nets, i.e., acychées
nets where a notion of family is used for relating multiplstances of the same place.

The unfolding functor fronPTNets to Occ reduces to Winskel’'s when restricted to safe nets;
moreover, the standard coreflection betw&ea andDom, the category of finitary prime algebraic
domains, when composed with the unfolding functor abovigrdenes a chain of adjunctions
betweerPTNets andDom.

Introduction

Petri nets, introduced by C.A. Petri in (Petri 1962) (se® &etri 1973; Reisig 1985), are a
widely used model of concurrency. This model is attractrgrf a theoretical point of view
because of its simplicity and because of its intrinsicatipaurrent nature, and has often been
used as a semantic basis on which to interpret concurregtitayes (see for example Winskel
1982; Olderog 1987; van Glabbeek and Vaandrager 1987; Dexja. 1988).

ForPlace/Transition (PT) nethiaving a satisfactory semantics—one that does justideeio t
truly concurrent nature, yet is abstract enough—remairsuinview an unresolved problem.
Certainly, many different semantics have been proposdttiliterature; we briefly discuss some
of them below.

At the most basic operational level we have of course theettakame’. To account for com-
putations involving many different transitions and for taisal connectionisetween transition
events, various notions gfocesshave been proposed (Petri 1977; Goltz and Reisig 1983; Best
and Devillers 1987), but process models do not provide afaatbry semantic denotation for
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a net as a whole. In fact, they specify only the meaning oflsimdeterministic computations,
while the accurate description of the fine interplay betweamcurrency and nondeterminism is
one of the most valuable features of nets.

Other semantic investigations have capitalized orefgebraic structureof PT nets, first no-
ticed by Reisig (Reisig 1985) and later exploited by Windkeldentify a sensible notion of
morphismbetween nets (Winskel 1984; Winskel 1987). More recentlglifierent interpreta-
tion of the algebraic structure of PT nets in terms of monlo@@déegories has been proposed
in (Meseguer and Montanari 1990). Alternative interestitggbraic/categorical approaches are
(Brown and Gurr 1990; Browat al.1991; Marti-Oliet and Meseguer 1991; Engberg and Winskel
1993), based on ideas from linear logic, and (Mukund 1998)¢ckvprovides an account of net
behaviours in terms of (step) transition systems.

One particular advantage of the algebraic approaches lmsedtegory theory is that they
provide useful net combinators, associated to standaedjgdtal constructions such as product
and coproduct, which can be used to give a simple account mésmonding compositional
operations at the level of a concurrent programming langusigch as various forms of parallel
and non-deterministic composition (Winskel 1987; Mesegunrel Montanari 1990; Browat al.
1991; Mukund 1992).

A unification of the process-oriented and algebraic viewmfsohas recently been proposed
in (Deganocet al. 1989; see also the related Sassone 1996; Sassone 1995)viipgsiivat the
commutative process€Best and Devillers 1987) of a ndt are isomorphic to the arrows of a
symmetric monoidal category [N]. Moreover, they introduced theoncatenable processe$
N—a slight variation of Goltz-Reisig processes (Goltz andsigel983) on which sequential
composition is defined—and structured them as the arrowseacfymmetric monoidal category
2[N]. That would individuate in the category of the symmetric widal categories a semantic
domain for PT nets. However, in spite of accounting for atgeband process aspects in a simple
unified way, this semantics is still too concrete, and a mbstract semantics—one allowing
greater semantic identifications between nets—would telglpreferable in many applications.

A very attractive formulation for the semantics that we seekild be anadjoint functoras-
signing an abstract denotation to each PT net and presergit@n compositional properties in
the assignment. This is exactly what Winskel has done fostitbeategory of safe nets (Winskel
1986). In that work—which builds on the previous importamtrkv(Nielsenet al. 1981)—the
denotation of a safe net is@cott domair(Scott 1970), and Winskel shows that there exists a
coreflection—a particularly nice form of adjunction—betmehe categor{pom of (coherent)
finitary prime algebraic domainand the categor§afe of safe Petri netswinskel's coreflection
factorizes through the chain of coreflections

Saf = 0] = PES = D
afe > Occ | N[] o om

wherePES is the category oprime event structure@ith binary conflict), which is equivalent
to Dom, Occ is the category obccurrence netéWinskel 1986):— is the inclusion functor, and
the lower arrows are left adjoints.

This construction is completely satisfactory: from thauitive point of view it gives thetruly
concurrent’semantics of safe nets in the most universally accepteddpedel, while from
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the formal point of view the existence of an adjunction gagegas its'naturality’. In fact, it
follows directly from the choice of the denotational mod#iat this semantics is suited to a
precise description of causality: every causal interadimong transitions, in principle a history-
dependent concept, must be resolved to the global, stdéitiores of causality and conflict of
event structures. In other words, the unfolding amountsaiesiating theédynamic’ structure of
nets to théstatic’ structure of occurrence nets and event structures, i.egmapiling’ transitions
to events. Under this translation events are to be thougas ohique occurrences of transitions
which bear unique, static causal links to each other. It istivobserving that such a causal
semantics is incompatible with the idea of indistinguishigiof tokens: different tokens in the
same place can carry different causal histories and, thergjive rise to different events, even
when consumed by the same transition. In other words, itcbelsaid that the very purpose of
a causal semantics for nets is to distinguish tokens aauptditheir causal history.

The existence of adjoints to the unfolding functors guarasthe adequacy of the semantics.
In fact, starting from the natural assumption that a posgilginotation oN in PES is an event
structureEStogether with mapy [ES — N which ‘labels’ the events with the transitions they
correspond to, by the universal property of adjunctionshg@ssible explanation &f in PES
factorsuniquelythrough the one assigned by the unfolding, vWi¢.£ ¢ [N] — N. Intuitively, this
can be interpreted as saying thati [N] is the ‘best possible’, the ‘most complete’ explanation
of N in PES, the one which unambiguously subsumes all the (partiaBrstand, moreover, it is
(up to isomorphisms) the unique event structure which engagh a property.

Recently, various attempts have been made to extend this@hanore generally, to identify a
suitable semantic domain for PT nets. Among them, we releedit{ 1991), where, in order to ob-
tain a model ‘mathematically more attractive than Petrshetgeometrionodel of concurrency
based om-categories as models of higher dimensional automatarsdated, but the modelling
power obtained does not seem to be greater than that of oyddTanets, though the framework
is highly elegantly linked to algebraic topology (Goubait Jensen 1992; Goubault 1993; see
also Cattani and Sassone 1996), (Hoogeed. 1992), in which the authors give semantics to PT
nets in terms of generalized trace languages and discusadiogtheir work it could perhaps be
possible to obtain a concept of unfolding for PT nets; andyéfiniet 1991), where the unfolding
of Petri nets is given in term of a branching process. Howeber nets considered inc. cit.
are not general PT nets because their transitions arectesittio have pre and post-sets where
all places have no multiplicities. A yet more recent apploaqHoogerst al. 1993), where the
unfolding is explained in terms of a new notion of local evsinticture. Finally, we would like
to cite in this context (Gunawardena 1993).

The present work extends Winskel's approach from safe a¢itetcategory of PT nets. We de-
fine theunfoldingsof PT nets and relate them by adjunctionto occurrence nets and therefore—
exploiting the already existing adjunctions—to prime dvaructures and finitary prime alge-
braic domains. The adjunctions so obtained are extensiahs @orresponding Winskel's core-
flections. We follow strictly the intuitions of (Winskel 188 discussed above. Of course, here
we need to take care of the multiplicities in pre- and post;s&hich, respectively, consume
and produce multiple concurrent tokens in the same pladkoAgh such tokens have the same
history, they must be distinguished, since, potentiatigytgive rise to different events, e.g., mul-
tiple concurrent activations of the same transition. Thisdlledindividual token interpretation
in (van Glabbeek and Plotkin 1995).
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The categonPTNets that we consider is quite general. Objects are PT nets inhwiniark-
ings may be infinite and transitions are allowed to have it#ipire- and post-sets, but, as usual,
with finite multiplicities. The only technical restrictione impose, with respect to the natural
extension to nets with infinite markings of the general folatian in (Meseguer and Montanari
1990), is the usual condition that transitions must haveerpty pre-sets. Actually, the objects
of PTNets strictly include those of the categories considered in @k 1986; Winskel 1987).
Although a technical restriction applies to the morphisntisey are required to map places be-
longing to the initial marking or to the post-set of the sana@sition to disjoint multisets—they
are still quite general. The categd?y Nets hasinitial andterminalobjects, and hgsroductsand
coproductavhich model, respectively, the operations of parallel and-deterministic composi-
tion of nets. It is worth remarking that, while coproductguaexist in the categories of generally
marked, non-safe PT nets considered in (Winskel 1987; Mesegnd Montanari 1990), they do
in PTNets. In addition, in (Brownet al. 1991) and in (Mukund 1992), where coproducts exist,
they seem not to have a neat computational intepretation.

Concerning the organization of the paper, in Section 1 wandefie categorf? TNets and in
Section 2 we show that it has products and coproducts. IridbeBtwe introduce a new kind
of nets, thedecorated occurrence netshich naturally represent the unfoldings of PT nets and
can account for the multiplicities of places in transitiotey are occurrence nets in which
places belonging to the post-set of the same transitionaxtéipned intofamilies Families are
used to relate places corresponding in the unfolding toipielinstances of the same place in
the original net. When all the families of a decorated ocemece net have cardinality one, we
have (a net isomorphic to) an ordinary occurrence net. Toergcc is (isomorphic to) a full
subcategory obecOcc, the category of decorated occurrence nets.

In Section 4, we show an adjunctiof)*, u[-]) : DecOcc — PTNets whose right adjointz ]
gives the unfoldings of PT nets. This adjunction restriot8\inskel's coreflection fron®cc to
Safe as shown by the commutative diagrams:

PTNets L DecOcc PTNets L DecOcc
Safe ————— Occ Sl‘e %C\J;C

Uwl[]

i.e., the left and the right adjoint, when restricted respety to Safe and Occ, coincide with
the corresponding adjoints of Winskel's coreflection. Weoatonsider the full subcategory
SWNets of PTNets consisting of those nets whose initial markings and whoss-pets are
sets. Since weights are allowed only on the arcs from plazdsansitions, we refer to them
assemiweightedhets. Concerning them, we show that wheh] is restricted toSWNets the
adjunction{(_)", «[_]) restrict to a coreflectiofr—, u[]) : Occ — SWNets.

Then, in Section 5, we relate decorated occurrence netsdar@nce nets by showing an
adjunction(D[_], 7 []) : Occ — DecOcc, where¥ [] is theforgetfulfunctor which forgets about
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families. Moreover, the diagram below commutes.

u|-
PTNets % DecOcc

J lf [ ()

Safe ————— Occ
Uw[]

Therefore, we get the desired adjunction betwem andPTNets as the composition of the
chain of adjunctions
ul]

PTNets DecOcc

F
@[—]T If [-]
£[]

£l

_ _—
Occ PES Dom
A[-] or[]

It follows from the commutative diagram (1) that, whEBm Nets is restricted tdSafe, all the
right adjoints in the above chain coincide with the corresfing functors defined by Winskel.
Furthermore, because of the coreflection fl@aa to SWNets, whenu [_] is restricted t&WNets
alsof ul], ¥ ul], andL £ F u[] give rise to coreflections of, respective@¢c, PES, and
Dom in SWNets. In this sense, this work generalizes the work of Winskelginds an abstract,
truly concurrent semantics for PT nets. The existence ¢fddfoints for all the functors we
consider guarantees the ‘naturality’ of this generalmatiMore precisely, as for safe nets, the
adequate treatment of causal and true concurrency isslimsgdrom the choice of event struc-
tures as denotational model, while the adjunctions guaeathiat such a semantics is ‘as good as
possible’, given the chosen categories. A further assessofi@dequacy of the unfolding con-
struction is provided by (Meseguer al. 1996), where the present construction is proved to bear
close relationships to the standard notion of processeBTamets; more details about this are
discussed in the concluding section. Another source ofesd is provided by the results about
SWNets proving that for semiweighted nets, which can exhibit fairiore complicated causal
behaviours than safe nets, the extension on Winskel's sizrasithe smoothest possible one.

We remark that, of course, the semantics presented in tipierpa one of the possible se-
mantics for PT nets. In particular, it is characterized by tihoice of prime event structures
as ‘denotations’ of PT nets, i.e., by the choice of explairtime behaviour of PT nets in terms
of the primitive notions ofvent causalityandconflict Such a choice has the clear advantage
of yielding a fully causalexplanation of net computations, which is our declared &mfact,
the unfolding functor associates to a PT hefn occurrence net whose transitions represent
exactly the instances of the transitionsMfin all the possible causal contexts and which can
therefore account for concurrent multiple instances ofsime element dl, that is forauto-
concurrency Of course, by its very purpose, the unfolding will then @ntseveral instances
of the same transition, including both concurrent pairoaating for autoconcurrency and con-
flicting pairs arising from incompatible causal contextteatly, this may be a disadvantage in
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some applications. These pros and cons are clearly sidé® sbime coin, and are both due to
the ‘primitiveness’ of prime event structures.

This paper is a full and extend version of (Mesegeteal. 1992). With respect to that extended
abstract version, the present paper provides the resuitecaingSWNets, further comments,
and all the relevant proofs. In addition, here we also prbet the categor{? TNets has good
structural properties by proving the existence of prodaetd coproducts ilPTNets and by
providing a computational interpretation for them.

AcknowledgementsNe cordially thank Narciso Marti-Oliet for his carefulading of the manuscript and
his valuable suggestions for improving the exposition.

1. Place/Transition Nets

In this section we define the categorf@ENets of Place/Transition (PT) netSafe of safe nets
andOcc of occurrence nets

We recall that gointed sets a pair(S,s) whereSis a set and € Sis the pointed element. Mor-
phisms of pointed sets are functions that preserve thegmbilements. Looking at the pointed
element as the undefined value, pointed sets provide a ciemievay to treat partiality. More
precisely, the category of sets and partial functions aad#tegory of pointed sets and pointed
set morphisms are isomorphic.

Given a seB, we denote by the set oinultisetson S, i.e., the set of all functions froi8to
the set of natural numbecs, and byS* = the set ofmultisetswith (possibly)infinite multiplici-
ties i.e., the functions fronBto w., = wU {«}. We shall regar&* also as a pointed set whose
pointed element is the empty multiset, i.e., the functionclwlalways yields zero, that, in the
following, we shall denote by 0.

Notation Foru < S¥ =, we write [l to denote the support ¢f i.e., the subset 0B consisting of those
elementss such thatu(s) > 0. A multisetp € S = can be represented as a formal s@g.gH(s) - s. In
the sequel, we shall often denqtes S* = by @i nis where{s|i € I'} = [|] andn; = u(s), i.e., as a
sum whose summands are all nonzero. In case of multis&f$ jrinstead of);, we shall usey,m;, ..., the
standard variables for natural numbers. Moreover, g&&nS, we will write @ S for Pgcg 1-S= Pgcg S

Given an arbitrary indexing sétand{n; € w. |i € |}, we defineZ; n; to be the usual sum
in w if only finitely manyn; are nonzero and otherwise. Then, we can give meaning to linear
combinations of multisets, i.e., multisets of multisetsdefining

D nuu= B e (Pue-s)=P( ¥ n)-s
pesSM pesH » seS SES PeHM o

As usual, we use the infix notatiar® v when the above combination involves only the multisets
u andv with multiplicities one.
A (_)*=—homomorphism fron®)’ = to S}’ is a functiong: S}’ — S}~ such that

g = P us)-g(s).
s€§

Remark ()*= extends to an endofunctor on the category of sets and, as iwigfines acommuta-
tive monad whose multiplication is the operation of linear combinatdf multisets described above, and



On the Semantics of Petri Nets 7

whose unit maps € Sto 1-s€ S* . In these termsS = is the free(_)* »—algebra orS and a(_)* -
homomorphism is a morphism ¢f)* =-algebras.

Definition 1.1. (PT Nets)A PT netis a structuréN = (6,9,,6&: (Tn,0) — S, uN) whereSy is a

set whose elements are callgldces Ty is a pointed set whose elements are catfadsitions

6,?,,6& arepointed set morphisngiving, respectively, sources and the targets of tramstiand

uy € S is theinitial marking. Moreover, we assume the standard constraint thaf} if) = 0

thent = 0.

A morphismof PT nets fronlNg to N; consists of a paitf,g) such that:

(i) f:Tn, — T, is a pointed set morphism,;

(i) 9§, — S, is a(_)*~—homomorphism;

(iii) g(un,) = uny, i.e.,g respects the initial marking;

(iv) of, of=gody ,anddy, of=gody,ie.,f respects source and target;

(v) Vabe [un,] andVab e [[aho(t)]], t € Ty, if [9(@)] N [9(b)] # @, thena=Db, i.e.,g
acts ‘disjointly’ on places belonging to the initial margir to the postset of the same
transition.

This, with the obvious componentwise composition of mospis, defines the categdyi Nets.

A PT net is thus a graph whose arcs are the transitions andewldes are the multisets
on the set of places, i.emarkingsof the net. As usual, transitions have pre- and post-sets, i.
sources and targets, in which each place has only finitelyyrt@ens, i.e., finite multiplicity.
The same applies to the initial marking. Consistency with tise of zero transitions to treat
partial maps is provided by the fact th}ﬁ anddy, are pointed set morphisms, i.e., they assign
empty pre- and post-sets to zero transitions. Moreovesgthee the only transitions which can
have empty pre-sets. This limitation is needed in any uirigldemantics since transitions with
empty pre-sets are highly degenerated; in particular, amyber of parallel copies of them can
fire at any marking. Observe thBf Nets contains also the empty net, i.e., in our setting the net
with empty set of places and having the unique transitionhis T an interesting net, since it is
theterminalobject in the category. Thaitial object ofPTNets is the net consisting of a unique
places, of no transitions, and whose initial marking issl

Morphisms of PT nets are graph morphisms in the precise séfnespecting source and target
of transitions, i.e., they make the two diagrams below cotemu

0 1
oy o Oy

0 o( S'\ﬂi[ooo TNO %( S'\ﬂifoo°

Moreover, they respect the pointed set structure of triansit i.e., they are consistent with our
use of ‘zero’ transitions, the ) »-algebraic structures of states, and the initial markings.

The last condition in the definition means that morphismsateallowed to map two different
places in the initial marking or in the post-set of the samaagition to two multisets having a
place in common. This is pictorially described in the figuedolw, where dashed arrows represent
the forbidden morphisms. We use the standard graphicatseptation of nets in which circles
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are places, boxes are transitions, the initial markingvemiby the number of ‘tokens’ in the
places, and sources and targets are directed arcs whodasweEgresent multiplicities. Unitary
weights are omitted.

This requirement strengthen conditioriig)(and {v), implying that multiplicities in the initial
marking and in post-sets are ‘reflected’ by morphisms. Itlmaneformulated by saying that for
all placesb € [uy, ]}, there exists exacly oraeec [[un,] such thab € [g(a)] and, similarly, for all
placesh € [[9y, (f(1))], fort € T, there exists exactly oreee [0y, ()] such thab € [[g(a)]. It

is worth remarking thaty is a ‘local condition: it constrains the action of morphisms only on
places belonging to the initial marking or to the same pestSuch a condition will play an im-
portant role in establishing the adjunction betw®dmets andDecOcc and, therefore, between
PTNets and the other categories we consider. In fact, it is cruciakhowing the (uniqueness
condition in the definition ofyniversalityof the counitof the adjunction. Moreover, it is exactly
the part of this condition concerning the places in theahitharking which makes coproducts
exist inPTNets.

Remark Our choice of morphisms fd?TNets is very close to those for the general categories of marked
nets considered in (Winskel 1986; Winskel 1987; MeseguerMontanari 1990) and in related works.
Actually, the only difference with (Winskel 1986; Winsked87) is condition ¥) in Definition 1.1.

Notation Since in the rest of the paper we will often state and checklitions on botrﬁﬁ anda}, we
will use 9 ranging over them. Moreover, in order to simplify notatiorg shall sometimes use a single
letter to denote a morphisif, g). In these cases, the type of the argument will identify wiiclponent
we are referring to. A(_)Mw—homomorphisrrg:SNO” - &, which constitutes the place component of
a morphism(f,g), is completely defined by its behaviour &,, the generators cﬁNo‘”. Therefore, we
will often define morphisms between nets by giving their $iian components and a mapSy, — SV
for their place components: it is implicit that they have ® thought of as lifted to the correspondent
(_)* =—homomorphisms.

Transitions are the basic units of computation in a PT netaaditiont with 8% (t) = u and
0% (t) = v—usually writtent:u — v—performs a computationonsuminghe tokens inu and
producingthe tokens irv.

A finite number of transitions can be composed in parallebtafastep which, therefore, is
a finite multiset of transitions. We writda)v to denote a step with sourceu and targev. The
sets[N] of steps ofN is generated by the rules:

t:u— vin N andwin S¥= ujo)vandu'[B)V in S[N]
(U w)[t) (v w)in 5[N] (ueW)adB) (v V) in S[N]

Observe that the pointed transition 0:00 provides the empty step at any S¥ =,
A finite number of steps from the initial marking can be sediadly composed thus yielding
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astep sequencé&he set of step sequences, denateN], is given by the rule:

UN[Og)VD, - .., Un[On)Vn in S[N] andu; = vi_1, i =1,...,n
U [00) [011) - -+ [aIn) Vi in SS[N]

The setx [N] of reachable markingsf N is the set of markings which are target of some step
sequence, i.e.,

% [N] = {v| 3 (unao) -+ [an)v) in 55[N]}.
Since step sequences are of finite length, and each stepstsoof&finitely many transitions,
from the conditions oniy, 6% andaﬁ in Definition 1.1, it is easy to see that[N] C S{ﬁf
In the following we shall also consider the category of thB3enets whose initial markings
and whose post-sets are sets, as opposed to multisets.
Definition 1.2. (SemiWeighted Nets)A PT netN is semiweightedf uy is a set and, for all
t € Ty, 05 (t) is a set. This defines the categ&iNets as a full subcategory ¢ T Nets.

It is interesting to notice that for the morphismsSwWwNets condition {) is redundant, i.e., it
is already implied by the structure of semiweighted nets.

Proposition 1.3. (Characterization of SemiWeighted Net Mgphisms) Let Ny andN; be semi-
weighted nets. A pair off,g), wheref: Ty, — Ty, andg: S Ml"", is a morphismNy — Ny
in SWNets if and only if conditions i), (i), (iii) and §v) of Definition 1.1 hold.

Proof. Itis very easy to prove that conditiow)(follows from the others. In fact if there were
bin [un,] orin [[6.ﬁ.1(f(t))]] andaz a re.spectively inun,] or in [} (t)]] such thab € [[g(a)] N
[9(a)], by definition of morphism, it would be(un,)(b) = u,(b) > 2 or g(a,{,o(t))(b) =
aﬁll(f(t))(b) > 2. But this is impossible, sind¥; is a semiweighted net. U

The important class ofafenets is obtained frorBWNets by extending the required absence
of multiplicities also to pre-sets and to all reachable rirag&.

Definition 1.4. (Safe NetsA PT netN is safeif
vt e Ty, O\(t)isaset, and Ve % [N], vis a set

This defines the categoBafe as a full subcategory ¢t T Nets.

SinceSafe is clearly a full subcategory @§WNets, Proposition 1.3 applies also to safe net
morphisms. Moreover, the morphismsSafe admit the following characterization in terms of
their action on initial markings, pre- and post-sets.

Proposition 1.5. (Characterization of Safe Net Morphisms)Let Ny andN; be safe nets. A
pair (f,g) is a morphismNg — Ny in Safe if and only if f: Ty, — Ty, is a morphism of pointed
setsg: " — S,“ is a(-)* »—homomorphism such that € [un,] U [9], ()] U [0} (1)]), for
t € Ty, 9(@) is a set, and
(i) [9(un,)I < [un, ] andvb € [un, ], 3tae [un,]} such thab & [[g(a)]);
(i) vt e Tng, 909N, ()] < [0, (f(t)] and

vb e [[ay, (f(t))], F'ac [dy,(t)] such thab € [[g(a)].

Proof. (=) Trivial.

(<) Conditions {), (i) and ) in the definition of PT net morphisms are already preserintBo
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(i) and i) above imply that

[un] =U{ [9(a)] |a€ [une]} and[a, (f(1))] =U{ [o@] lac [0 (1]}
Now, smce@[[ (@) = g(a) and all thef[g(a)]] in the unions are disjoint, we obtagu,) = Un,
andg(y, (1)) =y, (f(1)). O

Corollary 1.6. (Correspondence with Winskel's Safe NetsWinskel's category of safe nets
(Winskel 1986), calledNet, is a full subcategory d$afe.

Proof. The conditions given in the above proposition are a chariaet®on of morphisms
in Net (Winskel 1986, Proposition 3.1.9), while the objectsSife strictly contain the objects
in Net. In fact, the objects oNet are the objects obafe with sets of places, initial markings
and post-sets which are non-empty, and withisolated places-places belonging neither to the
initial marking nor to the pre- or post-set of any transition ]

Another important class of nets is thatafcurrence netsThey are safe nets which a nicely
stratified structure whose minimal elements constitutertti@l marking.
Notation Fora € Sy, we use®a to indicate the seft € Ty | a € [0y (t)]]}. Dually, a® is {t € Ty |a €
[0%,(t)]}. These notations are extended in the obvious way to setacépl
Definition 1.7. (Occurrence Nets)An occurrence neis a safe ne® such that
(i) ac]ug]ifandonlyif*a=o;
(i) Vae Sg, |*al <1, where|_| gives the cardinality of sets;
(i) < isirreflexive, where< is the transitive closure of the relation

<l={(at)|ac S, teTo,tca"}u{(t,a)|ac S, t € To,t € *a};

moreoveryt € To, {t' € To | t' <t} is finite;
(iv) the binary tonflict relation # onTg U S is irreflexive, where

Vit € To, t1 #mtr & [[a%(tl)]] N [[a%(tz)]] # @ andty #to,

X,y € ToUSg, X#Y & Ity,to € Tg : t1 #ntx andt; < xandty <,
where= is the reflexive closure ok.
This defines the categofcc as a full subcategory ®afe.

From Definition 1.7 and Corollary 1.6, it is immediate to degtWinskel's category of occur-
rence nets (Winskel 1986), s&¢cw, is a full subcategory dDcc. However, since all the results
in (Winskel 1986) easily extend ®afe andOcc, in the following we will ignore any difference
betweerafe andNet and betweei®cc andOccyy.

2. Composition of PT Nets

Products and coproducts are important constructions tsy ard generally in categories of mod-
els for concurrency, due to their natural role, respeatjialthe operations of parallel and non-
deterministic composition (Winskel 1987). In this sectime show that the categoRyT Nets has
both products and coproducts and, studying the relatipsdbétween the computations of the
composed nets and those of the original nets, we clarify iatwhnse products and coproducts
are related to the operations of parallel and non-detestigréomposition.
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While in the categories of safe nets and of occurrence nedugts and coproducts exist
(Winskel 1987), the category of PT nets with initial marlsrigtroduced in (Winskel 1987) has
products but does not have coproducts. In (Meseguer andavlarit1990), it is shown that co-
products exist in the full subcategory of PT nets whosedhitiarkings are sets rather than mul-
tisets. However, due to the additional conditiehif Definition 1.1, we can prove the existence
of coproducts of any pair of objects Rl Nets.

Definition 2.1. (Product of Nets)Given the PT netsly andN;, we define
No x Ny = ( <02, 0% ¥R (Tho X Ty, (0,0)) — S x 1,(uNO,uN1)) :

SinceSY x K, = (S + S)™ s and S x K = (Sy + Sy,) ™ =, where+ is the disjoint
union of sets, we have thhl x Ny is indeed a net with place®, + Sy, . Example 2.2 illustrates
the above definition in a simple case.

1@ O i

No Nl NO x N1

Example 2.2.

The PT net$\y andN; and their produchy x Ny

Now, consider the projectiormg: No x Ny — Ng andmy: No x N; — N; defined byrg ((to,t1)) =
ti andTg ((ug,uz)) = u;. Itis easy to see that they are morphism&Nets.

Proposition 2.3. (Product of NetsiNg x Ny, with projectionsty andry, is the product oNp and
N in PTNets.

Proof. Observe that, given any PT ndtand two morphismbg: N — Ny andh;:N — Nz, the
map(hg,h1):N — Np x Ny defined by

<ho,h1> (t) = (ho(t),hl(t)) and(ho,h1>(u) = (ho(U),hl(U))

is a PT net morphism. Clearly o (hg, h;) = h;, and(hg, h;) is the unique morphism for which
that happens. O

The product of the netsly andN; is their parallel composition withsynchronizationin the
precise sense that each step sequend ofN; is the parallel composition of a step sequence
of Np and a step sequence Hf, and viceversa. Since transitionsdf x N; are of the forms
(t0,0), (0,t1) or (to,t1), for tj € Ty, i = 0,1, the product models bothsynchronousind syn-
chronousinteractions olNg andN;, where transitions of the foritip, 0) or (0,t;) correspond to
eitherN; or Ny staying idle, while transitions of the forifty,t;) correspond to steps in which
both Ny andN; proceed together, synchronizing to each other. This refsuihally stated in the
next proposition, coincides with those in (Winskel 1987;d9dguer and Montanari 1990).
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In the following, given a PT net morphismNg — Ny, we will denote byh® the unique_)? =—
homomorphism fromT,j‘g"" to T,j‘f‘” generated by the transition componenthofObserve that,
since such a component is a functibi?, maps finite multisets to finite multisets. In particular,
h® can be defined on such multisets simply by(t) = h(t) andh®(a @ B) = h®(a) & h®(B).
Proposition 2.4. (Product and Parallel Composition)The sequencen,xn;, [0o) - - - [0n)V be-
longs toss[No x Ny] if and only if the sequencs; (Un,<n, ) [T (0lo)) - - - [T (0n))T5 (V) belongs
to ss[Ni], fori =0,1. Thereforey € ® [No x Ny if and only if 15 (v) € ® [N;] fori =0, 1.

Proof. It suffices to show thatifa)v is in S[Ng x Ny] if and only if 1 (u) [1t"(a)) 15 (V) is in
5[Ni],i:0,1. o
Supposex = P; (té,ti). The ‘only if” implication follows directly from the fact tht p andm
are PT net morphisms. In fact, by definition ofN], u[a)v in $[No x Ny] if and only if u =
Wd juj, v=wa @;Vj, and(t},t}):u; — v; are transitions oNo x Ny. Thus, we have that
TE (té,t{): T (uj) — T§(v;) is a transition (possibly 0) dfi. Therefore, foi = 0,1,

(T (w) & ;5 (uy)) [B; T8 () (T8 (w) @ B TR (v;)) is in [N,

i.e., 1 (u)[1” (a)) 15 (V) belongs tas [Ni].
In order to show the ‘if’ implication, observe thigt H(u) — TH(Vv) in Ng andt;: 14 (u) — (V)
in Ny imply (to,t1):u — v in Ng x Ny. Now assume thatg (u)[re” (a))m5(v) in S[Ni], i = 0,1,
u=(u,ut), andv= (V°,v}). By definition ofs[N;], we haval =w & @; u,,V =w & @; v}, and
Tn(tcj,,t{):uij — Vi in Ni. Now consideu; = (u?,ul), vj = (V,v}), andw = (w?,w!). Clearly, we
haveu=w® @ uj, V=wo D V; andn‘i(té,t{):ru(uj) — TE(vj) in N;. Therefore(tg,t{): uj —
vj in N;, and we have

(we D u;) [D;(t.1)) (W jvj) in S[No x Ny,
i.e.,ufa)vin $[Ng x Ngl. U
Example 2.5. (Parallel Computations)Consider again the nets of Example 2.2.
The step(2a,3b)[(to,t1))(c,2b@ 2d) of Ny x Ny corresponds to the steps)c of Ny and
3b[t1)2b @ 2d of Ny, while (2a,3b)][(tp,0))[(0,t1))(c,2b @ 2d) corresponds to&tp)[0)c and to
3b[0)[t1)2b 2d.

We now consider coproducts T Nets. To this purpose, lettingd stand for the coproduct
in the category of multisets (with possibly infinite multigties) and(_)* *—~homomorphisms,
observe tha'~ & S)'* = (§+ ;)™ =. Given the PT netdp andNy, let uy, = € nig and
un, = @ m;bj, and consider the s&n, = (Sy, — [Uno]l) + (S — [lun,]1) + ([ung ] X [un,]])
and the(_)* *—homomorphisms;: ([[uNi]])M"° — ([ung]] x [[uNl]])M"", i = 0,1, defined by

ao(a) = @jlcm(ﬂ%mj)(ahbj)
alb) = @™ )

where Icm denotes the least common multiple.iFer0, 1, lety, bea; ® B;: S,’Qf“’ — S"= where
Bi is the injection of(Sy — [un])™ = in (Sy, — [ung] + Sy, — [luny])) ™=, and Iet6‘Nj beyj o
aiNj:(TNj,O) — 4w, fori, j=0,1.
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Definition 2.6. (Coproduct of Nets)For Ng andN; PT nets, define

NNy = (18828, ), Bk 3 (T 0) — Sy Yoltng) = va(uny) )

where(T,0) is the coproduct of pointed sef&y,, 0) and(Ty, ,0), i.e., the quotient of their disjoint
union obtained by identifying the two pointed elements, mg 3}, ] denotes the unique pointed
set morphism induced from the coprod(i€t0) by 6' andd),

Example 2.7.

a@ @b (a,b)

No No + Ny
The PT netd\g andN; and their coprodudtly + N;
The injectionsn;:N; — Ng+ Nz, i = 0,1, are defined as
in = (Ki, ¥i),

wherek; is the injection of(Ty;,0) in (T,0). It is immediate to see that the, are PT net mor-
phisms.

Given a PT neN and a pair of morphisnis: No — N andh;:N; — N, let[hg, h1]:No+N; — N
be the map such that

lho,ha] () = hi(t))  ift=ini(t’) fort' e Ty,
[ho, hy](c) = hi(c)) if c=in;(c’) forc’ € Sy — [lun ]
o, ] (@, 1) = 1 gy O | o € Tho(a) ] a(oy )] |

whereny is the coefficient o, in uy. To simplify the notation, in the proof of the following
proposition we will denotéhy(a; )] N [hi(b;)]] by [O(a;, bj)]-

hi
hi(

Proposition 2.8. (Coproduct of Nets)Ng + Nz, with injectionsing anding, is the coproduct of
No andNy in PTNets.

Proof. We show that for any PT nédl and for any pair ot PT net morphisrhg: Ny — N,
h1:Ny — N, [ho,hy] is the unique morphism iPTNets such that[hg, hy] oin; = h;. First we
have to show thalhg, h] is well-defined, i.e., thaty,/lcm(n;,m;) is actually a natural number.
If ¢ € [ho(&)]] thenhp (&) = rkck @ u and sohp(nia ) = nirkCk @ Niu. Thus, by definition of PT
net morphisms, we know that,(c) = njrx and so it must be;r, = ng. In the same way, there
existsgy such tham;gx = ny. Thereforen is divisible by len{n;, m;).

Now, observe thdhg, hi] oin; = h;. This is clear for transitions and for places3g — [un.]]. So,
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considerg; € [[un,]. We have

o) (ing(a)) = [Po.h) (@, <" (o b))
@; <) ) (@, by)

_ lcm(n;, m;)

= @ n " O s O o [0 byl |
= @j{%(ck‘cke[[lj(aivbj)]]}-

Since for eaclay € [[ho(a;)]] there exists a uniqug such that, € [[hy(b;j)]], the last term is equal
to

@ { fox | ace lho(@)] | = Brec | ho(ar) = ricd U} = ho(ay).

The same argument goes throughlipe [uy, ]|

To prove uniqueness, suppose that there ekistsch thathoin; = h;. Clearly,h = [ho,h;] on
the transitions and on places 8, — [[un,]] and inSy, — [un,]. Therefore, in order to show
thath coincides with[hg, h;] we need to show that it does so fi@;, bj) € [[un,] x [[un,]. Since
h(ino(a;)) = ho(a;) andh is a morphism, we have

@jwh(aabj) = ®{ o] o< Tho(a)]}
= @j{?]—'i‘ck\cke[[m(ai,bj)ﬂ}
3, Icm(g:,mj)

(@] iy | o < [0G@byT}).
In the same way, we obtain that
b — e, lem(ni, m;) N b
i@ by) = @~y B4 o | o< 0@, by)] |
Now fix i and j. Sincecy € [[[(a;,b;)] for a unique paira;,b;j), the summands in the above

equalities are all distinct except f®{lcm(?17li(mj)ck | ¢ € [O(ai,bj)]}, which appears in both.

lcm(n;, m;)
imy

&~ m

Therefore it must be
h(ai,bj) = L’ O(ai,bj)] | which is[ho, hd)(ai, by ).
(@.51) = @ formirncrmyy O | O € [0(@by)] | which is[ho b a by)
The last thing we have left to show is thhg, h;] is a morphism irPTNets. But now this task is
trivial and is therefore omitted. ]

The coproduct oNy andN; is their non-deterministicomposition in the sense that the two
nets are put side by side to compete for common resourcesn@pkDifferently from the CCS
non-deterministic operator (Milner 1989), the result aftsa composition cannot be seen simply
as the system which performs an initial choice between pggkie control td\g or to N; and
discards the net which has not been chosen. Nevertheleskinkehat it gives the right notion
of non-deterministic composition of PT nets. In fact, simceesource can be consumed and
produced several times during a single computation, it &sitde that the composed net returns
several times to a state in which common resources are prasdrthe two nets compete for
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them. Clearly, there is no reason why the outcome of such etitigms should always favor the

same net.
l (a’b,)/@
S
<O

<O

No Ny No + Np

Example 2.9.

The initial marking(a,b) of No+ Nj is a state in which a resource is non-deterministically as-
signed either tdg or to t;. This state is reached again and again, and each time theecisoi
repeated.

Itis easy to think of pratical situations which can be susfidly described by this kind compo-
sition. For instance, in the example abagenay be a process locking, accessing, and unlocking
a file (whose local name i3), while to may be a process trying to lock the same file (with local
namea, though) in order to remove it. Whegsucceeds, it makes the file not available anymore
tot;.

The kind of behaviour illustrated above is characteristitie coproduct in many categories of
models which admit cyclic behaviours, like, for instaneansition systems. In addition to that,
since the resources are present in multiple instancesifiteuibkens in a place), while the com-
putations ofNp andN; are also computations 6§ + Ny, they are not the only computations that
the coproduct net can perform: the non-deterministieractionbetweerNg andN; gives rise to
joint computations which are not purehjectionsof computations from one of the original nets.
In other words, since providingy with the resources it needs does not necessarily consume all
the available instances of such resources, it is possiaté\thcan also have, at the same time,
other instances of the same resources. This is shown by ltbevifog example.

Example 2.10. (Non-Deterministic Computations)

a(ss) (e b (ab)
=
SR O o

The steps @, b)[2tp)2c and §a,b)[3t1)3d of Ny + N; correspond to the ste@ty)2c of Ny and
to the step B[3t;)3d of Ny, respectively.
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The step 6a,b)[to®t1)c d is a computation oy + Ny which is not the image of a computation
in one of the original nets.

Another practical example modelled by this constructioryrba the following. Suppose
that 2a and 3 both model a memory of 6Mb whidg sees as partitioned in two blocks by 3Mb
andt; as partitioned in three blocks by 2Mb. Then, a firinggfof t;) represents the consump-
tion of 2Mb (of 3Mb) of memory assigned tg (tot;). When the processes are put side by side
to compete for the available resources, i.e., 6MB of mentbg/possible outcomes are exactly
described by the néy + N; above, where the tokens now represent a partition of the meimo
six blocks by 1Mb.

As anticipated above, all the computations which eittygor N; can perform are computations
which Np + N; can perform; viceversa, all the computationd\gf+ N; consisting of markings
and steps fronl\; are actually computations &f. This is stated in the next proposition, whose
proof simply follows from the fact thaing andin; are PT net morphisms and is, therefore,
omitted.

Proposition 2.11. (Coproduct and Non-Deterministic Compeition) The sequence of steps
ini (un)[ini® (ag)) - - [ini® (an) )ini (v) belongs tas.s [Ng + Ny] if and only if the sequence of steps
un; [0o) - - - [on)v belongs tas s [Ni].

In order to strengthen the intuition about the coproducstmuttion, it is worth recalling that
in the case of safe nets all the resources are present in aauoigy. This fact can be thought of
as forcing a choice between the two nets in the assignmeesofirces. Therefore, for safe nets,
the computations dfly + N; are alternating sequences of computations of the origietal ne.,
each step is either a steplg§ or a step ofN;. This is stated in the next proposition, which is a
rephrasing in the present context of (Winskel 1987, Thedetrh, pg. 219) and whose proof is,
therefore, omitted.

Proposition 2.12. (Coproduct and Safe Netshet Ny andN; be safe nets. Then[a)v is in
S[No -+ Ny, for u e % [No+ NyJ, if and only if there exist € {0,1}, U € % [N;], andu/[a’)V/ in
S[Ni] such thatn; (u') = u, inj(V) = v, in(a’) = a.

It follows that all the step sequencesNyf+ N; are of the form

inig (Un, )i, (aro)) iy (an)) -+ inf  (arge—a))) [ing (0))imi, (),

whereiy,... ik € {0,1}, v € ® [N, ], anda;j is a step oNi,j=1....k
Thereforep € ® [No+ Ny] if and only ifu=in;(u;) for u; € £ [Nj] andi € {0,1}.

It is interesting to observe how in this case the standardochyzt construction actually im-
plements a sophisticated mechanisndadtributed choice. Consider two safe net and Ny
whose initial markings are respectively® - - - @ a, andb, @ - - - ® by Then, the initial marking
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of Np+ Ny can be thought of as anx mmatrix whosg(i, j)th entry represents the tokéa, b; ).

by bj b

a

an

It follows from the definition ofd,?,ﬁ,\,1 that if g is in the pre-set of a transitiag in Np, then
the pre-set ofy in No + Ny containg(a;,b;) & --- @ (a,bm), i.e., a whole row of the matrix. Now,
since a transitioty of No enabled at, requires at least one of the tokensug, in order to
fire, saya;, the firing oftg in Ng + Ny will consume all the tokens in thi¢h row of the matrix.
It follows that no transition oN; can be enabled, since for afy=1,...,m, the token(a;, b;)
is missing. Therefore, the firing &f prevents any transition d; from firing until the possibly
cyclic behaviour olNg + N; eventually generates again the tokenang, ; -

We conclude this discussion about coproducts considenagase of occurrence nets. Since
cyclic behaviours are not possible in occurrence nets,dpeodiuct net, after having performed
the first step, cannot reach anymore a state in which comnsonrees are available. In this case,
therefore, the coproduct net can be seen as the system wdriihims an initial choice between
the original nets—by assigning to one of them the resourtceséds—and forgets about the
other. This is formally stated in the following proposition

Proposition 2.13. (Coproduct and Occurrence Netsl)et ©y and®; be occurrence nets. Then,
all the step sequences®f + ©1 from the initial marking are of the form

ini (Ug, ) [in” (ao)) - -- [in{” (ouc) )ini (vi),
wherei € {0,1},v; € % [©j], andaj is a step 00, j =1,...k.

We conclude this section with some remarks about the relstiips between products and
coproducts in the other categories of nets introduced iti@et.

Itis easy to see that products and coproducseafiweightedndsafenets viewed as objects in
PTNets are again, respectively, semiweighted and safe nets. fidrer@roducts and coproducts
exist inSWNets andSafe and they are given by the corresponding constructions waetkfor
PTNets. The same applies woproductsn Occ.

However, the product of two occurrence net$ifiNets is not necessarily an occurrence net.
This can be seen by looking back at Example 2.2, which shaatgtndition {{) in Definition 1.7
of occurrence nets is not preserved by the product congirudilevertheless, products exist
in Occ. In particular, the result that theroduct of two occurrence nets is (isomorphic to) the
unfoldingof their product in as safe nets (Winskel 1987) can be imntelyixtended to our
setting by considering that the unfolding of PT nets definerktcoincides on safe nets with
Winskel's (see the following Theorem 4.8).
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3. Decorated Occurrence Nets

In this section, we introducPecOcc, the category oflecorated occurrence neta type of oc-
currence nets in which places are grouped into familiesy Hilew a convenient treatment of
multiplicity issues in the unfolding of PT nets. We shall tise following notational conventions:
[n,m] for the segmen{n,...,m} of w;

[n] for [1,n];

[Kli for theith block of lengthk of w— {0}, i.e., [ik] — [(i — 1)k].
Definition 3.1. (Block Functions)We call a functionf: [n] — [m] ablock functiorif and only if
n=kmandf (ki) ={i},fori=1,...,m.

In other words, a block function frofm] = [km to [m] is a function making the diagram

mtimes
= K + + K
|
mox [ o+ o+ (1

commute, where the upper isomorphism maps the segfkjgrio theith copy of k], and the
lower maps to theith copy of[1].

The place componegtof a PT net morphisnf,g): Ng — N; can be thought of asraultirela-
tion (with possibly infinite multiplicities) betwee&y, andSy,, namely the multirelatiog such
thatagnbif and only ifg(a)(b) =n. Indeed, this is a (generalization of a) widely used forzali
tion of net morphisms due to Winskel (Winskel 1984; Winsk@81). In the case of morphisms
between occurrence nets, since by definition such nets lwigplated places-i.e., places be-
longing neither to the initial marking nor to any pre- or pest—as an immediate corollary to
Proposition 1.5, we have thgtis arelationand that the inverse relati@?P, defined bybgfPa if
and only ifagh, restricts to (total) functiong2’: [[un, ] — [un,] andg‘{’t%: 9N, (f(t)] — [0y, (V)]
for eacht € Ty,. We will use these functions in the next definition.

Definition 3.2. (Decorated Occurrence Netsh decorated occurrence net an occurrence net
© such that:

(i) Sois of the formUaca, {@} X [Nal, for some sef, where the sefa} x [ng] is called the
family of a. We will usea’™ to denote the family of regarded as a multiset;
(i) VaeAg, ¥x,ye{a} x[ng, *x="y.
A morphismof decorated occurrence net6, g): ©y — ©; is a morphism of occurrence nets
which respects families, i.e., for eaff | C Sg,, givenx = *[a" ]—which is a singleton set or
the empty set byii() above and the definition of occurrence nets—we have:
(i) 9(@) =i, b, for some index se;
(i) Taog’Poiny is a block function, where
T, is the projection of a} x [na] to [nal,
;1 is the inverse bijection frorn,] to {a} x [ny], and
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9°P: {bi} x [ng] — {a} x [ng] is o3P restricted to{b;} x [ny,].
The composition ini{) can be summarized by means of the diagram

op

(a) [N 2 {by} x [ny]
| v
[na] op 1 [nbi]

Taog; "oTh,

This, with the obvious componentwise composition of maspis, defines the categddecOcc.

A family is thus a collection of finitely many places with thense pre-set, and a decorated
occurrence net is an occurrence net where each place bemegactly one family. Families,
and therefore decorated occurrence nets, are capableaflieg relationships between places
by grouping them together. We shall use families to releaegd which are instances of the same
place obtained in a process of unfolding. Morphisms treaiilfas in a special way: they map
families to families (conditiom) and they do that in a unique predetermined way (conditijpon
This allows us to focus exactly on the fact that, sflyjs mapped tdF . Since the way to map a
family to another family is fixed by definition, in the follomg we will often define morphisms
just by saying which families are sent to which families.

Observe that the full subcategory@écOcc consisting of the net® with S = UaeAe{a} X
[1] is (isomorphic to)Occ. Observe also that, since the initial marking consists tyac the
elements with empty pre-set and, by poiin} {n Definition 3.2, elements of a family have the
same pre-set, for a decorated occurrenceiges of the formep;, af .

The following is a useful property of decorated occurrenee morphisms which directly
follows from their definition.

Proposition 3.3. (Decorated Occurrence Net Morphismsl.et ©y and®; be decorated occur-
rence nets andf, g): ©y — ©; a morphism irDecOcc. Then

V"] < [un, ], 3![a"] < [lu,] such thaflbF] < [[g(a™)] and
vt € Tog, V[b7] C [0R, (f(1)]. 3![a"] < [0}, ()] such thaflb"]] < [[g(@")].
We have seen that for occurrence nets and decorated occairets simple concepts of causal

dependence<) and conflict (#) can be defined. The orthogonal concept isstheoncurrency.
Definition 3.4. (Concurrent Elements)Given a (decorated) occurrence fetwhich defines<,
< and #), we can define
— forx,y € ToUS, xcoy ifitis not the case thax < y ory < x or x#y);
— for X C ToUSe, Co(X) if ¥x,y € X, xcoy, and|{t € To | Ix e X, t <x}| € w.

As a first step in relating the categoriéscOcc andPTNets, we define a functor from deco-
rated occurrence nets to PT nets.
Definition 3.5. ((_)": from DecOcc to PTNets) For © a decorated occurrence net, let the map
()" S5 = — Ag “ be the(-)* *—homomorphism such théa, j)* = a. Then, define®" to be
the net((_)T 003, (1) 003 (Te,0) — AY, ug).
For a morphisn{f,g):9p — ©4, let(f,g)*:0f — ©f be(f,(_)Togop) wherep:Agooo — Sgow
is the ()™ =~homomorphism such thata) = (a,1).
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The following example shows the result of applyifg™ to a decorated occurrence net. In
all the pictures to follow, a family is represented by dragvits elements from left to right in
accordance with its ordering, and enclosing them into ah &aailies of cardinality one are not
explicitly indicated.

Example 3.6.

(] [t]
cQO O c( Od

A decorated occurrence n@tand the ne®™

Proposition 3.7. (_)* is well-defined)®* is a PT net andf,g)™ is a PT net morphism.

Proof. The first statement is completely clear. Let us show the skd@anditions ) and i)
are trivial while condition ¥) derives directly from Proposition 3.3. Observe that(&,i) =
@ (PB{b} x [kli), then, by definition ofy, we haveg(a, j) = &, (P{b} x [k];) and thus
g(ai)” =@ kb =g(a,j)*. Thereforeg(u)™ = ((-)* ogop)(u®).
(iil). () 0gop)(Ugy) = ()" 0gop)(ud,) = g(uey) " = Ug, = Uo:-
V). (()70gop)(@: () = ((-)"2goP)(9,(t)")

= 900, (1) = 0, (F(1)" = 9, (F(1)). O

Proposition 3.8. (_)":DecOcc — PTNets) (_)*:DecOcc — PTNets is a functor.

Proof. Clearly, (id,,ids,)" = (idt,,ida, ). Moreover, giverih,k) o (f,g): 09 — ©1, we have
that for eachu € AZ =

() okop)o ()T ogop)(u)

\
—~
I
+
(]
=~
(]
o
+ —~
—
«Q
0]
=
~
—~
c
=
+
~—

So,((h,K) o (f,9))" = (h.k) "o (f,g)". O

Nets obtained vid_) ™ from decorated occurrence nets have a structure very sitoitaat of
occurrence nets. We will denote ByecOcc™ the full subcategory oP TNets consisting of (nets
isomorphic to) nets of the for®™.

Proposition 3.9. (Structure of Decorated Occurrence Netdf © is a decorated occurrence net,
then@T is a PT net such that:

(i) acug+]ifandonlyif *a=g;
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(i) Vae So+, |*al <1;
(iii) the relation< is irreflexive andvt € To+, {t' € To+ | t' <t} is finite.

Moreover, if® is (isomorphic to) an occurrence nét! is an occurrence net isomorphic@o

Let 8 range ovelOcc, DecOcc and DecOcc™. Thanks to the stratified structure of the nets
in 8, for them we can define the conceptsdefpthof elements and, consequently,safbnet of
depth n Essentially, this will allow us to work on such nets by intion.

Definition 3.10. (Depth) Let © be a net in3. The depthof elements inTo U Sy is defined
inductively by:

— depthb) =0 if b e [uell;

— depthb) = deptht) if {t} ="°b;

— deptht) = max{depth{b) | b <t} + 1.

Definition 3.11. (Subnets of a Netfsiven a ne® in 3 define itssubnebf depthn, @, as

— Tom = {t € To | depthit) < n};

— Som = {b€ S | depthb) < n};

— 02, anda_, are the restrictions afg anddg to Ten;
—_ u@(") = Up.

Clearly, ®" is a net inB, whenever© is such. For eacim < m there exists a morphism
inp,m: @ — ©M whose components are both set inclusions. In the followiaghall call such
net morphisms simplinclusions Observe that, if f,g): ©y — © is an inclusion, we obviously
haveug, = U, and, for each € Tg,, aieo (t) =g, (t),i=0,1.

The sequence of ne&", n € w, can be seen as a sequence of finite approximations which,
together with the corresponding inclusions, determi®asniquely (up to isomorphisms). We
shall formalize this intuition by means of the categoriaation of colimit. The following results
will allow us in Section 4 to define the unfolding of a PT hein terms of finite unfoldings, viz.
its subnets of depth. We first need to show tha possesses the required colimits. Consider
the categoryo= {0 — 1 — 2 — 3:--} and the clas® of diagrams: w — 3 such thaD(n —
n+1) =iny:D(n) — D(n+ 1) is an inclusion. For such a class we have the following restitie
reader is referred to (MacLane 1971, 111.3) for the defimitid the categorical concepts involved.

Proposition 3.12. Colim(D) exists)For anyD € 9, the colimit ofD in 3 exists.

Proof. Consider the ne® = (6%,6%: (Te,0) — &, u@) where

To=UnTom  So=UnSm  Uo="Upq)
J(t) = Oy (t) for anyn such that € Ty ).

Clearly,® is well-defined, is a net, and belongs#o
Now, for anyn, letp,: D(n) — © be the obvious inclusion. By definition we hawe= 1 0iny.
Now consider a family of morphismg,:D(n) — @', n € w, such thatt, = 1,1 oiny. Define
0:0 — @ as follows.

o(t) = ta(t) for nsuch that € Ty,

T
o(a) = Tn(a) for nsuch that € Syy).
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Clearly,o is a morphism ins. Now consideio o p: D(n) — ©'. We have that, for anye To(n)»
a(t) = ta(t) and for anya € Sy(n), 0(a) = ta(a). Therefore, since, is an inclusion, we have
0oy =Ty, for eachn € w.
Given anyo’:© — @, suppose that’ oy, = T, for eachn € w. Sincet € Tg (a € ) belongs to
Ton) (to Sp(n)) for somen, we have that'(t) = Tn(t) = o(t) (0'(a) = tn(a) = o(a)). Therefore,
o =o. 0
Proposition 3.13. @ is the colimit of its subnets)Given a ne® in 3, letDg: w— 3 be the func-
tor such thaDe(n) = O andDe (N — N+ 1) = iNppy1: O™ — MY, Then® = Colim(Dg).
Proof. SinceDg € D, we are in the conditions of the previous proposition. Sis, énough to
observe that the colimit construction for diagramirin the proof of that proposition gives a
family pn: D(n) — ©, n € w, wherep,: @ — O is the inclusion oM in ©. O

The next proposition shows thaf) ™ behaves well with respect to, namely to apply_)™ to
@ in DecOcc is to apply it pointwise tdg and then take the colimit iBecOcc™ of the resulting
diagram.

Proposition 3.14. ()" preserves the colimit ofDg) If 8 = DecOcc, then Colin{Dg)* =
Colim(D{).

Proof. Since the previous proposition states that e@cis completely identified by the di-
agramDg, it is enough to observe théit] is exactlyDg+. So, ColimD{) = Colim(Dg+) =
O = Colim(Dg)™. [

4. PT Net Unfoldings

In this section, we define thenfoldingof PT nets in terms of decorated occurrence nets and
show that it is a functor frorRTNets to DecOcc which is right adjoint ta(_)*.

We start by giving the object component of such a functor.his &€nd, given a nell, we
define a sequence of decorated occurrence nets, wilogdement approximates the unfolding
of N up to depth, i.e., it reflects the behaviour of the original net up to feguences of length
at mostn. Clearly, the unfolding oN will be defined as the colimit of an appropriatediagram
built on the sequence of approximating nets.

The purpose of the following inductive definition is to geaterall the possible instances of
places and transitions &f by decorating them with theihistory. The families of places in the
approximating nets represent instances of place$ wfth the same history. Precisely, they are
pairs(x,b), whereb € Sy andx is a set encoding the history of these instances dherefore,
the places are triplggx, b),i), i determining the position of the place in its family. Analagty,
the transitions are paif®,t) wheret € Ty and the seB represents the history of the instance
of t.

Definition 4.1. (PT Nets Unfoldings: [ ]) Let N = (3%,0%: (Tn,0) — S ,un) be a net in
PTNets. We define the nets [N]®) = (2, 0%: (Ty,0) — S, u), for k € w, where:

— S=U{{(,b)} x[n] [ un(b) =n};

— To = {0}, and thedj, with the obvious definitions;

— U=D;

for k > 0,
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o B= {((Xj,bj),ij) ‘ i EJ} C S1, Co(B), t € Ty, @jEJbJ Za%('[)
(Bit) e Ty and 0°(B,t) =B
to=(B,t) € Ty, 0y (t) = Djeanjb;
{({IO}abJ)} X [nj] C&, vVjed, and a&(to) = @j,lgignj (({IO}vbj)’i)
— u=@;((2,b)),i}) =B = o

Therefore, informally speaking, the na{N](© is obtained by exploding in families the initial
marking ofN, and u [N]("1) is obtained, inductively, by generating a new transitiondach
possible subset of concurrent placestN](™ whose corresponding multiset of placeshof
constitutes the source of some transitiaf N; the target of is also exploded in families which
are added tau[N](™1). Clearly, we shall definaz[N] as the colimit of the sequence of the
«[N]™, n € w. To do that, we first need to prove the following lemma.

Lemma 4.2. (u [N]m) is a decorated occurrence netfor alln € w, «[N]™ is a decorated oc-
currence net of deptin Moreover, for each € wthere is an inclusiomp: @ [N]™ — «[N]"+1),

Proof. Thatw [N](" has dept and that there exists an inclusion framjN](" to @ [N]("+1)
is obvious from the definition. We have to show thaiN](" is a decorated occurrence net. For
eacht € T,, d\(t) is a multiset where all the elements have multiplicity ore, ia set. The same
happens fouy.

(i) Observe that for eact{x,b),i) € Sy, *((x,b),i) = x which is the empty set or a singleton.
So|*((x,b).i)| < 1.

(i) Moreover,((x,b),i) € [uy] iff x=@ iff *((x,b),i) = @.

(i) By definition of u[N](™, whenevex <!y <! z, deptt{z) = depth{x) + 1. Sincex,z€ T,
orx,z€ S, implies that there exists at least opsuch tha < y <* zwe have deptfx) <
depth{z). Sox # zand< is irreflexive. This, together withYand (i), implies that, in each
reachable marking, every place has multiplicity at most. dndact, since that happens
in un, since each place has only one pre-event and each transitmurs at most once
in any computation, there is no way to generate multiple iski@ a place. Moreover,
WVt e Ty, {t' € Ta |t <t} is finite, because of the definition of Co.

(iv) #isirreflexive. Recall that#xiff 3t,t' € T, t At andt #,t’ such that <, xandt’ <, x.
So, by (), x cannot be a place, otherwise we would have backward bragchivis means
that there exisb, b’ € [83(x)], b # b such thab cob/, i.e.,x = (B,t) andnot Co(B). This
is impossible.

The other conditions of decorated occurrence nets obvidumt. ]
Definition 4.3. (PT Net Unfoldings: u[-]) We defineu[N] to be the colimit of the diagram

D:w — DecOcc such thaD(n) = «[N]™ andD(n — n+ 1) = in,. By Lemma 4.2D belongs to
D and so, by Proposition 3.12, the colimit exists and is a dgedroccurrence net.
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Example 4.4. l a CI)

b
bF
t2

Oe¢ 20 020 0

A PT NetN and (part of) its unfoldingz[N]

The correspondence between elements of the unfolding @mdeelts of the original net is
formalized by the folding morphism, which will also be theuoit of the adjunction.
Proposition 4.5. (Folding Morphism) Consider the mapy = (fe,g¢): 7 [N]™ — N defined by
— f¢(B,t) =tandfs(0) =0;

— G(Bi(xi, Y1) = Biyi-
Then,ey is a morphism irPTNets, called thefolding of @[N] into N.
Proof. Since the transitions oft [N]* are of the fornty = (B,t): (§B)" — (@C)", where

B = {((xj,b))ij) [ ] €3} € Sy C = {({to}, ) i) | k€ K}, t € T, Bjesbj = 0} (t), and
ek Ck = 04 (t ) we |mmed|ately obtain

e (3 (B.1)) = Oy (Fe(B.1))

Sinceuy, nj+ = @pes, Un(b) - (2, b), we havege (Uy i+ ) = Bpes, Un(b) - b= un. Concerning
condmon Q/) in Definition 1.1, observe thdlge(x,a)] N [ge(y,b)] # @ impliesa = b. So, if
(x,@) # (¥,b), then(x,a) & [[uyn+]] Or (¥,b) & [uyn+], because eithex or y must be non-
empty, and' (x,a) N*(y,b) = xNy= 2. 0

The next lemma s the final ingredient we need to provethat is right adjoint to(_) .
Lemma 4.6. (Occurrence Net Morphisms preserve ConcurrengylLet ©p and®; be (deco-
rated) occurrence nets and [ét g): ©p — ©1 be a morphism. Then, for eathe Tg,, we have
Co([03,(t0)] ) and Co{ [9(33, (t0))])-

Proof. Since, by definition of (decorated) occurrence néts<t} is finite, we havenot
Co([[d%o (to)]) iff Ib,b' € [[6%0 (to)] such thab#b'. This would mean thait,t’ € Tg,, t #t’ and
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t #n 1’ such that < b andt’ < b'. Thus, since <ty andt’ < tg, we would havdg #tg which
is impossible sinc®y is a (decorated) occurrence net. Furthermgfé%o(to)) = G%l(f(to)),
which is the pre-set of a transition of a (decorated) occwganet and so, by the first part of this

proposition, CO[g(93,(to))])- O
Theorem 4.7. (1)" 4 «[]) The pair{(_)*, u[]) : DecOcc — PTNets constitutes an adjunction.

Proof. Let N be a PT Net and:[N] its unfolding. By (MacLane 1971, Theorem 2, pg. 81),
it is enough to show that the foldirgy: [N]™ — N is universal from(_)* to N, i.e., for any

decorated occurrence né and any morphisnk: @ — N in PTNets, there exists a unique
h:® — @[N] in DecOcc such thak = gy oh™.

vk commutes.

Consider the diagram iBecOcc given byDg(n) = ©", the subnet o® of depthn andDg (n —
n+1) =inp:0M — 0™ We define a sequence of morphisms of gt®©™ — «[N], such
that for eacn, hy = hp; 1 0iny. Since® = Colim(Dg), there is a uniqub: © — @[N] such that
ho pn, = hy for eachn. At the same time, we show that

vne w, kot =eyoht 1)

and that theh, form the unique sequence of morphists®™ — «[N] such that (1) holds.
Now, by functoriality of(_)™, we have that

Vnew, kot =gyoh™op.

Then, since by Proposition 3.14 " oDg = Do+, and, by Proposition 3.18* = Colim(D§) =
Colim((-)™ o Dg), by the universal property of the colimit we must h&ve ey o h*. To show
the uniqueness df, leth’ be such thak = gy o h+. Then we havéo U =¢eno h+o Ur. Buthp

is the unique morphism for which this happens. Thereforegéahn, h, = h' o 4, and so, by the
universal property of the colimity= K.

Let us now defindn, and thereford: © — @[N], and show that thl,, n € w, form the unique
sequence of morphisms for which (1) above holds.

depth 0. Suppose thaig+ = @ nia;. Soug = P (P{ai} x [ni]). Assume further thak(a;) =
(&3] mlj blj. By definition ofk, sincek does not merge different places in the initial marking and
k(ug+) = un, we haveuy = v njmj blj, with blj ¢ [v]. Thus, inu[N] we have the places
Ui{(2,b))} x [njm]. So, we define

ho(ay.) = @) (@{(2.b)} x [m]).

We have h$ (aj) = (ho(ay,i))" = P; m1j(®,b|j) and
enohg (a)) = @ mb! = k(@) = ko g (ay)-
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Observe thalty so defined, lifting its place component t¢.a" “=—homomaorphism, is a morphism
0 — ¢[N] and that it is completely determined kwnd the conditions of decorated occurrence
net morphisms.

depth n+1. Let us suppose that we have defigd®™ — «[N] and that it is a morphism.
Suppose that for eaahn < n, hy is the unique morph|sm such tha§ o hit = ko um. Lethpi g
behy on the elements of depth less or equaht®dNow, we definéh, ; on the elements of depth
n+ 1. Lett; € To such that deptlt;) = n+ 1 andk(t;) =t. Since[[03(t1)] is a set of elements of
depth less or equal t@, hn(03(t1)) is defined. Sincé, is a morphism, by Lemma 4.6, we have
Co([[hn(03(t1))])). Moreover, sincey o ht = ko i}, we have that

OR (1) = k(9 (1)) = en o N (93 (ta)) = & o hiy (9@ (1)) )

=E&NO hn(aoe)(tl))+ = EBjeJ va
for J such that{ ((x;,b;),ij) | j € I} = [[hn(03(t))]-

Thereforeto = ([Mn(93(t1))]],t) = ([Mns+2(03(t2))],t) € Toynj- Now, sincehy 1 has to make the
diagram commuteh,;1(t1) must be of the formB,t) and, since it has to be a morphism, it
must bed?, n((B.1) =@®B= hn11(03(t1)). Thereforenn1(t1) = to. Observe that there is only
one choice foih,41(t1), givenk andh, by inductive hypotheS|s Obviousls, o hn+l(t1) =t=
K(t) = ko py 4 (t1). Now, letdg, (t1) = @i niai. S0dg(t1) = @i (P{a} x [n]) in ©. Suppose
thatk(aj) = @, r’n1J bJ By definition ofk, since it does not merge different places in the post-set
of a transition and<(61 (t1)) = 0k (k(t1)), we haved (k(t)) = v @, njm/bl, with b} ¢ [v].
Thus inu[N] we have the placeg { ({to}, blj)} X [njmlj]. We define

hnsa(@j.1) = @1 (@{ ({to},b)} x ().

So (@) = (hnia(ay,i)* =@ m({to}.b)) and

enohy y(a)) = @mb) =k(a)) =kopy ,(a)).
Observe thalnnﬂ(aj ,1) is completely determined byand by the conditions of decorated occur-
rence net morphisms.
Finally, we have to show thét,; is a morphism®(™1 — ¢/[N]. But this task is really trivial
because, by its own constructidn, 1 preserves source, target and initial marking and respects
families. [

Theorem 4.8. (Correspondence with Winskel's Safe Net Unfdings (Winskel 1986))Let

N be asemiweightediet. Then, the unfolding:[N] is (isomorphic to) an occurrence net and
therefore, by Proposition 3.9; [N]* =2 «[N]. Moreover, ifN is asafenet, 2 [N] is (isomorphic
to) Winskel's unfolding ofN. Finally, wheneveN is (isomorphic to) an occurrence net, the unit
of the adjunction((_)*, @[]): DecOcc — PTNets, Nn:N — @ [N*] =2 @[N], is an isomorphism.
Therefore,((-)", u[ ]) restricts to a coreflectiofr—, u[]): Occ — SWNets and to Winskel's
coreflection(—, 2[]): Occ — Safe.

Proof. Concerning the claimed correspondence, it is enough torebseat, wherN is safe,
our definition of[N] is such that(b,1) is a place inu[N] if and only if b is a condition in
Winskel's unfolding. Sou [N]™ andey are exactly Winskel's unfolding and folding morphism
for N. The other statements are evident. 0

Observe that the coreflection betwe®nc and SWNets allows us to extend immediately
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Winskel's chain of coreflections t8WNets, namely by composition with the coreflections be-
tweenDom andPES and betweerPES and Occ. The following example shows the semantics
associated by such a chain to a simple, well-known, nonssfeweighted net.

Example 4.9.

) O ) )

][]
Y

(o] [

N U[N]
Observe that the unfolding contains two concurrent copidgs Bhese correspond to the occur-
rences ot in two possible ‘causal contexts’, namdlgaused by; andt caused byt,. In the
picture below, which shows the event structure and the pailgebraic domain associatedNo
the four events so arising are labelled by the transitiop therespond to.

{tl7t27tat}

N

{t1;t2;t} {tl7t27t}

o SN N

\ \ ftt) [tt2) [t}

e N NS

£u[N] {tl}\ /{tz}
%)

LEU[N]

5. PT Nets, Event Structures and Domains

In this section, we show an adjunction between occurrentearal decorated occurrence nets.
Composing this adjunction with that given in Section 4, weagban adjunction betweédcc and
PTNets. Moreover, exploiting Winskel's coreflections in (WinsKel86), we obtain adjunctions
betweerPES andPTNets and betwee®om andPTNets, as explained in the Introduction.

We first define a functor from decorated occurrence nets tarogace nets. It is simply the
forgetfulfunctor which forgets about the structure of families.
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Definition 5.1. (¥ [-]: from DecOcc to Occ) Given a decorated occurrence @tlefines [©] to
be the occurrence nét. Furthermore, giverif,g): 9y — Oy, defineF [(f,g)] to be(f,g).

In order to define a left adjoint for ], we need to identify, for each occurrence @gta
decorated occurrence nef®] which is, informally speaking, glace-saturatetiversion of @,
in the sense that, whilst exhibiting the same behavio®,ascontains exactly enough families
to match in auniqueway the structure of any decorated occurrence net whossitiars are
‘similar’ to those of©. More precisely, the existence of an adjunction requirgd] to be such
that, for any occurrence néx,

Occ[O, 7 [©']] = DecOcc[P O], O]

i.e., the set of morphisms frof to # [@'] in Occ and the set of morphisms from[©] to @' in
DecOcc are isomorphic. It follows from this condition that eachnis#ion of »[©] must have
enough families in its post-set to ‘cover’ those in the psmtt-of any transition o®’ to which

it could be mapped by an occurrence net morphism and, at the 8me, it must not have too
many of them so that such a covering is realized by a uniquerd#sd occurrence net morphism
fromD[@]to @',

Because of the uniqueness requirement, saturating oocereets is a delicate matter: we
need to identify a suitable set of families which can ‘reprasuniquelyall the possible others.
To this aim are devoted the following definition and lemmaevehthe relation- is introduced
to capture the behaviour of decorated occurrence net merghon families—which will be
represented as strings on appropriate alphabets-pame stringsare meant to represent—in a
sense that will be clear later—exactly the families whichnaest add t@® in order to saturate it.

In the following, given a string on an alphabe¥, we denote théh element ofs by § and
its length by|s|. We shall useg;, i € w, to range ovek. Forn € w, of will denote the string
consisting of the symbat; repeatech times. Writing a strings as 021~~~0L'k we imply that
0i #0j 1,i=1,... . k—1.

Definition 5.2. (Prime Strings) Let >~ be an alphabet, i.e., a set of symbols. Define the binary
relation— on X, the language of non-empty strings Bnby

n .
ook oo =  Jgew gn=m,i=1...k

Define the language g@frime stringson X to be
sP—_s+_ {021022---0Ek |oi € Z, gedng,...,n) > 1},

where gcd is the greatest common divisor.

Lemma 5.3. (Prime Strings are primes)Givens € X there exists a uniquec =" such that
S .

Proof. Lets = 02‘1 . --O'Ek, whereg; # oj1. Considerh = gcd(my,...,my). Sinceh is the
unique integer such that is divisible byh for 1 <i <k and gccﬂ%,...,%) =1, and sincéh
always exists (possiblli = 1) we have thas = oTl/h~~-GE“/h is the unique prime string such

thats— s. O

We start relating strings and nets by looking at sets of placealphabets and at families
as strings on such alphabets. Given a (decorated) occerra® and a transitiont € Tg, we
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denote byz, the alphabeffod (t)]]. By analogy, since the places in the initial marking are & th
post-set of no transitiort, will consist of the placefug]); following the analogy, in the rest of
the sectiorug will also be denoted by} (o).

Since a familyb™ of a decorated occurrence n@tis nothing but an ordered subset of the
initial marking or of the post-set of a transition, it copesds naturally to a string iB; where
x = *[[bF], namely, the string of lengt{b™]]| whoseith element igb,i). We will write B to
indicate such a string.

Now, we can define the saturated net corresponding to anrecm@ ne®. It is the netp [©)
whose transitions are the transitiong®fand whose families in the post-set of a transiti@ame
the prime strings on the alphabets defined by®. It is immediate to see that this construction
is well-defined, i.e., thab [©] is a decorated occurrence net.

Definition 5.4. (»[.]: from Occ to DecOcc) Let © be a net inOcc. We define the decorated
occurrence neb [O] to be the ne(@% [@],a; CE (To,0) — ng[@] ,Up [9}), where

— Syje = U{{s} X {|s|} ’ se3Pand(x={t} CToorx= )};

— B0t = {(s,|) ‘ e [930)] }

— 0= {(s,lesp ‘se [0 (t)] } { ‘sez{t}}

— Uye s':‘

Example 5.5.

An occurrence ne® and (part of) the decorated occurrence D@d]
We now select a candidate for the unit of the adjunction.
Proposition 5.6. (Unit Morphism) Given an occurrence n@® consider the mape:© —
9 (O] defined by

Ne(t) =t
Ne(@) =®{(si) € Sye | s =a}.
Thenng is a morphism irDcc.
Proof. The non-trivial case is that of conditioiv) in the definition of morphisms:
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Ne(05(t)) = ®({no(a) | a€ [0} |
—®{(si) |s —aandac [051)]} =, ). 0

In order to illustrate the above definition, consideringiagiae net® of Example 5.5. For such
a net we have that

n@(cl) = (017 1) D (01027 1) D (0-20-15 2) S (0%025 1) S (0%025 2) D--- ;
No(02) = (02,1) & (0102,2) & (0201,1) & (0202,2) & - - .

Before showing that)g is universal, we need to develop further the relation betwesets
and strings. Since a morphism maps post-sets to postise&urally induces a (contravariant)
mapping between the languages associated to transititaieddy the morphism. To simplify
the exposition, in the rest of this section, foa morphism of net({t}) andk(), denote,
respectively{k(t)} anda; moreoverdd ({t}) denoted} t).

Definition 5.7. (s} from Z;(X) to 3F) Let ©g and®; be (decorated) occurrence nets,Ket
(f,0):©0 — O1 be a morphism and let= {t} C T, or x = @ andy be such thaff (x) =y.
Thenk induces a unique semigroup homomorphigfiirom Z; to = defined on the generators
b€ 05, (v)] by

Sk(b) = asuch thai € [, (x)]] andg(a) = b.

It follows from the properties of safe net morphisms in Pisifion 1.5 thatsy is well-defined,
i.e., there exists one and only cae [[6(190 (x)]] such thag(a) = b.

To clarify the relation betweer> and decorated occurrence net morphisms, observe that, in
the condition of the previous definition,F(E is a decorated occurrence net dnid a decorated
occurrence net morphism, thah — sX(b" ) if and only if k(aF) = b".

Example 5.8.Consider the nets in the following figure, where the morphf$ng) is such that
9(01) = 2, ®sg andg(0z) = s1.

Then, for instance, we have thq{ﬁ}w(slstsszsl) = 020502.

Finally, we show that [_] extends to a functor which is left adjoint o[_].
Theorem 5.9. @[] 4 #[.]) The pair(D][_], #[-]) : Occ — DecOcc constitutes an adjunction.

Proof. Let® be an occurrence net. By (MacLane 1971, Theorem 2, pg. &gitdugh to show
that the morphismng: © — ¥ ©[O] is universal from@ to 7, i.e., for any decorated occurrence
net® and anyk: ® — # [@'] in Occ, there exists a uniqu,g): ©[©] — @' in DecOcc such that
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k=7[(f,9)]one.
o 0[] o —° . so[o)
vk 3(f,g) s.t. N F(f.9)]  commutes.
7O o 7 (O]

Given®' andk, we define(f,g): (0] — @ as follows:

f(t) =k(t)

[B]Clo)] <= s— b)), wherex="[s"] andk(x) = "[b"]
First remark thatf,g) is well-defined: ifs= o}* - - - of" +— 5§(EF) then there is one and only one
way to have]b™] C [g(s7)], namely

g(s,i) = @{b} x [q]i,

whereq is the unique integer such tha§™ - .- of"" = 5|’(‘(5F).
Letx= {to} orx= 2. Observe thata € [0%, (X)]

¥(b, j) € [k(@)] 3(si) such thals,i) € [03,6/(X)] and(b, j) € [g(s,i)]- (1)

Moreover,(s,i) is the unique place im [0] such thats = aand (b, j) € [g(s,i)]. In fact, for
x = *a, by Lemma 5.3, there exists a unigse > such thats — 5|’(‘(EF). If (b,j) € [k(@)]
then, sincek is a morphismk(x) = *[[bF] and so there exists a uniqse in a;[e] (x) such
that [b7]] C [[g(s7)], i.e., 3 (si) € [[a;[e] (x)] such that(b, j) € [g(s,i)]]. Obviouslys = a, by
definition of s and—. Moreover, if there were another su@), j), thens' € =¥ sincea belongs
only to Zx. So by the previous lemnea= sand, sincey respects familiesj, = i.

Now, if (b, j) € [g(si)]}, thens— sX(B") and, therefores (b ) i_1qs1,- - KB )ig = S by
definition of —. Thus, by definition ofs, {b} x [q]i C [k(s)]]. So we have J{[a(s,i)] | s =
a} = [k(a)]. Obviously, all thel[g(s,i)] are disjoint andB[[g(s,i)]] = g(s,i), since the families
are disjoint. Therefore,

®{9(si)|s =a} =k(a).
It is now easy to see that the diagram commutes. For transittas is clear. Concerning places,
we have:

7[(f.9]one(@ = 9(@{(si) |s =a}) =ka).
Now, consider any morphisim » [©] — N which makes the diagram commute. Because of the
definition ofng on the transitiond) must be of the fornif,g’). We have to show that, necessarily
9=d.
Let [[bF] C [d'(s7)]. So, the family ofb must be{b} x [gn] for someq, wheren = |s|. Since
(f,d) is a morphism, givex = *[[s"] andy = *[[b], it must bef(x) = y. Since the diagram
must commute and™ is the unique family ina}j[@} (x) whose image containis™, it must be

{b} x [ € [K(s)] for i = 1,...,n. Therefore, we havg}(b ) = s---1 and sos+— s%(0'),
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which means, by definition @, that[[b™]] C [g(s7)]. Hence, we hav§y' (s7)] € [[g(s7)]. On the

other hand, suppog™]) C [g(s7)]. Thens+— 5§(EF),for somex. Necessarily, it must exist™
with §' € =¥ such thafb™] € [[¢/(s7)]. Then, by Lemma 5.3, such ahcannot be anything but
s. Thereford[g(s)] C [[¢'(s7)] and, reasoning as befoig(s™) = g(s7). We can then conclude

thatg = gandh = (f,g).

Let us now show thatf,g) is a morphism. It is enough to verify conditionandii in Proposi-
tion 1.5. Letx = {to} orx= @ and f(x) =y. If [bF] C [[g(aé[e] (x))], then by definition ofy,
we have[b] C [93, (y)]. So[[g(aé[e] (x))]] € [0, (y)]. Observe that this, together with property
(1), proves the required conditions both on the initial markémgl onaé[e}. We still have to
check that f,g) respects sources.

Supposef (tg) = t3. Let (s)i) € [[6%[@] (to)] and (b, j) € [9(s,i)]. Thens € [83(to)]] and since
@{a(si) | s = a} = k(a), we have(b, j) € [k(s)] < [[6%,(t1)]], sincek is a morphism and
K(to) =t;. So [[g(ag[@] (t0))] € [0 (f(to))]. Now, if (b, j) € [0, (t)] then there exists a unique
a € [03(to)] such that(b, j) € [k(a)]. Therefore, there exists a uniq(ei) such that(b, j) €
[o(s,i)] ands = a. Thus,(s,i) € [[6%[6] (to)]. Now, if (8, ]) € [[6%[9] (to)] is such thatb, j) €
[9(s, §)] it must bes; = a, otherwisea would not be the unique element @2 (to)]] whose
image containgb, j). Therefore(s, j) = (s,i). ]

The next corollary summarizes the results we obtain via tjerstions(o[_], #[]) : Occ —
DecOcc and ((-)", u[-]) : DecOcc — PTNets introduced here, and via Winskel's coreflections
(AC[),E[]) :PES — Occ and(®r[],£[.]) :Dom — PES.

Corollary 5.10. (Extensions of Winskel's coreflections (Wiskel 1986))The following are
adjunctions whose right adjoints relate PT nets to, respmgt occurrence nets, prime event
structures and prime algebraic domains.

— ()" p[], F u[.]): Occ — PTNets;
— (Ot oA [), 27 u[]):PES — PTNets;
— ()T oA er[],LEF u[]):Dom — PTNets.

In addition, 7 U []safe = Uw[-] and, thuSE F U [ ]sate = EUW[] ANALE F U [ ]safe = LE U],
i.e., the semantics given to safe nets by the chain of adpumpresented in this work coincides
with the semantics given to them by Winskel’s chain of coctitens.

Also, the functorgr ¢ [_]: SWNets — Occ, £ F U[-]: SWNets — PES, and2 £ ¥ ¢ [_]: SWNets —
Dom admit coreflection left adjoints.

Finally, the following example shows the semantics assedito the net of Example 4.4 by
the adjunction ()t oA [], £F u[])
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Example 5.11.
tl RTINS % ty -otho tl tl ot ty otho tl
\\t// \\t//
\ /
ty ottt ty o t;

The event structure # «[N] corresponding to the nét of Example 4.4

Conclusion and Related Work

In this paper we have presented an extension to the case oét8DhWinskel’'s semantics for
safe nets (Winskel 1986). This extended semantics is giyarchain ofadjunctiondbetween the
categories of finitary prime algebraic domains, of primengwtructures and of occurrence nets.
These results have been achieved by identifying a suitafjlsetion between the category of
PT nets and the category of occurrence nets, and by exgditanexisting adjunctions between
occurrence nets, prime event structures and prime algetioaiains.

As already mentioned in the introduction, our purpose heas to describe the behaviour of
PT nets by means of prime event structures, i.e., at the td\adstraction at which the identity
of every event occurring in a computation and its causatattéons with the other events are
unambiguous. This yields an explanation of net behaviaumshich causalityis the primary
interest.

The existence of left adjoints to the unfolding functorsgugees theniversalityof the con-
structions, which in turn means that our semantics is as gsqubssible, given the chosen cat-
egories. In the present context this is precisely the relevave attribute to such functors. In
particular,p[_] is a rather complicated construction. Nevertheless, wearkhat the important
fact remains that such a functor exists.

In (Winskel 1988), Winskel shows that, in the case of safs,rnée domain associated b
via the unfolding construction can be equivalently obtdibg unfoldingN to a Mazurkiewicz
trace languagegMazurkiewicz 1988) whose alphabet consists exactly oftthesitions ofN.
Such a construction is clearly not possible in the case oéigd®T nets; an immediate reason
for that is provided by th@utoconcurrencyhich PT nets can exhibit, and which cannot be
handled properly by trace languages. On the other handeiuslly clear that one can build
such a trace language by choosing appropriately the undgraiphabet. However, it seems
that a satisfactory solution to this issue has to deal witergegalization of trace languages, e.g.
(Hoogerset al. 1992; Sassonet al. 1993b).

The adjunction betweeRTNets andOcc factorizes through two adjunctions involving a cat-
egory ofdecorated occurrence net3ecOcc. Although this factorization may at first seem to be
just a convenient technical solution, there in fact are sorsights on the semantics given by the
present unfolding construction which can be gained by legknore closely at decorated occur-
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rence nets. In fact, the semantics we have introduced hsog&righow close to both Goltz-Reisig
processes (Goltz and Reisig 1983) and to concatenablegseséDeganet al. 1989), without
coinciding precisely with either of them. In (Mesegwral. 1994; Mesegueet al. 1996), the
present authors give grocess-oriente@dccount of the unfolding construction. More precisely,
we introduce a new notion of process, whose definition is ssiggl by the idea of families in
decorated occurrence nets, and which are therefore a#lentated processeand we show that
they capture the unfolding semantics, in the precise sdraddhere is a one-to-one translation
between decorated processedlaind finite configurations af # @ [N]. Then, following the ap-
proach of (Deganet al. 1989), we axiomatize the notion of decorated (concatehabdeess in
terms of monoidal categories. More precisely, we define atratt symmetric monoidal cate-
gory »2[N] and we show that its arrows represdatorated concatenable processesen, we
have that the following diagram commutes (up to equivalence

MSMonCat

MPetri* PreOrd
gy

% ]

DecOcc

whereMPetri* is the full subcategory d®TNets consisting of the nets with finite pre- and post-
sets MSMonCat is the category of the ‘marked’ symmetric strict monoidadegaries, i.e., sym-
metric strict monoidal categori€swith a distinguished objeate C, 2 #2*[_] maps the marked
net (N,uy) to (un, 2?[N]), PreOrd is the category of preorder§,] ) is the comma category
functor (c,C) — (c|C), and g returns the finite configurations of prime event structunes o
dered by inclusion. We remark that an analogous result isggk (Nielseret al. 1990) in the
case of elementary net systems—a particular class of sefevitbout self-looping transitions.

We think that this is an interesting result, since it progideunified account of thalgebraig
the process-orientedand thedenotationaliews of net semantics. Moreover, it shows that dec-
orated (deterministic) occurrence nets and their algeldoaimalization in terms of monoidal
categories, being the key to achieve such a unification texetsres of some relevance on their
own.

To conclude, we would like to mention that the correspondeisemantics discussed above
can be lifted smoothly tinfinite computationsin (Sassonet al. 1993a), the present authors
show that the symmetric monoidal categaN]® obtained as the completion @fN] by colim-
its of w-diagrams can be understood as the category of possifijte concatenable processes
of N. Working analogously, one can see that the arrows of the stnorstrict monoidal cat-
egory D 2 [N]® are possiblyinfinite decorated concatenable processes. Then, one can prove the
commutativity (up to equivalence) of a diagram analogoubkémne above involving all the con-
figurations ofz 7 «[N] and the comma categotyyn |2 2 [N]®). The details of this construction
can be found in (Sassone 1994).
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