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Mathematical and numerical modelling of the cardiovascular system is a re-
search topic that has attracted remarkable interest from the mathematical
community because of its intrinsic mathematical difficulty and the increasing
impact of cardiovascular diseases worldwide. In this review article we will
address the two principal components of the cardiovascular system: arterial
circulation and heart function. We will systematically describe all aspects of
the problem, ranging from data imaging acquisition, stating the basic phys-
ical principles, analysing the associated mathematical models that comprise
PDE and ODE systems, proposing sound and efficient numerical methods
for their approximation, and simulating both benchmark problems and clin-
ically inspired problems. Mathematical modelling itself imposes tremendous
challenges, due to the amazing complexity of the cardiocirculatory system,
the multiscale nature of the physiological processes involved, and the need to
devise computational methods that are stable, reliable and efficient. Critical
issues involve filtering the data, identifying the parameters of mathematical
models, devising optimal treatments and accounting for uncertainties. For
this reason, we will devote the last part of the paper to control and inverse
problems, including parameter estimation, uncertainty quantification and the
development of reduced-order models that are of paramount importance when
solving problems with high complexity, which would otherwise be out of reach.
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1. Introduction

This is a review paper on the mathematical and numerical modelling of
the cardiovascular system, a research topic that has attracted remarkable
interest from both the mathematical and bioengineering communities over
the past 25 years. The driving motivation for this interest is the increasing
impact of cardiovascular diseases in our lives. According to Mozaffarian
et al. (2015), cardiovascular diseases are the major cause of death worldwide,
leading to more than 17.3 million deaths per year, a number that is expected
to grow to more than 23.6 million by 2030. In Europe this now corresponds
to nearly half of all deaths (47%).

In this paper we focus on the two principal components of the cardio-
vascular system: arterial circulation and heart function, with its electrical
and mechanical activities. Geometric complexity, lack of data to feed the
mathematical models, and the multiphysics and multiscale nature of the
processes at hand present major challenges when trying to reproduce both
function and malfunction.

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


Modelling the cardiovascular system 367

Owing to its composite nature, the cardiovascular system is first modelled
by means of stand-alone core components, each describing a single function-
ality, for example arterial fluid dynamics, the electrical activity of the heart,
and the fluid dynamics in the left ventricle. Each core model needs careful
mathematical analysis and efficient numerical approximation, often via spe-
cifically devised methods. The next step is integration of the core models
into global, coupled integrated models suitable for describing a meaningful
and coherent part of the cardiovascular system – or even the entire sys-
tem. This step requires the introduction of suitable coupling conditions and
novel numerical strategies for a stable, robust and computationally effective
solution of the global problem.

Clinical data play a decisive role in models of the cardiovascular sys-
tem, and at the same time they present a formidable challenge. Clinical
radiological images (such as computer tomography and magnetic resonance
imaging) are necessary to construct the computational domains. The pro-
cedure of geometric reconstruction is difficult and, especially for the heart,
requires advanced mathematical and numerical tools. Standard radiological
images can sometimes be useless: some cardiovascular components may be
smaller than the spatial resolution of the imaging device (this is the case for
the Purkinje network, for example); in other cases the elevated brightness
gap between fluid and vessel wall makes the detection of the latter very hard.
Boundary data are also difficult to obtain. When the computational domain
results from an artificial truncation, specific physical quantities (e.g. fluid
velocity or pressure) should be provided at those locations of the arterial
tree corresponding to the artificial boundaries. However, this would require
invasive measurements that cannot be easily carried out. Finally, the huge
inter- and intra-patient data variability and uncertainty are further sources
of concern regarding model calibration and validation.

In spite of all these difficulties, a wealth of models has already been suc-
cessfully used to address both physiological and pathological instances. The
aim is, on one hand, a better understanding of the physical and quantitative
processes governing the cardiovascular system, and on the other hand the
opening of new frontiers in therapeutic planning and the design of implant-
able devices (e.g. medical stents and cardiac defibrillators).

The literature on the mathematical and numerical modelling of the cardio-
vascular system is huge, as readers will see by browsing our references, a
tiny subset of the total. In the forthcoming sections we will try to provide
a perspective on the main contributions to this field. Here, among the sev-
eral books, monographs and review papers published so far, we mention
Formaggia, Quarteroni and Veneziani (2009a), Taylor and Figueroa (2009)
and Quarteroni, Veneziani and Vergara (2016c) for the circulatory system,
and Peskin (2002), Smith, Nickerson, Crampin and Hunter (2004), Colli
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Franzone, Pavarino and Scacchi (2014), Quarteroni (2015) and Quarteroni,
Lassila, Rossi and Ruiz-Baier (2017) for the heart.

This review paper consists of three main parts: in Part 1 we model the
arterial circulation (Sections 2, 3 and 4), in Part 2 we model the heart
function (Sections 5, 6 and 7), and in Part 3 we treat inverse problems
and include uncertainty (Sections 8, 9, 10 and 11). Both Parts 1 and 2
consist of an introductory section on physiology (Sections 2 and 5), a section
describing the available data and their use (Sections 3 and 6), and a final
section on mathematical and numerical modelling (Sections 4 and 7). In
Part 3 we begin by emphasizing the need to move beyond a single (forward)
simulation in some applications (Section 8). This represents the common
denominator of three topics recently applied to cardiovascular mathematics:
control and optimization (Section 9), parameter estimation (Section 10) and
uncertainty quantification (Section 11).

When appropriate (in particular in Sections 4, 7, 9, 10 and 11), we re-
port some numerical results to highlight the effectiveness of the numer-
ical strategies presented here. Unless otherwise specified, all our numer-
ical results have been obtained using the finite element library LifeV; see
www.lifev.org for more details.

PART ONE

Arterial circulation

2. Basic facts on quantitative physiology

The cardiovascular system is a closed circuit that carries oxygenated blood
to all the tissues and organs of the body. Functionally, it can be regarded
as made up of three compartments: the heart, the systemic and pulmon-
ary circulations, and the microvasculature. In this section we will recall
the most important features of the physiology of the systemic circulation
characterizing the mathematical models that will be introduced later on.
We will also highlight the main peculiarities of the pulmonary circulation.
Heart physiology will be addressed in Section 5.

The systemic circulation is made up of the arteries, which carry oxygen-
ated blood ejected by the left heart to the living tissues, and the veins, which
allow non-oxygenated blood to return to the right heart. The exchange of
oxygen between blood and the body tissues occurs in the microvasculature,
which in fact separates the systemic arterial tree from the venous systems.
In the pulmonary circulation, non-oxygenated blood ejected by the right
heart flows in the pulmonary arteries towards the lungs where it becomes
oxygenated and goes back to the left heart through the pulmonary veins.
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Blood is composed of plasma (about 55% of its total volume), which
consists of water (about 92% of plasma volume), proteins and ions. The re-
mainder corresponds to the blood cells, of which 97% of the volume is made
up of erythrocytes (red blood cells), which carry the oxygen in oxygenated
blood. The other cells are leucocytes (white blood cells) and platelets. The
diameter of blood cells is approximately 10−3 cm, whereas that of the smal-
lest arteries and veins is about 10−1 cm. This is why blood in the systemic
and pulmonary circulations is often considered to be Newtonian, that is,
characterized by a linear relationship between internal forces and velocity
gradients (Perktold and Hilbert 1986, Formaggia et al. 2009a). However,
in the smallest arteries, such as coronary arteries (the arteries perfusing
the heart and the corresponding veins: see Figure 2.1(c)), or in the pres-
ence of vessel narrowing (stenosis), non-Newtonian blood rheology is more
appropriate: see e.g. Chen, Lu and Wang (2006) and references therein.

Thanks to heart contraction, blood flow is pulsatile, and blood is pumped
into the two circulations by means of discrete pulses with a pressure usually
varying during a heartbeat in the ranges 70–130 mmHg and 20–30 mmHg for
the systemic and pulmonary networks, respectively (1 mmHg ' 133.3 Pa =
1333 g cm−1 s−2).

In the systemic circulation, blood first enters the aorta (the largest artery
with diameter equal to about 2.5 cm in adults: see Figure 2.1(a)) and then
flows through a network of hundreds of branching arteries of decreasing
size, reaching all the regions of the body. Dimensions and numbers of veins
are comparable with those of arteries. The waveform of the flow rate as
a function of time is characterized by different peak values when moving
downstream towards the smallest arteries. In particular, the flow rate peak
value is about 200 cm3 s−1 in the aorta, 80 cm3 s−1 in the abdominal aorta,
15 cm3 s−1 in the carotid arteries (the arteries supplying blood to the brain:
see Figure 2.1(b)), and 1 cm3 s−1 in the coronary arteries (corresponding
to a maximum blood velocity of about 150 cm s−1 in the aorta, 100 cm s−1

in the abdominal aorta, 80 cm s−1 in the carotid arteries and 40 cm s−1 in
the coronary arteries). Further, the shape of the waveforms changes while
moving downstream: see Figure 2.2(a). In particular, in the ascending
aorta, after the systolic peak the flow rate decelerates assuming null or even
negative values, whereas in the abdominal aorta and in carotid arteries it
is more spread out and always positive. In any case, we can distinguish
the systolic phase – the interval of acceleration and deceleration of blood
flow – and the diastolic phase – the interval of almost constant or negative
flow.1 A different situation occurs in coronary arteries, where the peak flow

1 The above definition of systole and diastole is formulated from the perspective of the
arteries. An almost equivalent definition could be given from the perspective of the
heart: see Section 5.
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(a) (b) (c)

Figure 2.1. The aorta (a), the carotid arteries (b) and (a subset of) the coronary
arteries (c).

(a) (b)

Figure 2.2. Typical flow rate waveforms in the ascending aorta, abdominal aorta
and carotid arteries (a), and in the coronary arteries (b).

rate is reached during diastole: see Figure 2.2(b). The coronary arteries
are not directly fed by the heart; indeed, blood in the proximal part of the
aorta (the sinuses of Valsalva from which the coronary arteries originate)
during diastole is allowed to enter the coronary arteries thanks to the elastic
response of the aorta (see below for more details).

In the pulmonary circulation blood first enters the pulmonary artery (dia-
meter equal to about 3.0 cm in adults) and then flows into another network
of branching arteries of decreasing size reaching the lungs. The waveforms
and peak intensities are similar to those of the systemic arteries.
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The different characteristics of blood flow in the arteries of the sys-
temic circulation result in different values of the Reynolds number Re =
(ρf DU)/µ (where ρf is the blood density, D and U are the characteristic
vessel dimension and blood velocity, respectively, and µ is the fluid vis-
cosity), a dimensionless number which quantifies the importance of inertial
forces over the viscous forces. In particular, Re ' 4000 in the aorta and
Re ' 400 in coronary arteries, with intermediate values when moving down-
stream along the aorta. Thus, blood covers a range of Reynolds numbers
where both the inertial and the viscous components of the flow are relevant.
Although in the aorta Re is higher than the critical value of 2000 above
which the flow would no longer be laminar in a straight pipe, the pulsatile
nature of blood flow does not allow development of full transition to tur-
bulence. It is debatable whether transition to turbulence effects occur in
the aorta. Some authors speculate that the helicoidal velocity pattern in
the aorta, induced by the torsion of the heart’s contraction, inhibits any
transition to turbulence, thus supporting the thesis that in healthy condi-
tions turbulence is never observed in the cardiovascular system (Morbiducci
et al. 2009). This is not necessarily the case for some pathological con-
ditions, such as carotid stenosis, yielding a narrowing of the vessel lumen
and increased complexity of the geometry together with higher Reynolds
numbers: see e.g. Ahmed and Giddens (1984), Lee et al. (2008), Kefay-
ati, Holdsworth and Poepping (2014) and Lancellotti et al. (2015). The
Womersley number W =

√
(2Af)/µ (where A and f are the characteristic

cross-section vessel area and time frequency of the flow rate signal, respect-
ively) is a dimensionless number quantifying the pulsatility of flow. We find
decreasing values in the systemic circulation moving downstream: W ' 10
in the aorta, W ' 3 in the carotid arteries. Similar values of Re and W are
found in the pulmonary arteries.

In the veins of the systemic circulation, we find values of the flow rate,
Reynolds and Womersley numbers comparable to the arteries, the only dif-
ference being that the blood flow waveform is more spread out than for the
corresponding arteries. Another major difference is given by blood pressure
values. In the arteries the range of pressure is almost the same, independent
of the location in the tree (70–130 mmHg), whereas in the veins it reduces,
assuming a mean value of about 10 mmHg. This is due to the high resistance
experienced by blood flow in the microvasculature. The latter is composed
of thousands of arterioles and venules and billions of capillaries. The blood
velocity and vessel dimensions are here greatly reduced (about 10−1 cm s−1

in the former and 10−2 cm in the latter). This means that Re is very small
in comparison with the systemic circulation, so viscous forces completely
dominate the inertial forces. As a result, the highest resistance to flow is
found in the microvasculature, thus provoking a big decrease in the blood
pressure. Since the typical dimension of capillaries is comparable to that of
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erythrocytes, a multiphase model seems appropriate for their mathematical
description (Enden and Popel 1992). Finally, we observe that most veins
are supplied with valves that prevent backflow of blood, and venous flow is
highly sensitive to muscle contraction and respiratory effects.

As observed, blood pressure assumes the same range of values along the
entire systemic arterial tree, 70–130 mmHg. More precisely, negligible dis-
sipation is experienced by the pressure signal in large and medium sized
vessels before reaching the small vessels and microvasculature. Of course,
at a given instant the pressure is not constant in space along the tree. In-
deed, a time shift characterizes the pressure waveforms at different locations
which generate gradient pressures between proximal and distal regions facil-
itating blood movement. These spatial gradients are due to the propagating
nature of the pressure, which is in fact a wave travelling along the arterial
network. The wave speed ranges from about 500 cm s−1 in the aorta to
1200 cm s−1 in the coronary arteries. The presence of bifurcations or high-
resistance regions, such as the microvasculature, produces wave reflections
that propagate back towards the heart.

The propagation of a pressure wave along the vascular tree is due to
vessel compliance, that is, the ability of the vessel to distend under the
forces exerted by blood pressure. Vessel wall displacements are quite large,
reaching up to 10% of the lumen diameter. This is possible thanks to the
structure of the vessel walls: their total thickness is about 10% of the lu-
men diameter and they are composed of three layers: the intima, the media
and the adventitia. The inner part of the intima is the endothelium (facing
the blood), whereas the remaining part is made up of connective tissue.
The media and the adventitia play a major role in characterizing the mech-
anical response of the vessel wall. Their main structural components are
elastin and collagen. The media is also formed of smooth muscle cells which
provide tone to the vessel wall. Elastin forms complex networks that are
very distensible, providing the elasticity of the vessel wall at small strain.
In contrast, collagen forms stiff fibres oriented in a helical form providing
tensile strength at large strain. Thus, the artery vessel wall is characterized
by highly non-linear elastic properties. The quantity of elastin and collagen
decreases going downstream along the arterial network, whereas the quant-
ity of smooth muscle cells increases. This allows the proximal arteries (to
the heart), in particular the aorta, to be very extensible and, thanks to the
high peripheral resistances due to the elevated tone of the distal arteries and
to the microvasculature, to store about 50% of the blood entering during
systole. This blood reserve is then discharged during diastole owing to the
vessel wall elastic response (the windkessel effect). This is responsible for the
smoothing of the blood flow waveform discussed above, going downstream
along the arterial network, which guarantees nearly continuous peripheral
blood flow and thus an almost continuous exchange of oxygen with the
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tissues. Further, pulmonary artery walls are extensible (with muscular tone
increasing downstream), even though their thickness is only about 1% of
the lumen diameter.

As already observed, there is mutual exchange of energy between blood
and extensible vessel walls: the latter accumulate elastic potential energy
under the forces exerted by the blood pressure, which is then transferred
to the blood as kinetic energy. From the mechanical point of view, this
gives rise to a fluid–structure interaction problem. This process occurs at
short time scales, proportional to the duration of a heartbeat (∼ 1 s). Other
interaction mechanisms may take place at larger time scales yielding wall
modifications of vessel properties. This occurs in the case of several arterial
diseases, such as atherosclerosis and aneurysm formation. In the first case,
an increased permeability of vessel wall to lipoprotein provokes a cascade of
events at the cellular level which leads to the accumulation of fatty material
in the intima, just below the endothelium, and then to plaque formation
in the media. Preferential sites of atherosclerotic plaque formation are the
carotid arteries and the coronary arteries. The main complications are par-
tial occlusion of the lumen with consequent (cerebral or cardiac) ischaemia,
or even total occlusion resulting in (cerebral or cardiac) infarction. An
aneurysm consists in the dilatation of the vessel wall with formation of a
(possibly huge) bulge, mainly in the aorta and cerebral arteries, due to
a loss of elastin and to the consequent remodelling of collagen, resulting
in a weakening of the arterial wall; 80–90% of ruptured abdominal aortic
aneurysms and 45% of ruptured cerebral aneurysms result in death. The
role of blood fluid dynamics has been recognized as crucial for the develop-
ment of both of these diseases (Glagov, Zarins, Giddens and Ku 1988, Bagci
et al. 2008). In particular, wall shear stresses, that is, the viscous/friction
forces exerted by the blood on the endothelium, despite being 100 times
smaller in magnitude than pressure, regulate the permeability of the wall to
lipoprotein and the loss of elastin, thus playing an important role in athero-
sclerosis and aneurysm development. For both these arterial diseases, this
supplementary interaction between fluid and structure occurs at time scales
of several years.

More on the physiology of the systemic and pulmonary circulations and
microvasculature in view of mathematical modelling is available in Nich-
ols and O’Rourke (2005), Quarteroni, Tuveri and Veneziani (2000c) and
Formaggia et al. (2009a), for example.

3. All about data

The ultimate ambition of mathematical models in medicine is to provide
quantitative results to enhance the understanding of biophysical processes
and hence to support clinicians in their diagnostic and therapeutic proced-
ures. To this end, we must consider data that are patient-specific, to use
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the bioengineering jargon – that is, related to real patients. Obtaining and
processing patient-specific data is a major issue which deserves a specific
review paper in its own right. Here, we provide a brief overview of the most
common techniques for acquisition and analysis of ‘clinical’ data. This data
preprocessing is essential prior to the set-up of a numerical simulation.

In this section we address the case of data related to the arterial (or
venous) circulation, whereas in Section 6 we will discuss cardiac data. In
arteries we have two interacting processes: the blood flow in the vessel lumen
(the region occupied by the blood, which is referred to as the fluid domain)
and the displacement of the vessel wall (referred to as structure). We need
geometric, boundary and biological data, which are discussed below.

3.1. Geometric vascular data

Geometric data are necessary to build the geometry of the computational
domains wherein the differential problems are numerically solved. At the
end of the geometric preprocessing step, we obtain the fluid computational
domain for the blood fluid dynamics problem, and the structure computa-
tional domain for the vessel wall displacement problem.

The processing of geometric data for blood flow simulations is a major task
since vessels exhibit high morphological variability due, for example, to the
evident vessel tortuosity and the presence of several bifurcations. Moreover,
in unhealthy cases, this variability is further emphasized, because of the
possible presence of calcifications, stenoses, aneurysms or even prostheses
(such as stents).

Geometric preprocessing consists of the following steps, which are usu-
ally performed in sequence (Antiga et al. 2008, Antiga, Peiró and Steinman
2009): acquisition of clinical images, image enhancement, image segmenta-
tion, and generation of the computational mesh. These items are addressed
below.

3.1.1. Acquisition of clinical images

Angiography is an imaging technique successfully used to ‘identify’ the ves-
sel lumen. It exploits the property that a liquid inside the vessel appears
brighter than the vessel wall and the surrounding tissue. Angiographies are
usually acquired as two-dimensional (2D) images, corresponding to different
slices of the domain of interest, but three-dimensional (3D) acquisitions of
volumes are also possible.

One of the most common techniques for obtaining an angiography is X-
ray imaging, based on the projection of X-ray beams through the body onto
suitable screens, and on the contrast produced in the 2D image by the differ-
ent absorption properties of body structures. To highlight the vessel lumen,
a radio-opaque dye is inserted into the bloodstream through the arterial

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


Modelling the cardiovascular system 375

system. To reconstruct tortuous geometries, a rotational angiography (RA)
is performed, where X-ray sources and detectors are rapidly rotated around
the patient, allowing one to acquire many projections within a few seconds.
The excellent spatial resolution of projection angiography (about 0.2 mm,
0.4 mm for RA) makes this technique the gold standard for most vascular
imaging applications. Another X-ray angiography technique, widely used for
blood flow simulation, is based on computed tomography (CT) technology,
where multiple X-ray sources and detectors are rotated rapidly around the
patient, allowing one to acquire 3D images with excellent spatial resolution
(less than 1 mm in computed tomography angiography, CTA). Unlike pro-
jection angiography, another advantage of CTA is the possibility of using
intravenous rather than arterial injections. Recently, temporally resolved
CTA (4D-CTA) has become feasible. This allows one to obtain several
(15–20) 3D images during a heartbeat.

Difficulties may arise in the presence of metal artifacts due to metallic
prostheses such as pacemakers, resulting in streaks on the images obscur-
ing anatomical details; see Robertson, Yuan, Wang and Vannier (1997) and
Faggiano, Lorenzi and Quarteroni (2014) for possible mathematical treat-
ments.

Another widely used technique to obtain angiographies is magnetic reson-
ance imaging (MRI), based on the different decay rates exhibited by body
structures on exposure to radio frequency (RF) energy. This is called mag-
netic resonance angiography (MRA). The generated contrast in the images
can be tuned by selecting different RF stimuli. This allows MRA to be
suitably tuned to detect soft tissues. Another advantage of MRA is that
angiography can be generated without using exogenous agents. However,
usually an intravenous injection of a paramagnetic contrast agent is used to
improve the blood signal and reduce the acquisition time (contrast-enhanced
(CE)-MRA).

Finally, we mention ultrasound (US) imaging, based on the reflections
of high-frequency sound waves (a few MHz) transmitted into the body.
Ultrasound is the least expensive and invasive of the techniques discussed
here, and allows real-time acquisition of 2D images. In contrast, its spatial
resolution is the poorest. Recently it has even been possible to acquire 3D
images (3D US) by reconstructing a 3D volume from 2D slices.

On the other hand, only a few techniques currently allow us to obtain
images of vessel walls. Among these we cite black blood (BB)-MRA, by
which the vessel wall and the surrounding tissue can also be viewed, and
intravascular ultrasound (IVUS), which is however very invasive since the
transducer is placed directly into the artery (typically a coronary artery)
via a catheter.

No matter which technique is used, from a mathematical standpoint we
can assume that at the end of the acquisition step we obtain a vector Iclin,
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whose jth component, Iclinj , corresponds to the intensity of the image at the
point xj in grey-scale representing the contrast generated by the imaging
technique. The collection of the points xj , j = 1, . . . , N clin, forms the lattice
Lclin, where N clin is the total number of acquisition points (pixels or voxels)
where the image contrast has been evaluated. Here and below, a lattice is
a simple collection of points determined by the point coordinates. It can be
useful to associate a corresponding image intensity (scalar) function with
the image intensity vector Iclin, which is typically obtained by interpolation,
and will be denoted by Iclin(x).

3.1.2. Image enhancement

Medical images are often affected by noise and artifacts that may interfere
with the quality of the final results of the preprocessing step. Thus, prior to
the reconstruction of the 3D geometry, an imaging enhancement is usually
performed.

One popular enhancement technique is resampling, consisting in suitably
changing the resolution of the images in one or more directions. In practice,
an interpolation of image intensity values Iclin onto a more refined lattice is
performed. The most commonly used methods are constant interpolation,
first-order composite Lagrangian interpolation, B-spline (Unser 1999), and
windowed sinc interpolation.

The noise in the medical images may be due to thermal effects in the sig-
nal processing electronics or to other undesired sources. Reduction of noise
could be obtained by means of a smoothing filter, which does not require any
prior information about the nature of the noise and has a regularizing effect
on the image. This technique is the most commonly used both for CT and
MRI images. A very popular filter is the Gaussian filter, consisting in per-
forming a discrete convolution with a Gaussian kernel over the lattice Lclin of
the image intensity Iclin. Unfortunately, together with the noise, smoothing
could also filter significant high-frequency image contents. Moreover, since
the image is separated from the background by sharp boundaries, charac-
terized by high-frequency content, the smoothing filter could blur and move
the boundaries. To prevent this, anisotropic diffusion filtering has been in-
troduced (Perona and Malik 1990): the heat equation is solved for a new
image intensity function, with diffusion coefficient decreasing for increasing
values of the gradient magnitude of intensity. By so doing, the filtering is
not performed at the boundaries where the gradient is large.

Another technique, called multiscale vessel enhancement (Frangi et al.
1999), exploits the specific tubular shape of vascular geometries, and there-
fore assumes that the minimum modulus eigenvalue of the Hessian matrix
of the image intensity function Iclin is small, while the other two are large
and of equal sign.

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


Modelling the cardiovascular system 377

At the end of this substep we obtain a new image intensity vector Ien

whose jth component, Ienj , denotes the intensity of the enhanced image
in grey-scale at the point xj , j = 1, . . . , N en, in the lattice Len (and cor-
respondingly an associated enhanced image intensity function Ien(x) via
interpolation). Here, N en is the total number of points in the enhanced
image intensity vector. Usually, N en > N clin.

3.1.3. Image segmentation

Image segmentation is the cornerstone of the preprocessing step. It con-
sists in the construction of the shape of a vascular district from the image
obtained after the enhancement substep. In particular, the segmentation
allows one to detect those points of the lattice Len which – presumably
– belong to the boundary of the vessel lumen. The precise definition of
the boundary of the lumen is a challenging task which generally requires
considerable experience on the part of the user.

The first technique we describe is thresholding, consisting in selecting a
threshold k to identify the points xj ∈ Len such that Ienj > k. This is
motivated by the assumption that k separates different anatomical struc-
tures, in our case the vessel lumen (characterized by intensity values larger
than k) and the background, obtained by the collection of points for which
Ienj ≤ k. The value of k is determined either manually or via a suitable al-
gorithm. In the latter case, one commonly used strategy is full width at half
maximum (FWHM), consisting in setting the threshold halfway between
the peak intensity within the lumen and the intensity of the background.
For the segmentation of special structures, such as calcifications or stents,
higher-bound thresholds are used (Boldak, Rolland and Toumoulin 2003).

A more sophisticated class of segmentation methods than thresholding
is given by front propagation methods, where the propagation of a suitable
wavefront is tracked. The speed of the wave is small in regions where Ien

changes rapidly and high for other regions, so the wavefront slows down
when approaching the boundary. The most popular front propagation
method is the fast marching method, which provides an efficient solution
to the eikonal problem

‖∇T (x)‖ =
1

V (Ien(x))
, x ∈ Den,

where Den ⊂ R3 is a region that contains all xj ∈ Len, and where suit-
able boundary conditions are prescribed on a selected boundary where the
propagation starts (Zhu and Tian 2003). In the above equation, V is the
speed of the wavefront and T (x) is the first arrival time at point x. In
fact, T consists of isocontours, denoting a collection of surfaces describing
the shape of the waveform. The vessel boundary is then represented by the
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points xj ∈ Len such that T (xj) = T b (up to a given tolerance), where T b

is a suitable value selected by the user.
Another class of segmentation methods is that of deformable models,

where a suitable energy is minimized, allowing the deformation of the body
(in our case the boundary of the vessel lumen) to reach a final state with
smallest energy, accounting for external terms derived from the image and
internal terms constraining the boundary to be regular. The most widely
used class of deformable models is the level set method, where a deformable
surface is represented implicitly as the zero level of a higher-dimensional
embedding function (Sethian 1999). Deformable models, for example those
based on cylindrically parametrized surface meshes, incorporate anatomical
knowledge of the vessel shape (Frangi et al. 1999, Yim et al. 2001).

For the segmentation of the vessel wall, Steinman et al. (2001), starting
from BB-MRA images, segmented the vessel wall outer boundary using the
same deformable model as used for the vessel lumen segmentation. Usually,
BB-MRA or other images detecting the vessel wall are not routinely ac-
quired in clinical practice. In this case, a reasonable approach to obtaining
the vessel wall is to ‘extrude’ the reconstructed boundary lumen along the
outward unit vector by using a suitable function specifying the vessel wall
thickness in the different regions of the district of interest.

In those cases where the image intensity vectors Iclin and Ien refer to 2D
slices, application of the above segmentation strategies leads to identifica-
tion of several vessel boundaries (contours), one for each slice, which now
need to be connected to obtain the 3D boundary surface. This operation is
called surface reconstruction. A simple procedure is to connect successive
contours with straight lines defining surface triangle edges. This strategy is
not suitable in the presence of changes of shape such as in bifurcations. Bet-
ter surface reconstruction is provided by least-squares fitting of polynomial
surfaces to the contour set (Wang, Dutton and Taylor 1999). This strategy
is suited to managing bifurcations whose branches are fitted separately with
a successive extension into the parent vessel. A variant of this approach has
been proposed in Geiger (1993), where contours are first filled with tri-
angles which are then connected to the triangles of the adjacent contours
by means of tetrahedra. The final lumen surface is then represented by the
boundary of this tetrahedral mesh (formed by triangles). We also mention
shape-based interpolation where, for each contour, a characteristic function
with positive (resp. negative) values for points located inside (resp. outside)
the contour is constructed. The final lumen boundary surface is then rep-
resented by the zero level set of the interpolation of all these characteristic
functions (Raya and Udupa 1990). Finally, we briefly describe interpolation
by means of radial basis functions (RBFs), which provide a flexible way of
interpolating data in multi-dimensional spaces, even for unstructured data
where interpolation nodes are scattered and/or do not form a regular grid,
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and for which it is often impossible to apply polynomial or spline interpola-
tion (Carr, Fright and Beatson 1997, Fornefett, Rohr and Stiehl 2001). The
coefficients in the linear combination with respect to the RBF basis are de-
termined by solving a suitable linear system, which is invertible under very
mild conditions (Peiró et al. 2007).

A special mention must go to centreline reconstruction. The centreline
is a one-dimensional curve centred inside the vessel lumen. Many seg-
mentation tools use the centreline as the starting point, making the as-
sumption that the shape of the section around each centreline location is
known (O’Donnell, Jolly and Gupta 1998). Centreline reconstruction al-
lows complete reconstruction of the computational domain when using one-
dimensional modelling of blood flow: see Section 4.5.1.

In any case, at the end of the segmentation step we obtain the lattice
Lsurf which collects the points xj , j = 1, . . . , N surf, classified as belonging
to the lumen vessel surface or to the outer wall, where N surf denotes the
total number of points of the surface lattice.

3.1.4. Building the computational mesh
Once the final boundary lattice Lsurf (made up of points on the lumen
boundary) is made available, we are ready to build the volumetric mesh
T vol in the lumen. This mesh usually consists of unstructured tetrahedra,
because of their flexibility in filling volumes of complex shape.

Unstructured volumetric meshes are constructed starting from an ana-
lytical expression, say S(x), representing the surface associated with the
boundary lattice Lsurf. This expression can derive from an explicit repres-
entation, for instance a bivariate parametric function built as a collection
of adjacent polygons. The latter are typically triangles, generated by Lag-
rangian shape functions, or patches, generated by high-degree polynomials
such as NURBS (Sun, Starly, Nam and Darling 2005). Alternatively, the
surface is represented implicitly as the isosurface of an embedding func-
tion. Note that some of the segmentation strategies described above, such
as deformable models and those used for the surface reconstruction, directly
provide an analytical expression S(x) of the lumen boundary surface.

For the construction of unstructured volumetric meshes T vol, we mention
two possible approaches. In the first, a boundary surface mesh T surf is
generated. To this end, we start from a lattice L̃surf (in principle different

to Lsurf) composed of points of S. Then, the Voronoi diagram for L̃surf is
constructed. This is a partition of S into non-overlapping regions, each one
containing exactly one point (node) of L̃surf and composed of all the points
of S that are closer to that node than to any other node. Starting from
the Voronoi diagram, it is possible to generate a Delaunay mesh T surf: see
Thompson, Soni and Weatherill (1999). We emphasize that the vertices of

the mesh T surf do not necessarily coincide with the points of the lattice L̃surf.
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Popular algorithms for generating a Delaunay mesh have been proposed by
Watson (1981) and Weatherill and Hassan (1994). Once a surface mesh T surf

is made available, the volumetric mesh T vol is generated. The latter could
be obtained by advancing front methods, where, starting from the triangles
of the surface mesh, a front composed of internal nodes is generated. These
new nodes allow us to identify tetrahedra, whose validity is verified by
checking that they do not intersect the front (Bentley and Friedman 1979).

The second approach relies on directly generating the volumetric mesh
T vol, for example by means of Delaunay 3D mesh generation, where a start-
ing volumetric lattice L̃vol is obtained by locating the nodes in the volume
V(x) contained in S(x). One of the main problems related to this approach
is that boundary meshing is often difficult, since the related surface trian-
gulation could not be of Delaunay type. An alternative approach is given
by octree mesh generation, where V(x) is embedded in a box and successive
subdivisions are performed until the smallest cells permit accurate descrip-
tion of the boundary. Despite being faster, this strategy generates meshes
with poor quality near the boundary.

When a volumetric mesh T vol is obtained, a further step (mesh optimiza-
tion) could be introduced prior to the generation of the final mesh, so as to
improve its quality. This prevents mesh distortion, for example the presence
of very small angles, which could reduce the convergence of algorithms for
the solution of the PDE of interest and thus their accuracy. Mesh optimiza-
tion is incorporated in the strategies described above; it leads to an optimal
mesh, providing the best accuracy for a given number of nodes.

A mesh is deemed valid for blood flow simulations if it allows recovery
of outputs of physical interest. In arteries, the mesh should be fine enough
to capture wall shear stress (WSS) (Celik et al. 2008) and, to this end,
the construction of a boundary layer mesh is essential, even at low Reyn-
olds numbers (Bevan et al. 2010). Here WSS expresses the magnitude of
tangential viscous forces exerted by the fluid on the lumen boundary Σt,
defined by

WSS = µ

√√√√ 2∑
j=1

(
(∇v n) · τ (j)

)2
on Σt,

where v is the fluid velocity, n is the outward unit vector, and τ (j), j = 1, 2,
represent the tangential unit vectors. Note that WSS is a scalar function
of x ∈ Σt and t > 0. In componentwise notation,

WSS = µ

(
2∑
j=1

(
3∑

i,k=1

(
∂vi
∂xk

nk

)
τ

(j)
i

)2)1/2

on Σt.
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For the structure domain, hexahedral meshing is preferable so as to pre-
vent the locking phenomenon, whereas tetrahedral meshes are used when
conforming meshes at the boundary lumen interface are needed, in view
of fluid–structure interaction problems (see Section 4.3). Usually, three or
four layers of elements are enough to obtain an accurate result (Younis
et al. 2004).

For recent reviews on geometric reconstruction for blood flow simulation,
see Antiga et al. (2009), Sazonov et al. (2011) and Lesage, Angelini, Bloch
and Funka-Lea (2009).

3.2. Boundary vascular data

The differential equations we will treat in the following sections need ap-
propriate boundary conditions. For our problems (incompressible Navier–
Stokes equations for the fluid and finite elasticity for the structure), we an-
ticipate the kind of boundary conditions that should ideally be prescribed,
namely

v = gf on ΓD,tf , −pn+ µ(∇v + (∇v)T )n = hf on ΓN,tf

for the fluid problem and

d = gs on ΓD,ts , T sn = hs on ΓN,ts

for the structure problem. In the above equations, the Dirichlet and Neu-
mann boundaries, ΓD,tj and ΓN,tj , respectively, are such that ΓD,tj ∩ΓN,tj = ∅,
ΓD,tj ∪ ΓN,tj = ∂Ωt

j , j = f, s, where Ωt
f and Ωt

s are the fluid and structure

domains at time t: see Figure 3.1(a). Moreover, p denotes the fluid pressure,
−pn+µ(∇v+(∇v)T )n is the fluid normal Cauchy stress, d is the structure
displacement, T s is the Cauchy stress tensor of the wall material, and gf ,

gs, hf , hs are data: see Section 4. We use the superscript t to indicate
time-dependence.

As we will see below, the boundary of the computational domain (for
either the fluid or the structure) will be composed of two parts, namely
the physical boundary and the artificial boundary. On the physical bound-
ary, suitable conditions are often suggested by physical principles. For ex-
ample, for the fluid problem, no-slip Dirichlet conditions should be pre-
scribed at the lumen boundary, since it is assumed that the fluid particles
perfectly adhere to the vessel wall. This leads to a homogeneous Dirichlet
condition (v = 0) in the case of rigid walls, and to a kinematic interface
condition (v = ḋ) for fluid–structure interaction problems (see Section 4.3).
As for the structure problem, at the internal physical boundary (i.e. at the
lumen boundary) the fluid pressure is often prescribed. This leads to a
Neumann boundary condition (T sn = −Pn, where P is a measurement of
the fluid pressure) for a pure structure problem, and to a dynamic interface
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(a) (b)

Figure 3.1. Possible choices of the Dirichlet and Neumann boundaries (a) and
physical and artificial boundaries (b) for a carotid domain in the fluid stand-alone
problem (reconstructed from MRA images).

condition (T sn = −pn+ µ(∇v + (∇v)T )n) for fluid–structure interaction.
On the outer wall boundary Γext, the interaction with the surrounding tissue
should be considered. This is often modelled by means of a Robin boundary
condition of the form

αSTd+ T sn = Pextn on Γext, (3.1)

which assimilates the surrounding tissue to a sequence of elastic springs with
rigidity αST and where Pext is the external pressure (Moireau et al. 2012).

In contrast, the artificial sections are those introduced by the truncation of
the computational domains: see Figure 3.1(b). Truncation is done in order
to focus on a specific domain of interest. Ideally, the boundary conditions
to be used on artificial sections should derive from clinical measurements.

The technique mainly used to obtain boundary data on artificial bound-
aries is ultrasound. This is because of its non-invasiveness and the fact that
it is used daily in clinical practice. If the ultrasound beam is swept through
a plane or sector (unlike in geometric acquisitions where it is kept fixed), it
is possible to measure the blood velocity at a single point of a cross-section
Γt in the direction of the ultrasound beam by exploiting the Doppler ef-
fect. The velocity is then converted into a flow rate measure Q across Γt

for each time (this is the principle of the so-called echo-colour-Doppler tech-
nique: Savader, Lund and Osterman 1997) and can then be used to prescribe
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a flow rate condition

ρf

∫
Γt
v · ndγ = Q. (3.2)

Condition (3.2) is defective since it is not enough to ensure well-posedness of
the fluid problem. The treatment of defective conditions will be addressed
in Section 4.4. Another technique allowing measurement of cross-sectional
flow rates is based on the acquisition of thermal images (Mahmoud et al.
2013). Another quantity easily measurable by means of ultrasound is the
lumen area

∫
Γt dγ. This information could be used to prescribe a defective

condition for the vessel wall.
More sophisticated techniques could acquire velocity measurements in

several points on the same cross-section, thus in principle leading to a Di-
richlet boundary condition (possibly after suitable regularization). This is
the case for phase contrast (PC)-MRA, where the blood velocities are en-
coded into images taken at several instants during a heartbeat (Morbiducci
et al. 2009). The spatial resolution of modern PC-MRA is of the order of
1–2 mm on each cross-section and 4 mm along the longitudinal axis. The
required mesh size is often less than 1 mm, however, so interpolation is
needed to obtain a usable Dirichlet condition. The temporal resolution is
about 0.03 s.

If the lumen artificial cross-section is orthogonal to the axial direction,
then the viscous terms in the fluid normal Cauchy stress are very small
(Heywood, Rannacher and Turek 1996). In this case, a measurement of the
pressure P (t) could be used to prescribe a Neumann boundary condition.
This could be obtained for the arterial system non-invasively by means of a
sphygmomanometer, which usually measures the pressure at the level of the
radial aorta (remember that the pressure peak could be considered constant
along the arterial tree, at least until the capillary net: see Section 2). To
have continuous monitoring of the pressure (e.g. during hospital recovery) or
to take a measurement in the venous system (where the pressure reduces),
a catheter with a transducer could be placed in the district of interest. In
any case, the average pressure over the cross-section is measured. This leads
at each time to the following defective boundary condition for the normal
component of the normal Cauchy stress of the fluid:

1

|Γt|

∫
Γt

(
pn− µ(∇v + (∇v)T )n

)
· ndγ = P. (3.3)

Unfortunately, no measurement is available at the artificial sections of the
structure, so ‘empirical’ and ‘practical’ choices are made (see Section 4.4).

Finally, we observe that measurements acquired at several instants during
a heartbeat could be used in principle for physical boundaries as well. For
example, from 4D-CTA the boundary lumen displacement could be used as
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the Dirichlet condition for the structure problem, whereas from PC-MRA
the blood velocity at the boundary lumen could be used to prescribe a
Dirichlet condition for the fluid problem. Since, at the physical boundaries,
physical principles are used to prescribe boundary conditions, these ‘extra’
data could be used for validation of the numerical results or in a parameter
estimation fashion, as described in Section 10. PC-MRA also allows us to
acquire internal measurements of blood velocity. This could also be used
for validation or parameter estimation.

3.3. Biological vascular data

Finally, we need to know the values of physical parameters appearing in
the differential equations. For the fluid, two parameters characterize the
problem, namely blood density and blood viscosity. Although density is
easily measurable in principle, no patient-specific acquisition is made in
general because its value never significantly departs from an average value
of 1.06 g cm−3. In contrast, the range of variability of viscosity is larger.
Indeed, its value depends on the shear rate (non-Newtonian behaviour) and
on the physical state of the patient. When the assumption of Newtonian
fluid (holding for medium and large healthy vessels) is made, typical values
of the viscosity range in the interval 0.03–0.04 P (= 1 g cm−1 s−1). Again,
no patient-specific viscosity measurements are usually made and, except for
pathological situations, a value in the previous range is selected.

The parameters characterizing the vessel wall depend (also in number)
on the constitutive law used to represent its behaviour. More typically,
they are the density, the elasticity (or compliance) and the degree of incom-
pressibility. For linear elasticity models, the latter two are quantified by
Young’s modulus and the Poisson modulus, respectively. The density value
is very similar to that of blood, the range most commonly used reaching
values up to 1.2 g cm−3. The compliance of the vessel could be qualitat-
ively seen as the ratio between the volume and pressure variations (Nichols
and O’Rourke 2005). Patient-specific measurements could be obtained from
simultaneous (invasive) measurement of pressure and cross-sectional area
at different locations, by measuring the rate of propagation of flow waves
(Boese, Bock, Schoenberg and Schad 2000), or by elastography, where the
elasticity properties are analysed by images before and after a deforma-
tion (Oberai, Gokhale and Feijóo 2003). The range of variability of vessel
compliance is quite wide (200–800 kPa in normal conditions), with great
dependence on the location and on the possible presence of aneurysms or
calcifications. As for the Poisson modulus, only ex vivo measurements are
possible. An acceptable value used by the community is 0.49, meaning that
vessels could be considered as quasi-incompressible. Finally, let us mention
that the coefficient αST in (3.1) can be regarded as representative of the
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Young’s modulus of the surrounding tissue. As such, it could thus be meas-
ured, though this is a difficult endeavour. Estimates have been provided in
Liu et al. (2007), for example.

When not available from measurements, patient-specific values of biolo-
gical data could alternatively be obtained by means of parameter estimation
mathematical techniques. This will be the topic of Section 10.

4. Modelling blood flow

4.1. The fluid problem

In large and medium sized arteries – those more typically affected by vas-
cular diseases – blood can be modelled by means of the Navier–Stokes
(NS) equations for incompressible homogeneous Newtonian fluids (Perktold,
Thurner and Kenner 1994, Taylor, Hughes and Zarins 1996, Taylor, Hughes
and Zarins 1998, Formaggia et al. 2009a). For non-Newtonian rheological
models necessary to describe some specific flow processes, such as clotting
or sickle cell diseases, or more generally flow in capillaries, we refer to
Robertson, Sequeira and Owens (2009) and Fasano, Santos and Sequeira
(2012), for example.

For the mathematical formulation of the problem, we write the fluid equa-
tions with respect to an Eulerian frame of reference, and we let Ωt

f =

Ωf (t) ⊂ R3 denote the time-varying arterial lumen, at time t > 0 (see
Figure 4.1(a)).

Then, at each time t > 0, we look for fluid velocity v and fluid pressure
p such that

ρf

(
∂v

∂t
+ (v · ∇)v

)
−∇ · T f (v, p) = 0 in Ωt

f , (4.1a)

∇ · v = 0 in Ωt
f . (4.1b)

Note that volumetric forces acting in the fluid domain (e.g. due to gravity)
have been set to zero since they are quite often negligible. Moreover,

T f (v, p) = −pI + µ(∇v + (∇v)T ) (4.2)

is the fluid Cauchy stress tensor, where µ is the blood viscosity. As we
consider only Newtonian rheology here, µ is assumed to be constant.

Finally, problem (4.1) is completed by the initial condition

v|t=0 = v0 in Ωf ,

where Ωf = Ω0
f , and boundary conditions. The latter typically prescribe

no-slip conditions on the physical boundary Σt,

v = φ on Σt, (4.3)
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(a) (b)

Figure 4.1. Representation of the fluid domain (a) and structure domain (b).
The fluid domain illustrated is that of an abdominal aorta in the presence of an
aneurysm, reconstructed from CTA images. The structure domain was obtained
via extrusion of the fluid domain.

the upstream velocity on the proximal boundaries, say Γtin,

v = vup on Γtin, (4.4)

and traction conditions on the distal boundaries, say Γtout,

T f n = hf on Γtout. (4.5)

Here, v0, vup, φ and hf are suitable functions with the required regularity
(Quarteroni and Valli 1994). Note that the lumen boundary displacement
φ at this level is a known function of space and time. For rigid boundaries,
we have φ = 0.

When patient-specific measurements are available, other conditions might
be prescribed. However, measurements seldom provide a complete dataset
to be used in the computation: see our discussion in Section 3.2. This
prompts the issue of solvability of Navier–Stokes equations, which we ad-
dress in Section 4.4.

For each t > 0 (a.e. t > 0), the weak form of (4.1) together with
the boundary conditions (4.3, 4.4, 4.5) reads as follows: find v = v(t) ∈
[H1(Ωt

f )]3, v = vup on Γtin, v = φ on Σt, v = v0 for t = 0 in Ωf , and
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p = p(t) ∈ L2(Ωt
f ) such that

ρf

∫
Ωtf

∂v

∂t
·w dω +Atf (v,v,w) + Bt(p,w) =

∫
Γtout

hf · ndγ, (4.6a)

Bt(q,v) = 0, (4.6b)

for all

w ∈ V t = {[H1(Ωt
f )]3 : w = 0 on ∂Ω \ Γtout}

and q ∈ L2(Ωt
f ), and where we have set

Atf (z,v,w) = ρf

∫
Ωtf

(z · ∇)v ·w dω + µ

∫
Ωtf

(∇v + (∇v)T ) : ∇w dω

and

Bt(q,w) = −
∫

Ωtf

q∇ ·w dω.

The existence of a global-in-time weak solution of the above problem was
proved by Leray (1934) for the case Ωf = R3 and by Hopf (1951) for the
case of bounded domain. The uniqueness has been proved only for the two-
dimensional case (Lions and Prodi 1959); for the three-dimensional case,
only local-in-time uniqueness results are available (Prodi 1962).

4.2. Mechanical wall models

The problem that models the deformation of vessel walls is given by the
elastodynamics equation, which is usually written in a reference domain
Ωs = Ωs(0) ⊂ R3 using a Lagrangian framework. For any t > 0, the
material domain Ωt

s = Ωs(t) (depicted in Figure 4.1(b)) is the image of Ωs

by a proper Lagrangian map L : Ωs → Ωt
s. We use the notation ĝ = g ◦ L

to denote the function ĝ induced on Ωs by the function g defined in the
current solid configuration Ωt

s.
For simplicity, we assume the arterial wall obeys a (possibly non-linear)

finite elastic law relating stress to strain in the arterial tissue; for more
complex behaviours of arterial walls see Holzapfel, Gasser and Ogden (2000)
and Holzapfel and Ogden (2010), for example. In more realistic settings,
stress is a function of the strain but also of the past loading history (Fung,
Fronek and Patitucci 1979).

The problem we consider is as follows: find, at each time t > 0, the
structure displacement d such that

ρs
∂2d̂

∂t2
−∇ · T̂ s(d̂) = 0 in Ωs, (4.7)

where ρs is the structure density. Note that volumetric forces acting in the
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solid domain (e.g. due to muscle forces) have been set to zero since they are
quite often negligible.

The above equation is stated in terms of the first Piola–Kirchhoff tensor
T̂ s(d̂), which is related to the Cauchy tensor T s(d) via the relation T̂ s =
JT sF

−T . Here, F = ∇x is the deformation tensor, where the gradient is
taken with respect to the reference space coordinates and x denotes point
coordinates in the current configuration. Correspondingly, J = det(F )
denotes the change of volume between the reference and the current config-
urations; note that F (and thus J) depends on the current configuration Ωt

s.
For a hyperelastic material, the first Piola–Kirchhoff stress tensor is ob-

tained by differentiating a suitable strain energy density function Θ:

T̂ s =
∂Θ

∂F
. (4.8)

Several non-linear elastic energy functions have been proposed for arteries.
For the Saint Venant–Kirchhoff material,

Θ(C) =
Eν

2(1 + ν)(1− 2ν)

(
tr

(
1

2
(CT − I)

))2

+
E

2(1 + ν)
tr

((
1

2
(CT − I)

)2)
, (4.9)

where C = F TF , E is Young’s modulus and ν is the Poisson modulus of the
vessel wall. More complex and accurate functions widely used for arteries
are based on separating the isotropic elastic behaviour due to the elastin and
the anisotropic behaviour accounting for the stiffening increment at large
displacements due to the collagen:

Θ = Θiso + Θaniso. (4.10)

A common choice for the isotropic part is the neo-Hookean law

Θiso(C) =
G

2
(tr(C)− 3), (4.11)

whereas for the anisotropic part, an exponential law is often considered,

Θaniso(C) =
k1

2k2

(
e(k2(a·(Ca)−1)2) − 1

)
, (4.12)

where a is the unit vector identifying the preferred direction of the collagen
fibres, G is the shear modulus, and k1, k2 are material parameters, where
k2 characterizes the stiffness of the material for large displacements (Fung
1993, Holzapfel et al. 2000, Raghavan and Vorp 2000). More complete laws
also account for the symmetrical helical arrangement of the collagen fibres,
introducing a second predominant direction of fibres (Holzapfel and Ogden
2010). When not available from medical images, the fibre directions are
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computed by means of suitable algorithms under the assumption that their
orientation is mainly governed by the principal stresses: see e.g. Hariton,
de Botton, Gasser and Holzapfel (2006) and Kuhl and Holzapfel (2006).
For distal arteries of muscular type, viscoelastic and pseudoelastic terms
are also considered (Holzapfel and Gasser 2001).

Sometimes the arterial tissue is modelled as being incompressible by im-
posing the incompressibility constraint J = 1 on the strain energy function
via Lagrange multipliers (Holzapfel 2000), that is,

Θinc = Θ + ps(J − 1). (4.13)

Here ps is the hydrostatic pressure related to the vessel wall displacement,
which plays the role of the Lagrange multiplier for the incompressibility con-
straint. Correspondingly, the Cauchy stress tensor is augmented as follows:

T inc
s (d, ps) = T s(d) + psI,

where T s is the component arising from the energy Θ. However, experi-
mental studies have shown that the arterial tissue in fact exhibits nearly
incompressible behaviour (Carew, Vaishnav and Patel 1968). This means
that the strain energy function could be decomposed into two terms

Θ(C) = Θvol(J) + Θisoc(C̄),

where C̄ = J−2/3C, det C̄ = 1. The isochoric part Θisoc is given by the
general function (4.10) provided that C is replaced by C̄ and characterizes
the mechanical response of the material to incompressible deformations.
The volumetric part is usually given by

Θvol(J) =
κ

2
(J − 1)2,

where κ (bulk modulus) is a penalty parameter to enforce the incompress-
ibility constraint J = 1 (Li and Robertson 2013). In this case, the related
Cauchy stress tensor is the same as in the compressible case. For a review
of arterial vessel wall models we refer the reader to Holzapfel and Ogden
(2010).

Problem (4.7) has to be completed by the initial conditions

d|t=0 = d0,
∂d

∂t

∣∣∣
t=0

= d1 in Ωs,

and boundary conditions. The latter typically prescribe on the artificial
sections Γtartif either

d = 0 on Γtartif (4.14)

(fixed boundary) or d · n = 0 together with (T sn) · τ (j) = 0, j = 1, 2,
where τ (j) are the unit tangential directions (displacement allowed in the
tangential direction), whereas at the internal physical boundary Σt they

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


390 A. Quarteroni, A. Manzoni and C. Vergara

prescribe the solid traction

T sn = hs on Σt. (4.15)

Here d0, d1 and hs are suitable given functions. When considering the fluid–
structure (FS) coupling, hs is of course provided by the normal Cauchy
stress from the fluid side: see Section 4.3. To account for the effect of the
tissues surrounding the artery, the algebraic law (3.1) is often prescribed at
the external lateral surface Γext of Ωs, to mimic the elastic behaviour of this
tissue (Moireau et al. 2012).

For each time t > 0, the weak form of (4.7) together with the boundary
conditions (3.1), (4.14) and (4.15), in the case for fixed boundaries, reads

as follows: find d̂ = d̂(t) ∈ D, d̂ = 0 on Γartif, d̂ = d0 and ∂d̂/∂t = d1 for
t = 0 in Ωs, such that

ρs

∫
Ωs

∂2d̂

∂t2
· ê dω +

∫
Ωs

T̂ s(d̂) : ∇êdω +

∫
Γext

αST d̂ · ê dσ

=

∫
Γext

Pextn̂ · êdσ +

∫
Σ
ĥs · êdσ, (4.16)

for all ê ∈D = D0, where

Dt = {e ∈ [H1(Ωt
s)]

3 : e = 0 on Γtartif}.

The existence of strong (steady) solutions of the above problems could
be proved using the theory developed in Ball (1976). For example, this
is the case for the Saint Venant–Kirchhoff constitutive law given in (4.9)
(Ciarlet and Necas 1985). The existence and uniqueness of weak solutions
are guaranteed by the coercivity and convexity of the energy Θ (Ciarlet 1988,
Dacorogna 2000). However, a convex strain energy function is not generally
able to describe instabilities such as buckling (Ball 1977). Thus, to avoid the
use of convex functions, the property of polyconvexity was introduced (Ball
1976). Its fulfilment guarantees physically admissible solutions (Dacorogna
2000). Both the neo-Hookean law (4.11) and the exponential law (4.12)
satisfy the polyconvexity property (Balzani, Neff, Schroder and Holzapfel
2006).

4.2.1. Modelling the structure as a 2D membrane

In some circumstances, because of the thinness of the vessel wall, a non-
linear shell model has been proposed: see e.g. Leuprecht et al. (2002) and
Zhao et al. (2000). In this case, the structure problem is described by two-
dimensional equations defined with respect to the middle surface, consisting
of the computation of the deformation of this surface.

A simpler equation may be obtained if the structure is modelled as a
2D membrane whose position in space at any time exactly coincides with
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internal boundary Σt, yielding the so-called generalized string model

ρsHs
∂2d̂r
∂t2

−∇ · (P∇d̂r) + χHsd̂r = f̂s in Σ (4.17)

(Quarteroni et al. 2000c). Here Σ denotes the reference membrane configur-
ation, dr is the radial displacement and Hs is the structure thickness. The
tensor P accounts for shear deformations and, possibly, for pre-stress,

χ =
E

1− ν2
(4ρ2

1 − 2(1− ν)ρ2),

where ρ1(x) and ρ2(x) are the mean and Gaussian curvatures of Σ, respect-
ively (Nobile and Vergara 2008), and fs is the forcing term, given by a meas-
urement of the fluid pressure. Equation (4.17) is derived from Hooke’s law
for linear elasticity under the assumptions of small thickness, plane stresses,
and negligible elastic bending terms (Zienkiewicz and Taylor 2005). To ac-
count for the effect of the surrounding tissue, the term χ in (4.17) needs
to be augmented by the elastic coefficient of the tissue αST (Formaggia,
Quarteroni and Vergara 2013).

A further simplification arises when Σ denotes the lateral surface of a
cylinder. By discarding any dependence on the circumferential coordinate,
model (4.17) reduces to

ρsHs
∂2d̂r
∂t2

− kGHs
∂2d̂r
∂z2

+
EHs

(1− ν2)R2
0

Hsd̂r = f̂s in Σ, (4.18)

where k is the Timoshenko correction factor, G is the shear modulus, R0 is
the initial cylinder radius and z is the axial coordinate. Often, in the latter
case, a viscoelastic term of the form γv(∂

3dr/∂
2z∂t) is also added, with γv

denoting a suitable viscoelastic parameter (Quarteroni et al. 2000c).

4.3. The coupled fluid–structure interaction problem

Blood flow in the vessel lumen and deformation of the vessel wall are intim-
ately connected via a fluid–structure interaction (FSI). In particular, fluid
and structure interact via the fluid–structure (FS) interface Σt which coin-
cides with the physical fluid boundary and the internal vessel wall boundary
introduced in the previous sections. The coupled problem is obtained by
combining (4.1) and (4.7) at each t > 0, as follows:

ρf

(
∂v

∂t
+ (v · ∇)v

)
−∇ · T f (v, p) = 0 in Ωt

f , (4.19a)

∇ · v = 0 in Ωt
f , (4.19b)

v =
∂d

∂t
at Σt, (4.19c)
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T s(d)n = T f (v, p)n at Σt, (4.19d)

ρs
∂2d̂

∂t2
−∇ · T̂ s(d̂) = 0 in Ωs, (4.19e)

df = d at Σt, (4.19f)

together with the boundary conditions (3.1), (4.4), (4.5), (4.14), and where
df is the displacement of the fluid domain Ωt

f at the FS interface and we
have used the convention that n is the structure outward unit normal. The
matching conditions (4.19c, 4.19d) enforced at the FS interface express the
continuity of velocities (kinematic condition) and the continuity of normal
stresses (dynamic condition), respectively, whereas condition (4.19f) guar-
antees the geometry adherence between the fluid and structure domains
(geometric condition). The well-posedness analysis of the coupled problem
(4.19) (supplemented by the relevant boundary conditions) has been carried
out under several regularity assumptions. For a comprehensive description
of this topic we refer to Beirão da Veiga (2004), Grandmont (1998), Bodnár,
Galdi and Nečasová (2014) and Maday (2009), for example.

For each time t > 0, the weak formulation of the FSI problem (4.19)
together with its boundary conditions (for simplicity we set vup = 0 in
(4.4)) reads as follows: find

(v(t), d̂(t)) ∈W t = {(w, ê) ∈ [H1(Ωt
f )]3 × [H1(Ωs)]

3 :

(w, ê) = (0,0) on Γtin × Γartif and w = e on Σt},

v = v0 for t = 0 in Ωf , d̂ = d0 and ∂d̂/∂t = d1 for t = 0 in Ωs, and
p(t) ∈ L2(Ωt

f ), such that

ρf

∫
Ωtf

∂v

∂t
·w dω +Atf (v,v,w) + Bt(p,w) + ρs

∫
Ωs

∂2d̂

∂t2
· êdω

+

∫
Ωs

T̂ s(d̂) : ∇ê dω +

∫
Γext

αST d̂ · ê dσ

=

∫
Γtout

hf · ndγ +

∫
Γext

Pextn̂ · ê dσ,

Bt(q,v) = 0,

df = d at Σt, (4.20)

for all (w, ê) ∈ W t and q ∈ L2(Ωt
f ). Note that in the above weak for-

mulation, the two terms arising after integration by parts and involving the
normal Cauchy stresses T fn and T sn at the interface Σt cancel out, thanks
to (4.19d) and to the special choice of the test functions in W t.
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After introducing the total energy for the FSI problem, that is,

E3D(t) =
ρf
2

∫
Ωtf

|v|2 dω +

∫
Ωs

ρs
2
| ˙̂d|2 dω +

∫
Ωs

Θ(d̂) dω +

∫
Γext

αST |d̂|2 dγ,

(4.21)
the following conservation property holds true for the case of homogeneous
boundary conditions:

d

dt
E3D(t) +

µ

2

∫
Ωtf

(∇v + (∇v)t)2 dω = 0

(Formaggia, Gerbeau, Nobile and Quarteroni 2001, Formaggia et al. 2013).
When the membrane model (4.17) is used instead of (4.19e), the matching

conditions (4.19c, 4.19d) are replaced by

v · n =
∂dr
∂t

at Σt,

T f (v, p)n · n = −fs at Σt,

where dr is the membrane displacement written in the current configuration
and fs is the forcing term of the membrane equation (see (4.17)), acting
only at the FS interface; in this case it also plays the role of structure stress
exerted at the FS interface. Owing to (4.17) itself, we can rewrite the above
interface conditions as follows:

v · n =
∂dr
∂t

at Σt, (4.23a)

T f (v, p)n · n = −
(
ρsHs

∂2dr
∂t2

−∇ · (P∇dr) + χHsdr

)
at Σt. (4.23b)

Since the coupling only occurs in the radial direction, we have to complete
the conditions at Σt for the fluid problem in the tangential directions by pre-
scribing further equations on the fluid variables, for example homogeneous
Dirichlet or Neumann conditions (Nobile 2001).

Figueroa et al. (2006) propose an effective formulation to solve the FSI
problem with a membrane structure, while Colciago, Deparis and Quarter-
oni (2014) discuss the accuracy of the FSI-membrane problem in comparison
to a full 3D/3D simulation. In particular, for Hooke’s law, the wall shear
stresses computed with these two FSI models are in good agreement for a
distal arterial tract such as a femoropopliteal bypass. In contrast, when
larger displacements are considered such as in the ascending aorta, the dis-
crepancies between the two FSI models increase.

4.4. The boundary issue

According to the mathematical theory of the incompressible Navier–Stokes
equations, three scalar conditions need to be prescribed at each point of
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the boundary. This, however, is seldom realistic in clinical practice. For in-
stance, PC-MRA provides velocity data, but this technique is not routinely
used and ad hoc studies are required (Morbiducci et al. 2009). Alternatively,
the flow rate Q = Q(t) can be obtained across a boundary cross-section Γt,
by suitable postprocessing of data retrieved by echo-colour-Doppler or by
thermal images: see Section 3.2. This yields the flow rate condition (3.2).
In other situations, at both the inlet and outlet cross-sections, pressure
measurements P = P (t) may be considered as representative of an average
estimate, leading to condition (3.3).

From a mathematical perspective, (3.2) and (3.3) are defective condi-
tions as they prescribe only one scalar function over the entire section Γt

(Formaggia, Gerbeau, Nobile and Quarteroni 2002). Several strategies have
been proposed so far to supplement (3.2) or (3.3) with other conditions that
allow us to ‘close’ the system. For clarity, we can classify them according
to three different strategies, which are reported below.

4.4.1. Conjecturing velocity and pressure profiles

A common trick to effectively prescribe the flow rate condition (3.2) consists
in prescribing a velocity profile

v(t) = g(t) on Γt, (4.24)

where g = g(t,x) is chosen in such a way as to satisfy (3.2), that is,

ρf

∫
Γt
g(t) · ndγ = Q(t). (4.25)

The flow rate condition (3.2) is therefore replaced with the standard (vec-
torial) Dirichlet condition (4.24). A classical choice for g is a parabolic pro-
file (e.g. for flow simulations in the carotid arteries: Campbell et al. 2012),
a constant profile (often used for the ascending aorta: Moireau et al. 2012),
or that obtained from the Womersley solution (He, Ku and Moore 1993).
Both the parabolic and Womersley profiles require a circular section to be
prescribed, while non-circular sections require an appropriate morphing (He
et al. 1993).

In spite of its straightforward implementation, this choice has a major
impact on the solution, particularly in the neighbourhood of the section
Γt and for elevated values of the Reynolds number (Veneziani and Vergara
2007). To reduce the sensitivity to the arbitrary choice of the profile, the
computational domain can be artificially elongated by operating what is
called a flow extension (Moore, Steinman and Ethier 1997).

A similar approach could be applied to the mean normal Cauchy stress
condition (3.3) as well. In the case at hand, we can postulate that the
pressure on Γt is constant and that the viscous stress can be neglected,
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that is, we can prescribe

pn− µ(∇v + (∇v)T )n = Pn on Γt. (4.26)

Note that the above condition in particular satisfies the defective condition
(3.3). Condition (4.26) is generally acceptable because the pressure changes
in arteries mainly occur along the axial direction and the viscous stresses
are negligible on orthogonal cross-sections.

Since Pn plays the role of boundary normal Cauchy stress when imple-
mented in the framework of finite element approximations, no further action
is required beyond assembling the matrix for Neumann conditions. For this
reason, the treatment has been called the ‘do-nothing’ approach (Heywood
et al. 1996). As pointed out by Veneziani (1998a, 1998b), this procedure
is in fact not completely ‘innocent’. The do-nothing approach corresponds
to the following weak formulation (for simplicity we assume homogeneous

Dirichlet conditions, vup = 0): for each t > 0, find v ∈ Ṽ t
, v = v0 for t = 0

in Ωf , and p ∈ L2(Ωt
f ) such that

ρf

∫
Ωtf

∂v

∂t
·w dω +Atf (v,v,w) + Bt(p,w)

=

∫
Γtout

hf · ndγ − P
∫

Γt
w · ndγ,

Bt(q,v) = 0,

for all

w ∈ Ṽ t
= {[H1(Ωt

f )]3 : w = 0 on ∂Ω \ (Γtout ∪ Γt)}

and q ∈ L2(Ωt
f ).

A do-nothing formulation for the flow rate conditions is possible too: see
Heywood et al. (1996) and Veneziani (1998b).

Note that as an alternative to (3.3), other defective conditions involving
the fluid pressure could be considered as well. This is the case for mean
pressure conditions (Heywood et al. 1996), or conditions involving the total
pressure (Formaggia et al. 2013), defined by ptot = p + (ρf/2)|v|2. For a
comprehensive review of these conditions, we refer the interested reader to
Quarteroni et al. (2016c).

4.4.2. Augmented formulation

An alternative approach is to regard the flow rate boundary condition (3.2)
as a constraint for the solution of the fluid problem and then enforce it via
a Lagrange multiplier approach. As a scalar constraint, we need a scalar
multiplier λ = λ(t) at each time, resulting in the following weak formulation
(we again consider the case of homogeneous Dirichlet conditions): for each

t > 0, find v ∈ Ṽ t
, v = v0 for t = 0 in Ωf , p ∈ L2(Ωt

f ), and λ ∈ R such
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that

ρf

∫
Ωtf

∂v

∂t
·w dω +Atf (v,v,w) + Bt(p,w) + Ct(λ,w) =

∫
Γtout

hf ·w dγ,

Bt(q,v) = 0,

Ct(ψ,v) = ψ
Q

ρf
, (4.27)

for all w ∈ Ṽ
t
, q ∈ L2(Ωt

f ), and ψ ∈ R, and where we have set

Ct(ψ,w) = ψ

∫
Γt
w · ndγ.

See Formaggia et al. (2002) and Veneziani and Vergara (2005), who also
analyse the well-posedness of this problem.

Besides prescribing the flow rate condition (3.2), the above augmented
formulation enforces at each time a constant-in-space normal Cauchy stress
on Γt aligned with its normal direction, which precisely coincides with the
Lagrange multiplier λ, that is,

−pn+ µ(∇u+ (∇v)T )n = λn on Γt.

This method is particularly suitable when the artificial cross-section is or-
thogonal to the longitudinal axis, so that vector n is truly aligned along the
axial direction.

Since the velocity spatial profile is not prescribed a priori, this tech-
nique has been used to improve the parabolic-based law implemented in
the Doppler technology for the estimation of the flow rate starting from
the peak velocity (Ponzini, Vergara, Redaelli and Veneziani 2006, Vergara
et al. 2010, Ponzini et al. 2010).

Extension of the augmented formulation to the case of compliant walls is
addressed in Formaggia, Veneziani and Vergara (2009b) and to the quasi-
Newtonian case in Ervin and Lee (2007).

An augmented formulation has been proposed by Formaggia et al. (2002)
to prescribe condition (3.3) as well. However, as noticed by Formaggia et al.
(2002), in this case it yields at each time the condition

v = λn at Γt,

where λ = λ(t) is again the constant-in-space Lagrange multiplier. This is a
non-homogeneous Dirichlet boundary condition for the fluid velocity, which
is generally incompatible with the no-slip condition v = φ prescribed at the
physical boundary Σt. For this reason, the approach is no longer used.
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4.4.3. A control-based approach
A different strategy for the fulfilment of condition (3.2) is based on the
minimization of the mismatch functional

J(v) =
1

2

(∫
Γt
v · ndγ −Q

)2

, (4.28)

constrained by the fact that v satisfies the incompressible Navier–Stokes
equations (Formaggia, Veneziani and Vergara 2008). This PDE-constrained
optimization – which can be regarded as the dual of the above augmented
strategy – yields a system of optimality conditions to be fulfilled (also re-
ferred to as the Karush–Kuhn–Tucker (KKT) system): see Section 9.1.2
for further details. In particular, Formaggia et al. (2008) used the normal
component of the normal Cauchy stress on Γt as the control variable for the
minimization of the mismatch functional. This approach was considered
by Formaggia et al. (2009b) for the compliant case, whereas Lee (2011),
Galvin and Lee (2013) and Galvin, Lee and Rebholz (2012) address the
non-Newtonian, quasi-Newtonian and viscoelastic cases.

The same approach can also be used to fulfil the defective condition
(3.3) provided that a suitable functional to be minimized is introduced
(Formaggia et al. 2008). This allows us to prescribe (3.3) on a section
oblique with respect to the longitudinal axis too. In this case the control
variable is the complete normal Cauchy stress vector, that is, the direction
of the normal Cauchy stress is also a priori unknown.

Boundary data may also be lacking for the cross-section of the vessel wall.
In this case we end up with defective BC issues for the vessel wall: see e.g.
Quarteroni et al. (2016c).

4.5. Geometric reduced models and the geometric multiscale approach

4.5.1. The 1D and 0D models
Numerical modelling of the entire cardiovascular system by means of 3D
models is currently not affordable because of the complexity of the compu-
tational domain, which is composed of thousands of arteries and veins and
billions of arterioles, capillaries and venules (Nichols and O’Rourke 2005).
In many applications, reduced-dimensional models are used instead, either
as stand-alone models or coupled with the 3D ones.

The first one-dimensional (1D) model was introduced almost 250 years
ago by Euler (1775). Subsequently this approach was brought into the engin-
eering environment by Barnard, Hunt, Timlake and Varley (1966), Hughes
(1974) and Hughes and Lubliner (1973). These models allow the description
of blood flow in a compliant vessel where the only space coordinate is that
of the vessel axis.

One-dimensional models may be derived from 3D models by making sim-
plifying assumptions on the behaviour of the flow, the structure, and their
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Figure 4.2. Fluid domain for the derivation of the 1D model.

interaction (Quarteroni and Formaggia 2004, Peiró and Veneziani 2009).
The starting fluid domain is a truncated cone: see Figure 4.2. Referring to
cylindrical coordinates (r, ϕ, z), we make the following simplifying assump-
tions: (i) the axis of the cylinder is fixed; (ii) for any z, the cross-section
S(t, z) is a circle with radius R(t, z); (iii) the solution of both fluid and
structure problems does not depend on ϕ; (iv) the pressure is constant over
each section S(t, z); (v) the axial fluid velocity vz dominates the other velo-
city components; (vi) only radial displacements are allowed, so the structure
deformation takes the form d = der, where er is the unit vector in the radial
direction, and d(t, z) = R(t, z)−R0(z), where R0(z) is the reference radius
at the equilibrium; (vii) the fluid is assumed to obey Poiseuille’s law, so that
the viscous effects are modelled by a linear term proportional to the flow
rate; (viii) the vessel structure is modelled as a membrane with constant
thickness.

We introduce the following quantities:

A(t, z) = |S(t, z)| = πR(t, z)2 lumen section area,

v̄(t, z) = A−1

∫
S(t,z)

vz(t, z) dS mean velocity,

s(r/R) such that vz(t, r, z) = v̄(t, z)s(r/R(t, z)) velocity profile,

Q(t, z) = ρf

∫
S(t,z)

vz dS = ρfA(t, z)v̄(t, z) flow rate,

P (t, z) = A−1

∫
S(t,z)

p(t, z) dS mean pressure.

As for the structure and its interaction with the fluid, we need to introduce
a membrane law, which in fact prescribes a relation between the pressure
and the lumen area (which is determined by dr) of the form

P (t, z) = Pext + ψ(A(t, z), A0(z),β(z)), (4.29)
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where ψ is a given function satisfying ∂ψ/∂A > 0, ψ(A0) = 0. Here β is a
vector of parameters describing the mechanical properties of the membrane.

By integrating over the sections S the momentum fluid equation (4.19a)
in the z-direction and the mass conservation law (4.19b), we obtain the
system

∂U

∂t
+ H(U)

∂U

∂z
+B(U) = 0 z ∈ (0, L), t > 0, (4.30)

where U = [A Q]T is the vector of the unknowns,

α =

∫
S u

2
z

Av̄2
=

1

A

∫ 1

0
s2(y) dy

is the Coriolis coefficient, Kr = −2πµs′(1) is the friction parameter,

c1 =

√
A

ρf

∂ψ

∂A
,

while

H(U) =

 0 1

c2
1 − α

(
Q

A

)2

2α
Q

A

, (4.31a)

B(U) =

 0

Kr
Q
A +

A

ρf

∂ψ

∂A0

∂A0

∂z
+
A

ρf

∂ψ

∂β

∂β

∂z

 (4.31b)

represent the flux matrix and the dissipation vector term, respectively. A
complete derivation of the model can be found in Pedley (1980), Hughes
(1974) and Peiró and Veneziani (2009), for example. Classical choices of
the velocity profile s are flat (α = 1) and parabolic (α = 4/3).

The term ∂A0/∂z in B is typically non-positive, accounting for vessel
‘tapering’, that is, reduction of the area of the lumen when proceeding
from proximal to distal arteries. The term ∂β/∂z originates from possibly
different mechanical properties along the vessel, to describe, for example,
the presence of atherosclerotic plaques or vascular prostheses.

If A > 0, system (4.30) has two real distinct eigenvalues,

λ1,2 = αv̄ ±
√
c2

1 + v̄2α(α− 1) (4.32)

(see e.g. Quarteroni and Formaggia 2004), so it is strictly hyperbolic (see e.g.
LeVeque 1992). Under physiological conditions, c1 � αv̄, yielding λ1 > 0
and λ2 < 0, we thus have two waves travelling in opposite directions, as-
sociated with corresponding characteristic variables. An explicit expression
of these variables as a function of the physical variables could, in general,
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be derived, that is,

Wi = ζi(A,Q), i = 1, 2. (4.33)

A simple membrane law (4.29) can be obtained by the algebraic relation

ψ(A,A0, η) = η

√
A−
√
A0

A0
, with η =

√
πHsE

1− ν2
(4.34)

(Formaggia, Lamponi and Quarteroni 2003, Formaggia et al. 2013), where
ν is the Poisson modulus of the membrane, E is its Young’s modulus, and
Hs is its thickness, yielding

c1 =

√
η
√
A

2ρfA0
.

This simple law, stating that the membrane radial displacement dr is linearly
proportional to the fluid pressure, has been considered successfully in many
applications: see e.g. Steele et al. (2003), Matthys et al. (2007) and Grinberg
et al. (2010). Other laws have been proposed to account for additional
features of arterial walls, such as viscoelasticity, wall-inertia and longitudinal
pre-stress (Quarteroni et al. 2000c, Formaggia et al. 2003).

Remark 4.1. One-dimensional models do not allow us to describe second-
ary flows, such as vortices or recirculation regions. However, they provide
average quantities about the axial component of the velocity, the radial
vessel wall displacements and the pressure of a complex network at com-
putational costs that are orders of magnitude lower than those of the cor-
responding three-dimensional FSI models (Kufahl and Clark 1985, Hillen,
Hoogstraten and Post 1986, Blanco et al. 2015, Boileau et al. 2015, Malossi
et al. 2013).

The accuracy of the solution provided by 1D models is addressed by
Avolio (1980), Steele et al. (2003) and Reymond et al. (2009), who suc-
cessfully compare the numerical results of different networks with clinical
measurements, and by Matthys et al. (2007) and Muller and Toro (2013),
who perform a comparison with in vitro measurements for a complete net-
work of the cardiovascular system.

A further geometric reduction is represented by the so-called lumped para-
meter models, which are zero-dimensional (0D) models obtained by integ-
rating the 1D problem over the axial direction. These are typically used
to describe the peripheral part of the arterial and venous tree, such as the
capillaries and the arterioles.

In this case only dependence on time is allowed, and nominal values of
the unknowns are used as representative of the entire compartment. To this
end, we introduce the average flow rate and pressure in the district at hand,
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defined by

Q̂(t) =
1

l

∫ zd

zp

Q(t, z) dz =
ρf
l

∫ zd

zp

∫
S(t,z)

vz(t, z) dS dz,

P̂ (t) =
1

l

∫ zd

zp

P (t, z) dz =
1

V

∫ zd

zp

∫
S(t,z)

p(t, z) dS dz

respectively, where zp and zd are the proximal and longitudinal abscissas of
the segment, respectively, l is its length and V its volume. The convective
term is dropped since in the peripheral sites the velocity is small.

If we take the longitudinal average of the momentum equation given by
the first of (4.30) and combine it with (4.34), we obtain the ordinary differ-
ential equation (ODE)

ρf l

A0

dQ̂

dt
+
ρfKRl

A2
0

Q̂+ P̂d − P̂p = 0, (4.35)

where P̂d and P̂p are the distal and proximal pressure, respectively. When
taking the longitudinal average of the mass conservation law given by the
second of (4.30) and using (4.34), we obtain

√
A0l

η

dP̂

dt
+ Q̂d − Q̂p = 0, (4.36)

where Q̂d and Q̂p are the distal and proximal flow rate, respectively. See
Peiró and Veneziani (2009).

The two ODEs (4.35, 4.36) can be regarded as the starting point for a 0D
description of a compartment model of an arterial tract. In fact, the term
L(dQ̂/dt), with L = ρf l/A0, corresponds to the blood acceleration, RQ̂,
with R = ρfKRl/A

2
0, stems from the blood resistance due to the viscosity,

while C(dP̂ /dt), with C =
√
A0l/η, is due to the compliance of the vessel

wall. Usually an electrical analogy is used to easily interpret 0D models. In
particular, the flow rate plays the role of the current whereas the pressure
is the potential. Accordingly, the acceleration term is represented by an
inductance, the viscosity term by a resistance, and the compliance term by
a capacitance.

To close the system (4.35, 4.36) (featuring four unknowns) we also need to
include the boundary conditions originally prescribed on the 1D model. For
instance, we can assume a Dirichlet condition at the inlet and a Neumann
condition at the outlet. Thus, we may localize the unknown pressure P̂
at the proximal section (P̂ ≈ P̂p), assuming that the distal pressure P̂d is

given. Similarly we assume that the flow rate Q̂ is approximated by Q̂d and
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Figure 4.3. Example of lumped parameter scheme for an arterial tract.

that the proximal flow rate Q̂p is given. Then, from (4.35, 4.36), we obtain

P̂ − LdQ̂

dt
−RQ̂ = P̂d,

C
dP̂

dt
+ Q̂ = Q̂p,

(4.37)

corresponding to the electrical circuit drawn in Figure 4.3. Other sequences
corresponding to different boundary conditions and then to different state
variables are also possible (see e.g. Quarteroni et al. 2016c). Even though
these schemes are equivalent in terms of functionality, they play a different
role when coupled with higher-dimensional models (see e.g. Quarteroni et al.
2016c).

For a description of more complex vascular districts, we may combine
several 0D elementary tracts, by gluing them via classical continuity ar-
guments. However, the lumped parameter models have mainly been used
to provide suitable boundary conditions at the distal artificial sections of
3D and 1D models. In this case, one simple compartment is enough to
describe the entire arterial system downstream of the region of interest.
Examples are provided by the windkessel model (Westerhof, Lankhaar and
Westerhof 2009), featuring an average resistance and capacitance, the 3-
element windkessel model (Westerhof et al. 2009), where a second resistance
is added before the windkessel compartment, and the 4-element windkessel
model (Stergiopulos, Westerhof, Meister and Westerhof 1996, Stergiopulos,
Westerhof and Westerhof 1999), where an inductance element is added to
the 3-element windkessel model. A 0D model given simply by a resistance
is used to provide absorbing boundary conditions at the outlets of the fluid
domain in FSI simulations: see e.g. Nobile and Vergara (2008). Instead,
more sophisticated approaches account for the propagative dynamics as-
sociated with the peripheral circulation, such as the structured tree model
(Olufsen et al. 2000), which assumes an asymmetric self-similar structure
for the peripheral network.
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Figure 4.4. Schematic representation of the reference 3D/1D coupled model.

4.5.2. Geometric multiscale coupling

The geometric multiscale approach, first introduced in Quarteroni and Vene-
ziani (1997), consists in the coupling between the 3D, 1D and 0D models.
The idea is to use higher-dimensional models in those regions where a very
detailed description is required, and lower-dimensional models in the re-
maining part of the region of interest. This allows us to describe much of
the circulatory system.

As discussed earlier, 0D models are typically used to provide boundary
conditions for 3D and 1D models. For this reason, the coupling between 3D
or 1D models with an extended 0D network has rarely been considered in
applications. Instead, the 3D/1D coupling has received a great deal of at-
tention. For this reason, we will detail only the latter case, while referring to
Quarteroni, Ragni and Veneziani (2001), Quarteroni and Veneziani (2003),
Vignon-Clementel, Figueroa, Jansen and Taylor (2006), Kim et al. (2009),
Migliavacca et al. (2006) and Haggerty et al. (2013) for the 3D/0D coupling,
and Formaggia, Nobile, Quarteroni and Veneziani (1999) and Fernández,
Milisic and Quarteroni (2005) for the 1D/0D coupling.

As shown in Figure 4.4, we consider a 3D/FSI problem (4.19) in a 3D
cylindrical domain together with initial conditions and boundary conditions
at the proximal boundaries and at the external structure.

At the distal boundaries, the 3D problem is coupled with the 1D model
(4.30) written in the domain z ∈ [0, L], together with initial conditions and
a boundary condition at the distal boundary. We let Γt = Γtf ∪ Γts be the
coupling interface from the 3D side, which corresponds to the point z = 0
from the 1D side (see Figure 4.4).

A major mathematical issue is how to couple 3D and 1D models at the
common interface. Several strategies can be pursued, yielding many (altern-
ative) sets of interface conditions. For a rigorous derivation of the 3D/1D
problem and a detailed discussion of the interface conditions, we refer the
interested reader to the recent review article by Quarteroni et al. (2016c).

Here we will follow the guiding principle described in Formaggia et al.
(2013), where suitable interface conditions are derived from a global energy
estimate. In particular, we introduce, together with the 3D energy (4.21),

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


404 A. Quarteroni, A. Manzoni and C. Vergara

the 1D energy

E1D(t) =
ρf
2

∫ L

0
A v̄2 dx+

∫ L

0
χ(A) dx

(Formaggia et al. 2001), where χ(A) =
∫ A
A0
ψ(τ) dτ and ψ is the vessel law

(see (4.29)). Note that the stand-alone 1D problem satisfies bounds for this
energy functional as proved in Formaggia et al. (2001).

Let Ptot = ψ(A) + (ρf/2)v̄2 be the total pressure for the 1D model, and
let ptot = p+ (ρf/2)|v|2 be that of the 3D model. For the interface coupling
conditions holding at Γt, let us assume that the following inequality holds:∫

Γtf

T f (v, ptot)n · v dγ +

∫
Γts

T s(d)n · ḋ dγ +Q|z=0 Ptot|z=0 ≤ 0. (4.38)

Then, for all t > 0, the coupled 3D/1D problem (4.19, 4.30) with homo-
geneous boundary conditions satisfies the energy decay property

d

dt
(E3D(t) + E1D(t)) ≤ 0.

For the proof see Formaggia et al. (2013).
The above result provides an indication of how to find suitable interface

conditions for the 3D/1D coupled problem. In particular, for inequality
(4.38) to be fulfilled it is sufficient that the interface conditions

ρf

∫
Γtf

v · ndγ = Q|z=0, (4.39a)

(T f (v, ptot)n)|Γtf = −Ptot|z=0n (4.39b)

hold for the fluid, together with

T s(d)n = 0 on Γts (4.40)

for the structure (Formaggia, Moura and Nobile 2007, Formaggia et al.
2013). Similarly, inequality (4.38) holds if relation (4.40) is replaced by

d · n = 0 on Γts, (4.41a)

(T s(d)n)× n = 0 on Γts. (4.41b)

The interface conditions (4.39) prescribe the continuity of the flow rate
(kinematic condition) and a dynamic condition involving the total pres-
sures. Note that (4.40) and (4.41) are in fact independent of the 1D model,
resulting in boundary conditions for the 3D structure problems only. This
allows a discontinuity to manifest in the displacement between the 3D and
1D models.
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Usually, dynamic interface conditions involving the pressure (instead of
the total pressure) are considered in place of (4.39b), such as

1

|Γtf |

∫
Γtf

T f (v, p)ndγ = −ψ(A|z=0)n. (4.42)

However, the above condition does not satisfy the compatibility condition
(4.38). More precisely, in this case we have

d

dt
(E3D(t) + E1D(t)) =

ρf
2

(
(Q(t)|z=0)3

(A(t)|z=0)2
−
∫

Γtf

|v(t)|2v(t) · ndγ

)
.

Even though the right-hand side is not necessarily (always) negative, nu-
merical evidence indicates that condition (4.42) leads to stable results for
haemodynamic applications: see Malossi et al. (2013). This interface con-
dition is indeed the most commonly used among dynamic ones.

4.6. Numerical strategies

In this section we comment on the numerical solution of the problems presen-
ted in the previous subsections. Because of the complexity of the problem,
we do not seek to be exhaustive. Instead, we review some of most suitable
methods for haemodynamics. In particular, for space discretization, we will
focus on Galerkin-type methods, such as finite elements, spectral elements
and discontinuous Galerkin methods.

We will use the following notation. Let ∆t and h be the time and space
discretization parameters. In our examples ∆t is assumed to be fixed, but
adaptive strategies could be considered as well: see e.g. Veneziani and Villa
(2013). Correspondingly, the discrete times are tn = n∆t. As usual, h
is instead defined as a representative value of the mesh size, for example
h = min{hK : K ∈ K}, where K is the set of all tetrahedra in the mesh
and hK is the radius of the sphere inscribed in K ∈ K. Given the functions
w(t) and z(x), we let wn denote the approximation of w(tn) and let zh(x)
be the Galerkin approximation of z(x).

4.6.1. Numerical methods for the fluid problem

We start by reviewing some numerical methods for the fluid problem (4.1)
together with its initial and boundary conditions.

As for the time discretization, we usually consider implicit methods with a
semi-implicit treatment of the convective term and (for a moving domain) of
the fluid domain. The problem is solved at discrete time tn+1 in the domain
Ω∗f and with convective term ρf (v∗ · ∇)vn+1, where Ω∗f and v∗ are suitable

extrapolations of Ωn+1
f and vn+1 of the same order as the time discretization.

This choice introduces a CFL-like (Courant–Friedrichs–Lewy) restriction on
the time step to preserve absolute stability (Quarteroni and Valli 1994).
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However, this condition is very mild in haemodynamic applications, since,
for accuracy purposes, the pulsatility of the blood signal and the quick
dynamics around systole can only be accommodated by choosing a small
∆t. Usually, a second-order approximation is considered a good choice
in haemodynamics; in this respect, the second-order backward difference
formula (BDF2) and Crank–Nicolson are the most widely used methods
(Quarteroni, Sacco and Saleri 2000a).

The first class of methods we present is based on a decomposition of
the semi-discrete problem at the spatial continuous level (differential split-
ting or projection methods). The basic idea underlying these methods is
to split the computation of velocity and pressure, with a final step aiming
to recover the incompressibility constraint. In what follows we detail the
Chorin–Teman method (Chorin 1968, Temam 1969), originally proposed
for homogeneous Dirichlet conditions and fixed domain, which is the pro-
genitor of these methods. We only detail the case of the backward Euler
discretization.

Chorin–Temam method

For n ≥ 0, at time tn+1:

(1) Solve in Ωf the advection-reaction-diffusion problem with homogeneous

Dirichlet condition for the intermediate unknown velocity ṽn+1:

ρf
ṽn+1 − vn

∆t
− µ(∇ṽn+1 + (∇ṽn+1)T ) + ρf (vn · ∇)ṽn+1 = 0.

(2) Solve in Ωf the pressure problem with homogeneous Neumann condi-
tions:

4pn+1 =
ρf
∆t
∇ · ṽn+1.

(3) Correct the velocity:

vn+1 = ṽn+1 − ∆t

ρf
∇pn+1.

This splitting method is based on the Ladyzhenskaya theorem (Girault and
Raviart 1986), which states that a vector function belonging to [L2(Ωf )]3

can always be decomposed as the sum of a solenoidal part and a gradient
term. In fact, the correction step corresponds to projecting the intermediate
velocity onto

H = {w ∈ [L2(Ωf )]3 : ∇ ·w = 0, w · n|∂Ωf = 0}.

Thus, it is possible to show that vn+1 and pn+1 are in fact solutions of
the original semi-discrete problem. The Chorin–Temam method is very
effective since it overcomes the saddle-point nature of the problem and
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solves two standard uncoupled elliptic problems. However, it suffers from
inaccuracies at the boundary. In particular, the tangential velocity can-
not be controlled (see the definition of H) and spurious pressure values
appear as a consequence of the artificial Neumann condition for the pres-
sure problem (Rannacher 1992). This has an effect on the accuracy of the
semi-discrete solution. In particular, the following error estimate holds true
(Rannacher 1992):

‖v(tn,x)− vn(x)‖[H1]3 + ‖p(tn,x)− pn(x)‖L2 .
√

∆t.

The use of higher-order time approximations leads to the same accuracy.
An improvement of the above method is given by the rotational incre-

mental variant of the Chorin–Temam scheme (Timmermans, Minev and
van de Vosse 1996). Below we detail the case of BDF2 and second-order ex-
trapolation of the convective term, since the first-order approximation does
not lead to any improvement.

Rotational–incremental Chorin–Temam method

For n ≥ 0, at time tn+1:

(1) Solve in Ωf the advection-reaction-diffusion problem with homogeneous

Dirichlet condition in the intermediate unknown velocity ṽn+1:

ρf
3ṽn+1 − 4vn + vn−1

2∆t
− µ(∇ṽn+1 + (∇ṽn+1)T )

+ ρf ((2vn − vn−1) · ∇)ṽn+1 +∇pn = 0.

(2) Solve the pressure problem:

4pn+1 = 4pn +

(
3ρf
2∆t

− µ
)
∇ · ṽn+1, x ∈ Ωf ,

∂pn+1

∂n
= µ(∇×∇× ṽn+1) · n, x ∈ ∂Ωf .

(3) Correct the velocity:

vn+1 = ṽn+1 − 2

3

∆t

ρf
∇(pn+1 − pn + µ∇ · ṽn+1).

Unlike the classical Chorin–Temam scheme, in the above method the
boundary conditions for the pressure problem are consistent, and no nu-
merical boundary layer for the pressure is observed. This is confirmed by
the improved error estimate

‖v(tn,x)− vn(x)‖[H1]3 + ‖p(tn,x)− pn(x)‖L2 . ∆t3/2

(Guermond and Shen 2006).
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The above two methods belong to the general class of pressure-correction
methods; see also Codina and Badia (2006), Guermond, Minev and Shen
(2006) and Guermond and Quartapelle (1998), for example. A different class
is obtained by switching the role of velocity and pressure in the splitting,
that is, the viscous term is now ignored or treated explicitly in the first step
and the velocity is then corrected accordingly (velocity-correction schemes:
Orszag, Israeli and Deville 1986, Karniadakis, Israeli and Orszag 1991).
These schemes are characterized by the same non-optimal error estimates as
the pressure-correction schemes due to artificial Neumann conditions for the
pressure problem. Again, an improvement could be obtained by considering
a rotational-incremental variant (Guermond and Shen 2003).

In haemodynamics it is often the case that Neumann boundary conditions
are prescribed at some artificial section. The extension of the differential
splitting methods to this case is addressed in Guermond, Minev and Shen
(2005): on the Neumann boundary we have an artificial Dirichlet condition
for the pressure, which again diminishes the optimal rate of convergence
with respect to ∆t.

Given the next methods we are going to review, it is convenient to intro-
duce the algebraic problem arising from the application of a Galerkin-like
method to the semi-discrete-in-time problem. First of all we notice that the
solvability of the discretized-in-space problem is guaranteed by a suitable
compatible choice of the approximation spaces for the velocity and the pres-
sure in order to satisfy the discrete inf-sup stability condition (Quarteroni
and Valli 1994). As is well known, an example of finite elements for a
tetrahedral mesh is provided by piecewise polynomials of order 2 for the
velocity approximation and of order 1 for the pressure approximation. This
choice guarantees the existence and uniqueness of the solution to the lin-
earized fully discrete problem and is often used to provide a stable solution
in haemodynamics. In this case, we have the optimal error estimate

‖vn(x)− vnh(x)‖[H1]3 + ‖pn(x)− pnh(x)‖L2 . h2,

provided that vn and pn are sufficiently regular. (For other stable choices see
Quarteroni and Valli 1994 and Boffi, Brezzi and Fortin 2013.) Alternatively,
suitable stabilization terms could be added to the problem, circumventing
the inf-sup condition and allowing the use of polynomials of equal order.
In this case, additional terms are added to the mass conservation equation
and, if needed, to the momentum conservation equation. Usually, these tech-
niques also stabilize convected-dominated problems arising when the Reyn-
olds number is high, for example in the aorta or in stenotic carotid arter-
ies. One technique is streamline upwind/Petrov–Galerkin (SUPG) (Muller
et al. 2005). A generalization of SUPG is the variational multiscale (VMS)
method (Hughes 1995, Hughes, Mazzei and Jansen 2000), which is based on
decomposition of the unknown into two terms, one accounting for the large
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scales and the other for the small scales. The same decomposition is used
for the test functions, so that a system of two coupled problems is obtained.
The VMS method is also useful since it allows modelling of transition to
turbulence effects, which may occur in some pathological conditions such as
stenoses (Akkerman et al. 2008). For an application to haemodynamics, see
Forti and Dede’ (2015).

Here we introduce the algebraic problem related to the fully discretized
linearized problem. For the sake of exposition, we limit ourselves to the
cases without stabilization terms. For the more general case, we refer the
interested reader to Elman, Silvester and Wathen (2005) and Benzi, Golub
and Liesen (2005), for example. At each time step we have[

A BT

B 0

] [
V
P

]
=

[
F f

0

]
,

where V and P are the vectors collecting the velocity and pressure un-
knowns, A = ρf (α/∆t)Mf + ρfN(V ∗) + µK (Mf is the mass matrix, N
is the matrix related to the linearized convective term, K is the stiffness
matrix), F f accounts for non-homogeneous Dirichlet and Neumann con-
ditions and the terms coming from time discretization, α depends on the
time discretization scheme, and where we have omitted the current temporal
index n+1.

The above non-symmetric linear system can be solved by means of a
Krylov method, for example the GMRES method. Suitable preconditioners
are required. A classical choice is given by block preconditioners, which
again split the solution of the velocity and of the pressure:

P =

[
PA BT

0 −PΣ

]
.

If PA = A and PΣ = Σ = BA−1BT (the Schur complement), then the solu-
tion is achieved in three GMRES iterations (Elman et al. 2005). In fact,
this choice is equivalent to formally solving the momentum equation for the
velocity and substituting its expression in the mass equation. However, in
practice this preconditioner is not efficient, since the linear system involving
the Schur complement is too onerous, Σ being a full matrix whose explicit
construction requires knowledge of A−1. Efficient preconditioners can be
obtained by approximating Σ (and, if needed, A). For low Reynolds num-
bers (less than 10, say), an effective choice is given by PΣ = µ−1MP , where
MP is the pressure mass matrix (or even its diagonal: Elman and Silvester
1996). Therefore this is a good choice in haemodynamics for small vessels.
For increasing Reynolds numbers, the convergence properties of this pre-
conditioner deteriorates since it does not account for the convective term.
A better choice for medium and large vessels is given by PΣ = APF

−1
P MP ,

where AP is the pressure stiffness matrix, and FP = µAP + ρfNP (V ∗),
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where NP is the matrix related to the convective term defined on the pres-
sure space (pressure convection-diffusion preconditioner: Elman et al. 2005,
Benzi et al. 2005). For the solution of the velocity problem, suitable precon-
ditioners for the advection-reaction-diffusion problem could be introduced.
Alternatively, fast solutions such as V-cycle multigrid can be considered
(Turek 1999).

Another class of preconditioners is obtained by an inexact block LU fac-
torization of the fluid matrix. The starting point is the exact factorization[

A BT

B 0

]
=

[
A 0
B −Σ

] [
I A−1BT

0 I

]
.

Again, different preconditioners are obtained by suitable approximations Â1

and Â2 of A and Σ̂ of Σ, leading to

P =

[
Â1 0

B −Σ̂

] [
I Â−1

2 BT

0 I

]
.

A convenient choice is Â1 = Â2 = DA and Σ̂ = BD−1
A BT , where DA is

the diagonal of A (SIMPLE preconditioner: Patankar and Spalding 1972,

Li and Vuik 2004). Note that in this case Σ̂ is sparse and could be explicitly
assembled. This is an effective choice when the fluid matrix is diagonally
dominant, that is, when small values of ∆t are used. Another choice is the
Yosida preconditioner, where

Σ̂ =
∆t

ρfα
BM−1

f BT , Â1 = A and Â2 =
ρfα

∆t
Mf

(Veneziani 2003). Again, the efficiency deteriorates for increasing ∆t. The
Yosida preconditioner was originally introduced as a solver in Veneziani
(1998b); see also Quarteroni, Saleri and Veneziani (1999, 2000b). This led
to a splitting of the velocity and of the pressure computation, which could be
seen as the algebraic counterpart of the Chorin–Temam method (algebraic
pressure-correction methods). In particular, we have the following steps:

AṼ = F f computation of the velocity,

∆tBM−1
f BTP = BṼ computation of the pressure,

V = Ṽ − ∆t

ρfα
M−1
f BTP correction of the velocity.

Again, an incremental version of the algebraic pressure-correction methods
could also be considered (Quarteroni, Saleri and Veneziani 2000b). An ex-
tension to spectral methods is provided in Gervasio, Saleri and Veneziani
(2006).
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For a recent comparison of the performance of different precondition-
ers (all described above) used for haemodynamic applications, see Deparis,
Grandperrin and Quarteroni (2014).

In healthy conditions, blood flow is mainly laminar. Transitional flow may
develop in some pathological instances, or with the assistance of devices. In
these circumstances, suitable mesh refinement is often employed, possibly
accompanied by the use of turbulence models. We mention the case of
stenotic carotid arteries, for which Stroud, Berger and Saloner (2002) and
Grinberg, Yakhot and Karniadakis (2009) use Reynolds-averaged Navier–
Stokes (RANS) models, Lee et al. (2008), Fischer et al. (2007) and Cheung
et al. (2010) use direct numerical simulation (DNS), and Rayz, Berger and
Saloner (2007) and Lancellotti et al. (2015) use large eddy simulation (LES).
Bazilevs et al. (2009) use the VMS formulation to describe transitional ef-
fects in the ascending aorta under the influence of the left ventricular assist
device (LVAD).

In Figure 4.5 we show some examples of numerical results obtained in
four real geometries reconstructed from radiological images (see the cap-
tion for details). These results highlight the complex pattern of blood flow
induced by the geometry and by the heart pulsatility. To highlight the
transitional effects in stenotic carotid arteries, Figure 4.5(c) plots the Q
criterion, defined by

Q = −1

2

∑
i,j

S2
ij − Ω2

ij ,

where S = ∇u + (∇u)T and Ω = ∇u − (∇u)T (Lee et al. 2008). Positive
values of Q indicate locations where rotations dominate strain and shear.

4.6.2. Numerical methods for the vessel wall problem

In this section we review some of the most commonly used numerical ap-
proaches for the solution of problem (4.7), endowed with its initial and
boundary conditions.

For the time discretization, a popular family of schemes is that of New-
mark, which is characterized by two parameters θ and ζ (Newmark 1959).
The special combination θ = 1/2 and ζ = 1/4 yields the following semi-
discrete form of (4.16) (for simplicity we set Pext = 0 and hs = 0):

ρs

∫
Ωs

4d̂
n+1
− 4d̂

n

∆t2
· ê dω +

∫
Ωs

T̂ s(d̂
n+1

) : ∇êdω +

∫
Γext

αST d̂
n+1
· ê dσ

= ρs

∫
Ωs

(
4ŵn

∆t
+ ân

)
· êdω, (4.43)

ŵn+1 =
2

∆t
(d̂
n+1
− d̂

n
)− ŵn, ân+1 =

4

∆t2
(d̂
n+1
− d̂

n
)− 4

∆t
ŵn − ân,
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(a) (b)

(c) (d)

Figure 4.5. (a) Velocity vectors in the aneurysm of an abdominal aorta (CT im-
ages from the Vascular Surgery and Radiology Divisions at Fondazione IRCSS Cà
Granda, Ospedale Maggiore Policlinico, Milan, Italy). (b) Velocity streamlines in a
stenotic carotid artery (MRI images from the Vascular Surgery and Radiology Divi-
sions at Ospedale Maggiore Policlinico, Milan). (c) Coherent vortical structures by
Q criterion in a stenotic carotid artery (we show only the regions with Q > 50 000
shaded by the velocity magnitude; CT images from the Vascular Surgery and Radi-
ology Divisions at Ospedale Maggiore Policlinico, Milan). (d) Wall shear stress in
an ascending aorta (MRI images from the Cardio Surgery and Radiology Divisions
at Ospedale Borgo Trento, Verona, Italy). Numerical results were obtained using
the finite element library LifeV, P2/P1 finite elements, the backward Euler scheme
for the time discretization with a semi-implicit treatment of the non-linear term,
and the Yosida preconditioner. For the stenotic carotid arteries an LES model has
been used.
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where ŵn+1 and ân+1 denote approximations of vessel wall velocity and
acceleration, respectively. This method is unconditionally absolutely stable
and second-order accurate with respect to ∆t. An extension of Newmark
schemes is provided by the generalized-alpha method (Chung and Hulbert
1993); see e.g. Isaksen et al. (2008) for an application to haemodynamics.

Space discretization is typically based on finite elements. Whatever the
implicit temporal scheme chosen, a system of non-linear algebraic equations
is obtained after space and time discretization, that is,

ρsβ

∆t2
MsD + Γ(D) + αSTM

ext
s D = Gs,

where β depends on the time discretization (e.g. β = 4 for the Newmark
method (4.43)), D is the vector collecting the vessel wall displacement un-
knowns, Ms is the mass matrix, M ext

s is the boundary mass matrix related
to Σext, Γ is the non-linear operator defined by

Γi =

∫
Ωs

T̂ s(d̂) : ∇êi dω,

where êi is the ith basis function, and Gs is the vector related to the right-
hand side of the time-discretized equation. Notice that we have omitted
the temporal index, which is understood. The above system is linearized
by means of the Newton method, obtaining at each time step a sequence of
linear systems of the form(

ρsβ

∆t2
Ms + T (D(k−1)) + αSTM

ext
s

)
δD(k)

= Gs −
ρsβ

∆t2
MsD(k−1) − Γ(D(k−1))− αSTM ext

s D(k−1),

where k ≥ 1 is the Newton iteration index, to be solved until convergence
occurs. Here δD(k) = (D(k) − D(k−1)), T is the matrix related to the
linearization of the first Piola–Kirchhoff tensor, that is,

(T )ij =

∫
Ωs

(DF T̂ s(d̂(k−1)) : ∇êj) : ∇êi,

where DF is the Gâteaux derivative with respect to F .
For the solution of the above linear system, domain decomposition (DD)

methods are often used as efficient preconditioners for iterative Krylov meth-
ods. Since the matrix T is symmetric, the conjugate gradient method is
usually considered for iterations. Among DD preconditioners, finite element
tearing and interconnect (FETI) methods (Farhat and Roux 1991) are very
often used in structural mechanics. In particular, all floating FETI meth-
ods have been considered for vessel wall problems, for example in Augustin,
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(a) (b)

Figure 4.6. (a) Von Mises internal stresses in a carotid artery (MRI images from
the Vascular Surgery and Radiology Divisions at Ospedale Maggiore Policlinico,
Milan, Italy). (b) Von Mises stresses in an abdominal aortic aneurysm (mesh
from www.vascularmodel.com/sandbox/doku.php?id=start). Numerical results were
obtained using LifeV (carotid artery) and the finite element library redbKIT v2.1
(github.com/redbKIT/redbKIT/releases) (AAA), P2 finite elements, a Newmark un-
conditionally stable scheme for the time discretization and an exponential vessel
wall law.

Holzapfel and Steinbach (2014). As in classical FETI methods, Lagrange
multipliers are introduced to glue the solution together at the subdomain
interfaces. In addition, Lagrange multipliers are also used to prescribe Di-
richlet boundary conditions. This simplifies the implementation of the FETI
method since all the subdomains are treated in the same way. A variant
successfully used for arterial vessel walls is the so-called dual–primal FETI
method: see e.g. Balzani et al. (2010). Finally, we mention yet another
class of DD methods considered for this problem, a two-level overlapping
Schwarz method with an energy minimization coarse space: see Dohrmann
and Widlund (2009).

In Figure 4.6 we illustrate some examples of numerical results obtained
in real geometries reconstructed from radiological images (see the caption
for details). These results highlight the anisotropic internal stresses charac-
terizing vascular vessel walls.

4.6.3. Numerical methods for the fluid–structure interaction problem
The numerical solution of the coupled FSI problem (4.19) requires us to
manage three sources of non-linearities, namely,
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(i) the fluid domain is unknown (geometric non-linearity),

(ii) the fluid subproblem is non-linear (fluid constitutive non-linearity),

(iii) the vessel displacement subproblem is non-linear (structure constitutive
non-linearity),

together with two different kinds of coupling,

(iv) the displacement of the fluid domain at the FS interface needs to match
the displacement of the vessel wall (geometric adherence: see (4.19f)),

(v) the fluid and vessel displacement subproblems are coupled by means
of the kinematic and dynamic conditions (4.19c, 4.19d) (physical coup-
ling).

Arbitrary-Lagrangian formulation. As for points (i) and (iv), a classical nu-
merical strategy relies on extending the FS interface displacement df = d|Σt
to the whole fluid domain, thus associating a displacement with its internal
points as well. This is obtained by solving an extra problem for the fluid
mesh displacement, usually a harmonic extension of the FS interface datum
df , with homogeneous Dirichlet conditions at ∂Ωt

f \ Σt. The fluid domain
displacement is then used to move the points of the fluid mesh accordingly,
obtaining the new computational fluid domain. With this aim, the Navier–
Stokes equations are reformulated on a frame of reference that moves with
the fluid mesh. This is neither a Lagrangian description (where the frame
moves with the fluid particles) nor an Eulerian description (where a fixed
frame would be used). For this reason, it is called the arbitrary Lagrangian–
Eulerian (ALE) approach (Hirt, Amsden and Cook 1974, Donea 1982). To
write the Navier–Stokes equations in an ALE configuration, we use the
Reynolds transport formula to express the ALE material time derivative
δ/δt of a function z with respect to the Eulerian derivative, that is,

δz

δt
=
∂z

∂t
+ (vf · ∇)z,

where vf = ḋf is the velocity of the points of the fluid mesh. Thus, the FSI
problem together with its initial and boundary conditions becomes

ρf

(
δv

δt
+ ((v − vf ) · ∇)v

)
−∇ · T f (v, p) = 0 in Ωt

f , (4.44a)

∇ · v = 0 in Ωt
f , (4.44b)

v =
∂d

∂t
on Σt, (4.44c)

T s(d)n = T f (v, p)n on Σt, (4.44d)
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ρs
∂2d̂

∂t2
−∇ · T̂ s(d̂) = 0 in Ωs, (4.44e)

d̂f = d̂ on Σ, (4.44f)

−4d̂f = 0 in Ωf . (4.44g)

This choice is particularly suitable when finite elements are considered for
the space discretization. Indeed, the terms involving spatial derivatives are
as usual expressed with respect to the current configuration, whereas the
(material) time derivative term is written in the reference configuration. In
particular, given the nodal basis functions φj , we have

δ(vh(t,x))

δt
=

δ

δt

(∑
j

vjh(t)φj(x(t))

)
=
∑
j

dvjh(t)

dt
φj(x(t)),

since the time variations of the basis functions with respect to the reference
domain vanish. This makes the computation of the fluid velocity on the
nodes of the fluid mesh easy: see e.g. Nobile (2001).

For time discretization of (4.44), a common choice is to discretize the fluid
and the vessel wall problems with two schemes of equal order (of order p,
say), for example BDF2 or Crank–Nicolson for the fluid and the Newmark
scheme (4.43) for the vessel problem.

Treatment of geometric coupling, geometric adherence and fluid non-linear-
ity. As for issue (ii) above (constitutive fluid non-linearity), following the
approach commonly used for a stand-alone fluid problem, the convective
field is usually treated explicitly, by using a suitable extrapolation v∗ − v∗f
of order p from previous time steps. This choice introduces a CFL-like
condition for ∆t to preserve absolute stability, which however is always
satisfied for the values of ∆t usually considered in haemodynamics. An-
other common choice in haemodynamics is the explicit treatment of geo-
metric coupling and adherence (issues (i) and (iv) above). In particular, the
fluid problem coupled with the structure problem are solved in a domain
Ω∗f obtained by a suitable extrapolation from previous time steps of order

p, and the fluid geometry problem is then solved in sequence (Swim and
Seshaiyer 2006, Fernández, Gerbeau and Grandmont 2007, Badia, Quaini
and Quarteroni 2008c, Nobile and Vergara 2008). Again, a limitation on
∆t is required to ensure absolute stability. In particular, Fernández et al.
(2007) prove for a model problem that stability is guaranteed under a CFL-
like condition. Numerical evidence in real scenarios indicates that this is
also a mild condition in the haemodynamics regime: see e.g. Moireau et al.
(2012) and Nobile, Pozzoli and Vergara (2014). Based on the considerations
above, the following temporal discretization of the FSI problem (4.44) can
be considered.
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Explicit scheme for geometric coupling and adherence

For n ≥ 1, at time step tn:

(1) Solve the FSI problem:

ρfα

∆t
vn + ρf ((v∗ − v∗f ) · ∇)vn −∇ · T f (vn, pn) = gnf in Ω∗f , (4.45a)

∇ · vn = 0 in Ω∗f , (4.45b)

vn =
α

∆t
dn + gnfs on Σ∗, (4.45c)

T s(d
n)n∗ = T f (vn, pn)n∗ on Σ∗, (4.45d)

ρsβ

∆t2
d̂
n
−∇ · T̂ s(d̂

n
) = ĝns in Ωs, (4.45e)

where α still depends on the time discretization scheme, and

gnf = gnf (vn−1,vn−2, . . .),

gns = gns (dn−1,dn−2, . . .),

gnfs = gnfs(d
n−1,dn−2, . . .)

account for the terms at previous time steps coming from time discret-
izations of order p of the corresponding equations (4.44a), (4.44e) and
(4.44c), respectively.

(2) Then, solve the fluid geometry problem,

−4d̂
n

f = 0 in Ωf , (4.46a)

d̂
n

f = d̂
n

on Σ, (4.46b)

and build Ω∗f accordingly.

In the above substeps, the FSI problem (4.45) is still coupled by means
of the physical coupling given by the interface conditions (4.45c, 4.45d): see
issue (v) above. For the solution of this problem, both partitioned and
monolithic procedures have been successfully considered so far in haemo-
dynamics. In partitioned schemes, the fluid and vessel wall subproblems
are solved separately, one or more times per time step. Each of the two
problems is equipped with a suitable boundary condition at the FS inter-
face Σ∗ derived by splitting the physical interface conditions (4.45c, 4.45d).

Partitioned algorithms of explicit type. From the computational point of
view, an attractive class of partitioned schemes is that of the loosely coupled
algorithms where the two subproblems are solved only once per time step.
The classic loosely coupled algorithm, widely used in aerodynamics (Piperno
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and Farhat 2001), is the explicit Dirichlet–Neumann scheme, where condi-
tion (4.45c) is prescribed explicitly as a Dirichlet condition in the fluid sub-
problem, whereas condition (4.45d) is prescribed as a Neumann condition
on the vessel wall subproblem, leading to the following.

Explicit Dirichlet–Neumann scheme

For n ≥ 1, at time step tn:

(1) Solve the fluid Oseen problem with a Dirichlet condition at the FS
interface:
ρfα

∆t
vn + ρf ((v∗ − v∗f ) · ∇)vn −∇ · T f (vn, pn) = gnf in Ω∗f , (4.47a)

∇ · vn = 0 in Ω∗f , (4.47b)

vn =
α

∆t
dn−1 + gn−1

fs on Σ∗. (4.47c)

(2) Then, solve the non-linear vessel wall problem with a Neumann condi-
tion at the FS interface:

ρsβ

∆t2
d̂
n
−∇ · T̂ s(d̂

n
) = ĝns in Ωs, (4.48a)

T̂ s(d̂
n
)n̂ = T̂ f (v̂n, p̂n)n̂ on Σ. (4.48b)

Note that the time-discretized kinematic condition (4.47c) differs from
(4.45c) since now we are considering an explicit Dirichlet condition for
the fluid subproblem, so the right-hand side is computed at the previous
time step.

A ‘parallel’ version of this scheme is obtained by replacing T̂ f (v̂n, p̂n)n̂

with T̂ f (v̂n−1, p̂n−1)n̂ in (4.48b). Notice that in the monolithic FSI prob-
lem (4.45), the dynamic continuity condition (4.45d) is written in the cur-
rent configuration Σ∗, whereas for the structure subproblem alone (4.48) is
written in the reference configuration Σ. Accordingly, in what follows the
structure interface quantities will be written in the current configuration
in monolithic FSI problems and in the reference configuration when the
structure problem is uncoupled in view of a partitioned scheme.

Unfortunately, the explicit Dirichlet–Neumann scheme can be uncondi-
tionally absolutely unstable. In particular, Causin, Gerbeau and Nobile
(2005) prove that this happens if the fluid and structure densities are com-
parable, which is precisely the case for haemodynamics. This is due to the
so-called high added mass effect. See also Forster, Wall and Ramm (2007)
and Nobile and Vergara (2012).

Stable loosely coupled algorithms have been introduced recently. To this
end, in the FSI problem (4.45) the interface conditions (4.45c, 4.45d) are
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replaced by two linear independent combinations

σfv
n + T f (vn, pn)n∗ = σf

(
α

∆t
dn + gnfs

)
+ T s(d

n)n∗ on Σ∗, (4.49a)

σs

(
α

∆t
dn + gnfs

)
+ T s(d

n)n∗ = σsv
n + T f (vn, pn)n∗ on Σ∗, (4.49b)

where σf 6= σs are, in general, two functions of space and time. This
naturally leads to the following.

Explicit Robin–Robin scheme

For n ≥ 1, at time step tn:

(1) Solve the Oseen problem with a Robin condition at the FS interface:

ρfα

∆t
vn + ρf ((v∗ − v∗f ) · ∇)vn

−∇ · T f (vn, pn) = gnf in Ω∗f , (4.50a)

∇ · vn = 0 in Ω∗f , (4.50b)

σfv
n + T f (vn, pn)n∗

= σf

(
α

∆t
dn−1 + gn−1

fs

)
+ T s(d

n−1)n∗ on Σ∗. (4.50c)

(2) Then, solve the non-linear vessel wall problem with a Robin condition
at the FS interface:

ρsβ

∆t2
d̂
n
−∇ · T̂ s(d̂

n
) = ĝns in Ωs, (4.51a)

σsα

∆t
d̂
n

+ T̂ s(d̂
n
)n̂ = σsv̂

n + T̂ f (v̂n, p̂n)n̂− σsĝnfs on Σ. (4.51b)

Burman and Fernández (2009) propose a discontinuous Galerkin (DG)-
like mortaring of the interface coupling conditions (4.45c, 4.45d). The corres-
ponding block Gauss–Seidel explicit algorithm could be reinterpreted as an
explicit Dirichlet–Robin scheme, where in (4.50c, 4.51b) we have σf = +∞,
σs = −γµ/h, where γ is the DG penalty parameter. Burman and Fernández
show that the DG interface penalty and the viscous dissipation are not
able to control the pressure fluctuations at the FS interface appearing in
the discrete energy estimate. For this reason, they propose adding to the
fluid problem a consistent stabilization term penalizing the pressure fluctu-
ations, which is proved to be absolutely stable under a CFL-like condition.
Banks, Henshaw and Schwendeman (2014) have introduced a stable explicit
Robin–Robin scheme, setting the parameters in the Robin interface condi-
tions (4.50c, 4.51b) after analysing the incoming and outgoing characteristic
variables of the vessel wall problem. In particular, the above parameters
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are defined in terms of the outgoing characteristic variable for the fluid sub-
problem and in terms of the incoming characteristic variable for the vessel
wall subproblem. For linear elasticity, the following values are obtained:
σf,norm =

√
ρs(µ1 + 2µ2) and σf,tang =

√
ρsµ2 in the normal and tangential

direction, respectively (µ1 and µ2 are the Lamé constants), and σs = −σf .
This choice allows the travelling information contained in the characteristic
variables to provide a tighter coupling of the fluid and structure problems
than that enforced by (4.45c, 4.45d).

Partitioned algorithms of semi-implicit type. Fernández et al. (2007) prove
that to achieve stability without stabilization terms for the Dirichlet–Neu-
mann scheme, an implicit coupling between the fluid pressure and the vessel
wall displacement is required. In particular, a projection scheme is used
where the fluid ALE-advection-diffusion step is solved explicitly, whereas
the fluid pressure and vessel wall subproblems are coupled and solved in an
iterative framework until convergence occurs (see also Astorino and Grand-
mont 2009 for a convergence analysis).

Semi-implicit pressure-vessel wall coupled scheme

For n ≥ 1, at time step tn:

(1) Solve the ALE-advection-diffusion problem with a Dirichlet condition
at the FS interface:
ρfα

∆t
ṽn + ρf ((v∗ − v∗f ) · ∇)ṽn

−∇ · µ(∇ṽn + (∇ṽn)T ) = gnf in Ω∗f , (4.52a)

ṽn =
α

∆t
dn−1 + gn−1

fs on Σ∗. (4.52b)

(2) Then, solve the coupled pressure-vessel wall problem. To this end,
introduce the following iterations on index k ≥ 1.

(a) Solve the pressure problem with a Neumann condition at the FS
interface:

4pn(k) =
ρfα

∆t
∇ · ṽn(k) in Ω∗f ,

∂pn(k)

∂n∗
=

α

∆t
dn(k−1) + gnfs on Σ∗.

(b) Then, solve the non-linear vessel wall problem with a Neumann
condition at the FS interface:

ρsβ

∆t2
d̂
n

(k) −∇ · T̂ s(d̂
n

(k)) = ĝns in Ωs,

T̂ s(d̂
n

(k))n̂ = T̂ f (̂̃vn, p̂n(k))n̂ on Σ.
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Astorino, Chouly and Fernández (2009) apply the DG mortaring approach
to this projection scheme, leading to a Robin–Robin-like scheme. An algeb-
raic version of the projection scheme proposed by Fernández et al. (2007) is
introduced in Badia et al. (2008c).

Partitioned algorithms of implicit type. More generally, a fully implicit treat-
ment of (4.45c, 4.45d) (or (4.49)) by means of partitioned algorithms is often
considered. In this case, the fluid and vessel wall subproblems are solved
iteratively until the whole interface conditions are satisfied within a pre-
scribed tolerance. A general scheme is given by the following.

Implicit Robin–Robin scheme

For n ≥ 1, k ≥ 1, at time step tn/iteration k:

(1) Solve the Oseen problem with a Robin condition at the FS interface:

ρfα

∆t
vn(k) + ρf ((v∗ − v∗f ) · ∇)vn(k)

−∇ · T f (vn(k), p
n
(k)) = gnf in Ω∗f , (4.55a)

∇ · vn(k) = 0 in Ω∗f , (4.55b)

σfv
n
(k) + T f (vn(k), p

n
(k))n

∗

= σf

(
α

∆t
dn(k−1) + gnfs

)
+ T s(d

n
(k−1))n

∗ on Σ∗. (4.55c)

(2) Then, solve the non-linear vessel wall problem with a Robin condition
at the FS interface:

ρsβ

∆t2
d̂
n

(k) −∇ · T̂ s(d̂
n

(k)) = ĝns in Ωs, (4.56a)

σsα

∆t
d̂
n

(k) + T̂ s(d̂
n

(k))n̂

= σsv̂
n
(k) + T̂ f (v̂n(k), p̂

n
(k))n̂− σsĝ

n
fs on Σ. (4.56b)

As proved in Causin et al. (2005), a small relaxation parameter is needed
to achieve convergence in the implicit Dirichlet–Neumann scheme (corres-
ponding to setting σf = +∞, σs = 0 in (4.55c, 4.56b)). In practice, an
Aitken relaxation procedure is often used to dynamically estimate an effi-
cient relaxation parameter (Deparis 2004, Kuttler and Wall 2008). A better
situation is obtained by properly selecting the parameters in the Robin in-
terface conditions (4.55c, 4.56b). In particular, the choice

σf =
βρsHs

α∆t
+

EHs∆t

(1− ν2)R2
, σs = 0

(where, as usual, E and ν are Young’s modulus and the Poisson ratio for the
vessel material at small deformations, and Hs and R are the representative
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thickness and radius of the vessel) yields fast convergence without any relax-
ation (Robin–Neumann scheme: Badia, Nobile and Vergara 2008a, Nobile,
Pozzoli and Vergara 2013). Gerardo-Giorda, Nobile and Vergara (2010)
and Gigante and Vergara (2015) have characterized the optimal value of
σs, leading to further improvement in the convergence history. Yu, Baek
and Karniadakis (2013) have derived a Dirichlet–Robin scheme by means
of a generalized fictitious method, where the coefficients of the fluid pres-
sure and vessel wall acceleration are changed to account for the added mass
effect. This again allows one to obtain good convergence properties for
haemodynamic parameters without any relaxation. Another class of impli-
cit methods with good convergence properties for high added mass effect is
based on adding a suitable interface artificial compressibility (IAC) consist-
ent term to the fluid problem, proportional to the jump of pressure between
two successive iterations (Degroote et al. 2010). Degroote (2011) showed
that for a finite volume approximation, the IAC method based on Dirichlet–
Neumann iterations is equivalent to a Robin–Neumann scheme for a suitable
choice of the parameter σf .

Partitioned algorithms for the FSI problem with a membrane structure. Re-
cently, several papers have analysed algorithms for FSI problems featuring a
reduced membrane model for the vessel wall. In this case, the FSI problem
is given by the fluid problem (4.19a), the kinematic continuity condition
(4.23a) and the membrane equation (4.23b), which in this case also plays
the role of dynamic continuity condition. Moreover, homogeneous Dirichlet
or Neumann conditions in the tangential direction need to be prescribed for
the fluid problem at the interface Σ. By considering an implicit time dis-
cretization of (4.23b) and an explicit treatment of the geometry coupling,
we obtain at each time step the following linearized FSI problem:

ρfα

∆t
vn + ρf ((v∗ − v∗f ) · ∇)vn −∇ · T f (vn, pn) = gnf in Ω∗f , (4.57a)

∇ · vn = 0 in Ω∗f , (4.57b)

vn · n∗ =
α

∆t
dr
n + gnfs on Σ∗, (4.57c)

vn − (vn · n∗)n∗ = 0 on Σ∗, (4.57d)

ρsHsβ

∆t2
dnr −∇ · (P∇dnr ) + χHsd

n
r

= −T f (vn, pn)n∗ · n∗ + gns on Σ∗, (4.57e)

where, as usual, gnf , gns and gnfs account for the terms at previous time steps
coming from time discretization.

The explicit Dirichlet–Neumann scheme applied to the previous mono-
lithic problem reads as follows.
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Explicit Dirichlet–Neumann scheme for the FSI problem with
membrane structure

Given the quantities at previous time steps, at time step tn:

(1) Solve the Oseen problem with a Dirichlet condition at the FS interface:

ρfα

∆t
vn + ρf ((v∗ − v∗f ) · ∇)vn −∇ · T f (vn, pn) = gnf in Ω∗f ,

∇ · vn = 0 in Ω∗f ,

vn · n∗ =
α

∆t
dn−1
r + gn−1

fs on Σ∗,

vn − (vn · n∗)n∗ = 0 on Σ∗.

(2) Then, solve the membrane problem:

ρsHsβ

∆t2
d̂nr −∇ · (P∇d̂nr ) + χHsd̂

n
r = −T̂ f (v̂n, p̂n)n̂ · n̂+ ĝns on Σ.

As in the case of scheme (4.47, 4.48), unfortunately this scheme is uncon-
ditionally absolutely unstable in the haemodynamic regime (Causin et al.
2005).

Different algorithms are obtained by linearly combining the interface con-
ditions (4.57c) and (4.57e) and by substituting the new condition in (4.57c).
In this case, we have to solve a coupled problem consisting of the following.

Robin–Neumann coupling for the FSI problem with membrane
structure

Given the quantities at previous time steps, at time step tn:

(1) Solve the Oseen problem with a Robin condition at the FS interface:

ρfα

∆t
vn + ρf ((v∗ − v∗f ) · ∇)vn −∇ · T f (vn, pn) = gnf in Ω∗f , (4.59a)

∇ · vn = 0 in Ω∗f , (4.59b)

(σfv
n + T f (vn, pn)n∗) · n∗σf

(
α

∆t
dnr + gnfs

)
−
(
ρsHsβ

∆t2
dnr −∇ · (P∇dnr ) + χHsd

n
r

)
on Σ∗, (4.59c)

vn − (vn · n∗)n∗ = 0 on Σ∗. (4.59d)

(2) Solve the membrane problem:

ρsHsβ

∆t2
d̂nr−∇·(P∇d̂nr )+χHsd̂

n
r = −T̂ f (v̂n, p̂n)n̂·n̂+ĝns on Σ. (4.60)

The above problem could be solved either monolithically or by means of
a block Gauss–Seidel method that in fact introduces sub-iterations splitting
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the solution of (4.59) and (4.60). When P = 0, the special choice

σf = σ̃f =
ρsHsβ

α∆t
+
χHs∆t

α
, (4.61)

introduced in (4.59c), yields

(σ̃fv
n + T f (vn, pn)n∗) · n∗ = σ̃fg

n
fs on Σ∗. (4.62)

At this stage, this is a Robin condition for the fluid problem without
any explicit dependence on dnr . Thus, the monolithic problem given by
(4.59, 4.60, 4.61) is equivalent to the stand-alone fluid problem (4.59a, 4.59b,
4.59d, 4.62): see Nobile and Vergara (2008). The solution of this fluid prob-
lem can then be used to feed the right-hand side of (4.60) and to get the

structure displacement d̂nr . In this way, the fluid and structure problems
are in fact decoupled, even if the coupling conditions are treated implicitly.
This provides a smart and efficient way to solve the monolithic problem
(4.57) exactly, at the expense of a single fluid problem solve (note that the
membrane problem (4.60) is solved very cheaply).

Starting from this result, Guidoboni, Glowinski, Cavallini and Canic
(2009) have proposed a stable Robin–Neumann scheme based on an op-
erator splitting, for a general membrane law (P 6= 0). The inertial vessel
wall term is treated implicitly as in the previous case, leading to a Robin
boundary condition for the fluid with σf = ρsHsβ/α∆t, whereas the elastic
and algebraic contributions are treated explicitly. Fernández (2013) pro-
poses an incremental version of this scheme, where the elastic and algebraic
parts of the membrane law are included in the Robin condition for the fluid
problem by means of a suitable extrapolation from previous time steps. Fi-
nally, we mention Colciago et al. (2014), who treat the whole membrane law
implicitly, leading to a generalized Robin condition, which however requires
an ad hoc implementation.

Partitioned algorithms based on the Schur complement. Here we discuss
partitioned schemes arising from an interface equation written for the FSI
problem and introduced by Deparis, Discacciati, Fourestey and Quarteroni
(2006). For the sake of exposition, we introduce the algebraic counterpart of
(4.45) related to a finite element discretization for the case of linear elasticity
for the vessel wall problem:

Cff CfΣ 0 0

0 MΣ −MΣ 0

CΣf CΣΣ GΣΣ GΣs

0 0 GsΣ Gss





V f

V Σ

UΣ

Ds


=



bf

0

bΣ

bs


, (4.63)
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where the superscript f refers to internal fluid variables, s to internal vari-
ables for the vessel wall, Σ to the FS interface variables; C (with super-
scripts) refers to fluid matrices, G to vessel wall matrices, MΣ is the FS
interface mass matrix; V includes the fluid and pressure variables, Ds the
vessel wall displacement internal variables, and UΣ the vessel wall velo-
city interface variables; the vectors b denote the right-hand sides. The first
row corresponds to the momentum and mass conservation for the fluid, the
second and third rows to the interface kinematic and dynamic conditions,
and the last row to the vessel wall problem. By eliminating V f , V Σ and
Ds from (4.63), we obtain the interface equation

(C̃Σ + G̃Σ)UΣ = b̃Σ, (4.64)

where

C̃Σ = CΣΣ − CΣf (Cff )−1CfΣ and G̃Σ = GΣΣ −GΣs(Gss)−1GsΣ

are the fluid and vessel wall Schur complement matrices and

b̃Σ = bΣ − CΣf (Cff )−1bf −GΣs(Gss)−1bs

is the corresponding right-hand side.
The Robin–Robin method (4.55, 4.56) could be obtained by applying the

Richardson method to the interface equation (4.64) preconditioned by the
matrix

P =
1

σf + σs
(C̃Σ + σfM

Σ)(MΣ)−1(G̃Σ + σsM
Σ). (4.65)

This leads to a new family of partitioned schemes obtained by applying
other Krylov methods to (4.64) with the same preconditioner. For example,

GMRES preconditioned by the Dirichlet–Neumann preconditioner P = G̃Σ

is considered in Badia, Quaini and Quarteroni (2008b), whereas GMRES
preconditioned with the RR preconditioner (4.65) is introduced in Badia,
Nobile and Vergara (2009). The first of these two schemes highlighted bet-
ter convergence properties with respect to the classical Dirichlet–Neumann
method, whereas the second is more robust with respect to the choice of the
interface parameters σf , σs than the classical Robin–Robin method.

In some works, a non-linear interface equation is written directly for the
non-linear problem (4.44) and a Newton method is then applied to this
equation (Fernández and Moubachir 2005, Degroote and Vierendeels 2011).

Remark 4.2. In the partitioned schemes introduced above, the vessel wall
subproblem appearing at each iteration is still non-linear, that is, we have
not discussed how to tackle point (iii) in the list of issues reported at the
beginning of the subsection. The simplest way to treat vessel wall non-
linearity – very appropriate when a non-linear structural solver is avail-
able – is to introduce inner Newton sub-iterations at each Robin–Robin
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iteration. Alternatively, Kuttler et al. (2010) have proposed a scheme based
on integrating the management of the five sources of non-linearities/coupling
(geometric coupling and adherence, fluid and structure constitutive non-
linearities, physical coupling) in a single inexact-Newton loop. Other pos-
sible combinations will be discussed later on as specific monolithic proced-
ures. For a detailed overview with numerical comparisons we refer to Nobile
et al. (2014).

Monolithic solvers. As an alternative to partitioned schemes, monolithic
procedures have been successfully considered in haemodynamics for the
solution of the FSI problem (4.45). These methods consist in applying
an exact or inexact Newton method to the whole non-linear FSI problem.
Referring to the notation introduced above, by considering a finite element
space discretization and the inexact Newton method, we obtain from (4.45)

J̃(x(k−1))δx(k) = G−A(x(k−1)) (4.66)

(for simplicity we omit the temporal index n), where J̃ is the Jacobian mat-
rix or a suitable approximation of it, x = [V f V Σ UΣ Ds]T , andA(x) = G
is the non-linear system related to (4.45). The exact Jacobian matrix is
given by

J(x(k−1)) =



Cff CfΣ 0 0

0 MΣ −MΣ 0

CΣf CΣΣ JΣΣ
G (UΣ

(k−1)) JΣs
G (Ds

(k−1))

0 0 JsΣG (UΣ
(k−1)) JssG (Ds

(k−1))


, (4.67)

where the submatrices JG are the exact Jacobians of A related to the struc-
ture variables. For the solution of the linear systems (4.66) with the ex-
act Jacobian, classical strategies used so far for haemodynamics include
GMRES preconditioned by a one-level additive Schwarz method (Barker
and Cai 2010a) and global algebraic multigrid (Gee, Kuttler and Wall 2011).
Barker and Cai (2010b) use a two-level Newton method in combination with
a two-level hybrid Schwarz preconditioner, where the solution on a coarse
grid is used to provide a good initial guess to the Newton method. Al-
ternatively, inexact Newton methods have been considered, for example by
means of block approximations J̃ of J splitting the fluid velocity, pres-
sure and vessel wall unknowns (Heil 2004, Crosetto, Deparis, Fourestey and
Quarteroni 2011).

A particular class of inexact Newton methods is obtained by neglect-
ing the term −MΣ appearing in the upper-right block of the exact Jac-
obian (4.67). This yields in fact a class of partitioned schemes of Dirichlet–
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Neumann type where issues (iii) and (v) (vessel wall non-linearity and phys-
ical coupling) are treated within the same iterations. An example is given
by the preconditioner proposed in Crosetto et al. (2011), where the fluid
and structure blocks in (4.67) are approximated by the corresponding al-
gebraic additive Schwarz preconditioners. This method is strongly scalable
for haemodynamic applications. Recently, Deparis, Forti, Grandperrin and
Quarteroni (2016) have introduced a variant of the above preconditioner.
This new preconditioner, named FaCSI, is based on operating a static con-
densation of the fluid interface variables and using a SIMPLE preconditioner
for the fluid block.

For the sake of exposition, we have discussed numerical strategies for the
FSI problem based on finite elements for the space discretization and finite
differences for the time discretization. Other strategies considered so far
in haemodynamics are space-time finite elements (see e.g. Tezduyar et al.
2007, Bazilevs, Takizawa and Tezduyar 2012) and the methods based on
isogeometric analysis (see Bazilevs, Calo, Zhang and Hughes 2006, Bazilevs
et al. 2009).

In Figure 4.7 we illustrate some examples of numerical results obtained
in real geometries reconstructed from radiological images (see the caption
for details).

4.6.4. Numerical methods for defective boundary problems

For the numerical solution of the augmented formulation (4.27), one could
rely either on a monolithic strategy, where the full augmented matrix is
constructed and solved, or on splitting techniques. For the latter, Form-
aggia et al. (2002) and Veneziani and Vergara (2005) propose writing the
Schur complement equation with respect to the Lagrange multiplier of the
linearized and discretized (in time and space) augmented formulation. This
is a linear system whose dimension is equal to the number of flow rate con-
ditions, say m ≥ 1. By using the GMRES method to solve this system
iteratively, the exact solution is reached after exactly m iterations (in exact
arithmetic). At each iteration, the solution of a standard fluid problem with
Neumann conditions is needed (exact splitting technique). The solution of
a further standard fluid problem is required to compute the initial residual
in the GMRES algorithm. This approach is quite expensive, even for the
case m = 1, which requires the solution of two fluid problems per time
step. However, it preserves modularity; indeed, it can be implemented using
available standard fluid solvers in a black box mode. This is an interesting
property when applications to cases of real interest are addressed: see Vis-
cardi et al. (2010), Vergara, Viscardi, Antiga and Luciani (2012), Piccinelli
et al. (2013) and Guerciotti et al. (2015, 2017).

To reduce the computational time required by the exact splitting ap-
proach, Veneziani and Vergara (2007) propose a different (inexact) splitting
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(a) (b) (c) (d)

Figure 4.7. (a) Blood velocity streamlines and vessel wall displacement vectors
in a stenotic carotid artery (MRI images from the Vascular Surgery and Ra-
diology Divisions at Ospedale Maggiore Policlinico, Milan, Italy). (b–d) Res-
ults of a FSI simulation in the ascending and thoracic aorta (MRI images from
www.vascularmodel.com/sandbox/doku.php?id=repository). Blood velocity magni-
tude in the whole domain (b) and on a selected longitudinal section (c), vessel wall
displacements (d). All cases refer to the systolic peak. Numerical results were
obtained using LifeV, P1-Bubble/P1 finite elements for the fluid problem and P1
finite elements for the vessel wall problem; the backward Euler scheme and the
midpoint method was used for the time discretization of the fluid and vessel wall
problems, respectively. The implicit Robin–Robin partitioned scheme was used in
case (a) and the FaCSI preconditioner in cases (b–d).

procedure, requiring the solution of m steady problems out of the temporal
loop and of one unsteady null flow rate problem at each time step. This
strategy introduces an error near the section which is smaller than the one
based on conjecturing the velocity profile in the original (non-null) flow rate
problem: see Section 4.4.1.

For the numerical solution of the control-based approach described in Sec-
tion 4.4.3, Formaggia et al. (2008, 2009b) have considered classical iterative
methods for the solution of the resulting KKT system.

Recently, a numerical approach based on the Nitsche method has been
considered to prescribe a flow rate condition. In particular, the original idea
of prescribing Dirichlet conditions with a consistent penalization approach
(Nitsche 1970/71) has been extended by Zunino (2009) to the case of flow
rate boundary conditions. This strategy does not introduce further variables
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other than those of the original problem, but it does require careful tuning
of a penalization parameter. In addition, it deals with non-standard bilinear
forms that need ad hoc implementation. However, it should be very effective
if flow rate conditions are implemented in a DG code. Vergara (2011) has
considered a similar approach to fulfilling the mean pressure condition (3.3)
and the FSI case; see also Porpora, Zunino, Vergara and Piccinelli (2012).

For a more comprehensive overview of numerical strategies for defective
boundary problems, we refer the reader to Formaggia and Vergara (2012).

4.6.5. Numerical methods for the geometric reduced models and multiscale
approach

For the numerical solution of the 1D reduced model (4.30), in principle any
convenient approximation method for non-linear hyperbolic equations can
be used. The peculiar feature of this model, however, is the lack of discon-
tinuous solutions. A common approach relies on the finite element version
of the Lax–Wendroff scheme, thanks to its excellent dispersion properties
(Formaggia et al. 2001). As this scheme is explicit, a CFL-like condition is
required to ensure absolute stability. In the presence of a viscoelastic term,
the 1D model is usually discretized by means of a splitting procedure where
the solution is split into two components, one satisfying the pure elastic
problem and the other satisfying the viscoelastic correction (Formaggia
et al. 2003, Malossi, Blanco and Deparis 2012). High-order methods are
suitable for capturing the (physical) reflections at bifurcations induced by
the vessel tapering: see e.g. Sherwin, Franke, Peiró and Parker (2003b) and
Sherwin, Formaggia, Peiró and Franke (2003a) for a discontinuous Galerkin
discretization and Muller and Toro (2014) for a finite volume scheme.

Regarding 0D models, they are in general described by systems of differ-
ential and algebraic equations, possibly non-linear due to the presence of
diodes to represent the valves (Formaggia et al. 2009a). Usually, for haemo-
dynamic applications, these systems can be reduced to classical Cauchy
problems and solved by classical Runge–Kutta methods.

As for the solution of the 3D/1D coupled problems described in Sec-
tion 4.5.2, we can in principle identify three different strategies, namely
partitioned schemes, monolithic approaches, and methods based on the solu-
tion of an interface equation. In partitioned schemes, the 3D and 1D prob-
lems are solved separately in an iterative framework. The coupling interface
conditions can be enforced in many different ways. For example, we can pre-
scribe the flow rate condition (4.39a) to the 3D problem and the pressure
condition (4.42) to the 1D problem. Different algorithms are obtained by
switching the role of the interface conditions in the iterative algorithm or
by considering other interface conditions (e.g. (4.39b)). This is also the case
when one of the two interface conditions is replaced by a condition express-
ing the continuity of the characteristic variable W1 entering the 1D domain
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Figure 4.8. Pressure wave propagation in an ascending aorta (3D model) and in the
1D model of the systemic circulation. Numerical results were obtained using LifeV;
the Newton method was used for the interface equation. Courtesy of C. Malossi.

(Formaggia et al. 2001, Papadakis 2009), that is, according to (4.33),

W1(t)|z=0 = ζ1

(
|Γtf |,

∫
Γtf

v · ndγ

)
.

In any case, each of these approaches yields a 3D problem with a defective
boundary condition, which could be tackled by one of the strategies de-
scribed in Section 4.4. Formaggia et al. (2007) and Papadakis (2009) have
successfully considered explicit algorithms based on the solution of the 3D
and 1D problems only once per time step. These algorithms enforce a lim-
itation on ∆t, which, however, is milder with respect to that imposed by
the numerical scheme adopted for the 1D model. As an alternative, Blanco,
Feijóo and Urquiza (2007) and Blanco, Pivello, Urquiza and Feijóo (2009)
have introduced iterative methods applied directly to the monolithic linear-
ized system. A different approach to solving the 3D/1D coupled problem
relies on writing an interface equation involving only the 3D/1D interface
unknowns. We can interpret this equation as the geometric heterogeneous
counterpart of the Schur complement equation. For its numerical solu-
tion, Leiva, Blanco and Buscaglia (2011), Malossi et al. (2013) and Blanco,
Deparis and Malossi (2013) have used either the Broyden or the Newton
method, in combination with GMRES. Methods relying on the numerical
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solution of the interface equation are simple to implement in the case of
multiple interfaces, such as those arising in complex arterial networks.

In Figure 4.8 we give a numerical result obtained by the coupling between
the 3D model of an ascending aorta and a 1D model of the systemic circu-
lation. This result highlights the suitability of the 1D model in providing
absorbing conditions for the 3D model and in propagating the pressure wave
along the whole network (Malossi 2012).

PART TWO

Heart function

5. Basic facts on quantitative physiology

5.1. Basic anatomy

The heart is a hollow organ that pumps the blood into the arteries of the
systemic and pulmonary circulations and collects it after its return through
the veins. It is made up of the left and right heart, each consisting of two
chambers, an atrium and a ventricle. The left and right hearts are separ-
ated by the interatrial and interventricular septa, which do not allow the
transfer of blood, whereas the atria and the ventricles are connected by the
atrioventricular valves (tricuspid valve in the right heart, mitral valve in the
left heart) that either allow or prevent the blood transfer from the atria to
the ventricles depending on their position (open or closed, respectively): see
Figure 5.1. In particular, they open when the atrial pressure is higher than
the ventricular pressure and close as soon as the blood flow rate becomes
negative, that is, when blood flow, which normally goes from the atrium to
the ventricle, comes back into the atrium. The papillary muscles, located in
the ventricles, attach to the cusps of these valves via the chordae tendineae,
preventing their inversion (prolapse) during closure.

All four chambers are connected to the circulatory system: the left vent-
ricle through the aorta, the right ventricle through the pulmonary artery,
the left atrium through the pulmonary veins, and the right atrium through
the superior and inferior venae cavae. The ventricles are separated from
the circulatory system by two further valves, the aortic valve on the left side
and the pulmonary valve on the right side, whose opening/closure mechan-
ism is similar to that of the atrioventricular valves, that is, they open when
the pressure is higher in the ventricle with respect to the corresponding
connected artery, whereas they close when the flow rate becomes negative
(i.e. going from the artery to the ventricle). No valves are located between
the atria and the corresponding terminal veins.
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Figure 5.1. Schematic representation of the heart.

The heart wall is made up of three layers: the internal thin endocar-
dium, the thick muscular myocardium and the external thin epicardium.
The myocardium of the left ventricle is almost twice as thick as that of the
right ventricle. The epicardium is surrounded by the pericardium, a serous
membrane that isolates the heart from the closest organs, facilitating its
movements.

5.2. The cardiac cycle

The main purpose of the heart is to pump the blood in the circulatory
system through the aorta and the pulmonary artery. To do this, it needs
to exceed the resistance in the arteries where blood has a non-null pressure
(about 70 mmHg in the aorta, 10 mmHg in the pulmonary artery) due to
the reaction of the elastic vessel wall to the deformation induced by blood
inside. Moreover, the heart supplies blood with the energy needed to reach
the microvasculature or the lungs. The total work done by the heart per
heartbeat is

W = QP +
1

2
mv2,

where Q and m are the blood flow rate and mass ejected, P is the arterial
blood pressure, and v is the blood velocity in the aorta or pulmonary artery.
The kinetic component of the work is quite negligible with respect to the
potential component (about 2% for the left heart and about 5% for the right
heart), although it could become more relevant (up to 25%) under physical
effort. The flow rate Q in normal conditions is about 5× 103 cm3 min−1, so
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that, assuming 60–90 heartbeats per minute, we have about 55.5–83.3 cm3 of
blood expelled at each heartbeat. The energetic requirements for pumping
blood are obtained, as in all organs, by the consumption of oxygen that is
provided to the heart by blood in the coronary arteries. The efficiency of
the heart, that is, the ratio between the energy W and the total energy
consumption, is in physiological cases about 25%.

The cardiac cycle comprises different phases. For its description, we con-
sider the left heart and we start from the situation where the left atrium is
filled with oxygenated blood coming from the pulmonary veins, the mitral
valve is closed, and the left ventricle has reached its maximum contraction.

(1) Ventricular filling. Due to the continuous inflation of blood, when
the pressure in the atrium exceeds the ventricular pressure (about
10 mmHg) the mitral valve opens. Blood starts filling the left ventricle,
which relaxes. In an initial stage (∼ 0.15 s), there is fast inflation of
blood due to the pressure gradient between the atrium and the vent-
ricle, where the ventricle probably also exerts suction due to its expan-
sion (phase 1a in Figure 5.2). In any case, this is a passive phase. In
a second stage (∼ 0.25 s, phase 1b in Figure 5.2), the atrium actively
contracts (atrial systole), producing a slow ventricular inflation of the
remaining blood.

(2) Isovolumic contraction. After the atrial systole, the ventricular active
contraction starts. This produces an increase in the ventricular pres-
sure causing retrograde flow that accordingly closes the mitral valve.
However, the ventricular pressure is still lower than the aortic pressure,
so the aortic valve is also closed. Thus, during this phase, there is a
continuous and fast increase of ventricular pressure without any change
of blood volume due to blood incompressibility (∼ 0.05 s, phase 2 in
Figure 5.2).

(3) Ventricular ejection. As soon as the ventricular pressure reaches the
aortic pressure (about 70 mmHg), the aortic valve opens and blood is
ejected into the systemic circulation. Since the ventricular contraction
carries on after the valve opens, the ventricular pressure continues to in-
crease. Accordingly, the aortic pressure also increases due to the elastic
adaptation of the vessel wall. However, at each time, there is a pressure
difference between ventricle and aorta that allows blood to accelerate
(∼ 0.05 s, phase 3a in Figure 5.2). When the ventricle stops its active
contraction, this pressure difference reduces and, after a short period
(but not immediately due to inertial effects), becomes zero, allowing
the flow rate to reach its maximum (∼ 0.05 s, phase 3b in Figure 5.2).
Then, the pressure difference starts to become negative (higher in the
aorta), provoking a deceleration of blood that however continues to
enter the aorta. When, due to this deceleration, the flow rate becomes
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Figure 5.2. Aortic pressure, ventricular pressure, atrial pressure and ventricular
volume during a heartbeat.

negative, the aortic valve closes and the blood ejection stops (∼ 0.15 s,
phase 3c in Figure 5.2). Note that, once the active contraction stops,
the ventricle starts to relax, releasing the elastic energy accumulated
during the contraction. However, this energetic relaxation is not im-
mediately followed by a mechanical relaxation, which should result in
an increase in ventricular volume. Indeed, due to inertial effects, there
is a ‘passive’ mechanical contraction which allows ejection of all the
blood.

(4) Isovolumic relaxation. When the aortic valve closes, the release of
energy of the ventricle continues with both valves closed, so that no
changes in ventricular volume are produced, resulting in fast decrease
of the ventricular pressure (∼ 0.10 s, phase 4 in Figure 5.2). After the
valve closure, the aortic pressure continues to increase (slightly), due
to the elastic recoil of the closing valve (dicrotic wave: see Figure 5.2).

All these mechanisms apply to the right heart too, the only difference being
the pressure values, smaller in this case. This justifies the thicker myo-
cardium of the left heart since higher values of resistances need to be ex-
ceeded.

5.3. Electrical propagation

As seen in the previous paragraph, the main agent of blood ejection in the
circulatory system is active ventricular contraction. The heart itself is able
to produce the electrical impulse that determines this contraction, triggered
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(a) (b)

Figure 5.3. (a) Characteristic action potential of cardiomyocytes and (b) anatomy
of the cardiac conduction system (http://medical-dictionary.thefreedictionary.com).

by an electrical potential that propagates along all the myocardium. This
is possible owing to the excitability of the heart cells, the cardiomyocytes,
which, when suitably stimulated, are able to produce a variation in mem-
brane voltage. At rest, the membrane potential is negative (∼ −90 mV),
whereas when stimulated it reaches a positive value (∼ 20 mV) in a very
short period (about 2 ms). After this depolarization, a plateau around
0 mV is observed that corresponds to the refractory period (see Figure 5.3).
Then, the repolarization phase starts, which brings the potential back to
the rest value allowing for a new excitation (see Figure 5.3(a)). This action
potential is generated by several ion channels that open and close, and by
the resulting currents passing through the membrane. The most important
channels are those of calcium, sodium and potassium. In particular, a fast
inward sodium current is the main driver of rapid depolarization, a slow
inward flux of extra-cellular calcium ions is the main agent behind the char-
acteristic plateau appearing after the depolarization, whereas the outward
potassium currents are responsible for the repolarization.

Unlike other cells in the human body, the cardiomyocytes obey the ‘all-
or-none’ law, meaning that if the stimulus is above a suitable threshold,
a complete action potential with peak value independent of the stimulus
is generated, otherwise no response is provided by the cell. Another char-
acteristic of the heart cells is the presence of a refractory period after the
generation of an action potential, which inhibits any further stimulus inde-
pendently of its intensity. Thus, during this period the cell is not excitable
at all (absolute refractory period, infinite threshold). Afterwards, the cardio-
myocytes recover their excitability with a value of the threshold needed to
generate the action potential which decreases in time (relative refractory
period). Finally, once the threshold value reaches its minimum, the cell
returns to its excitable state and the threshold remains constant.
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The cardiomyocytes act as a syncytium, that is, the stimulation of an
individual cell produces the action potential and the corresponding current
that results in the excitation of the neighbour cells, and thus of the whole
myocardium. This is due to the gap junctions, intercellular channels charac-
terized by low resistance and located between cardiomyocytes that permit
the electrical potential to travel on the cellular membranes from cell to cell.

In normal conditions, the signal spontaneously originates at the sino-
atrial node, located in the right atrium at the junction with the superior
vena cava. It is the natural pacemaker of the heart, and imposes its rhythm
on the entire myocardium (sinusal rhythm, ∼ 60–90 heartbeats per minute).
The impulse generated by the sinoatrial node propagates through all the
cardiomyocytes of the atria, activating all their regions and allowing their
contraction. The propagation is faster in the direction of the ventricles
(∼ 200 cm s−1), allowing it to reach the atrioventricular node, located
between the atria and the ventricles. When the signal arrives at this node,
it is subjected to a delay (∼ 0.12 s) that allows complete contraction of
the atria before the propagation in the ventricles starts. Moreover, this
node provides a filter limiting possible high frequencies of the atrial sig-
nal, induced by atrial fibrillation, for example, protecting the ventricles.
This node, when the sinoatrial node loses automatic function, becomes the
leading pacemaker and takes on the role of giving the pace to all ventricle
stimulation. Then, the electrical signal enters the bundle of His, propagating
in the ventricles through the two (left and right) bundle branches and then
through the Purkinje fibres (see Figure 5.3(b)). The bundle of His, bundle
branches and Purkinje fibres form the cardiac conduction system (CCS),
a subendocardial specialized network responsible for the fast and coordin-
ated propagation of electrical impulses in the ventricle. The propagation
in the CCS is very fast (∼ 350 cm s−1), and its role is to reach the entire
endocardium via the dense network of Purkinje fibres, activating it almost
simultaneously. Note that the cells of the CCS are dedicated to electrical
propagation, so they are not involved in the muscular contraction. Then,
the electrical signal enters the myocardium through the Purkinje muscle
junctions which are the terminal points of the Purkinje network. At the
Purkinje muscle junctions, the signal is subjected to a delay (∼ 0.01 s) and
then propagates into the ventricular muscle towards the epicardium with
reduced velocity (∼ 80 cm s−1).

To better understand how the propagation of the electrical potential
spreads into the ventricles, we observe that cardiomyocytes are of cylindrical
type. This allows us to define the fibre direction of the cell, resulting in a
macroscopic fibre direction intended as the average cell orientation in a suffi-
ciently small control volume. A transmural variation of the fibre direction is
measured between the epicardium and the endocardium (∼−70◦ and ∼ 80◦

with respect to the normal direction to the surface, respectively). The fibres

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


Modelling the cardiovascular system 437

are in turn organized into sheets of collagen. The velocity of propagation
of the electrical potential is about twice as fast along the fibre direction
compared to the directions tangential to the fibres.

5.4. Mechanisms of contraction and cardiac blood fluid dynamics

The propagation of the electrical signal through the cardiomyocytes is re-
sponsible for their contraction (electromechanical coupling), resulting in the
atrial and, more importantly, ventricular contractions. The characteristic
connections between the cardiomyocytes resulting in a syncytium allows
coordinated contraction of the heart.

At the cellular level, as discussed in the previous paragraph, there is an
inward flux of extra-cellular calcium ions just after the depolarization of the
cell. Once in the intracellular space, calcium ions bind to troponin, which
allows myosin to bind to actin and contraction of the cell to occur.

At the macroscopic level, ventricle contraction results in a longitudinal
shortening (from apex to base) of about 15% from the diastolic configura-
tion, in a ventricular wall thickening of about 30%, and torsion around the
longitudinal axis of about 15◦. This is due to the particular fibre orientation
of the cardiomyocytes, which also highly influences the mechanical response
of the heart.

The heart obeys the Frank–Starling law, stating that an increase (for any
reason) of the end diastolic volume (i.e. the maximum ventricular expan-
sion) results in an increase in the stroke volume, that is, the volume of blood
pumped by the left ventricle per heartbeat. This is due to an increase in the
load experienced by the cardiomyocytes as a result of the increased volume
of blood filling the ventricle. This extra stretching of the cells produces a
greater number of actin–myosin bridges, resulting in augmented muscle con-
traction power. It should be noticed, however, that the Frank–Starling law
holds true only up to a certain level of increased stretch: for higher values,
the contractility power of the heart, and thus the stroke volume, decreases.

As well as the influence of electrical processes on mechanical behaviour,
cardiomyocytes also experience mechano-electrical feedback. This is due
to the formation of stretch-activated ion channels and to changes in cell
conductivity by means of stretching the cell, which changes the membrane
shape and the distance between gap junctions. This mechanism seems to be
of utmost importance in describing the evolution of spiral waves and thus
arrhythmias (Trayanova, Li, Eason and Kohl 2004, Keldermann, Nash and
Panfilov 2009).

Blood flow in the cardiac chambers exhibits different characteristics with
respect to the vascular flow. The particular challenges are the large-scale
motion and complex deformation of the myocardium, the complex interac-
tion with valves leading to specific flow patterns, and the higher Reynolds

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


438 A. Quarteroni, A. Manzoni and C. Vergara

number (about 4000). For some authors, all of these aspects are responsible
for transition to turbulence effects, especially in pathological conditions,
even though not all authors agree that turbulence can also occur in normal
conditions. Another important aspect of cardiac blood flow is given by the
formation of a large vortex ring in the long axis plane of the left ventricle
due to the asymmetry of the mitral valve leaflets that forces the blood flow
jet to impinge on the posterior wall (Charonko et al. 2013). The interaction
of this ring with the wall gives rise to a complex flow pattern. Complex
vortex rings ejected by the pulmonary veins can also be observed in the left
atrium (Mittal et al. 2016).

5.5. A brief summary of heart diseases

The principal heart diseases (cardiopathies) are ischaemic cardiopathy, the
cardiomyopathies, hypertensive cardiopathy and valvular pathologies.

Ischaemic cardiopathy is the most important in terms of frequency and
clinical impact. It is caused by a reduced coronary flow rate (due to athero-
sclerosis of coronary arteries) with consequent malnutrition of the myo-
cardium. When, due to coronary occlusion, a decrease in oxygen supply is
abrupt, long-lasting and total, an infarct of the myocardium occurs. This
is the most classical event of ischaemic cardiopathy, resulting in necrosis of
cardiomyocytes and leading, at the end of the process, to the formation of
a scar.

In dilated cardiomyopathy the ventricle wall becomes thinner due to the
partial replacement of cardiomyocytes with fibrosis and small scars, leading
to dilatation of the ventricle. In hypertrophic cardiomyopathy the ventricu-
lar wall thickens, with a consequent increase in ventricular blood pressure
resulting in decreased filling of the ventricle. As in all cases of ventricular hy-
pertrophy, this produces malnutrition of the myocardium, since the amount
of blood supplied by the coronary arteries remains unchanged. Moreover,
in this specific hypertrophic cardiomyopathy, the orientation of the fibres is
not coordinated as in normal conditions (this is called electrical disarray).

In hypertensive cardiopathy there is an increase in blood pressure, result-
ing in increased work needed by the heart to pump blood, leading again to
thickening of the myocardial wall and to malnutrition of the myocardium.

The main valvular pathologies are stenosis and insufficiency. In aortic
valve stenosis, narrowing of the maximum opening of the aortic valve causes
the heart to require increased work to pump blood into the aorta properly,
again resulting in thickening of the myocardial wall and malnutrition. In
mitral valve stenosis, there is an increase in the pressure of the left atrium
and in the pulmonary circulation, with consequences for the right heart.
Aortic and mitral valve insufficiency is due to the partial reversal of flow
(going from the aorta to the left ventricle in aortic insufficiency, and from
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the left ventricle to the left atrium in mitral insufficiency), which occurs
as a consequence of inadequate closure of the valve. In this case the heart
dilates in order to supply this retrograde flow, resulting in an increase in
its contraction power due to the Frank–Starling law. However, sooner or
later the diastolic cell stretching overcomes the threshold of validity of the
Frank–Starling law, resulting in decreased contractility power.

The two main events, possibly fatal, that the heart may encounter as
a consequence of these cardiopathies are cardiac arrest, due to ventricular
fibrillation, and heart failure.

In ventricular fibrillation, the cardiomyocytes are not excited in a coordin-
ated way and thus do not contract homogeneously; instead, groups of cells
contract continuously whereas other groups relax. This chaotic excitation, if
the fibrillation continues, inhibits the normal functioning of the heart pump,
which is no longer able to pump the blood around the circulatory system
regularly, leading finally to death. All the cardiopathies described above
could yield altered electrical properties (i.e. velocity of conduction and re-
fractoriness), which could lead to ventricular fibrillation. For example, in
a myocardial infarct, the arrhythmogenic substrate is formed by a matrix
of healthy cardiomyocytes, necrotic cardiomyocytes and scars, whereas in
hypertrophic cardiomyopathy it is provided by the electrical disarray.

When the blood pumped by the heart at each heartbeat is less than the
amount required by the body (but not absent as in ventricular fibrillation),
the heart on the one hand increases its frequency so as to guarantee that the
blood ejected per minute (cardiac output) is almost normal, and on the other
hand it increases its diastolic filling to increase the stroke volume. However,
the increase in frequency (tachycardia) is energetically disadvantageous for
the heart, and possible excessive diastolic cell stretching leads to the loss of
validity of the Frank–Starling law. When these two compensating mechan-
isms are no longer effective, cardiac output dramatically decreases, leading
to heart failure. In the absence of other causes of death (cardiac arrest or
death for non-cardiac reasons), all the cardiopathies described above will
sooner or later lead to heart failure.

6. All about data

As discussed in Section 3, the use of patient-specific data is needed for nu-
merical modelling aiming to understand biophysical processes and support
clinicians. This also holds true for heart modelling. The latter accounts for
three processes that are intimately coupled: electrical propagation, mech-
anical contraction and relaxation, and the blood fluid dynamics. The first
two processes occur in the cardiac tissue (here called the muscle region),
whereas the latter occurs in the four hollow regions (chambers) delimited
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Figure 6.1. Longitudinal section of a complete heart domain.

by the endocardium. As in Section 3 for the circulatory system, in what
follows we briefly discuss how to obtain geometric, boundary and biological
cardiac data.

6.1. Cardiac geometric data

Referring to Figure 6.1, we need to build two computational domains: the
muscle region Ωmus, delimited by the external surface of the epicardium
Σepi and by the internal surface of the endocardium Σendo, and the cavit-
ies Ωcav, referred to below as heart cavities or chambers, delimited by the
endocardium. The cavities are easily obtained once the endocardium has
been reconstructed, so that in fact the cardiac image reconstruction process
relies on identifying the endocardium and epicardium surfaces.

This problem presents several challenging issues. In the vascular case, the
external wall surface is usually obtained by extruding the internal surface
under the assumption of constant (or in any case known) wall thickness (see
Section 3.1.3). This procedure is unsuitable for the reconstruction of the
myocardium. On one hand, the thickness changes significantly while moving
from apex to base. On the other hand, changes can be dramatic from
patient to patient. Moreover, due to the large displacements induced by
heart motion, a dynamic acquisition procedure (allowing for the acquisition
of several frames per heartbeat) is required to obtain a reconstruction of
the heart other than at the end-diastolic phase. Finally, the presence of the
papillary muscle and wall irregularities given by trabeculations makes the
reconstruction of the endocardium very problematic.

Let us briefly review the most common radiological procedures for ac-
quisition of cardiac images. As in the vascular case, MRI and CT play a
major role. Often, due to heart motion, temporally resolved acquisitions
are performed, allowing us to obtain 20–30 frames per heartbeat.
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(a) (b)

Figure 6.2. (a) Longitudinal CT slice of the heart. Right atrium (top left), right
ventricle (bottom left), left atrium (top right), left ventricle (bottom right). (b)
CT slice in the plane orthogonal to the long axis. In both figures, on the right the
thick left ventricle myocardium is detectable in darker grey. Radiological images
from Ospedale Sacco, Milan, Italy.

The main interest is in the left ventricle, due to its vital importance and
its pronounced thickness, ranging between 6 and 16 mm. The shape of its
cavity is often approximated by an ellipsoid. In contrast, the right ventricle
and the atria are characterized by a thickness that usually does not reach
the spatial resolution of the acquisition technologies, so their reconstruction
is hard and consequently less studied.

The standard cardiac acquisition plane is orthogonal to the long axis.
Blood appears brighter whereas the myocardium and the surrounding tissue
are darker: see Figure 6.2. Not all of the slices share the same degree of
complexity in their reconstruction. In particular, apical and basal (upward)
slice images are more difficult to segment than mid-ventricular slices.

Before the ventricle segmentation starts, a preliminary localization pro-
cedure is performed, in order to identify a region of interest and reduce the
computational effort. This step is usually performed automatically, tak-
ing advantage of the movement of the heart on a fixed background: see
e.g. Cocosco et al. (2004). Another automatic heart location is based on
extracting rectangular subwindows from the image and computing specific
features for them. Then, based on a priori chosen class, the subwindows
satisfying specific features are recognized as belonging to the heart.

An initial class of ventricle segmentation methods makes use of little (or
even no) a priori information. Usually in these methods the endocardium is
first segmented by means of thresholding (see Section 3 and Goshtasby and
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Turner 1995). Alternatively, dynamic programming methods have been con-
sidered, where the optimal path in a cost matrix is sought, assigning a low
cost to boundaries. Taking advantage of the circular shape of the ventricle,
polar coordinates are used and one-dimensional search is performed (Gupta
et al. 1993). In order to exclude papillary muscles from the segmentation,
possible strategies are the computation of the convex hull of the contour
(van der Geest, Jansen, Buller and Reiber 1994) or a smoothing of the lat-
ter by fitting a parametric curve (Waiter et al. 1999). As in the vascular
case, deformable models are used for cardiac segmentation (see Section 3).
In particular, the functional to be minimized often includes a regularization
term to control the smoothness of the reconstructed curves (Pham, Xu and
Prince 2000).

Specific automatic methods that have been developed for cardiac image
segmentation are based on strong a priori information concerning the shape
of the ventricles, which is included in the segmentation algorithm by means
of statistical models. These strategies are suited to cardiac segmentation
because variability in heart shape among patients, as opposed to arteries,
is very small in normal conditions. These statistical model-based segment-
ation strategies rely on identifying an average shape of available geometries
forming a training set, and modelling the variability within the latter. This
is usually done by means of principal component analysis of positions and, if
needed, displacements, allowing computation of the eigenvalues and eigen-
vectors of the covariance matrix related to the training set. These strategies
allow automatic segmentation without user intervention, at the expense of
needing a training set. For example, deformable models have been exten-
ded to this framework by adding a term to the functional to be minimized
that penalizes the distance to a reference model (e.g. the mean shape of
the training set). Another very common statistical model-based strategy
is atlas-guided segmentation. Given an atlas, that is, an integrated image
from multiple segmentations, a registration procedure is performed based
on mapping the coordinates of the image under investigation to those of the
atlas (Lorenzo-Valdés et al. 2004). This transformation is then applied to
the atlas obtaining the final segmentation. The registration process could
be based on non-rigid transformations that account for elastic deformations.
For a recent review of cardiac segmentation methods we refer to Petitjean
and Dacher (2011).

Finally, we observe the importance of including the fibre orientation in
the reconstructed geometries with respect to modelling electrical propaga-
tion and mechanical contraction in the muscle region. Indeed, as discussed
in Section 5, the conduction velocity of the action potential propagation
assumes different values along the fibres than in the tangential direction.
Moreover, the stretching ability of the myocardium is facilitated along the
fibre direction.
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Diffusion-tensor-MRI is an MRI technology able to identify fibre orienta-
tion, but it is not yet used every day in clinical practice, and it is difficult to
apply because of heart movement. See Nagler et al. (2015) for a preliminary
study of the cardiac fibre estimation using synthetic diffusion-tensor-MRI
datasets. Analytical representations of the fibres, suitably mapped onto the
geometry under investigation, have been proposed to supply the lack of in-
formation provided by the imaging. For example, Peskin (1989) described
fibres as geodesics, whereas Pravdin et al. (1989) represented them by means
of spiral surfaces. Other strategies are based on computational generation
of the fibre orientation to provide a plausible configuration, for example
by means of the solution of a Poisson equation (Bayer, Blake, Plank and
Trayanova 2012, Rossi et al. 2014, Wong and Kuhl 2014), or by using the
unscented Kalman filter (Nagler, Bertoglio, Gee and Wall 2013).

The Purkinje fibres are not detectable via classical radiological acquisition
since their thickness falls below the spatial resolution. For this reason,
Abboud, Berenfeld and Sadeh (1991), Sebastian, Zimmerman, Romero and
Frangi (2011) and Ijiri et al. (2008) proposed exploiting the fractal nature
of these fibres to generate a realistic Purkinje network, whereas Vergara
et al. (2014), Palamara et al. (2014) and Palamara, Vergara, Faggiano and
Nobile (2015) have personalized such fractal networks to the patient at
hand by including patient-specific measurements of the activation times
(see Section 6.2 for a description of the latter).

For the muscle region mesh generation, the strategies described in Sec-
tion 3 could be applied to cardiac geometries as well. For ideal ellipsoid
geometries, usually considered in numerical experiments to test the perform-
ance of the numerical algorithms, structured hexahedral meshes are often
used, exploiting the symmetry of the ventricles around the long axis: see
e.g. Pavarino, Scacchi and Zampini (2015). However, unstructured meshes
composed of tetrahedra have also been considered (Goktepe and Kuhl 2010),
in particular for real geometries reconstructed by MRI or CT (see e.g. Rossi
et al. 2014, Wong, Goktepe and Kuhl 2013, Vergara et al. 2016), or for
the atria (Virag et al. 2002). Hybrid unstructured meshes composed of
tetrahedra and hexahedra have also been successfully considered (Gurev
et al. 2015). We notice that for the solution of the mechanical problem in
the muscle region, no particular requirements are needed for mesh genera-
tion, whereas for the electrical propagation problem, due to the very steep
front (about 200 µm), the required mesh resolution should be at least of
the order of 100 µm in order to spatially resolve this front (Clayton and
Panfilov 2008). For mesh generation of the heart chambers, in view of the
numerical solution of the fluid dynamics problem, unstructured tetrahedral
elements are often considered: see e.g. Mittal et al. (2016). In this case the
mesh resolution needs to be very fine, even smaller than that for CT or MRI
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technologies (' 0.5 mm), in order to capture the complex flow structures
that arise, particularly in the left atrium and left ventricle.

6.2. Cardiac boundary data

The acquisition of boundary data on electrical activation in the muscle re-
gion is now possible thanks to specific therapeutic techniques. For example,
the NavX system is able to locate accurately any electrode catheter inserted
in the heart chambers, providing accurate, real-time recording of the local
endocardial electrical activity at a point in contact with the catheter (Eitel
et al. 2010, Vergara et al. 2014). In particular, this allows us to acquire
endocardial maps of the activation times, defined as the time at which the
action potential in a point reaches an intermediate value between the rest
and the plateau potentials. However, this acquisition is performed only for
specific therapeutic purposes, such as the ablation of anomalous electrical
pathways.

For the mechanical problem involving the muscle region, data that are
commonly available include the stresses exerted by the blood on the endo-
cardium of the left ventricle and the endocardial and/or epicardial vessel
wall displacements. Stresses are usually obtained from measurements of
aortic pressure (see Section 3.2). This is a good approximation; as a matter
of fact the ventricular and circulatory pressures are not the same (thus al-
lowing the acceleration and deceleration of blood) but they are very similar:
see Figure 5.2. Vessel wall displacements can be obtained from dynamic
MRI or CT images, yielding 20–30 frames per heartbeat, providing the po-
sition of the endocardium and epicardium at multiple times. After suitable
postprocessing, these techniques can provide an estimate of the vessel wall
displacement (and thus velocity) by comparing two consecutive frames. The
endocardial vessel wall velocity, thanks to a continuity argument, could also
be interpreted as the blood velocity at the interface with the endocardium
(Khalafvand, Zhong and Ng 2014, Mittal et al. 2016).

Another useful measurement that could be provided quite easily by means
of Doppler echocardiographic methods or PC-MRA (see Section 3.2) is the
flow rate at the mitral and aortic valve orifices. With PC-MRA technology,
measurement of blood velocity is possible in principle at any point of the
ventricles and atria chambers.

In Section 7 we will see how these data can be used to provide boundary
conditions for the different cardiac models we are about to introduce.

6.3. Cardiac biological data

The classical monodomain and bidomain models, widely used to describe
the electrical propagation in the muscle region and Purkinje network (see
Section 7.1), would require the following data: the membrane capacitance
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per unit area C, the membrane surface-to-volume ratio χ, and the con-
ductivities σ (see the next section). Their subject-specific acquisition is
generally out of reach. An acceptable range of values for the capacitance
Cm in the myocardium is 0.8–1.0 µF cm−2 (Roth 1991, Huiskamp 1998); the
capacitance Cp in the Purkinje network is higher (∼ 1.3 µF cm−2: Legato
1973). The value of the membrane surface-to-volume ratio in the muscle
region χm varies in the range 200–3000 cm−1 (Niederer et al. 2011, Potse
et al. 2006), whereas for the Purkinje network, a measurement in a pig heart
gives χp = 1467 cm−1 (Stankovičová et al. 2003). In the myocardium, we
need to distinguish between conductivity along the fibre direction (index f)
and conductivity in the direction of sheets (index s). Sometimes, a third
direction (orthogonal to sheets) is also considered (if this is the case we will
use the index n). Moreover, with the bidomain model in mind, we also
distinguish between the intra-cellular (index i) and extra-cellular (index e)
conductivities. Following Roth (1997), acceptable ranges used in the nu-
merical experiments are σif ∈ (0.17, 0.34) S m−1, σis ∈ (0.02, 0.06) S m−1,

σef ∈ (0.12, 0.62) S m−1, σes ∈ (0.08, 0.24) S m−1.
Another classical model used to describe the activation of Purkinje and

muscle cells is provided by the eikonal equation (see Section 7.1). In this
case, one needs to prescribe the conduction velocity V explicitly, unlike
the monodomain and bidomain models where this is determined by the
conductivity and the membrane capacitance. Acceptable ranges of values
of the conduction velocity are Vf ∈ (0.6, 1.0) m s−1 (Kerckoffs et al. 2003),
Vs ' Vf/2 (Frazier et al. 1988), Vn ' Vf/4 (Clayton et al. 2011), and
Vp ∈ (3.0 − 4.0) m s−1 (Iaizzo 2009), where again index f refers to the
direction along the fibres in the muscle region, s to the direction along
sheets, and p to the Purkinje network.

These electrical data are barely measurable in vivo, so subject-specific
measurements are not usually available. Nevertheless, the use of extra data,
such as the activation time at the endocardium provided by the NavX sys-
tem, could be used to estimate some of these parameters by solving a suit-
able inverse problem; see e.g. Sermesant et al. (2012) and Vergara et al.
(2014) for the case of the Purkinje network.

The parameters involved in the cardiac mechanical model depend on the
chosen constitutive law. In general, linearization of the stress–strain curves
gives the following values for the corresponding time-varying Young’s mod-
ulus E (Rossi 2014): during a traction/compression test along the fibre
direction, we have E ' 20 kPa during traction at small deformation and
during compression, and E ' 1500 kPa during traction for deformation of
about 15%; during traction the material behaves as transversally isotropic,
so the stiffness in the two tangential directions (along sheets and orthogonal
to fibres and sheets) is the same, whereas during compression the stiffness
in the direction of the sheets is higher than that in the direction orthogonal
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to fibres and sheets. For the Poisson modulus, a value of 0.45 is usually
considered.

Regarding the aortic valve leaflets, measurements in dogs exhibited low
stiffness during systole (' 240 kPa) and increased stiffness during diastole
(' 5000 kPa). For the mitral valve, different stiffness behaviour is observed
for the two leaflets (anterior and posterior). In particular, Kunzelman et al.
(1993) propose the following values for Young’s modulus: for the anterior
leaflet, E = 6200 kPa and E = 2100 kPa in the directions parallel and
perpendicular to the annulus, respectively, and for the posterior leaflet,
E = 2300 kPa and E = 1900 kPa, respectively.

Blood in the heart exhibits the same behaviour as in the circulatory sys-
tems, so its parameters (density and viscosity) are taken in the ranges re-
ported in Section 3.3.

7. Modelling the heart

In this section we discuss the main mathematical models introduced so far
to describe heart function and the related numerical strategies developed
for their solution. In particular, Section 7.1 is devoted to the electrical
propagation, Section 7.2 to the cardiac mechanics and electromechanical
coupling, Section 7.3 to the ventricular fluid dynamics, Section 7.4 to the
valve modelling and its interaction with blood fluid dynamics, and finally
Section 7.5 to their integration.

7.1. Cardiac electrical activity

7.1.1. The bidomain model

As observed in Section 5.3, the electrical activation of the heart is the result
of two processes: at the microscopic scales, the generation of ionic currents
through the cellular membrane producing a local action potential, and at
the macroscopic scales, the travelling of the action potential from cell to
cell allowed by the presence of the gap junctions. The former is a discrete
process, in the sense that there is a delay between the depolarization of a
cardiomyocyte and its neighbours, whereas the latter can be assimilated to
a smooth process (Durrer et al. 1970).

At the macroscopic level, the propagation of the potentials is described
by means of partial differential equations, suitably coupled with ordinary
differential equations modelling the ionic currents in the cells. In particular,
the single membrane cell can be modelled as a capacitor separating charges
that accumulate at its intracellular and extracellular surfaces. Moreover, as
observed in Section 5, ionic currents cross the membrane through channels
which open and close during excitation. A suitable model can therefore
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Figure 7.1. Electrical circuit for the sequence of two cardiac cells. Each consists of
a capacitor and a series of resistances, one for each ionic current (here only sodium
and potassium ionic channels are depicted). In the intracellular region, two adjacent
cells are connected by a resistance representing a gap junction. However, the latter
is not explicitly modelled at the macroscopic scales: instead its effect is hidden in
the conductivity tensor (see the text).

be expressed via the simple electric circuit depicted in Figure 7.1, for which

Im = χm

(
Cm

∂Vm
∂t

+ Iion

)
,

where Im is the membrane current per unit volume, Cm is the membrane
capacitance, χm is the surface area-to-volume ratio (see Section 6.3 for a
quantification of the latter two), Vm(t,x) is the trans-membrane potential,
and Iion(t,x) are the ionic currents. Due to the conservation of current and
charge, this current should equal the divergence of both the intracellular
and extracellular current fluxes ji and je:

∇ · ji = −Im, ∇ · je = Im. (7.1)

Ohm’s law in the intracellular and extracellular regions gives

ji = −Σi∇φi, je = −Σe∇φe, (7.2)

where Σi,Σe are the conductivity tensors and φi(t,x), φe(t,x) are the in-
tracellular and extracellular potentials, so that

Vm = φi − φe. (7.3)

Note that, due to the anisotropy of the cardiac tissue induced by the
presence of fibres and sheets, each conductivity tensor is in general expressed
in terms of three scalar quantities representing the conductivities along the
fibre direction af (x), the direction as(x) orthogonal to af and tangential
to sheets, and the direction an(x) orthogonal to sheets, that is,

Σβ = σβfafa
T
f + σβs asa

T
s + σβnana

T
n , β = i, e. (7.4)

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


448 A. Quarteroni, A. Manzoni and C. Vergara

(a) (b)

Figure 7.2. (a) Left ventricular myocardial domain obtained by the cut at the base
(corresponding to Σb), and (b) corresponding fluid cavity domain.

Putting together all the above equations and using a homogenization
procedure (see e.g. Colli Franzone et al. 2014 for a rigorous derivation),
we obtain for each t > 0 the following system of two partial differential
equations called the parabolic–parabolic (PP) formulation of the bidomain
equations:

χmCm
∂Vm
∂t
−∇ · (Σi∇φi) + χmIion = Iexti in Ωmus, (7.5a)

− χmCm
∂Vm
∂t
−∇ · (Σe∇φe)− χmIion = −Iexte in Ωmus, (7.5b)

where Iexti (t,x), Iexte (t,x) are applied currents per unit volume.
Thanks to (7.1), ∇ · (ji + je) = 0; thus, using (7.2) and (7.3), we obtain

the following parabolic–elliptic (PE) formulation of the bidomain equations:

χmCm
∂Vm
∂t
−∇ · (Σi(∇φe +∇Vm)) + χmIion = Iexti in Ωmus, (7.6a)

−∇ · (Σi∇Vm)−∇ · ((Σi + Σe)∇φe) = Iexti − Iexte in Ωmus. (7.6b)

Due to the homogenization procedure, the effect of the gap junctions,
which at the cellular level contributes to determining the current flux ji, is
hidden in the conductivity tensor Σi. We also notice that both bidomain
problems (7.5) and (7.6) hold in the entire computational domain Ωmus given
by the union of the myocardium with the endocardium and epicardium: see
Figures 6.1 and 7.2. Indeed, again because of the homogenization procedure,
no geometric distinction is made between the intracellular and extracellular
regions, even if their different functionality is maintained in the bidomain
models.
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7.1.2. Cardiac cell models

In order to close equations (7.5) and (7.6), we need to provide a model for
the ionic current Iion. In what follows we briefly describe three families of
models, featuring different levels of complexity and accuracy.

The first family, the so-called reduced ionic models, only provide a de-
scription of the action potential and disregard sub-cellular processes:

Iion = f(Vm,w), (7.7a)

∂w

∂t
= gw(Vm,w), (7.7b)

where f, gw are suitable functions, while w : [0, T ] × Ωmus → RM collects
the so-called gating variables which represent the percentage of open chan-
nels per unit area of the membrane. The most celebrated reduced model
for ventricular cells is the FitzHugh–Nagumo model (FitzHugh 1961), where
f(Vm, w) = −kVm(Vm − a)(Vm − 1) − w and gw(Vm, w) = ε(Vm − γw), for
suitable constant parameters k, a, γ. In this case the gating variable w in
fact plays the role of a recovery function, which allows us to model the re-
fractoriness of cells. Other, more sophisticated ventricular cell models of this
family include the Rogers–McCulloch model (Rogers and McCulloch 1994),
the Aliev–Panfilov model (Aliev and Panfilov 1996), the Fenton–Karma
model (Fenton and Karma 1998) and the Bueno-Orovio model (Bueno-
Orovio, Cherry and Fenton 2008). Like FitzHugh–Nagumo, the first two
models are characterized by the dynamics of one gating variable and by a
cubic non-linear expression of the ionic current. In contrast, the Fenton–
Karma model and its Bueno-Orovio variant, specifically applied to human
ventricular cells, include two and three gating variables, respectively, and
a more complex non-linearity in the ionic current expression. These simple
models are very appealing, especially because their parameters have a direct
physical interpretation, such as the action potential duration, allowing easy
setting of the model properties. For example, the Aliev–Panfilov model has
been used successfully in the initial simulations of ventricular fibrillation in
a real geometry (Panfilov 1999). However, they are not able to describe any
process occurring at the level of the ionic channels or the cell, so they are
recommended when one is only interested in electrical activity of the heart.

The second family of ventricular cell models we consider is that of the
so-called first-generation models. Unlike reduced models, which express the
ionic current by means of the sole function f , they allow explicit description
of the kinetics of different ionic currents by using several gating variables.
They are given by

Iion =

N∑
k=1

Ik(Vm,w), Ik = Gk

( M∏
j=1

w
pjk
j

)
(Vm − Vk),

∂w

∂t
= gw(Vm,w),
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where N is the total number of ionic currents, M is the total number of
gating variables, Vk is the Nernst potential of the kth ion (a constant value
corresponding to the thermodynamic equilibrium of the ion at hand), Ik is
the current related to the kth ion, pjk accounts for the influence of the jth
gating variable on the kth ionic current (possibly vanishing) and Gk is the
maximal conductance of the kth ion. The M components of g usually have
the expression

gw,j = (w∞j (Vm)− wj)/τj(Vm),

where w∞j is the equilibrium state and τj the characteristic time constant.
The most famous model of this family, the Hodgkin–Huxley (HH) model
(Hodgkin and Huxley 1952), depends on three ionic currents, namely the
sodium, potassium and leakage currents, and three gating variables:

INa = GNaw
3
1w2(Vm−VNa), IK = GKw

4
3(Vm−VK), IL = GL(VM−VL).

Although introduced to describe the action potentials in nerves, the HH
model inspired all the following models introduced specifically for the vent-
ricle. Among these, we cite the Beeler–Reuter model (Beeler and Reuter
1977), the Luo–Rudy I model (Luo and Rudy 1991) and the ten Tusscher–
Panfilov model (ten Tusscher and Panfilov 2006). These models have been
widely used to study specific features of the ventricular electrical activation,
such as re-entry and fibrillation (Xie et al. 2004).

Finally, we mention the family of second-generation ventricular cell mod-
els, such as the Luo–Rudy dynamic model (Luo and Rudy 1994a, 1994b),
which, unlike first-generation models, provide a detailed description of ion
concentration variables c and of many processes allowing for the study of
channelopathies and drug action, for example. However, due to their in-
creased complexity, the computational time required is huge for a complete
heart model, and tuning of parameters is often very demanding. We refer
to Clayton and Panfilov (2008) for a discussion of second-generation models
and Rudy and Silva (2006) for a general review of cardiac cell models.

Although most research has focused on ventricular cell models like those
mentioned above, specific models have also been introduced for the atrial
cells (e.g. Hilgemann and Noble 1987) and sinoatrial node cells (e.g. Yanagi-
hara, Noma and Irisawa 1980).

All the cardiac cell models belonging to the three families described above,
used in combination with the bidomain problem (7.5) or (7.6), lead to a sys-
tem of two PDEs coupled with two systems of ODEs, that is, the equations
for the gating variables and ion concentrations at each point x. The general
form of this coupled problem is as follows (we only describe the PP case in
detail). At each time t > 0, find the potentials VM , φi and φe, the gating
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variable w and the ion concentrations c such that

χmCm
∂Vm
∂t
−∇ · (Σi∇φi) + χmIion(Vm,w, c) = Iexti in Ωmus, (7.9a)

− χmCm
∂Vm
∂t
−∇ · (Σe∇φe)− χmIion(Vm,w, c)

= −Iexte in Ωmus, (7.9b)

Iion =
N∑
k=1

Ik(Vm,w, c) in Ωmus, (7.9c)

Ik = Gk

( M∏
j=1

w
pjk
j

)
(Vm − Vk(c)) in Ωmus, (7.9d)

∂w

∂t
= gw(Vm,w) in Ωmus, (7.9e)

∂c

∂t
= gc(Vm,w, c) in Ωmus, (7.9f)

where, together with the notation introduced above for the reduced and
first-generation models, c : [0, T ] × Ωmus → RS collects the S ionic con-
centration variables and gc is a suitable function: see e.g. Colli Franzone
et al. (2014). We observe, in general, the dependence of the Nernst poten-
tial Vk on the variable c. Well-posedness results of the previous coupled
problem are provided in Colli Franzone and Savaré (2002), where the exist-
ence and uniqueness of the solution of the PP formulation coupled with the
FitzHugh–Nagumo model is proved, and in Bourgault, Coudière and Pierre
(2006), where a Faedo–Galerkin technique is applied to the PE formulation
coupled with a general first-generation cell model.

The ODE systems modelling the gating variables and the ionic concentra-
tion variables are in general stiff, since the Jacobians ∂gw/∂w and ∂gc/∂c
exhibit a wide range of eigenvalues.

For each t > 0, the weak formulation of the bidomain model (7.9) to-
gether with homogeneous Neumann conditions and initial conditions (see
Section 7.1.4) reads as follows. Given Iexti (t), Iexte (t) ∈ L2(Ωmus), find
Vm(t), φe(t), φi(t) ∈ H1(Ωmus), w ∈ [L2(Ωmus)]

M and c ∈ [L2(Ωmus)]
S such

that

χmCm

∫
Ωmus

∂Vm
∂t

z dω +

∫
Ωmus

Σi∇φi · ∇z dω

+ χm

∫
Ωmus

Iion(Vm,w, c)z dω =

∫
Ωmus

Iexti z dω, (7.10a)
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− χmCm
∫

Ωmus

∂Vm
∂t

z dω +

∫
Ωmus

Σe∇φe · ∇z dω

− χm
∫

Ωmus

Iion(Vm,w, c)z dω = −
∫

Ωmus

Iexte z dω, (7.10b)∫
Ωmus

∂w

∂t
· y dω =

∫
Ωmus

g(Vm,w) · y dω, (7.10c)∫
Ωmus

∂c

∂t
· ζ dω =

∫
Ωmus

gc(Vm,w, c) · ζ dω, (7.10d)

for all z ∈ H1(Ωmus), y ∈ [L2(Ωmus)]
M and ζ ∈ [L2(Ωmus)]

S , together with
(7.9c, 7.9d).

7.1.3. Reduced continuous models: the monodomain and eikonal equations
To reduce the complexity of the bidomain models (7.5) and (7.6), an assump-
tion of proportionality between the intracellular and extracellular conductiv-
ities is introduced, that is, Σe = ξΣi for a suitable constant ξ. Substituting
this relation in (7.6b), eliminating Σe and substituting the corresponding
relation for Σi in (7.6a), we obtain the following monodomain equation. For
each t > 0, find the trans-membrane potential Vm such that

χmCm
∂Vm
∂t
−∇ · (Σ∇Vm) + χmIion = Iext in Ωmus, (7.11)

where

Σ =
ξ

1 + ξ
Σi (7.12)

is the effective conductivity and

Iext =
ξIexti + Iexte

1 + ξ
.

Again, a ventricular cell model is needed to provide the ionic current Iion.
The same models discussed above for the coupling with the bidomain prob-
lem are used in combination with the monodomain problem too. Once the
trans-membrane potential Vm has been computed, the extracellular poten-
tial φe could be computed as a postprocessing by solving the elliptic problem
(7.6b).

For each t > 0, the weak formulation of the monodomain problem (7.11)
together with homogeneous Neumann conditions and initial conditions (see
Section 7.1.4) reads as follows. Given Iext(t) ∈ L2(Ωmus), find Vm(t) ∈
H1(Ωmus), w ∈ [L2(Ωmus)]

M and c ∈ [L2(Ωmus)]
S such that

χmCm

∫
Ωmus

∂Vm
∂t

z dω +

∫
Ωmus

Σ∇Vm · ∇z dω

+ χm

∫
Ωmus

Iion(Vm,w, c)z dω =

∫
Ωmus

Iextz dω, (7.13a)
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Ωmus

∂w

∂t
· y dω =

∫
Ωmus

g(Vm,w) · y dω, (7.13b)∫
Ωmus

∂c

∂t
· ζ dω =

∫
Ωmus

gc(Vm,w, c) · ζ dω, (7.13c)

for all z ∈ H1(Ωmus), y ∈ [L2(Ωmus)]
M and ζ ∈ [L2(Ωmus)]

S , together with
(7.9c, 7.9d).

Although the hypothesis underlying the monodomain model, that is,
the proportionality between the internal and external conductivities, is not
physiological, as shown by experiment, in some cases this model provides
a very accurate solution compared to the bidomain model. In particular,
this is true when there is no injection of current in the extracellular re-
gion (Colli Franzone, Pavarino and Taccardi 2005, Potse et al. 2006). In
contrast, when an external current is injected such as in defibrillation, the
monodomain solution is no longer accurate, and the bidomain model is man-
datory since the unequal anisotropy is fundamental to successful description
of these scenarios (Trayanova 2006).

A further simplification is provided by the eikonal equation. Starting
from the bidomain model coupled with a simplified representation of the
ionic current, which does not consider any gating variable and allows for
the description only of the depolarization phase, Colli Franzone, Guerri and
Rovida (1990) derive the following eikonal-diffusion equation:

co
√
∇ψ ·M∇ψ −∇ · (M∇ψ) = 1, (7.14)

where ψ(x) is the unknown activation time (see Section 6.2), co denotes
the velocity of the depolarization wave along the fibre direction for a planar
wavefront, and M = Σ/(χCm). A different derivation has been provided
in Keener (1991), leading to the following eikonal-curvature equation:

co
√
∇ψ ·M∇ψ −

√
∇ψ ·M∇ψ∇ ·

(
M∇ψ√
∇ψ ·M∇ψ

)
= 1. (7.15)

These are both steady equations providing information on the activation of
each cell. The contours of ψ(x) give the position of the wavefront at time
t = ψ. The eikonal-diffusive model (7.14) is an elliptic equation, where the
propagation speed is influenced by the tissue surrounding the wavefront.
Once the activation time ψ has been computed, it is possible to obtain an
approximate value of the extracellular potential φe by solving at each time
step a suitable elliptic problem: see Colli Franzone and Guerri (1993).

In contrast, the eikonal-curvature model (7.15) is of parabolic type since
the ‘diffusive’ term lacks the second derivative in the direction of propaga-
tion. This term is also proportional to an anisotropic generalization of the
mean curvature (Tomlinson, Hunter and Pullan 2002). This implies that
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the propagation is faster when the wavefront is concave. This is in accord-
ance with the diffusion of charge, which allows for faster depolarization in
regions close to already depolarized tissues.

The eikonal equations are unsuitable for recovering the action potential
and the ionic currents. However, they provide accurate results about the
activation of cells even in complex scenarios such as front–front collision:
see e.g. Colli Franzone and Guerri (1993) for the eikonal-diffusive model.

The eikonal models are, however, very appealing from the computational
point of view. First of all, they consist of a single steady PDE. Although
non-linear, they do not require coupling with ODE systems. More import-
antly, the activation time, unlike the trans-membrane potential, does not
feature any internal or boundary layer, so no special restriction on the mesh
is needed in this case (see Section 6.1).

7.1.4. Boundary conditions and Purkinje network models

We discuss here the initial and boundary conditions of the problems intro-
duced above. The bidomain and monodomain equations and the ODE sys-
tems for the gating variables and ionic concentrations need to be equipped
with suitable initial conditions, that is,

Vm|t=0 = Vm,0, w|t=0 = w0, c|t=0 = c0 in Ωmus,

for given functions Vm,0(x),w0(x), c0(x).
For the boundary conditions for the bidomain, monodomain and eikonal-

diffusion problems, a homogeneous Neumann condition is commonly pre-
scribed at the external surface Σepi of the epicardium and, for a ventricular
domain only, at the base Σb (see Figures 6.1 and 7.2(a)) to prescribe null
outgoing current fluxes. In particular, the following conditions have to be
prescribed on Σepi ∪ Σb:

(Σβ∇φβ) · n = 0 β = i, e for PP (7.5),

(Σi∇(Vm + φe)) · n = 0

((Σi + Σe)∇φe) · n+ (Σi∇Vm) · n = 0

}
for PE (7.6),

(Σ∇Vm) · n = 0 for monodomain (7.11),

(M∇ψ) · n = 0 for eikonal-diffusion (7.14).

Moreover, for the bidomain problems (7.5) and (7.6), they force the following
compatibility conditions on the applied external currents:∫

Ωmus

Iexti =

∫
Ωmus

Iexte .

On the internal surface Σendo of the endocardium, again Neumann condi-
tions are prescribed. In this case, however, they could be non-homogeneous
at specific stimulation points (e.g. the atrioventricular node and the points
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of the bundle of His). For the eikonal problem, Dirichlet data on the activ-
ation time could be prescribed at some specific locations if they are avail-
able, thanks to the NavX system, for example; see Section 6.2 (Sermesant
et al. 2012). When redundant (e.g. when the electrical problem in the myo-
cardium is coupled with the Purkinje network: see below) these data have
been used to solve inverse problems, for example to estimate the conduction
velocity in the myocardium (Sermesant et al. 2012) or to obtain personal-
ized Purkinje networks (Vergara et al. 2014, Palamara et al. 2014, Palamara
et al. 2015).

If the mathematical model accounts for the presence of the Purkinje net-
work, interface conditions on Σendo describing the continuity of the current
and of the potential at the Purkinje muscle junctions (PMJs) are impli-
citly provided for the bidomain and monodomain problems by the solu-
tion of the coupled muscle region/Purkinje network problem (Vigmond and
Clements 2007, Vergara et al. 2016). For the sake of exposition, we will not
detail the bidomain and monodomain models for the Purkinje network, in-
stead referring interested readers to Vigmond and Clements (2007), Bordas
et al. (2012) and Vergara et al. (2016). We will only note that, unlike the
muscular case, in the network the gap junctions connecting two consecutive
Purkinje cells are often explicitly modelled by means of resistances. Spe-
cific Purkinje cell models have also been developed, with the same struc-
ture as those developed for the muscular cells: see e.g. DiFrancesco and
Noble (1985). However, we will describe the mechanisms of coupling; in
particular, we will refer to the coupled problem obtained by considering the
monodomain problem both in the muscle region and in the Purkinje network
(Vergara et al. 2016). We consider N Purkinje muscle junctions located at
x = sj and we assume that each of them could be modelled by means of
a resistance RPMJ. Then, the monodomain/monodomain coupled problem
reads as follows. For each t > 0, find Vp, Vm, wp, w and γj , j = 1, . . . , N ,
such that

Pm

(
Vm,w,

N∑
j=1

1

Ar
IBr(sj)γj + Iext

)
= 0, (7.16a)

Pp(Vp,wp,γ) = 0, (7.16b)

γj =
Vp(sj)− 1

Ar

∫
Br(sj) Vm dx

RPMJ
j = 1, . . . , N, (7.16c)

where Pm(Vm,w, F ) = 0 denotes the monodomain problem in the myo-
cardium with source term F , Pp(Vp,wp,η) = 0 is the monodomain problem
in the Purkinje network with Neumann conditions with data ηj at the Purk-
inje muscle junctions, Vp and wp are the trans-membrane potential and the
gating variables in the Purkinje network, γj are the PMJ currents which are
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determined by Ohm’s laws (7.16c), IY is the characteristic function related
to the region Y ⊂ Ωmus, Br(sj) is the ball of radius r centred at the point
sj , and Ar is the volume of this ball. We observe that the two monodomain
problems are coupled by means of the PMJ currents γj : for the 3D problem
the latter act as source terms distributed in balls of radius r, whereas for
the network they act as Neumann conditions (Bordas et al. 2012). A similar
approach could be considered for the bidomain problems as well.

The coupling between eikonal muscular and Purkinje network problems
has been addressed by Vergara et al. (2014) for normal propagation and
Palamara et al. (2014) for pathological propagations.

7.1.5. Computing the surface electrocardiogram signals

The computation of the potentials related to electrical propagation in the
heart could be used to numerically compute the surface electrocardiogram
(ECG) signals, that is, electrical potential on the surface of the body, thus
simulating what happens in normal clinical practice. This could be obtained
by coupling the bidomain or monodomain problem with the propagation
in the torso, modelled by a simple diffusion problem for the extracellular
potential at each t > 0:

∇ · (ΣT∇φT ) = 0 in ΩT ,

where ΩT is the torso domain that surrounds the heart domain Ωmus (i.e.
the heart boundary surface Σepi ∪ Σb denotes the interface with the torso),
ΩT ∩ Ωmus = ∅, with φT denoting the extracellular potential in the torso.
Homogeneous Neumann conditions have to be applied on the external torso
surface ΣT , whereas the following interface conditions, which replace the
boundary conditions for the heart problem, need to be prescribed at the
torso/heart interface:

φe = φT on Σepi ∪ Σb,

(Σe∇φe) · n = (ΣT∇φT ) · n on Σepi ∪ Σb,

(Σi∇(Vm + φe)) · n = 0 on Σepi ∪ Σb.

7.1.6. Numerical discretization

Numerical solution of the bidomain and monodomain problems is very de-
manding. Together with the strict constraint on the spatial mesh size due
to the propagation of a very steep front (see Section 6.1), a time step of the
order of tenths or even hundredths of milliseconds must be used in order to
capture the fast dynamics characterizing the propagation, with time con-
stants of the order of 0.1 ms. Moreover, as discussed below, the algebraic
solution of the linear systems arising at each time step using finite elements,
for example, requires careful treatment, due to the coupled nature of the
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problem, the singularity of some of the matrices involved, and the presence
of the non-linear term due to the ionic currents.

Several time discretization strategies have been considered so far. We can
group them into four main categories, explicit, semi-implicit, implicit and
operator splitting-based methods, which are now presented briefly. We start
by introducing the finite element matrices and vectors:

(M)jk =

∫
Ωmus

ψkψj dω,

(Aβ)jk =

∫
Ωmus

Σβ∇ψk · ∇ψj dω, β = i, e

(I ion(V n
m,W

r,Cs))j =

∫
Ωmus

Iion(V n
m,w

r, cs)ψj dω,

(G(V n
m,W

r))j =

∫
Ωmus

g(V n
m,w

r) · yj dω,

(S(V n
m,W

r,Cs))j =

∫
Ωmus

gc(V
n
m,w

r, cs) · ζj dω,

where ψi, yj and ζj denote the basis functions of the finite element spaces,
and n, r, s are integers denoting discretized times. Vectors V m, Φe, Φi,
W and C denote the unknown coefficients of the finite element solutions
associated with the unknowns Vm, φe, φi, w, c. Note that the dimensions of
W and C are MK and SK, respectively, where K is the number of degrees
of freedom associated with the mesh and the choice of finite elements (e.g.
the number of vertices for linear finite elements). In all the cases, in order
to simplify the notation, we will set Iexte = Iexti = 0, and we assume that the
running temporal index n+1 is understood.

Explicit methods. In explicit methods, all the problems in (7.10) are discret-
ized by means of an explicit scheme, for example forward Euler for both the
PDE and ODE systems (Puwal and Roth 2007, Ethier and Bourgault 2008).
This choice allows us to decouple the four blocks of the bidomain system
(the two PDEs and the two ODEs system), involving only the mass matrix
in the PP formulation, and thus in principle avoiding the need to solve any
linear system provided that mass lumping is performed. In contrast, for the
PE formulation, the absence of time derivatives in the second PDE implies
that a linear system in the unknown Φe needs to be solved in any case (we
detail the forward Euler method):

χmCmM
V m − V n

m

∆t
= −Ai(V n

m + Φn
e )− χmI ion(V n

m,W
n,Cn),

AiV m + (Ai +Ae)Φe = 0,

M
W −W n

∆t
= G(V n

m,W
n), M

C −Cn

∆t
= S(V n

m,W
n,Cn).
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Explicit methods lead to a severe constraint on the time discretization of
the type ∆t < h2/Σ, where Σ is a representative value of the conductivity
(Puwal and Roth 2007). Dos Santos, Plank, Bauer and Vigmond (2005)
showed for a model problem that an explicit method is not absolutely stable
for a value of ∆t much smaller than that required to capture the front
propagation. For this reason and due to the increased CPU availability,
explicit methods are no longer used so often.

Semi-implicit methods. ODE systems are usually solved at each time step
by means of explicit or semi-implicit methods (in the latter case the depend-
ence on Vm is treated explicitly). This suggests using semi-implicit methods
(Keener and Bogar 1998, Pennacchio and Simoncini 2002, Colli Franzone
and Pavarino 2004) for the whole coupled PDE/ODE problem. These meth-
ods are the most widely used together with operator splitting-based methods
(see below). They are based on treating the diffusive term implicitly and
the non-linear term explicitly. A possible semi-implicit (first-order) scheme
for the PP formulation (7.10) is as follows:

M
W −W n

∆t
−G(V n

m,W ) = 0, M
C −Cn

∆t
− S(V n

m,W ,C) = 0,

χmCmM
V m − V n

m

∆t
+AiΦi + χmI ion(V n

m,W ,C) = 0,

− χmCmM
V m − V n

m

∆t
+AeΦe − χmI ion(V n

m,W ,C) = 0

(see e.g. Colli Franzone and Pavarino 2004).
A semi-implicit method like the one reported here has two nice proper-

ties. First of all, the two PDEs are decoupled by the ODE systems, greatly
simplifying the numerical solution of the entire problem. This decoupling
strategy is justified by noticing that the Jacobian matrices of a fully im-
plicit discretization feature dominant values on the diagonal, suggesting
weak coupling between potentials and gating/ionic concentration variables
(Munteanu, Pavarino and Scacchi 2009). Secondly, it allows for a linear-
ization of the non-linear reaction term given by the ionic currents, thus
requiring the solution of a 2× 2 block linear system.

Special attention has been paid to evaluation of the ionic current in a finite
element context. In particular, two strategies have mainly been considered,
namely ionic current interpolation (ICI) and state variable interpolation
(SVI). In the first case, only the nodal values are used to build an interpola-
tion of the ionic current, whereas in the second case the trans-membrane po-
tential and the gating/ionic concentration variables are interpolated within
each element and the ionic current is then evaluated by using these inter-
polated variables (Pathmanathan, Mirams, Southern and Whiteley 2011).
The ICI approach is of course more efficient from the computational point of
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view, and allows expression of the reaction term by means of a mass matrix.
However, it has lower accuracy with respect to state variable interpolation;
in particular, the computed conduction velocity is generally larger than the
true velocity: see Pathmanathan et al. (2011).

From the algebraic point of view, the solution of a semi-implicit dis-
cretized problem is very demanding, since the matrix of the linear system
associated with the PDEs written in terms of the unknowns Φi and Φe is
given by

B =
χmCm

∆t

[
M −M
−M M

]
+

[
Ai 0
0 Ae

]
.

Both terms of this matrix are singular, the first due to the degenerate
parabolic nature of the PP bidomain formulation and the second since
each block Aβ is related to a pure Neumann diffusive problem. How-
ever, matrix B is positive semidefinite, so the preconditioned conjugate
gradient method is often used for its numerical solution (Pennacchio and
Simoncini 2002, Colli Franzone and Pavarino 2004). Preconditioning is
needed since the matrix B is highly ill-conditioned, due to the block 2 × 2
mass matrix which, unlike the classical mass matrix, worsens the spec-
trum of the stiffness matrix. Efficient preconditioners include block Jac-
obi and Gauss–Seidel (Mardal, Nielsen, Cai and Tveito 2007), block SSOR
(Pennacchio and Simoncini 2002), multilevel additive Schwarz (Pavarino
and Scacchi 2008), multigrid (Plank et al. 2007, Vigmond et al. 2008),
and a functional block preconditioner obtained by the monodomain solver
(Gerardo-Giorda et al. 2009).

Semi-implicit methods have also been proposed for the PE formulation:
see e.g. Fernández and Zemzemi (2010). For example, with respect to the
unknowns V m and Φe, we have

B =
χmCm

∆t

[
M 0
0 0

]
+

[
Ai Ai
Ai Ai +Ae

]
.

Again the matrix is singular, ill-conditioned, and semidefinite positive. In
this context, we cite Pierre (2012) for an incomplete block LU factorization
preconditioner, and Vigmond, Aguel and Trayanova (2002), where the two
PDEs are decoupled by treating Vm explicitly in (7.6a) and φe in (7.6b).

In any case, semi-implicit methods are conditionally stable with a bound
on ∆t which is, however, independent of the mesh size (Fernández and
Zemzemi 2010, Colli Franzone et al. 2014).

A variant of the semi-implicit method reported above arises from treat-
ing the reaction term Iion implicitly. In this case, Newton–Krylov–Schwarz
methods are very efficient (Munteanu et al. 2009). Second-order semi-
implicit schemes have been successfully considered as well: see e.g. Ethier
and Bourgault (2008).
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Operator splitting-based methods. These methods separate the reaction op-
erator from the diffusive operator, in a similar way to what is done in
fractional step methods for fluid problems. They were first introduced for
the monodomain problem by Qu and Garfinkel (1998). Here we present
an operator splitting-based method for the PP formulation of the bidomain
problem (Sundnes, Lines and Tveito 2005, Colli Franzone et al. 2014).

(1) Given the quantities at time step tn, solve the reaction problem and
the ODE systems in (tn, tn + θ∆t]:

χmCmM
Ṽ
n+θ
m − V n

m

∆t
+ χmI ion(V ∗m,W

∗,C∗) = 0,

M
W̃

n+θ −W n

∆t
−G(V ∗m,W

∗) = 0,

M
C̃
n+θ −Cn

∆t
− S(V ∗m,W

∗,C∗) = 0.

(2) Given Ṽ
n+θ
m , solve the diffusion problems in (tn, tn+1]:

χmCmM
V̂
n+1
m − Ṽ n+θ

m

∆t
+AiΦ

∗
i = 0,

−χmCmM
V̂
n+1
m − Ṽ n+θ

m

∆t
+AeΦ

∗
e = 0.

(3) Given V̂
n+1
m , W̃

n+θ
, C̃

n+θ
, solve the reaction problem and the ODE

systems in (tn + θ∆t, tn+1]:

χmCmM
V n+1
m − V̂ n+1

m

∆t
+ χmI ion(V ∗m,W

∗,C∗) = 0,

M
W n+1 − W̃ n+θ

∆t
−G(V ∗m,W

∗) = 0,

M
Cn+1 − C̃n+θ

∆t
− S(V ∗m,W

∗,C∗) = 0.

The superscript ∗ means that the quantity at hand could be treated either
explicitly or implicitly. The variable θ could assume value 1/2 or 1. In the
latter case, step (3) is unnecessary: we set

V n+1
m = V̂

n+1
m , W n+1 = W̃

n+1
, Cn+1 = C̃

n+1
,

and a first-order method is obtained (Godunov splitting). For θ = 1/2, we
have a second-order method provided that all the subproblems are solved
with a second-order strategy (Strang splitting). Note that if step (2) is
solved implicitly, then the same preconditioners introduced above for the
semi-implicit schemes could be applied as well, since it applies to the same
operator.
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(a) (b)

Figure 7.3. (a) Purkinje network generated by the algorithm proposed in Pala-
mara et al. (2015) in the case of a real left ventricle. (b) Map of the activation
times computed by means of the eikonal equation. The time marching scheme and
P1 finite elements have been used. The source term (dark blue) is located within
the myocardium, as typically happens in Wolff–Parkinson–White syndrome. Res-
ults were obtained by means of a code implemented in the VMTK environment
(www.vmtk.org). CT images from the Cardiology Division at Ospedale S. Maria del
Carmine, Rovereto (TN), Italy, and from the Radiology Division of Borgo-Trento
(TN), Italy.

Implicit methods. Some authors have considered a fully implicit discret-
ization of the full bidomain problem (7.9): see e.g. Bourgault, Ethier and
LeBlanc (2003) and Murillo and Cai (2004). In this case the whole Jacobian
is built and the Newton method is applied. Due to the small time step re-
quired in bidomain simulations to capture the propagating front and due
to the excellent stability properties of semi-implicit and operator splitting-
based methods, fully implicit method are no longer considered so often.

In Figures 7.3 and 7.4 we give some examples of numerical results related
to the solution of the electrical propagation in the myocardium.

7.2. Cardiac mechanics and electromechanical coupling

7.2.1. The continuous mechanics problems
During a physiological contraction, the cardiac cells change in length by
up to 20–30%, so finite elasticity models are needed to describe heart con-
traction and relaxation. In particular, the first Piola–Kirchhoff tensor is
written as the sum of two terms (Nash and Panfilov 2004, Niederer and

Smith 2008): a passive component T̂
P
s describing the stress required to ob-

tain a given deformation of the passive myocardium (similarly to arteries),
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Figure 7.4. Propagation of the trans-membrane potential in the two ventricles at
eight different instants during a heartbeat. Monodomain simulation, semi-implicit
method, P1 finite elements. Results were obtained using LifeV; the computational
mesh was obtained by an open source biventricular geometry segmented from CT
images: see Rousseau (2010).

and an active component T̂
A
s denoting the tension generated by the depolar-

ization of the propagating electrical signal that provides the internal active
forces responsible for the contraction (see Section 5.4):

T̂ s = T̂
P
s + T̂

A
s , (7.23)

where, using the notation of Part 1, ̂ refers to quantities computed in the
reference domain.

The passive component of the stress is obtained as the derivative of a
suitable strain energy function: see (4.8). The heart’s mechanical response
(just like the electrical propagation: see Section 7.1) is highly dependent on
the presence of fibres and sheets. For this reason, the passive myocardium
is modelled as an orthotropic material, characterized by two principal dir-
ections and with different material responses on three mutually orthogonal
planes, identified by these directions. This is in accordance with the shear
tests performed on pig hearts, which highlighted an elevated resistance to
shear deformations producing an extension along the fibre direction, an in-
termediate resistance in the direction orthogonal to fibres and tangential
to sheets, and the least resistance in the third orthogonal direction (Dokos,
Smaill, Young and LeGrice 2002). Letting âf , âs, ân denote the unit vec-
tors along these directions (see Section 7.1) in the reference configuration,
the following strain energy function has been proposed in Holzapfel and
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Ogden (2009):

Θ(I1, I4,f , I4,s, I8,fs) (7.24)

=
a

2b
eb(I1−3) +

∑
i=f,s

ai
2bi

[
ebi(I4,i−1)2 − 1

]
+

afs
2bfs

[
ebfsI

2
8,fs − 1

]
,

where, referring to the notation introduced in Section 4.2, I1 = trC, I4,i =
âi · (Câi), i = f, s, I8,fs = âf · (Câs) are invariants of C, and a, b, af , bf ,
as, bs, afs, bfs are material parameters. I1 is the first isotropic invariant
and the related term in Θ accounts for the isotropic response of the myo-
cardium at small deformations; I4,f and I4,s are the squares of the stretch
of âf and âs in the deformed configuration, and the related terms in the
energy are associated with the increased stiffness of the material along the
two principal directions af and as for large deformations; finally, I8,fs de-
notes the angle spanned by the two principal directions in the deformed
configuration, and the related term in the energy describes the coupling
between the two principal directions. Convexity of this energy is guar-
anteed for positive parameter values (Holzapfel and Ogden 2009). Other
orthotropic models have been proposed, for example by Hunter, Nash and
Sands (1997) and Costa, Holmes and McCulloch (2001), whereas transvers-
ally isotropic models with only one principal direction (along the fibres)
were introduced by Humphrey and Yin (1987) and Guccione, McCulloch
and Waldman (1991), for example. Some authors model the myocardium
as incompressible (Holzapfel and Ogden 2009), in accordance with the ex-
periments reported by Vossoughi, Vaishnav and Patel (1980). In this case
the term ps(J − 1) is added to the strain energy functions, as in (4.13).

On the basis of experimental evidence, reported by Dokos et al. (2002),
for example, highlighting hysteresis under shear deformations, viscoelastic
orthotropic models have recently been proposed for the passive myocardium:
see Gultekin, Sommer and Holzapfel (2016). The viscoelastic behaviour is
probably due to the extracellular fluid that filtrates through the solid part.

The active contribution of the cardiac cells to the contraction is regulated
by the opening of calcium channels as a response to the depolarization, with
a consequent entry of calcium ions in the cells. As detailed in Section 5.4,
this process is responsible for cardiac contraction. Since the latter occurs
along the axial direction of the cardiac cells, that is, along the fibre direction,
the active part of the stress tensor usually takes the form

T̂
A
s = PAaf ⊗ âf (7.25)

(Nash and Panfilov 2004), where the scalar function of time and space PA

denotes the pointwise active stress, and should be properly modelled.
In the classical model for the active stress function proposed in Nash and

Panfilov (2004), PA depends only on the trans-membrane potential Vm. In
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particular, for each spatial point, the following ODE equation is introduced:

dPA(t)

dt
= ε(Vm(t))

[
kP (Vm(t)− Vr)− PA(t)

]
, (7.26)

where Vr is the resting potential, kP is a suitable parameter controlling the
amplitude of PA, and ε controls the delay of the contraction with respect
to the action potential. For example, Goktepe and Kuhl (2010) proposed
the expression

ε(Vm) = ε0 + (ε∞ − ε0)e−e−ξ(Vm−V̄m)
,

where ε0, ε∞, ξ, V̄m are suitable parameters.
Since cardiac cell contraction is regulated by calcium ion concentration,

the active stress function PA can be assumed to depend directly on this
specific concentration, say cca, rather than on the more general variable Vm.
For example, Wong, Goktepe and Kuhl (2013) proposed a system of ODEs
of the same structure as (7.26), but using cca instead of Vm on the right-
hand side.

In more sophisticated models, the active stress function also depends on
the stretch in the fibre direction λ = (âTf Câf )1/2 and on the fibre stretch
rate dλ/dt (Niederer, Hunter and Smith 2006, Land et al. 2012). In compact
form, these models are written as

dy

dt
= gy

(
PA, λ,

dλ

dt
, c,y

)
,

PA = gPA(λ,y),

(7.27)

for suitable functions gy and gPA and where c, as in Section 7.1, is the ionic
concentration variable (in particular the calcium one), whereas y collects
other myofilament and electrophysiology state variables.

As an alternative to the decomposition (7.23), where the stress tensor is
split into a passive and an active component (the active stress approach),
Cherubini, Filippi, Nardinocchi and Teresi (2008) and Ambrosi, Arioli, No-
bile and Quarteroni (2011) have proposed a different strategy based on an
active strain approach. In this case, the following factorization of the de-
formation tensor is used,

F = F PFA,

where FA is the active factor acting at the microscales, describing fibre
distortion not preserving geometric compatibility, whereas F P describes
passive macroscale deformation and the deformation needed to restore com-
patibility. With this choice, quite common when analysing plasticity and
the remodelling of living tissues, the microscale information related to the
fibre contraction is directly incorporated in the body kinematics, allow-
ing for the inclusion of fibre contraction driven by the depolarization as a
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prescribed active deformation rather than a further contribution to stress.
In this case, the first Piola–Kirchhoff stress tensor is given by

T̂ s = JA
DΘ

DF P
(FA)−T ,

and, in analogy with (7.25), a possible expression for FA is

FA = I − βVmâf ⊗ âf ,

for a suitable parameter β (Ambrosi et al. 2011). The active strain approach
is probably more satisfactory from the modelling point of view, since, unlike
active stress, it should provide the expected fibre contraction without any
tuning. However, from the numerical point of view it is more problematic,
since standard finite element finite elasticity solvers cannot be used directly
and should be properly adapted. From now on we refer only to the active
stress approach. For a comparison between the two approaches we refer
to Ambrosi et al. (2011) and Ambrosi and Pezzuto (2012), and for related
computational results to Pezzuto (2013) and Rossi et al. (2014).

7.2.2. The coupled electromechanics problem

The values of the trans-membrane potential Vm or calcium ion concentration
cca, to be used in (7.26) or (7.27) to compute the active stress function PA,
are sometimes prescribed as given data to the mechanics problem: see e.g.
Eriksson, Prassl, Plank and Holzapfel (2013). However, in most cases they
are obtained from the bidomain or monodomain equations. This leads to a
coupled electromechanical problem.

The electrical propagation problem needs to be solved in a domain that
changes in time, because of the cardiac contraction and relaxation. Under
suitable assumptions (Colli Franzone, Pavarino and Scacchi 2016), in an
Eulerian framework, these problems assume the form (7.5), (7.6) or (7.11),
provided that the conductivity tensors (7.4) or (7.12) are computed by us-
ing the deformed unit directions af , as, an: see e.g. Keldermann et al.
(2009). However, for computational simplicity, the bidomain and monodo-
main equations are usually set in a Lagrangian framework and written in
the reference undeformed configuration. Here we report the corresponding
monodomain equation,

JχmCm

(
∂V̂m
∂t
− F−T∇V̂m ·

∂ψ

∂t

)
−∇ ·

(
JF−1ΣF−T∇V̂m

)
+ JχmĨion

(
V̂m, ŵ, ĉ, λ

)
= JÎext in Ωmus (7.28)

(using the notation of Part 1, we set Ωmus = Ω0
mus), coupled with the ODE

systems (7.9e, 7.9f) (similar arguments hold true for the bidomain equa-
tions as well). The spatial derivatives have to be taken with respect to the
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undeformed domain, ψ is the deformation map between Ω0
mus and Ωt

mus and
λ is the stretch in the fibre direction introduced above.

From the above equation, we observe that there are three sources of
mechano-electrical feedback, that is, three ways in which the mechanics prob-
lem influences the electrical problem:

(i) the effective conductivity tensor Σ̂ = JF−1ΣF−T depends on the de-
formation gradient F ,

(ii) the ionic current term Iion depends on the stretch in the fibre direc-
tion λ,

(iii) the relation between the spatial and material time derivatives intro-

duces the advection term −F−T∇V̂m · ∂ψ/∂t, which depends on the
solution of the mechanics problem (Colli Franzone et al. 2016).

Terms (i) and (iii) are due to the pull-back of the monodomain equation
into the undeformed domain (geometric feedback). Term (ii) is due to a
well-known physical process consisting of the opening of ion channels un-
der the action of deformation (stretch-activated channels: see Section 5.4)
(Kohl, Hunter and Noble 1999, Kohl and Sachs 2001). Accordingly, the
ionic current term is written as the sum of two contributions,

Ĩion = Iion(V̂m, ŵ, ĉ) + ISAC(V̂m, λ), (7.29)

where Iion denotes one of the classical independent-stretch models described
in Section 7.1.2, and ISAC is the current activated by the deformation. A
fairly general expression for the latter term is given by

ISAC =
∑
i

Ki(V̂m)(λ− 1)(V̂m − Vi)H(λ− 1), (7.30)

where the ith term of the sum represents the stretch-activated currents
related to the ith ion (usually sodium and potassium), Ki is a suitable
function, and Vi is the Nerst potential introduced in Section 7.1.2. The
Heaviside function H(·) guarantees that the stretch-activated ion channels
open only under fibre tension (λ > 1) (Niederer and Smith 2007). Colli
Franzone et al. (2016) showed (computationally) that these terms do not
significantly alter the morphology of the action potential, but they strongly
influence the action potential duration.

Stretch-activated ionic currents together with the active stress compon-
ent of the stress tensor (or equivalently the active strain component of the
deformation gradient) make the electromechanics problem a highly coupled
system, which can be summarized as follows. Find the muscle displacement
d, the trans-membrane potential Vm, the gating variables w, and the ionic
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concentration variables c, such that

∇ ·
(
T̂
P
s (d̂) + T̂

A
s

(
ĉ, d̂,

dd̂

dt

))
= 0 in Ωmus, (7.31a)

T̂
A
s = PAaf ⊗ âf , PA = A

(
ĉ, d̂,

dd̂

dt

)
in Ωmus, (7.31b)

V̂m =M(V̂m; d̂, ŵ, ĉ) in Ωmus, (7.31c)

(ŵ, ĉ) = G(ŵ, ĉ; V̂m) in Ωmus. (7.31d)

Here, equation (7.31a) stands for the mechanical problem. Note that, unlike
for the vessel case (see (4.7)), the time-dependent inertial term has been neg-

lected, as is commonly done for heart mechanics. Moreover, T̂
P
s = ∂Θ/∂F ,

where Θ is given by the orthotropic law (7.24), for example, and PA is given
by either (7.26) or (7.27). Equation (7.31c) represents the monodomain
problem (7.28) in compact form, together with the ionic current expres-
sion given by (7.29, 7.9c, 7.9d, 7.30). Finally, (7.31d) is shorthand for the
ODE systems (7.9e, 7.9f) for the gating and ionic concentration variables
characterizing the cardiac cell model. The symbols M and G are abstract
notations to identify the underlying PDE and ODEs, respectively. Note
also that in writing system (7.31), we have exploited the fact that λ and
F could be written in terms of d, allowing us to indicate the dependences
of the monodomain problem on λ and F and of T̂

A
s on λ in compact form

through d.
Regarding the well-posedness of the electromechanical coupled problem

(7.31), very few results have been obtained so far. We mention Path-
manathan, Chapman, Gavaghan and Whiteley (2010), who noticed that
for the general active stress model (7.27), the equilibrium equation (7.31a)
is not even elliptic when there is explicit dependence on the rate of stretch
dλ/dt, and Andreianov, Bendahmane, Quarteroni and Ruiz-Baier (2015),
who proved the existence of a weak solution for the case of a linearized
elasticity equation in the active strain formulation coupled with the bido-
main equations including the geometric feedback affecting the conductivity
tensors.

7.2.3. The issue of boundary conditions for the mechanics problem

For the mechanical contraction problem (7.31a), proper boundary condi-
tions should be prescribed at both the external epicardium and internal
endocardium surfaces. For the former, the presence of both the pericar-
dium and the surrounding tissue has to be accounted for, because of their
effect on heart movement. Fritz et al. (2014) have proposed a sophistic-
ated model of interaction with the pericardium accounting for a frictionless
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contact. More commonly, and similarly to the vascular case, a Robin con-
dition such as (3.1) is prescribed at Σepi.

At the endocardium internal surface Σendo, in the presence of a fluid
model in the atrial and ventricular cavities, the usual dynamic and kinematic
conditions (4.19c, 4.19d), arising from the fluid–structure interaction model,
implicitly provide both the endocardial displacement and normal stresses
(see Section 7.5). When the fluid in the ventricular cavity is not modelled,
suitable strategies to prescribe boundary conditions at Σendo are mandatory.
A common strategy relies on prescribing a Neumann condition of the form

T̂ sn̂ = P n̂, (7.32)

where P is a suitable estimate of the blood pressure distribution at the
endocardium.

During ventricular filling, condition (7.32) is prescribed both for atria
and ventricles by means of selected values of blood pressures taken from the
literature (see Figure 5.2).

During isovolumic contraction, the ventricular volume is kept constant
by means of fixed-point iterations, for example, where the value of the en-
docardial pressure to be prescribed in (7.32) at each time step is updated
until satisfaction of the constraint given by the unchanged volume:

P(k+1) = P(k) + (V − V n)/Ck

(Usyk, LeGrice and McCulloch 2002, Eriksson et al. 2013), where V is the
cavity volume, k is the sub-iteration index and Ck is a penalty parameter,
and where the current temporal index n+1 is as usual understood. Alternat-
ively, a Lagrange multiplier approach could be employed (Gurev et al. 2015).
During this phase the atrial pressure is kept constant to the values reached
when the mitral and tricuspid valves close.

For ventricular ejection, a reduced 0D model (based on the analogy with
electrical circuits: see Section 4.5.1) for the systemic (or pulmonary) cir-
culation is usually coupled with the cardiac mechanics problem, assuming
that the ventricular pressure equals the pressure in the aorta (or in the
pulmonary artery) (Usyk et al. 2002, Eriksson et al. 2013). This is a good
approximation since, although the ventricular and circulatory pressures are
different (thus allowing for the acceleration and deceleration of blood: see
Figure 5.2), they are very similar. In this case we have a coupled problem
between the cardiac mechanics and the lumped parameter model where the
two subproblems exchange suitable interface conditions (e.g. in an iterative
framework). For example, the 0D model could provide the pressure to be
prescribed to the mechanics problem by means of (7.32), whereas the flow
rate Q = ρf (dV /dt) is prescribed to the 0D model. During the ejection
phase the atrial pressure is determined by the venous pressure, which could
be obtained with a 0D model or by values from the literature.
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Finally, during isovolumic relaxation the endocardial pressure is decreased
according to values from the literature until it reaches the pressure atrial
value. Also during this phase the atrial pressure is determined by the venous
pressure.

When only the ventricular mechanics is modelled (no atria), a truncated
computational domain is considered, like the one depicted in Figure 7.2(a).
In this case we have to provide suitable boundary conditions for the ventricu-
lar base Σb. Often, this surface is kept fixed by enforcing homogeneous Di-
richlet conditions. In other cases, the tangential displacement is allowed by
prescribing a homogeneous Neumann condition along the tangential direc-
tions.

7.2.4. Numerical approximation

The coupled electromechanical problem (7.31) is composed of four differ-
ent blocks, namely the two PDEs (7.31a) and (7.31c) describing the heart
mechanics and electrical propagation, respectively, the ODE system (7.31b)
providing the active stress function, and the ODE systems (7.31d) modelling
gating and ionic concentration variables. Moreover, the algebraic source of
coupling (7.29, 7.30) needs to be accounted for to determine the stretch-
activated ion currents. Their influence on the electrical problem has been
included directly in the right-hand side of (7.31c).

A common numerical solution strategy for problem (7.31) addresses the
two PDEs (7.31a) and (7.31c) separately by relying (when possible) on
pre-existing mechanics and electrical codes: for instance, the mechanics
subproblem is solved by Pavarino et al. (2015) using efficient Newton–Krylov
iterations, while the electrical subproblem (monodomain+cell ODE model)
is solved by means of one of the strategies described in Section 7.1.6 (see
also Sundnes et al. 2014 for an operator splitting method).

In this context, at each time step the electrical subproblem is solved first
and the mechanics problem later (Nash and Panfilov 2004, Gurev et al. 2015,
Sundnes et al. 2014). In particular, after time discretization, the following
scheme is employed (as usual the current temporal index n+1 is understood
and ∗ means that the related term could be treated either implicitly or
explicitly, depending on the temporal scheme used).

Algorithm EM1

At each time step:

(1) Solve the monodomain problem together with the cell model:

V̂m =M(V̂ ∗m; d̂
n
, ŵ∗, ĉ∗) in Ωmus, (7.33a)

(ŵ, ĉ) = G(ŵ∗, ĉ∗; V̂ ∗m) in Ωmus. (7.33b)

(2) Then, solve the following mechanics problem.
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(2a) Update the active stress contribution

T̂
A

s = PAaf ⊗ âf , PA = A
(
ĉ, d̂

n
,
d̂
n
− d̂

n−1

∆t

)
in Ωmus.

(2b) Solve the equilibrium equation by means of the following Newton
iterations. At each iteration k solve

∇ ·
(
DF T̂

P

s (d̂(k−1))
)
δd̂(k)

= −∇ ·
(
T̂
P

s (d̂(k−1)) + T̂
A

s

(
ĉ, d̂

n
,
d̂
n
− d̂

n−1

∆t

))
in Ωmus.

Using the notation introduced in Section 4.6.2, DF is the Gâteaux deriv-
ative with respect to F , δd̂(k) = d̂(k) − d̂(k−1), and, for simplicity, we have
considered a Forward Euler approximation of dw/dt|tn . The active stress
contribution is treated explicitly, that is, it is updated once per time step.
This choice may lead to numerical instabilities, as reported computationally
in Niederer and Smith (2008). Pathmanathan et al. (2010) speculate that
such instability could be ascribed to the (necessarily) explicit time discret-
ization of the explicit stretch rate term dλ/dt|tn (instead of dλ/dt|tn+1) in
the active stress function solution.

To overcome these instabilities, Niederer and Smith (2008) propose up-
dating the active stress function at each Newton step, that is, to replace
step (2) in Algorithm EM1 with the following one.

Algorithm EM1′

(2′) Solve the mechanics problem by means of the following Newton itera-
tions. At each iteration k:

(2′a) Update the active stress contribution:

T̂
A

s = PAaf ⊗ âf , PA = A
(
ĉ, d̂(k−1),

d̂(k−1) − d̂
n

∆t

)
in Ωmus.

(2′b) Solve the equilibrium equation:

∇ ·
(
DF T̂

P

s (d̂k−1)
)
δd̂k

= −∇ ·
(
T̂
P

s (d̂k−1) + T̂
A

s

(
ĉ, d̂(k−1),

d̂(k−1) − d̂
n

∆t

))
in Ωmus.

Note that step (2′) does not coincide with a Newton iteration for (7.31a,
7.31b). Although at the expense of a higher number of iterations, this
scheme provides stable solutions and allows the use of a standard solver for
the mechanics part.

A Newton method for the solution of the mechanics problem (7.31a,
7.31b), used in combination with a different explicit decoupled scheme,
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has been successfully proposed by Pavarino et al. (2015), who split the
electrical problem (7.31c, 7.31d) into the cellular and macroscopic problems
(semi-implicit treatment), and solved the mechanics problem in between, as
follows.

Algorithm EM2

At each time step:

(1) Solve the ODE system for the gating and ionic concentration variables

(ŵ, ĉ) = G(ŵ∗, ĉ∗; V̂ ∗m) in Ωmus.

(2) Then, solve the mechanics problem by means of the following Newton
method. At each iteration k solve:

(2a) Update the active stress contribution:

T̂
A

s = PAaf ⊗ âf , PA = A
(
ĉ, d̂(k−1),

d̂(k−1) − d̂
n

∆t

)
in Ωmus.

(2b) Solve the equilibrium equation:

∇ ·
(
DF T̂

P

s (d̂(k−1)) +DF T̂
A

s

(
ĉ, d̂(k−1),

d̂(k−1) − d̂
n

∆t

))
δd̂(k)

= −∇ ·
(
T̂
P

s (d̂(k−1)) + T̂
A

s

(
ĉ, d̂(k−1),

d̂(k−1) − d̂
n

∆t

))
in Ωmus.

(3) Solve the monodomain problem:

V̂m =M(V̂ ∗m; d̂, ŵ, ĉ) in Ωmus.

Andreianov et al. (2015) have proposed a simplified variant of the above
decoupled algorithms for the active strain formulation.2 We provide the
same variant below for the active stress formulation; in the second equation
of (7.31b), however, the active stress function PA = A(ĉ) does not depend
on the stretch and stretch rate.

Algorithm EM3

At each time step:

(1) Update the active stress contribution:

T̂
A

s = PAaf ⊗ âf , PA = A(ĉn−1) in Ωmus.

2 This is one of the very few papers that contain a convergence result for the finite
element solution to the differential problem (7.31).
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(a) (b)

Figure 7.5. (a) Fibre orientation in a real left ventricle obtained with the method
proposed in Rossi et al. (2014). CT images from the Cardiology Division of Os-
pedale S. Maria del Carmine, Rovereto (TN), Italy, and from the Radiology Di-
vision of Borgo-Trento (TN), Italy. (b) Displacement configuration of a real left
ventricle during the contraction phase at three different times. Orthotropic model
of activation: see Barbarotta (2014). Numerical results were obtained using LifeV
and taken from Barbarotta (2014); CT images from the Cardio Surgery and Radi-
ology Divisions at Ospedale Sacco, Milan, Italy.

(2) Solve the equilibrium mechanics problem via the following Newton
method. At each iteration k solve

∇ ·
(
DF T̂

P

s (d̂k−1)
)
δd̂k = −∇ ·

(
T̂
P

s (d̂k−1) + T̂
A

s (ĉn−1)
)

in Ωmus.

(3) Then, solve the electrical problem:

V̂m =M
(
V̂ ∗m; d̂

n−1
, ŵ∗, ĉ∗

)
in Ωmus,

(ŵ, ĉ) = G(ŵ∗, ĉ∗; V̂ ∗m) in Ωmus.

Although segregated algorithms such as those reported above are the
most widely used for numerical solution of the coupled electromechanics
problem (7.31), a monolithic approach has been used by Goktepe and Kuhl
(2010), who have successfully applied a Newton method to the whole coupled
problem with a FitzHugh–Nagumo cardiac cell model (i.e. without the ODE
systems (7.31d)).

In Figure 7.5 we show an example of fibre configuration in the left vent-
ricle, and in the same figure and Figure 7.6 we give the results of an electro-
mechanical simulation.

7.3. The ventricular fluid dynamics

Blood flow in heart cavities Ωcav, shown in Figure 6.1, can be regarded
as homogeneous, Newtonian and incompressible (Vierendeels, Riemslagh,
Dick and Verdonck 2000, Watanabe et al. 2002). The displacements in-
duced by the interaction with the myocardium can be larger than 30%, so
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Figure 7.6. Displacements of the two ventricles at six different times during systolic
contraction. Electromechanical coupled simulation, P1 finite elements. Numer-
ical results were obtained using LifeV; the computational mesh was obtained from
an open source biventricular geometry segmented from CT images: see Rousseau
(2010).

the solution of fluid–structure interaction problems is mandatory. Despite
the large displacements, the ALE technique introduced in Section 4.6.3 is
suitable in this context, as shown by several authors: see e.g. Cheng, Oer-
tel and Schenkel (2005) and Nordsletten et al. (2011a). Alternatively, the
immersed boundary method (Peskin 1972), which does not require remesh-
ing or induced mesh deformation, has often been used since the celebrated
paper by Peskin (Mittal et al. 2016, Choi et al. 2015); see Section 7.4 for a
mathematical description.

One of the main features of the intraventricular fluid dynamics is repres-
ented by the formation of a vortex ring during diastole (i.e. the filling phase)
just downstream of the mitral valve. This ring is generated during the peak
flow due to a pressure gradient between left atrium and ventricle, and it
is highly distorted due to the asymmetry of the mitral valve leaflets (Seo
et al. 2014). At the end of this phase, the vortex ring is broken up into small-
scale structures that propagate towards the posterior wall and the apex.
After the second mitral peak flow due to the atrium contraction, additional
vortex rings pop up. However, due to the small duration of this phase, they
do not propagate far into the chamber (Le and Sotiropoulos 2013). Similar
vortex rings are generated in the left atrium from the flow ejected by the
pulmonary vein (Mittal et al. 2016). This complex and disturbed fluid dy-
namics, in the presence of a fairly high Reynolds number (' 4000), leads to
transition to turbulence effects even in healthy cases (Querzoli, Fortini and

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


474 A. Quarteroni, A. Manzoni and C. Vergara

Cenedese 2010). For this reason, it is common practice to include a suitable
turbulence model in heart simulations; see e.g. Chnafa, Mendez and Nicoud
(2014) for LES models and Tagliabue, Dede’ and Quarteroni (2015) for the
variational multiscale (VMS) formulation.

Regarding boundary conditions, on the endocardium Σendo (Figure 6.1)
the kinematic and dynamic conditions are implicitly determined by the
coupling with the structural problem holding in the myocardium, leading
to a fluid–structure interaction problem (see Section 7.5). The solution of
a coupled fluid–structure interaction (FSI) problem can be avoided in those
cases where the wall velocity can be derived from dynamic MRI or CT
images. However, this requires us to have at our disposal several (20–30)
wall displacement fields at different time instants during every heartbeat.
The wall myocardium velocity (which provides the Dirichlet boundary con-
dition for the fluid equations in the ventricle) can be generated by numer-
ically differentiating the displacement field (Khalafvand et al. 2014, Mittal
et al. 2016). Alternatively, the wall myocardium velocity could be provided
by the solution of the electromechanics model if the latter were segregated
from the fluid model (Choi et al. 2015).

The heart also has four (virtual) sections that delimit it from the cir-
culatory system, namely the aortic and pulmonary valve orifices (outlets)
and the interfaces with the venae cavae and the pulmonary vein (inlets). In
these cases, suitable conditions could be obtained by coupling the heart fluid
dynamics with the aorta, the pulmonary artery, and the above-mentioned
veins. These can be modelled by means of 3D, 1D or 0D models.

In the case of simulation in the left ventricle alone (see Figure 7.2(b)) we
have to prescribe suitable boundary conditions at the mitral valve orifice
Γmitr as well. For example, Khalafvand et al. (2014) propose prescribing
the flow rates at Γmitr and at the aortic valve outlet Γao obtained by MRI
measurements of the volume changes of the left ventricle chamber, noticing
that the two valves are never open simultaneously. Alternatively, flow rate
curves taken from the literature could be applied: see e.g. Nordsletten et al.
(2011a).

7.4. Modelling the valves

Heart valves are made of thin leaflets. They do not cause any resistance
to the blood during systole, and sustain large pressure gradients during
diastole. Moreover, unlike the vascular vessel wall, they are subjected to
very large displacements. Because of these features, the mathematical and
numerical modelling of the valve mechanics and their interaction with blood
flow is very demanding, requiring ad hoc techniques for their description.
Our main focus will be on the aortic and mitral valves of the left ventricle,
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the most studied from the mathematical point of view. For recent reviews
on valve modelling, see Marom (2015) and Votta et al. (2013), for example.

7.4.1. Mechanical models of the leaflets

Due to fibre alignment, which occurs mostly in the circumferential direc-
tion a, and to the presence of collagen, most of the valve mechanical models
proposed so far are of the non-linear transversally isotropic type. In par-
ticular, they depend on the two invariants I1 = trC and I4 = â · (Câ).
For example, May-Newman, Lam and Yin (2009) and Prot, Skallerud and
Holzapfel (2007) use the strain energy function

Θ(I1, I4) = c
[
eb1(I1−3)2+b4(I4−1)2 − 1

]
,

for suitable constants c, b1, b4. Variants of the above energy have been
considered, for example by Humphrey and Yin (1987), May-Newman and
Yin (1998) and Weinberg and Kaazempur-Mofrad (2006). For a comparison
of numerical results obtained with these constitutive laws, see Auricchio,
Ferrara and Morganti (2012). More sophisticated energy functions include
the microstructure of the leaflet tissue: see e.g. Einstein et al. (2005).

Due to their thinness, heart valves are often modelled as membrane shells
by neglecting the shear bending forces, which are an order of magnitude
smaller than the in-plane stresses (Merryman, Huang, Schoen and Sacks
2006, Kim, Lu, Sacks and Chandran 2008, Hsu et al. 2014).

Some works on the mitral valve also consider the presence of the chordae
tendinae (see Section 5.1). These comprise independent ring models, where
the chordae are modelled as non-linear springs with zero elasticity during
compression and exponential-like stiffness during traction (Kunzelman and
Cochran 1990, Mansi et al. 2012), and one-dimensional models characterized
by a non-linear energy function (Einstein et al. 2005, Votta et al. 2007,
Padala et al. 2010).

Another difficulty arises when modelling the contact among the leaflets
during closure. A common strategy to handle this process is a penalty
method (Hsu et al. 2014, Marom 2015, Mansi et al. 2012). This is based
on measuring the distance between each vertex and the closest leaflet, and
on locating a spring between the vertex and the collision point when the
distance is below a critical value. Astorino, Gerbeau, Pantz and Traoré
(2010) propose a more sophisticated algorithm, based on the introduction
of sub-iterations that guarantee the satisfaction of the contact constraint
via the introduction of Lagrange multipliers that act as a force of repulsion
between the leaflets.

The numerical simulation of valve mechanics has usually been obtained
by prescribing a pressure difference between the two sides of the leaflets,
mimicking the effect of the fluid (Gnyaneshwar, Kumar and Balakrishnan
2002, Votta et al. 2013). However, more realistic models are obtained by

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


476 A. Quarteroni, A. Manzoni and C. Vergara

considering the FSI problem arising between the blood flow and the leaflets.
This is the topic of the next two subsections.

7.4.2. Reduced models for fluid–valve interaction

As noticed, the simulation of the fluid–structure interaction between blood
and valve leaflets is computationally demanding. However, if one is inter-
ested only in the fluid-dynamic quantities and not in the internal leaflet
stresses, reduced models could be considered.

The first family does not explicitly represent the leaflets; rather, only the
opening/closure mechanism of the valve is modelled through the description
of the valve orifice. The simplest strategy consists in a priori operating the
opening and closing of the valve on the basis of a flow rate or pressure profile
obtained from the literature or from clinical data: see e.g. Faggiano et al.
(2013). For an example, see Bazilevs et al. (2009), Vergara et al. (2012) and
Nestola et al. (2017) for the flow simulation in the aorta and Khalafvand
et al. (2014) for that in the left ventricle. A more realistic situation is
obtained by simulating the opening/closure mechanism of the aortic valve
orifice by means of the following conditions prescribed to the fluid problem:

if Pu > Pd then the valve opens,

if Qd < 0 then the valve closes,
(7.34)

where Pu is the upstream pressure and Pd and Qd are the downstream pres-
sure and flow rate (Formaggia et al. 1999). The quantities Pu, Pd, Qd could
be prescribed as data or else be the results of the numerical computation
of the flow field. For example, in a fluid-dynamic simulation in the aorta,
Pu is the prescribed left ventricular pressure, and Pd and Qd are the un-
known aortic pressure and flow rate. For a left ventricular flow simulation,
the situation is more involved as we have to distinguish between the mitral
and the aortic valve: for the former, Pu is the prescribed atrial pressure
and Pd and Qd are the unknown left ventricular pressure and flow rate;
for the latter, Pu is the unknown left ventricular pressure, and Pd and Qd
the prescribed aortic pressure and flow rate. Many works have considered
a zero-dimensional model of the systemic circulation to provide the latter
quantities (Wenk et al. 2013). In any case, the opening/closure mechanism
is not prescribed a priori. This leads to a non-linear boundary condition for
the fluid problem at the valve orifice which, in the electric circuit analogy
of zero-dimensional models (see Section 4.5.1), is represented by an ideal
diode. Similar models have been proposed by Korakianitis and Shi (2006b)
and Blanco and Feijóo (2013), to account for diseased valves, by introdu-
cing a suitable non-ideal law for the diode. More refined reduced models
consider the opening/closure mechanism not simply in an on–off mode: the
open part of the orifice dynamically changes continuously by projecting the
supposed leaflet position on the orifice plane. For example, in Sundaram,
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Balakrishnan and Kumar (2015) the dynamics of the valve orifice open-
ing/closure is given by a prescribed law, whereas in Korakianitis and Shi
(2006a) it is given by

AV =
(1− cos θ)2

(1− cos θmax)2
,

where AV ∈ [0, 1] is the percentage of open orifice area, θ is the opening
leaflet angle (θ = 0 means closed valve) and θmax is the maximum opening
angle. The value of θ is determined by the ODE

d2θ

dt2
+ k1

dθ

dt
+ k2(Pd − Pu) cos θ = 0, (7.35)

for suitable parameters k1 and k2 and appropriate initial conditions on θ
and dθ/dt.

For all these models, which do not explicitly include the leaflets, there
might be a need to switch between Dirichlet and Neumann boundary con-
ditions (and vice versa) along a single heartbeat in a fluid problem. Indeed,
a Dirichlet condition is usually prescribed when the valve is closed (e.g.
homogeneous in the physiological case), whereas a Neumann or a resistance
condition might be preferred when the valve is open. This might be prob-
lematic at the numerical level, particularly in view of the implementation.
Tagliabue, Dede’ and Quarteroni (2015) propose a new way to overcome
this problem, based on a Robin-like condition implemented by means of the
extended Nitsche’s method proposed in Juntunen and Stenberg (2009). For
simplicity we detail the case of a Neumann-like condition for the open valve,
and we refer the reader to Tagliabue et al. (2015) for the more physiological
case of a resistance condition. Let Γ be the valve orifice at hand, and sup-
pose that one wants to prescribe at each time the following conditions:

u = g if the valve is closed, (7.36a)

T fn = h if the valve is open. (7.36b)

For example, g might be obtained via a prescribed flow rate (null in the
physiological case) by assuming a priori the shape of the velocity profile
(e.g. flat), whereas usually h = Pn, where P is a prescribed mean pressure.
Thus, the following term is added to the weak formulation (4.6) of the fluid
problem:

−
∫

Γ

γh

ξ + γh
T f (v, p)n ·w dω

−
∫

Γ

γh

ξ + γh
(v − g) · (T f (w, q)n) dω +

∫
Γ

1

ξ + γh
(v − g) ·w dω

−
∫

Γ

ξγh

ξ + γh
(T f (v, p)n− h) · (T f (w, q)n) dω +

∫
Γ

ξ

ξ + γh
h ·w dω,
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where ξ ∈ [0,+∞) and γ > 0 are two parameters and h is the mesh size
(possibly not constant). This discrete problem preserves the usual finite
element accuracy. Note that for ξ = 0 we recover the classical Nitsche
method to prescribe the Dirichlet condition (7.36a), whereas for ξ → +∞
the formulation is consistent with the Neumann condition (7.36b). Thus, the
idea is to change the value of ξ (0 or +∞) allowing for the switch between
Dirichlet and Neumann conditions. Alternatively, the switch between a
flow rate and mean pressure condition could be prescribed via the defective
version of the extended Nitsche method proposed in Vergara (2011).

A second family of reduced strategies includes a reduced model of the
leaflets without solving the full 3D mechanical problem. These methods are
very useful when one wants to determine with a good accuracy the influ-
ence of the leaflets on the direction of the fluid jet. A first simple model
is based on including the position of the open leaflets obtained by a pre-
liminary mechanical simulation and considering an on–off opening/closure
mode: see e.g. Bonomi et al. (2015). A similar model has been proposed by
Astorino, Hamers, Shadden and Gerbeau (2012), who consider an immersed
resistive approach to switch between the open and closed configuration. In
particular, the following term is added to the variational formulation of the
fluid problem: ∫

Γo

Rov ·w dγ +

∫
Γc

Rcv ·w dγ,

where Γo and Γc are the surfaces representing the open and closed leaflet
configurations, respectively, and Ro and Rc are the corresponding resistance,
which act as penalization terms to enforce the no-slip condition v = 0 at the
leaflet. Thus, when the value of the resistance is high, the corresponding
surface configuration is physically included in the model, the velocity is
zero at the leaflet and, accordingly, a pressure drop is generated across the
leaflet; in contrast, when the value of the resistance is zero, the leaflet is
invisible to the model, no constraint is prescribed on the velocity, and no
pressure drop is generated. The switch between large and vanishing values
of the resistances is determined by (7.34).

More sophisticated models account not only for the open and closed con-
figurations of the leaflets, but also provide a simplified dynamics of the entire
valve opening/closure mechanism. For example, Laadhari and Quarteroni
(2016) and Fedele, Faggiano, Dede’ and Quarteroni (2016) represent a leaflet
Γ as a surface described by two embedded level set functions which depend
on a single scalar function of time, that is, the opening angle θ. The latter
is determined by a relation very similar to (7.35). At each time step, the
term ∫

Γ
R(v − vleaf) ·w dγ
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Figure 7.7. Fluid dynamics in the ascending aorta with a patient-specific aortic
valve. Numerical results were obtained using LifeV. See Fedele et al. (2016) for a
complete overview of the results.

is added to the weak formulation of the fluid problem, in order to guar-
antee a no-slip condition at the leaflet (v = vleaf, where vleaf is the leaflet
velocity determined from θ) by selecting a sufficiently large resistance R. A
similar approach has recently been adopted in Auricchio, Lefieux, Reali and
Veneziani (2016), where however the leaflet is represented in a more simpli-
fied way by means of the opening angle alone (i.e. no level set functions are
involved).

In Figure 7.7 we give an example of the fluid dynamics across the aortic
valve obtained by means of the method proposed in Fedele et al. (2016).

7.4.3. Interaction between blood and leaflets

To accurately model the interaction between blood and valve leaflets, aimed,
for example, at detailed computation of the internal leaflet stresses, the
solution of a full FSI problem is required.

Unlike for the blood vessel and ventricular simulations, the arbitrary
Lagrangian–Eulerian (ALE) formulation, described in Section 4.6, is not
suited to handling the FSI problem arising between blood and heart valve
leaflets. Indeed, due to the large displacements of the leaflets, the fluid
mesh becomes highly distorted, producing severely stretched mesh elements
and thus requiring a frequent remeshing of the grid. For this reason, specific
FSI techniques have been developed specifically for the numerical solution of
this problem. The most successful are the immersed boundary method, the
fictitious domain approach and the cut-FEM method, together with their
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numerous variants. All these methods are characterized by a fixed fluid
mesh and enable us to treat non-conforming interface meshes.

Immersed boundary method. The celebrated immersed boundary method
(IB) was specifically developed by Peskin (1972) for the fluid dynamics
in the heart. The leaflets are represented by membranes in a Lagrangian
framework regarded as part of the fluid, represented in an Eulerian frame-
work, and exerting internal localized forces on the latter. This is achieved
by introducing a Dirac delta distribution, δ, on the membrane.

The IB method was originally developed for finite difference spatial dis-
cretization: see e.g. Peskin (1972), Mittal and Iaccarino (2005) and Peskin
(2002). In this case, in order to avoid leaks, the Lagrangian grid should be
sufficiently fine for the distance between two adjacent points to be less than
the Eulerian mesh size. Then, the structural forces are interpolated into the
fixed nodes of the fluid mesh. The major issue when finite differences are
used is the approximation of δ. This is usually obtained via a function δh,
which is non-singular for each h and tends to δ for h→ 0 (Peskin 2002).

Here we report the variational formulation of the IB method proposed
in Boffi and Gastaldi (2003), which is useful for a finite element approxim-
ation and does not require any specific approximation of the delta distri-
bution. Given a two-dimensional fluid domain Ωf , let Γs be the immersed
(one-dimensional) structure, whose material points are located at each t in
X(s, t), where s ∈ [0, L] is the Lagrangian coordinate. We consider as an ex-
ample the case of a massless linear elastic structure with elasticity constant
κ. Thus, referring to the notation introduced in Section 4.1 and assuming
homogeneous boundary conditions, the weak formulation of the IB method
is as follows (Boffi, Gastaldi and Heltai 2007). For each t > 0, find v ∈ V ,
v = v0 for t = 0, p ∈ L2(Ωf ), and X = X(t), X = X0 for t = 0, such that

ρf

∫
Ωf

∂v

∂t
·w dω +Af (v,v,w) + B(p,w) =

∫ L

0
κ
∂2X(s, t)

∂s2
w(X(s, t)) ds,

(7.37a)

B(q,v) = 0, (7.37b)

∂X

∂t
(s, t) = v(X(s, t), t), (7.37c)

for all w ∈ V and q ∈ L2(Ωf ). In fact, the right-hand side of (7.37a)
guarantees the satisfaction of the normal stress continuity at the membrane,
whereas (7.37c) is the velocity continuity.

For the finite element approximation of the above problem, the forcing
term is usually integrated by parts. For example, in the case of linear finite
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elements for the structure, for each t > 0 it becomes

M−1∑
i=0

κ

(
∂Xi+1

h

∂s
− ∂Xi

h

∂s

)
w(Xi

h)

(Boffi et al. 2007), where Xi
h = Xh(si), i = 0, . . . ,M , is the finite element

approximation of X and si are the nodes of the one-dimensional mesh.
Regarding the time discretization, a first approach is to consider a fully

implicit scheme. For the backward Euler approximation, unconditional sta-
bility is guaranteed (Tu and Peskin 1992). However, this scheme requires
the introduction of sub-iterations to handle the coupling between fluid and
structure in (7.37). A more useful approach relies on treating the right-hand
side of (7.37a) explicitly and the remaining part of the equation implicitly.
The position occupied by the structure is then updated in a second step
by means of a suitable implicit approximation of (7.37c). This scheme has
been proved to be stable under a CFL-like condition (Boffi et al. 2007).

Several extensions and applications of the IB method have been provided.
Among them, we mention the following: the variational formulation for the
case of a thick immersed structure proposed in Boffi, Gastaldi, Heltai and
Peskin (2008), where the right-hand side of (7.37a) becomes∫

Ωs

T̂ s(d̂(s, t)) : ∇w(X(s, t)) ds,

where s in this case is a vectorial Lagrangian coordinate; a mesh-adaptive
approach used in combination with a second-order scheme (see Griffith,
Hornung, McQueen and Peskin 2007); the use of a curvilinear fixed fluid
mesh to improve flexibility and efficiency (the CURVIB approach: see Boraz-
jani, Ge and Sotiropoulos 2008); the application to realistic three-dimen-
sional mitral and aortic valves successfully addressed in Griffith, Luo, Mc-
Queen and Peskin (2009) and Yin, Luo, Wang and Watton (2009).

Fictitious domain approach. The fictitious domain (FD) approach was first
introduced by Glowinski, Pan and Periaux (1997) and Bertrand, Tanguy and
Thibault (1997), and then used by de Hart, Peters, Schreurs and Baaijens
(2000) and de Hart, Baaijens, Peters and Schreurs (2003) in the context
of heart valves. The FD approach can be regarded as the dual of the IB
method, in the sense that in the latter a weak enforcement of the normal
stress continuity at the FS interface is added to the weak formulation of
fluid problem, whereas in the FD approach the velocity continuity is weakly
enforced at the FS interface. This is achieved by means of Lagrange multi-
pliers, as detailed in what follows (we refer to Sections 4.1, 4.2 and 4.3 for
the notation; in particular, variables with ̂ are referred to the reference
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domain, and we assume homogeneous boundary conditions). Find

v(t) ∈ V t, d̂(t) ∈D, λ(t) ∈H−1/2(Σt) and p(t) ∈ L2(Ωt
f ),

such that

ρf

∫
Ωtf

∂v

∂t
·w dω +Af (v,v,w) + B(p,w)

+ ρs

∫
Ωs

∂2d̂

∂t2
· êdω +

∫
Ωs

T̂ s(d̂) : ∇ê dω =

∫
Σt
λ · (w − e) dσ,

B(q,v) = 0,∫
Σt
µ ·
(
v − ∂d

∂t

)
dσ = 0,

df = d at Σt, (7.38)

for all w ∈ V , ê ∈ D, µ ∈ H−1/2(Σt) and q ∈ L2(Ωf ). For the well-
posedness of the time-discretized version of problem (7.38) we refer to Form-
aggia et al. (2009b). We notice that the use of the same Lagrange multiplier
λ from both the fluid and structure sides also guarantees the continuity of
normal stresses (Formaggia et al. 2009b).

Stijnen, de Hart, Bovendeerd and van de Vosse (2004) have success-
fully reported a validation with experimental measurements, and Astorino
et al. (2010) have reported an application of the FD approach to three-
dimensional problems in combination with a contact model for the leaflets.

Cut-FEM approach. A natural strategy for handling an internal interface
cutting the mesh in an arbitrary way is to write two weak formulations of
the problem at hand, one for each of the two subdomains generated by the
presence of the interface, and then sum them up. In this case, the meshes
of the two subdomains are fixed (background meshes). Since some of the
mesh elements are cut by the interface, their contribution to the matrices
is split into two parts: see Figure 7.8(a). This method is known as cut-
FEM (Hansbo and Hansbo 2002, Hansbo, Hansbo and Larson 2003). Here,
the jump between the normal stresses at the interface is determined by
the physical interaction with the interface, as happens for the blood/valve
interaction.

A common strategy used to guarantee the satisfaction of the interface
continuity conditions is discontinuous Galerkin (DG) mortaring (often re-
ferred to as Nitsche mortaring). This is a very effective choice since the
DG method prescribes interface conditions in a weak sense, thus allowing
a great degree of flexibility of the solution at the interface (Hansbo and
Hansbo 2002, Hansbo et al. 2003).
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(a) (b)

Figure 7.8. Element mesh K cut by the interface Γ (a) and FS domain (b). For
the latter, we notice that Ω1

f and Ω2
f are two non-overlapping subdomains, whereas

the related computational meshes have an overlap (in grey) in view of the X-FEM
approach.

Finally, we notice that the implementation of the cut-FEM method is not
standard since in the cut elements we may have polygonal elements: see
for example Figure 7.8(a), where the original triangle is split into a triangle
and a trapezoid. A solution is offered by the extended finite element method
(X-FEM), where the finite element space is suitably enriched in order to
make the treatment of the cut elements easy. In particular, the basic idea is
to duplicate the variables in the cut elements and to use the basis functions
of the original triangle in both subdomains, to represent the finite element
solution and to compute the integrals (Hansbo and Hansbo 2002).

To provide a concrete example of the cut-FEM method, we will give the
weak formulation introduced and analysed by Alauzet, Fabrèges, Fernández
and Landajuela (2016), related to the case of a valve embedded in blood
and represented by

ρsHs
∂d

∂t
+Ld = −[[T fn]] in Σ,

where Σ is the embedded membrane, L is an elliptic operator, and [[·]]
denotes the jump across the membrane. In particular, referring to Fig-
ure 7.8(b), let Ω1

f and Ω2
f be two non-overlapping subdomains separated

by Σ, and Ω1
f,h and Ω2

f,h two meshes containing Ω1
f and Ω2

f , respectively,

with an overlap region (in grey in the figure) containing the membrane.
Moreover, let V i

h and Qih be velocity and pressure finite element spaces re-
lated to Ωi

f,h and let Ci be one of the bilinear or trilinear forms C introduced
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in Section 2 restricted to Ωi
f,h. Thus we have

2∑
i=1

[
ρf

∫
Ωif

∂vih
∂t
·w dω +Aif (vih,v

i
h,w) + Bi(pih,w)− Bi(q,vih)

]
+ sh(vh,w) + ρsHs

∫
Σ

∂dh
∂t
· edσ +

∫
Σ
Ldh · edσ

+
2∑
i=1

[
−
∫

Σ
T f (vih, p

i
h)ni · (w − e) dσ −

∫
Σ
T f (w, q)ni ·

(
vih −

∂dh
∂t

)
dσ

+
γ

h

∫
Σ

(
vih −

∂dh
∂t

)
· (w − e) dσ

]
= 0.

The terms in the third and fourth rows above are simply the usual DG terms
guaranteeing consistency, symmetry and stability of the method, whereas
sh(·, ·) accounts for the ghost node stabilization (Burman et al. 2015), which
guarantees an optimal convergence order. This formulation was introduced
for infinitesimal displacements. However, the authors also treat the case of
a moving interface: for details see Alauzet et al. (2016).

Finally, we notice that the cut-FEM approach has been also considered
for the case of a thick structure: see Burman and Fernández (2014) and
Zonca, Formaggia and Vergara (2016).

7.5. Modelling the entire heart function

We conclude this section by providing some hints on the modelling of the
complete heart function, a challenging and far-reaching endeavour. The
latter is very complex and requires us to merge all the mathematical, nu-
merical and computational issues highlighted previously in this section: see
Lee et al. (2016), Chabiniok et al. (2016), Nordsletten et al. (2011b) and
Quarteroni et al. (2017).

Basically, an integrated model of the heart involves the coupling of the
electromechanical problem (7.31), the blood fluid dynamics (see Section 7.3),
and the valve functioning (see Section 7.4). The coupling between the first
two subproblems occurs at the endocardium Σendo: see Figure 6.1. In partic-
ular, this is determined by the classical fluid–structure interaction coupling
conditions, i.e., the kinematic condition (4.19c) and the dynamic condition
(4.19d). In particular, referring to the notation of Sections 4.1 and 7.2 and
to Figure 6.1, we have the following problem. Find the blood velocity v and
pressure p, the muscle displacement d, the trans-membrane potential Vm,
the gating variables w, and the ionic concentration variables c, such that

ρf

(
∂v

∂t
+ ρf (v · ∇)v

)
−∇ · T f (v, p) = 0 in Ωt

cav, (7.39a)

∇ · v = 0 in Ωt
cav, (7.39b)
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v =
∂d

∂t
at Σt

endo, (7.39c)(
T Ps (d) + TAs

(
c,d,

dd

dt

))
n = T f (v, p)n at Σt

endo, (7.39d)

∇ ·
(
T̂
P

s (d̂) + T̂
A

s

(
ĉ, d̂,

dd̂

dt

))
= 0 in Ωmus, (7.39e)

T̂
A

s = PAaf ⊗ âf , PA = A
(
ĉ, d̂,

dd̂

dt

)
in Ωmus, (7.39f)

V̂m =M
(
V̂m; d̂, ŵ, ĉ

)
in Ωmus, (7.39g)

(ŵ, ĉ) = G(ŵ, ĉ; V̂m) in Ωmus. (7.39h)

After numerical discretization in time and space, the corresponding non-
linear algebraic system is tremendously stiff and can have a very high nu-
merical dimension. Devising efficient numerical strategies for its solution is
a very active research area.

An effective strategy to solve the entire heart coupled problem numerically
is given by the iterative solution at each time step of the electromechanical
and fluid subproblems and based on the exchange of the interface conditions
(7.39c, 7.39d). In particular, one of the partitioned strategies described in
Section 4.6.3 can be adapted and used for problem (7.39) as well. Of course,
at each iteration of the partitioned algorithm, the electromechanical problem
could be solved by means of one of the strategies reported in Section 7.2.

Another partitioned algorithm for the solution of problem (7.39) is ob-
tained by considering the solution at each time step of the electrical problem
first and the FSI problem later (Nordsletten et al. 2011b). This is simply
an extension of Algorithms EM1 and EM1′ reported in Section 7.2, where
steps (2b) and (2′b) are replaced by a Newton iteration over the FSI prob-
lem.

A different approach is based on the monolithic solution of the integrated
heart problem (7.39) by means of a full Newton method. In particular,
Quarteroni et al. (2017) describe fully implicit and semi-implicit methods.
The latter is based on updating only a part of the Jacobian as a consequence
of an operator splitting technique. By means of numerical experiments,
the authors emphasized that particular choices of the splitting and of the
temporal scheme could lead to numerical instabilities. Whatever strategy is
adopted, the tangent problem at each Newton iteration is solved by means of
a preconditioned iterative method, which in this case is particularly suitable
due to the block structure of the Jacobian: see Quarteroni et al. (2017).

Stability and convergence analysis of the different approaches is a field of
current investigation.
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PART THREE

Optimization, control, uncertainty and complexity reduction

8. Beyond direct simulation

In all the problems considered so far, for a given set of inputs (e.g. geometry,
source terms, boundary and initial conditions) the goal has been to solve a
forward PDE problem numerically, and, possibly, to evaluate some physical
indices of clinical interest, such as the flow rate across a vessel section, the
wall shear stress over a portion of the lumen boundary, or the oscillatory
shear index. On the other hand, the efficient numerical algorithms and
computational resources now available enable us to tackle several additional
kinds of problem.

When simulating blood flows one has to deal with the variability of in-
put data, such as geometric features of the vessel, boundary conditions and
physical coefficients (e.g. the Reynolds number, the Womersley number, the
structural model or material parameters related to the vessel wall). Very
often, these data vary within a broad range and are almost impossible to
characterize precisely. All these inputs affect the solution of the problem un-
der investigation, as well as the outcomes of clinical interest. In the clinical
context it is thus important to be able to characterize input/output relation-
ships efficiently, in order to investigate both intra-patient and inter-patient
variability. For the former case we include all those effects due to variations
affecting a single patient, for example over time, or before/after clinical in-
tervention. For the latter case, we mention for instance the morphological
variability among vessel shapes due to age, size or pathological factors (see
e.g. Xiong and Chong 2008 for the case of distal coronary anastomoses). It
is thus of paramount importance to develop mathematical techniques cap-
able of detecting the most relevant parameters, and then address the impact
of their variation on the outputs of interest. This requires the solution of
many queries to the forward problem. In this context, three classical situ-
ations we may face are (i) optimal control and optimal design, (ii) parameter
identification and data assimilation, and (iii) uncertainty quantification.

(i) Optimal control and optimal design problems. When we pursue a suit-
able objective via an optimal strategy to be determined, we act on
some inputs of the given partial differential equation, the state prob-
lem, such as boundary data, physical coefficients, or the shape of the
domain itself, and the control variables, so that the solution of the cor-
responding state problem could meet the prescribed goal. This yields
a PDE-constrained optimization problem; its numerical solution usu-
ally poses severe computational challenges, as the state problem needs
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to be solved several times while searching for the optimal control in
an iterative way. Exploiting numerical optimization procedures for
blood flow simulations is intended to (a) improve the design of pros-
thetic devices (such as stents, grafts, ventricular assist devices) with
the aim of fulfilling a specific target, or (b) customize treatments or
surgical procedures, provided that patient-specific information can be
acquired. Examples include the optimal placement of electrodes in a
defibrillation stage to damp the electrical activity in the myocardium in
a desired way when dealing with the therapeutic treatment of cardiac
arrhythmias (Nagaiah, Kunisch and Plank 2013b), the optimization of
the shape of a cannula in order to maximize the flow rate through a
ventricular assist device (Marsden 2014), and the improvement of the
shape of a coronary bypass graft in order to possibly avoid vessel re-
occlusion (Lei, Archie and Kleinstreuer 1997, Dur et al. 2011). The
first example mentioned above is an optimal control problem, where
the control variable is a current source for the monodomain (or bido-
main) equation (see Section 7.1), that is, one of its data. The two other
examples address a shape optimization or optimal design problem to be
solved, the control variable being the shape of the domain where the
state problem is set.

(ii) Parameter identification and data assimilation. In principle, cardio-
vascular models necessitate a huge amount of data, for example the
patient’s radiological images and measurements. In general, however,
some of them may be missing; remember for instance the issue of miss-
ing or defective boundary conditions discussed in Section 4.4, or the
lack of biological parameters characterizing the tissue properties. For
example, it is very hard to estimate the electrical conductivity of the
myocardium for electrophysiology models, whereas (pointwise) meas-
urements of the electrical potential – whose mathematical modelling
can be characterized by a PDE model requiring electrical conductivities
as inputs – can be easier to acquire. By solving inverse/identification
problems in cardiovascular modelling, we aim to identify those inputs
which are unknown or affected by uncertainty. For that, we rely on
suitable quantities which are (a) acquired from measurements, such as
displacements, pressures or flow rates, and (b) obtained as the out-
come of a numerical simulation, and match these two sets of values.
In other words, to identify those input values yielding the acquired
measurements, we need to drive the PDE outcome as near as possible
to the measured quantity. In general, vastly different inputs may have
produced the observed outcome: this is why, instead of finding the
most likely input configuration resulting in the observation performed,
we instead rely on statistical inversion theory, in order to incorporate
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all possible information about the unknown inputs we may have prior
to the measurement. This requires us to reformulate inverse problems
as problems of statistical inference, for example by means of Bayesian
statistics. A second issue is data assimilation. This rather generic term
encompasses a wide range of techniques exploited to merge measure-
ments and images into the mathematical model in order to improve
numerical simulations. Furthermore, a filtering effect induced by the
numerical simulation can also be exploited in view of noise reduction
in image and measurement acquisition.

(iii) Uncertainty quantification and propagation. Confidence in the outcome
of a cardiovascular simulation depends directly on the level of accuracy
and certainty at which inputs can be determined. In fact, although out-
comes are computed from inputs via a deterministic process, input data
are often contaminated by experimental noise, or cannot be fully ascer-
tained. Common sources of uncertainty in cardiovascular simulations
include (a) boundary conditions, (b) anatomical models, where each
geometric model is contaminated by image noise, (c) flow split, since
very often there is a lack of clinical data to determine flow distribution
to multiple distal branches, and (d) material properties, related to ves-
sel walls or blood (Sankaran and Marsden 2010). Due to uncertainty,
computational simulations have to be performed for a set of different
parameter configurations and then merged in order to determine how
robust simulation outcomes are with respect to variations of uncertain
inputs (Sankaran and Marsden 2011). This is indeed strictly related
to the task of parametric studies and sensitivity analyses, and can be
seen as a forward uncertainty quantification (UQ) problem. Investigat-
ing the propagation of input uncertainties via computed outputs means
evaluating suitable statistics of the outputs (such as expected values,
moments, confidence bands), which are functions of the parameters
affected by uncertainty. On the other hand, the solution of optimal
control and inverse identification problems also depends on the experi-
mental noise affecting observations and measurements used during the
identification process, or the set-up of a desired target. Evaluating un-
certainties in this case, providing suitable confidence intervals for the
estimated quantities (not simply point estimates) and characterizing
the statistical distribution of the unknown parameters are all inverse
UQ problems. In this second case, quantifying uncertainties is even
more important because an inverse problem is intrinsically ill-posed.

In the following sections we hone our understanding of these three classes
of problems, showing relevant examples in cardiovascular modelling.
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9. Control and optimization

Solving a PDE-constrained optimization problem consists of reaching a tar-
get by acting on a system governed by PDEs. The goal is to act on a state
problem E(y, u) = 0 given by a PDE system modelling the behaviour of a
state variable y, through a control variable u in order to reach a desirable
target. This is usually done by minimizing (or maximizing) a cost func-
tional J = J(y, u) expressing some physical index of interest encoding the
desired objective – for instance, the squared distance from a target state. For
a comprehensive presentation of the functional setting and well-posedness
analysis of PDE-constrained optimization, see the monographs by Hinze,
Pinnau, Ulbrich and Ulbrich (2009) and Gunzburger (2003). Other classes
of problems of interest in cardiovascular applications, such as those related
to parameter estimation, can also be cast in a PDE-constrained optimization
framework; see e.g. Section 10.1 for further insights.

Generally speaking, a PDE-constrained optimization problem reads

min
y,u

J(y, u) subject to E(y, u) = 0, y ∈ V, u ∈ Uad ⊆ U . (9.1)

Here V and U denote the state and the control space, whereas E : V ×U →
V ∗ and J : V × U → R denote the state equation and the cost functional,
respectively; V ∗ is the dual space of V , and 〈· , ·〉V ∗,V denotes the duality
between two elements in V ∗ and V ; similarly, 〈· , ·〉U∗,U indicates the duality
between two elements in U∗ and U . Additional constraints, depending on
the problem at hand, can also be imposed, for example in the form of
inequalities; we express this fact by saying that we seek the optimal control
in a closed subset Uad ⊆ U of admissible controls.

We assume that the state equation E(y, u) = 0 has a unique solution
y = y(u) ∈ V , and that the Fréchet derivative (with respect to y) Ey(y(u), u)
has a bounded inverse for each u ∈ U . Under these assumptions, the solution
operator of the state equation is continuously differentiable – we let y′(u)
denote its derivative – and the reduced formulation

min
u
J̃(u) = J(y(u), u), u ∈ Uad (9.2)

is equivalent to (9.1). Note that this is a convenient framework to embrace
– upon defining suitable functional spaces and operators – both station-
ary and time-dependent state problems; in the following we will make it
clear whether the proposed methods can be used to tackle both classes of
problems.

9.1. Optimality conditions

The solution (ŷ, û) of a PDE-constrained optimization problem such as (9.1)
requires a system of optimality conditions to be fulfilled, including the state

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


490 A. Quarteroni, A. Manzoni and C. Vergara

equation and an optimality condition which involves the gradient of the
cost functional. Indeed, if û ∈ Uad is a local minimum of J̃ , then it satisfies
the variational inequality (also referred to as the optimality condition or
minimum principle)

〈J̃ ′(û), v − û〉U∗,U ≥ 0 for all v ∈ Uad. (9.3)

The quantity appearing on the left-hand side is the so-called Gâteaux deriv-
ative of J̃ , evaluated at û, in the generic, admissible direction v− û (see e.g.
Tröltzsch 2010); J̃ ′(û) denotes the gradient of J̃ at û. To express this latter
quantity in terms of the state solution y, we can use either (i) the sensitivity
approach or (ii) the adjoint approach. As we will see below, in both cases
at least a second PDE problem has to be solved in order to evaluate J̃ ′(u).

9.1.1. Sensitivity approach

Computing sensitivities requires the evaluation of directional derivatives of
both the cost functional and the state solution. For any u, v ∈ U , we can
write

〈J̃ ′(u), v〉U∗,U = 〈Jy(y(u), u), y′(u)v〉V ∗,V + 〈Ju(y(u), u), v〉U∗,U . (9.4)

The quantity δvy = y′(u)v denotes the sensitivity of the state with respect
to the control, evaluated at u, for a given variation v, and can be ob-
tained by solving a further PDE. Indeed, differentiating the state equation
E(y(u), u) = 0 along the direction v, we obtain

Ey(y(u), u)y′(u)v + Eu(y(u), u)v = 0, (9.5)

where Ey(y, u), Eu(y, u) are the Fréchet derivatives of the state operator with
respect to y and u, respectively; see e.g. Tröltzsch (2010). Then δvy = y′(u)v
is given by the solution of the linearized state equation

Ey(y(u), u)δvy = −Eu(y(u), u)v. (9.6)

Note that y′(u) : U → V is a linear operator so that, for any admissible
v ∈ U , a new problem has to be solved to evaluate δvy. Numerically, this
approach is very demanding if the whole gradient J̃ ′(u) is required: in this
case, the number of linearized state equations (9.6) to be solved is equal to
the dimension of the control space U , a task that becomes out of reach as
soon as the control has dimension larger than O(10).

9.1.2. Adjoint approach and Lagrange multipliers

A convenient alternative is based on the so-called adjoint approach. By
rewriting (9.4) as

〈J̃ ′(u), v〉U∗,U = 〈(y′(u))∗Jy(y(u), u) + Ju(y(u), u), v〉U∗,U (9.7)
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and exploiting problem (9.5), we can express the first term on the right-hand
side of (9.7) as

(y′(u))∗Jy(y(u), u) = −E∗u(y(u), u)((E∗y(y(u), u)))−1Jy(y(u), u),

where E∗u(y(u), u) is the adjoint operator3 of Eu(y(u), u). Let us introduce
an additional variable λ = λ(u) ∈ V , called the adjoint state, the solution
of

Ey(y(u), u))∗λ = −Jy(y(u), u). (9.8)

Then (y′(u))∗Jy(y(u), u) = E∗u(y(u), u)λ; moreover, owing to (9.7), the eval-
uation of

J̃ ′(u) = E∗u(y(u), u)λ(u) + Ju(y(u), u) (9.9)

simply requires us to solve the state problem and a further PDE problem,
regardless of the dimension of the control space U . Note that the adjoint
problem is always a linear PDE.

The adjoint-based expression of the gradient of the cost functional (and
more generally a system of first-order optimality conditions) can also be
obtained, in a more straightforward way, by relying on the Lagrange mul-
tiplier method (Hinze et al. 2009). Let us define the Lagrangian functional
L : V × U × V → R,

L(y, u, λ) = J(y, u) + 〈λ, E(y, u)〉V,V ∗ ,

where λ ∈ V denotes a Lagrange multiplier enforcing the PDE constraint
(playing the role of adjoint variable); note that in this case the three vari-
ables are independent.

By deriving L with respect to λ and imposing that the derivative is equal
to zero, we recover the state problem,

〈Lλ(y, u, p), ϕ〉V ∗,V = 0 for all ϕ ∈ V ⇔ E(y, u) = 0.

Similarly, by deriving L with respect to y, we obtain the expression of the
adjoint problem (9.8),

〈Ly(y, u, p), ψ〉V ∗,V = 0 for all ψ ∈ V ⇔ Jy(y, u) + E∗y (y, u) = 0. (9.10)

Finally, at the optimum we impose

〈Lu(y, u, λ), v − u〉U∗,U = 0 for all v ∈ Uad
⇔ 〈Ju(y, u) + Eu(y, u)∗λ, v − u〉U∗,U ≥ 0 for all v ∈ Uad.

In this way, a system of first-order necessary optimality conditions to be

3 The adjoint operator of E , denoted by E∗, is given by the relation (E∗ϕ,ψ)L2(Ω) =
(ϕ, Eψ)L2(Ω) for any ϕ,ψ ∈ C∞0 (Ω); note that no boundary condition is involved in its
definition. For this reason, E∗ is also referred to as the formal adjoint operator.

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


492 A. Quarteroni, A. Manzoni and C. Vergara

fulfilled by the optimal solution (y, u) and the corresponding adjoint state
λ is given by the following Karush–Kuhn–Tucker (KKT) system:

E(y, u) = 0, (9.11a)

Ey(y, u)∗λ̂ = −Jy(y, u), (9.11b)

〈Ju(y, u) + Eu(y, u)∗λ, v − u〉U∗,U ≥ 0 for all v ∈ Uad. (9.11c)

In the unconstrained case Uad ≡ U , the variational inequality reduces to the
equation

〈Ju(y, u) + Eu(y, u)∗λ, v〉U∗,U = 0 for all v ∈ U ,

so (9.11) can be viewed as the Euler–Lagrange system for the Lagrangian
functional, that is, the solutions of (9.11) are the stationary points of L(·, ·, ·):

∇L(y, u, λ)[w, v, η] = 0 for all (φ, v, ψ) ∈ Y × U × V.

The third inequality of system (9.11) allows us to recover the expression of
the gradient J̃ ′(u). Indeed, since E(y(u), u) = 0, it holds that L(y(u), u, λ) =
J̃(u) for any arbitrary λ ∈ V , so that, by differentiating this latter equality
with respect to u, we obtain

〈J̃ ′(u), v〉U∗,U = 〈Ly(y(u), u, λ), y′(u)v〉V ∗,V + 〈Lu(y(u), u, λ), v〉U∗,U
= 〈Lu(y(u), u, λ), v〉U∗,U .

Hence, J̃ ′(u) = Lu(y(u), u, λ(u)), since 〈Ly(y(u), u, λ), ψ〉V ∗,V = 0 for any
ψ ∈ V , thanks to (9.10).

For illustration we discuss a specific example, by considering the problem
of minimizing the energy

J(v,u) =
1

2

∫
Ωobs

|v − vd|2 dΩ +
α

2

∫
Γcon

|∇u|2 dΓ,

of a fluid flow in a tract of blood vessel where a bypass is inserted. As a
matter of fact, the bypass is not simulated. Its action is represented via a
velocity control u acting on the boundary Γcon ⊂ ∂Ωf , the interface where
the bypass and the vessel meet: see Figure 9.1. The goal is to regularize the
velocity pattern in a suitable observation region Ωobs ⊆ Ωf by requiring v to
be as close as possible to a desired distribution vd; see the related discussion
in the next section. Referring to the notation in Section 4, for simplicity,
we consider a steady version of the Navier–Stokes equations (4.1a, 4.1b), for
which the velocity/pressure couple y = (v, p) solves the state problem

−∇ ·Tf (v, p) + ρf (v · ∇)v = 0 in Ωf ,

∇ · v = 0 in Ωf ,

v = vin on Γin,

v = 0 on Γw,
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(a) (b)

Figure 9.1. (a) Schematic representation of a bypass graft. (b) Domain, boundary
portion and observation region for the bypass model problem.

v = u on Γcon,

T f (v, p)n = 0 on Γout,

where the control variable is the velocity u imposed on the boundary Γcon.
Here α > 0 is a parameter penalizing the control magnitude (or cost); this
can also be seen as a regularization term, ensuring the convexity of the
cost functional. The fluid Cauchy stress tensor Tf (v, p) has been defined
in (4.2).

Following the Lagrangian approach, we can derive a system of first-order
optimality conditions, where the adjoint problem for the adjoint variables
λ = (z, q) is given by

−∇ ·Tf (z, q) + ρf (∇Tv)z − ρf (v · ∇)z

= (v − vd)IΩobs
in Ωf ,

∇ · z = 0 in Ωf ,

z = 0 on Γin ∪ Γw ∪ Γcon,

T f (z, q)n = 0 on Γout,

where IΩobs
= IΩobs

(x) is the characteristic function of the region Ωobs. Note
that the adjoint problem is linear in (z, q), and comes from the linearization
of the Navier–Stokes equations around the state solution; the optimality
condition instead reads

αu+ z = 0 on Γcon.

Remark 9.1. In the case of time-dependent state problems, the adjoint
problem is backward-in-time. Depending on the observation appearing in
the cost functional – which can be either on the whole time interval (0, T )
or at the final time T only – the dependence of the adjoint problem on the
state is only at t = T (thus, as initial condition) or on the whole interval
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(0, T ). The approach followed so far can still be employed to derive a system
of optimality conditions: see e.g. Section 9.3.2 for further details of a case
of interest.

9.2. Numerical approximation

Solving a PDE-constrained optimization problem entails a computational
effort larger than that required for the solution of a forward (state) prob-
lem. The two formulations (9.1) and (9.2) yield two different paradigms
for the approximation of such a problem. In the former case, both state
and control variables are optimization variables and PDE constraints are
explicitly specified; in the latter, only the control variable u is an optimiz-
ation variable, whereas the state variable y is considered to be an implicit
function of u via the PDE constraint.4 In this latter case, the solution of
the state problem is nested in the evaluation of the gradient J̃ ′(u) of the
reduced cost functional.

Algorithms for solving PDE-constrained optimization problems can be
sorted according to several criteria. An initial classification criterion is
between iterative methods, rooted in iterative minimization algorithms for
the reduced cost functional, and all-at-once methods, where the PDE con-
straint is kept explicitly and the three equations forming (9.11) are solved
simultaneously. Another criterion is concerned with the highest order of
derivatives exploited by the algorithm, yielding derivative-free methods,
gradient-based methods and Hessian-based methods.

A different perspective is taken when addressing the interplay between
optimization and discretization: numerical discretization can be performed
before or after the derivation of a system of optimality conditions. More
precisely, in the so-called optimize-then-discretize approach, optimization is
carried out at the continuous level (e.g. to find system (9.11)) and then the
discretization is operated on the resulting optimality system. Alternatively,
using the discretize-then-optimize approach, we first approximate the state
equation (and the cost functional) and then carry out the optimization at
the discrete level. Here we address the former approach; further details are
given at the end of this section. For brevity, we recall the main features of
iterative and all-at-once methods in the case of unconstrained problems, that
is, problems without further equality/inequality constraints or, equivalently,
for which Uad ≡ U . In particular, Y ∈ Rny , U ∈ Rnu denote the discrete
representation of the state and the control variable, respectively, whereas
λ ∈ Rnλ is the discrete adjoint variable.

4 From the numerical standpoint, the former approach is often given the name of sim-
ultaneous analysis and design (SAND) and the latter is referred to as nested analysis
and design (NAND).
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9.2.1. Iterative methods

Iterative (also referred to as black-box) methods treat the reduced problem

min
U

J̃(U) = J(Y (U),U),

once U is known; Y (U) is obtained as the solution of the state equation. An
existing algorithm for the solution of the state equation therefore has to be
embedded into an optimization loop, and any available PDE and optimiza-
tion routines can be freely combined. In particular, iterative methods are a
popular choice when dealing with optimal control problems by extending an
existing code for the state problem. Within this class, a notable difference
exists between gradient-based and non-gradient-based algorithms.

Non-gradient-based (or derivative-free) algorithms, such as the popular
Nelder–Mead algorithm, exploit either comparisons between function eval-
uations in different directions at each step, or low-order local approximants
of J̃ , in order to assess its local behaviour and find the minimizer: see e.g.
Marsden, Feinstein and Taylor (2008). Employing a finite difference ap-
proximation of the gradient is an attractive alternative due to its ease of
implementation, but it may suffer from limited accuracy and large costs in
the presence of many design variables. Hence, these methods are feasible
only in the case where the control space has very small dimension, for ex-
ample if the control is expressed in terms of a vector of nu = O(10) design
variables.

Gradient-based algorithms exploit the gradient J̃ ′ to iteratively update
the control until a suitable convergence criterion is fulfilled. Notable in-
stances are descent methods, such as the gradient, (non-linear) conjugate
gradient, quasi-Newton or Newton methods. In the simplest case of a gradi-
ent method, starting from an initial guess U (0) we iteratively generate a
sequence

U (k+1) = U (k) − τkJ̃ ′(U (k)), k = 0, 1, . . . ,

where τk > 0 is a step size, until e.g. ‖J̃ ′(U (k))‖ < ε, for a given toler-
ance ε > 0. Further details can be found in Nocedal (1992) and Kelley
(1999), for example. The solver for the state equation has to be augmen-
ted with a routine which provides the gradient of the state with respect
to the optimization variables, and hence the solution of the adjoint prob-
lem. Optimization algorithms with faster convergence rates are needed to
speed up the execution of the whole algorithm. Although straightforward
to implement, the gradient method suffers from a poor rate of convergence
when dealing with the numerical solutions of PDE-constrained optimiza-
tion problems. More efficient methods are more typically employed, such as
quasi-Newton methods: see e.g. Borz̀ı and Schulz (2011) for further details.
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9.2.2. All-at-once methods

By treating both the control and the state variables as independent optim-
ization variables, coupled via the PDE constraint, we deal with an equality
constrained non-linear optimization problem, the state equation now play-
ing the role of equality constraint. The goal of all-at-once (also referred to
as one-shot) methods is to tackle the (possibly) non-linear optimality sys-
tem (9.11) as a whole problem to be solved. After numerical discretization,
in the unconstrained case we obtain the algebraic system

JY (Y ,U) + eTY (Y ,U)λ = 0, (9.12a)

JU (Y ,U) + eTU (Y ,U)λ = 0, (9.12b)

e(Y ,U) = 0. (9.12c)

Here e(Y ,U) denotes the discrete state operator, JY and JU are the gradi-
ents of J with respect to state and control variables, respectively, whereas
eY and eU are the Jacobians of the state equations with respect to state
and control variables, respectively. The three equations of system (9.12)
can also be seen as the conditions obtained by requiring that the gradient
of the discrete Lagrangian L(Y ,U ,λ) = J(Y ,U)− λTe(Y ,U) vanishes.

The strategy above is well suited to PDE-constrained optimization prob-
lems involving stationary state systems, but it is more computationally in-
volved in the time-dependent case. If J(Y ,U) is quadratic and e(Y ,U) is
linear in Y and U , (9.12) is a linear system of equations in saddle-point
form, such as those arising from quadratic programming. In this case, pre-
conditioned iterative methods for linear systems could be employed, such
as those based on Krylov subspaces. In this respect, several precondition-
ers have been proposed in the past decade, in which multigrid schemes are
exploited as inner solvers (or preconditioners) for some blocks of the KKT
matrix within an outer iterative solver; see e.g. Benzi et al. (2005) and
Rees, Dollar and Wathen (2010). More recent extensions to constrained
problems have been addressed, for example in Borz̀ı and Schulz (2011) and
the references therein.

If the state problem is non-linear, the optimality system has to be solved
via appropriate linearization procedures (e.g. sequential quadratic program-
ming methods) or modern penalty methods (e.g. augmented Lagrangian
methods). Indeed, the equations of system (9.12) are still linear in λ but
non-linear in (Y ,U). When a Newton-type method is applied to (9.12),
each iteration on the KKT system entails the solution of the linear systemLY Y LY U eTY

LUY LUU eTU
eY eU 0

 δY
δU

λ(k+1)

 = −

JYJU
e

 (9.13)

for the update δXT = (δY , δU)T of the optimization variable and the
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new value λ(k+1) of the adjoint variable. Then we set (Y (k+1),U (k+1))T =

(Y (k),U (k))T + (δY , δU)T . Here

H =

(
LY Y LY U
LUY LUU

)
denotes the Hessian of the Lagrangian functional, to be evaluated at (Y (k),

U (k), λ(k))T . Note the saddle-point structure of system (9.13), where the ad-
joint variable indeed plays the role of multiplier for the constraint expressed
by the (linearized) state equation. The system (9.13) can be equivalently
obtained as the KKT system for the linear-quadratic optimization problem

min
δX

[
1

2
δXTHδX +

(
JY
JU

)T
δX

]
subject to

(
eY
eU

)
δX + e = 0

(e.g. Hinze et al. 2009, Borz̀ı and Schulz 2011), whence the name sequen-
tial quadratic programming method, which is commonly used to refer to
the Newton iterations on system (9.13). Indeed, a quadratic programming
problem has to be solved at each step, for example by means of a pre-
conditioned Krylov method such as MINRES, until a suitable convergence
criterion is fulfilled. Suitable approximations of the Hessian, based for ex-
ample on quasi-Newton methods, are required to make this algorithm more
computationally attractive: see e.g. Borz̀ı and Schulz (2011).

Remark 9.2. Constraints on the control and/or state variables add non-
linearity to the optimization problem. A first option is to treat inequality
constraints in an outer loop, via penalty methods which allow us to convert
them into additional terms in the cost functional. For instance, if u ≤ b is
a pointwise control constraint, the term c

2‖max{0, u − b}‖2U can be added,
where c > 0 is a penalty parameter to be properly selected, and then an
iterative method can be used in the inner loop. Another option in iterative
methods is to perform a projection over the space of admissible controls
at each step. More efficient strategies to tackle constrained problems are
usually obtained when dealing with constraints in the main optimization
loop, such as in the case of primal–dual active set strategies: see e.g. the
monographs by Borz̀ı and Schulz (2011) and Hinze et al. (2009).

We finally point out that in this section we have opted for the optimize-
then-discretize approach: that is, we have shown how to recover a system of
optimality conditions and then proceed to its numerical discretization. The
opposite strategy (discretize-then-optimize) would have led to substantially
similar numerical methods, by choosing either an iterative or an all-at-once
method for the system of optimality conditions derived once the original
state system had been discretized. The two approaches do not generally
yield identical solutions; see e.g. Hinze et al. (2009) for a discussion.
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9.3. Applications to cardiovascular modelling

9.3.1. Optimal design of bypass grafts

PDE-constrained optimization problems are obtained when looking for the
optimal design of prosthetic devices, such as ventricular assist devices or
bypass grafts. For instance, coronary artery bypass grafting (CABG) is a
standard surgical procedure to restore blood perfusion to the cardiac muscle
by redirecting blood from the aorta through a graft vessel downstream of a
coronary artery affected by stenosis or occlusion. The ability to design the
graft-vessel connection (the so-called anastomosis, which we refer to as the
domain Ω) in an efficient way is a potentially critical factor in preventing
post-operative recurrence of re-stenosis.

Today it is accepted that intimal wall thickening, caused by the accel-
erated growth of smooth muscle cells and the surrounding matrix, is one
of the leading causes of long-term failure of end-to-side vascular grafts
(Haruguchi and Teraoka 2003). Low and/or highly oscillatory patterns
of wall shear stress (WSS), as well as strong vorticity and recirculations,
cause intimal wall thickening (Ethier et al. 1998, Keynton et al. 2001) at
sites where curvatures, bifurcations, tortuosity and branching occur, and,
more generally, where flow departs from unidirectional patterns (Giordana
et al. 2005, Loth, Fischer and Bassiouny 2008). In mathematical terms, an
optimal graft is one that minimizes suitable cost functionals involving the
area of low WSS, the spatial WSS gradient (Lei et al. 1997) or the vorticity
(Quarteroni and Rozza 2003, Manzoni, Quarteroni and Rozza 2012b); see
e.g. Kleinstreuer (2006) for a detailed review. Taking blood velocity v and
pressure p as state variables, and u = Ω (i.e. the shape of the domain itself)

as the control variable, the goal is thus to find the optimal shape Ω̂ of the
graft by minimizing the cost functional

J(v,Ω) =

∫ T

0

∫
Ωobs

|∇ × v|2 dω dt,

where Ωobs ⊂ Ω is a given observation region in the artery portion im-
mediately after the anastomosis. Indeed, high downstream vorticity may
lead to strong flow recirculation, yielding similar effects in terms of intimal
thickening.

Other cost functionals that can be employed include the following.

• A tracking-type functional, in order to drive the blood velocity (and
pressure, if δ > 0) towards a specified velocity (and pressure) target
state vd, pd, featuring a regular pattern:

J(v,Ω) =
1

2

∫ T

0

∫
Ωobs

|v − vd|2 dΩ dt+
δ

2

∫ T

0

∫
Ωobs

|p− pd|2 dω dt.
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A typical choice of (vd, pd) is provided by the Stokes (or a low-Reynolds
Navier–Stokes) flow in the same domain.

• In two dimensions, a Galilean invariant vortex measure identifies a re-
gion as a vortex if ∇v has complex eigenvalues, that is, if det(∇v) > 0.
Following Hintermüller, Kunisch, Spasov and Volkwein (2004), Kunisch
and Vexler (2007) and Lassila, Manzoni, Quarteroni and Rozza (2013a),
then

J(v,Ω) =

∫ T

0

∫
Ωobs

max(0, det(∇v)) dω dt

can be used when dealing with vortex suppression.

• A WSS gradient-based functional is given by

J(v,Ω) =

∫ T

0

∫
Γobs

WSSG(t) dγ dt,

WSSG(t) =

((
∂wp

∂τ p

)2

+

(
∂wn

∂τn

)2)
,

that is, by a time-averaged WSS gradient, measured over the portion
Γobs ⊂ ∂Ω of the boundary in the anastomosis region. Here, WSSG
denotes the WSS gradient, where w = w(t,x) is the WSS vector of
components w(j) = µ∇vn(t,x) ·τ (j), and τ p and τn are the unit vectors
parallel and normal to the direction of the time-averaged WSS vector
w, respectively. Only a linear combination of the normal components
∂xj/∂τ j , j = p, n is considered as an index to quantify the tension
yielding intimal thickening. Moreover, the time-averaged WSS is relat-
ively insensitive to changes in the anastomosis configuration, whereas
the time-averaged WSS gradient is highly sensitive, and has been linked
to localized mechanobiological responses in tissues (see Lei et al. 1997
and the discussion therein). Using WSSG rather than WSS can be
understood as filtering the WSS by removing its component induced
by the steady mean flow and considering only the spatially fluctuating
term as part of the indicator. For the sake of numerical efficiency of the
whole optimization process, a steady flow simulation (e.g. correspond-
ing to the systolic peak) can be considered, and the WSS gradient of
the steady flow can be taken as an approximation of the time-averaged
WSS gradient. The interested reader can refer to Kleinstreuer (2006),
for example, for further details.

Many works of the past few decades have focused on the optimal shape
design of end-to-side anastomoses, typically by acting on the wall shape
near the anastomosis by local shape variation. If a simpler parametric op-
timization approach is considered, the three most significant design variables
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(see Loth et al. 2008) are the anastomosis angle, the graft-to-host diameter
ratio (Keynton et al. 2001, Do, Owida, Yang and Morsi 2011) and the toe
shape, that is, the profile of the bypass junction. Optimizing a complex
configuration in terms of few design variables is more advantageous since it
is known that grafts usually have an extended patch or cuff that effectively
provides a hood to ease the flow transition from the graft to the artery.
Further, improved anastomosis design must comply with the constraints set
by surgical realization. For a more comprehensive review of bypass graft
design results, we refer to Migliavacca and Dubini (2005), Loth et al. (2008),
Owida, Do and Morsi (2012) and Marsden (2014).

Concerning the objective to be minimized, each cost functional involves
suitable observations, obtained as functions of the state variables over the
entire domain or some boundary portions, and over a given time inter-
val and, possibly, data acquired from measurements, as in the case of a
tracking-type functional. There are of course other parameters affecting the
cost functional, such as the Reynolds number, or the flow split between the
proximal host artery and the graft, i.e. the ratio of the corresponding flow
rates (Giordana et al. 2005). All these parameters should be considered as
uncertainties within a robust optimization framework, in order to character-
ize the optimal shape of the graft in a range of possible operating conditions.
Examples of optimal design in the presence of uncertainty in cardiovascular
applications have been considered by Sankaran and Marsden (2010).

As a concluding remark, we point out that the coupling of optimiza-
tion algorithms to blood flow simulations is computationally challenging,
since each evaluation of the cost functional requires the solution of an
unsteady, three-dimensional Navier–Stokes problem. If relying on the ad-
joint approach to characterize the gradient of the cost functional, a further
linearized Navier–Stokes (Oseen) problem has to be solved at every iter-
ation. For this reason, the majority of works related to applications in
surgery and device optimization have focused, so far, on small-scale and/or
two-dimensional problems, or on steady-flow problems, usually relying on
gradient-free methods.

For the sake of illustration, we report some numerical results for the
optimal design of a femoropopliteal bypass graft. This surgery is used to
bypass diseased blood vessels above or below the knee, and is one of the
most common surgical treatments of chronic lower-extremity ischaemia. We
model the blood flow across a bypass graft via a steady Navier–Stokes model,
and consider a vorticity cost functional

J(v,Ω) =

∫
Ωobs

|∇ × v|2 dω,

where Ωobs ⊂ Ω is the observation region. Initial and optimal shapes are
shown in Figure 9.2 for the case of a stenosed host artery; its occlusion,
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(a)

(b)

(c)

(d) (e)

Figure 9.2. Optimal design of bypass grafts. (a) A tract of femoral artery with a by-
pass graft. (b) Computational domain, boundaries and observation region; (c) FFD
shape parametrization used to generate admissible shapes. Global shape deform-
ations are induced by the displacement of a few selected control points (shown in
red) in the 6 × 4 FFD lattice. These control points are selected by a preliminary
screening procedure based on sensitivity analysis. (d) Initial and (e) optimal bypass
configurations in the case of total (above) or partial (below) occlusion. Numerical
results were obtained using the MATLAB finite element library MLife.

either total or partial, is expressed via a Dirichlet boundary condition on
the incoming velocity field on Γres, homogeneous for the completely occluded
case and non-homogeneous otherwise. See Figure 9.2(b) for the definition
of Ωobs and Γref. A shape parametrization technique based on free-form
deformations (FFDs) is very suitable for describing admissible shapes via
deformation of a reference configuration by acting on a small set of control
points: see e.g. Manzoni (2012) and Manzoni et al. (2012b).

9.3.2. Optimal control of electrical defibrillation

Whereas in healthy conditions the electrical activation of the heart is an
extremely organized (and efficient) process, some disturbances in the form-
ation and/or propagation of electrical signals may induce re-entrant activ-
ation patterns which lead to tachycardia, that is, a noticeable increase in
the heart’s activation rate. In the worst cases, this may turn into an even
less organized activation pattern, called fibrillation. A common therapy to
terminate fibrillation and restore regular cardiac rhythm is electrical defib-
rillation, consisting in the delivery of a strong electrical shock by injecting
external currents through a set of electrodes. This restores a spatially uni-
form activation pattern, recovering an extracellular potential distribution
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showing damped voltage gradients. Today, electrical defibrillation is car-
ried out by implanting devices (so-called cardioverter defibrillators) able
to monitor the heart rhythm and then deliver electrical discharges when
needed.

This process can be modelled by considering the monodomain equation
(7.11) as the state system, for which the extracellular stimulation current
Ie = Ie(t) to be applied plays the role of a distributed control function, and
has to be determined in order to minimize the cost functional

J(Vm, Ie) =
1

2

∫ T

0

∫
Ωobs

|Vm − vd|2 dΩ dt+
α

2

∫ T

0

∫
Ωcon

|Ie|2 dΩ dt. (9.14)

Here Vm is the trans-membrane potential, Ωobs ⊆ Ωmus is the observation
domain, Ωcon ⊆ Ωmus is the control domain, and vd is the target potential
distribution. For instance, if vd = 0, the minimum of J(Vm, Ie) corresponds
to the case of an excitation wave which is suppressed in the region Ωobs: see
e.g. Nagaiah, Kunisch and Plank (2011). The trans-membrane potential Vm
can be obtained by solving the monodomain equations

χmCm
∂Vm
∂t
−∇ · (Σ∇Vm) + χmIion = Ie in Ωmus × (0, T ), (9.15a)

∂w

∂t
= g(Vm, w) in Ωmus × (0, T ), (9.15b)

Vm|t=0 = Vm,0 in Ωmus, (9.15c)

w|t=0 = w0 in Ωmus, (9.15d)

Σ∇Vm · n = 0 on Σepi ∪ Σendo (9.15e)

(see Section 7.1.3), where Iion is provided, for example, by the FitzHugh–
Nagumo model (see Section 7.1.2):

Iion = f(Vm, w) = −kVm(Vm − a)(Vm − 1)− w, g(Vm, w) = ε(Vm − γw).

An analysis of this optimal control problem can be found in Nagaiah et al.
(2011), for example. We can exploit the Lagrangian approach to derive a
system of first-order optimality conditions, by introducing the Lagrangian

L(Vm, w, Ie, z, q)

= J(Vm, Ie) + 〈E(Vm, w, Ie), (z, q)〉V,V ∗
= J(Vm, Ie)

+

∫ T

0

∫
Ωmus

(
χmCm

∂Vm
∂t
−∇ · (Σ∇Vm) + χmIion − Ie

)
z dΩ dt

+

∫ T

0

∫
Ωmus

(
∂w

∂t
− g(Vm, w)

)
q dΩ dt,

where (z, q) denote the dual variables of Vm, w, respectively. Here (Vm, w) ∈

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


Modelling the cardiovascular system 503

V = L2(0, T ;V)×W 1,2(0, T ;H), where V = H1(Ωmus) and H = L2(Ωmus);
the control space can be chosen as U = L2(0, T ;L2(Ω)), and the initial con-
ditions can be kept as explicit constraints. By setting the partial derivatives
of L equal to zero, we find the following expression for the adjoint problem:

− χmCm
∂z

∂t
−∇ · (Σ∇z) + χm

∂Iion
∂Vm

z − ∂g

∂Vm
q

= vd − Vm in Ωmus × (0, T ), (9.16a)

− ∂q

∂t
− ∂g

∂w
q +

∂Iion
∂w

z = 0 in Ωmus × (0, T ), (9.16b)

z|t=T = 0 in Ωmus, (9.16c)

q|t=T = 0 in Ωmus, (9.16d)

Σ∇z · n = 0 on Σepi ∪ Σendo (9.16e)

and the optimality condition

z + αIe = 0 on Ωcon. (9.17)

The optimal control problem (9.14, 9.15) can be solved by an optimize-
then-discretize strategy, where both spatial and temporal discretizations
are required because of the time-dependent nature of the problem. After
discretization, we can employ an iterative method, by computing at each
step the solution of the (coupled) state problem (9.15) over (0, T ), and the
solution of the adjoint problem (9.16), which is a linear problem, backward
in time, where the adjoint variables are coupled similarly to (Vm, w) in
the state problem. Note that the data of the adjoint problem are related
to the Fréchet derivative of the cost functional with respect to the state
variables, and that the adjoint problem depends on the control function only
through the state variable. Moreover, the adjoint operator calls into play
the linearization of the state operator around the computed state solution;
that is, the derivatives ∂Iion/∂Vm, ∂g/∂Vm, ∂Iion/∂w, ∂g/∂w have to be
evaluated, at each step, around the computed solution of the state system.
The optimality condition (9.17) then allows us to determine the gradient
J̃ ′(Ie) of the cost functional J̃(Ie) = J(Vm(Ie), Ie), required to update the
control function at each step.

To simplify the optimal control problem, we can for instance look for
control functions of the form

Ie(t,x) =

Nel∑
k=1

uk(t)IΩcon,k
(x)I(0,Tdef)(t),

where the location of Nel electrodes through which the current is delivered
is prescribed, and only its time intensity has to be controlled over time.
Here IΩcon,k

(x) denotes the indicator function of the region Ωcon,k where
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the kth electrode is located. Additional inequality constraints of the form
umin ≤ uk(t) ≤ umax can also be taken into account in order to limit current
amplitude.

Further extensions of this framework consider, for example, the bido-
main model (Nagaiah et al. 2013b), the case of boundary controls (Nagaiah,
Kunisch and Plank 2013a), and a different Mitchell–Schaeffer model to de-
scribe ionic currents, together with the presence of a conductive bath me-
dium outside the heart effects and experimentally based fibre and sheet
orientations (Nagaiah, Kunisch and Plank 2016). Moreover, the case where
the shock duration itself is also optimized has been considered by Kunisch
and Rund (2015). The reason to consider this further effect is that after
applying a defibrillation shock, the muscle tissue needs a suitable amount of
time to reach a non-fibrillatory state, so that a successful defibrillation can
only be assessed at a time T � Tdef, where Tdef is the end time of the defib-
rillation shock and T the final observation time, at which the tissue should
have reached a non-excited state. In this context, the cost functional

J(Vm, u, Tdef) = Tdef +
µ

2

∫
Ωobs

|Vm(·, T )|2 dΩ +
α

2

Nel∑
k=1

∫ T

0
|uk|2 dt

can be minimized, accounting for (i) a minimum time term, (ii) a final
time observation at t = T , and (iii) the amplitude of the applied currents,
subject to the state system (9.15) to be solved over (0, T ). Indeed, the shock
duration and its energy have to be minimized to avoid negative side effects
of the applied shock, while the final time observation term is taken into
account to quantify defibrillation, thus requiring that the tissue reaches a
non-excited state at T � Tdef.

For illustration, we consider the case of an axially symmetric domain
Ωmus = (0, 2)× (0, 0.8), where a constant pulse of intensity u is delivered in
the control domain Ωcon = (0, 0.25)×(0.3, 0.55)∪(1.75, 2)×(0.3, 0.55), until
time Tdef. Here U = (u, Tdef)

T is the control variable, with 1 ≤ u ≤ 100 mV
and 0.1 ≤ Tdef ≤ 4 ms; the final time is T = 64 ms. The initial condition
(Vm,0, w0)T describes a re-entry wave of the ‘figure of eight’ type, obtained
following the procedure described by Kunisch and Rund (2015), who also
take into account more general optimal control problems. For the case
at hand, a planar wavefront travelling from the bottom to the top can
be damped by imposing an optimal control of intensity u ≈ 95 mV until
Tdef ≈ 1.2 ms on the control region. The successful defibrillation – resulting
from a trade-off between a large intensity and a short duration of the pulse
– is clearly visible in Figure 9.3, where in the controlled case at the final
time the tissue is almost completely unexcited. Indeed, the pulse acts on
the excitable region of the tissue adjacent to the wavefront, bringing it to a
non-excitable state.
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(a)

(b)

Figure 9.3. Electrical potential at times t = 0, 4, 12, 20, 40, 52, 64 ms in the uncon-
trolled case (a) and in the controlled case (b). The re-entry wave appearing in the
uncontrolled case is damped by the control acting on Ωcon.

Remark 9.3. We point out that choosing the cost functional and, if neces-
sary, imposing suitable constraints on the control and/or the state variable,
are two extremely hard, problem-dependent tasks. Moreover, very often
control functions are described in terms of (possibly few) relevant para-
meters, which play the role of design variables. However, in the case of
complex, patient-dependent geometries, for example, their automatic selec-
tion can result in a fairly involved procedure. Last but not least, in the
case where a target state to be reached depends on acquired data, the effect
of uncertainty has to be considered in the formulation (and then solution)
of the problem. This leads to robust optimization problems, for example,
or PDE-constrained optimization problems under uncertainty, an active re-
search field, where very few applications to cardiovascular modelling have
yet been considered.

10. Parameter estimation from clinical data

When dealing with the mathematical and numerical modelling of the cir-
culatory system, initial conditions, boundary conditions or physical coeffi-
cients, for example tissue properties, might be (partially) unknown (Vene-
ziani and Vergara 2013): see Sections 3 and 6. From here on we refer to any
of these quantities as input parameters, independent of their mathematical
nature (they could be scalars or vectors, or even parametric fields varying
in space) and we refer to the issue of making inferences about unknown
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parameters from data as parameter estimation (or identification). To per-
form parameter estimation for a system of PDEs, we need to combine state
observations and additional data that are not strictly required for solving
the PDE problem, and have to be acquired from measurements.

Parameter estimation for PDEs can be done according to several tech-
niques, which can be roughly classified depending on their outcome (Taran-
tola 2004, Le Dimet and Talagrand 1986). Point estimates rely on either
variational or sequential methods (Ide, Courtier, Ghil and Lorenc 1997).
Both methods provide optimal least-squares estimates by minimizing a cost
functional accounting for the misfit between measured data and state ob-
servations. A second class of techniques instead yields confidence regions
or, more generally speaking, the possibility of characterizing the probabil-
ity distribution of the unknown parameters provided they are described in
terms of random variables; this is the goal of statistical inversion theory
relying for example on Bayesian inference, which will be the main focus of
Section 11.2.

In the context of cardiovascular modelling, parameter estimation is ne-
cessary for model calibration/personalization, for the purpose of diagnosis
or treatment. Indeed, parameters that are not directly measurable (e.g.
for tissue conductivity or vessel compliance) are tuned so that the out-
come of the numerical model is able to reproduce patient-specific data
(Krishnamurthy et al. 2013). Difficulties arise because of data sparsity
(Konukoglu et al. 2011). Indeed, spatial resolution and temporal frequency
are typically undersampled; experimental data, on the other hand, are al-
ways contaminated by measurement noise.

Remark 10.1. Data assimilation (DA) is the process by which a numer-
ical model of a given system, usually affected by noise or model uncer-
tainties, is improved by incorporating system observations. Although data
assimilation relies on the same variational or filtering approaches addressed
in this section, in the case of geophysical fluids, for example, its main goal
often goes beyond parameter estimation; indeed, it is more often related to
state estimation, namely, to improving the outcome of the numerical model
and of its initial state to correctly initialize forecasts, by assimilating avail-
able measurements into the numerical model itself. Data assimilation is
intrinsically related to time-varying phenomena and deals with highly non-
linear dynamical systems, very often far from being periodical (such as in
the case of meteorological models) and ill-posed: see e.g. Blum, Le Dimet
and Navon (2009), Voss, Timmer and Kurths (2004) and Le Dimet and
Talagrand (1986) for a detailed discussion. In the past decade several works
dealing with cardiovascular applications have focused on data assimilation
(Sermesant et al. 2006, Delingette et al. 2012, Bertagna, D’Elia, Perego
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and Veneziani 2014, Lal, Mohammadi and Nicoud 2016), which has been
considered, in many cases, as synonymous with parameter estimation.

In this section we provide an overview of both variational and sequen-
tial approaches for parameter estimation in time-dependent systems. Para-
meter estimation problems dealing with stationary systems in cardiovascular
applications have also been solved: see e.g. D’Elia, Perego and Veneziani
(2012), Bertagna et al. (2014), MacLachlan, Nielsen, Lysaker and Tveito
(2006), Nielsen, Cai and Lykaser (2007a), Lassila, Manzoni, Quarteroni and
Rozza (2013b) and Manzoni, Lassila, Quarteroni and Rozza (2014). For the
sake of space and relevance, we will focus on time-dependent problems.

10.1. Variational approach: PDE-constrained optimization

The variational approach recasts parameter estimation in the framework
of PDE-constrained optimization, by considering the equations governing
the problem at hand as the state system, and the discrepancy between the
observation of the state and the measured data as the cost functional to be
minimized (Banks and Kunisch 1989, Chavent 2010). The parameters to be
estimated (often involving the initial condition) play the role of optimization
variables, just like control variables in the case of optimal control problems;
however, unlike the optimal control case, the parameters to be estimated
are quantities which no one can actually control. They are often coefficients
of the operator appearing in the PDE problem.

Here we provide an abstract formulation of the variational approach, fol-
lowing Bertoglio, Moireau and Gerbeau (2012) and Blum et al. (2009); for
more details see e.g. Nichols (2010), Chapelle, Fragu, Mallet and Moireau
(2013a) and Sermesant et al. (2006). We assume that the state problem
has already been discretized in space. We let X(t) ∈ Rnx denote the semi-
discrete state, θ ∈ Rp the parameters of the model to be estimated, and
A(t,X(t),θ) the (semi-discretized in space) state operator; note that usu-
ally p� nx. The state variable then solves the dynamical system

Ẋ(t) = A(t,X(t),θ), t ∈ (0, T ), (10.1a)

X(0) = G. (10.1b)

For instance, in the case of the FSI system (4.19), X = (v, p,d) contains
fluid velocity and pressure, and structure displacement, and θ may contain
the value of the Young’s modulus (here assumed to be piecewise constant)
in different patches of the arterial wall.

We consider the case where the parameter vector θ is unknown, and for
which the estimation problem consists in finding θ̂ such that the discrepancy
between the observation and a set of measurements Z(t) ∈ Rnz , t ∈ (0, T ),
is minimized, for example in a least-squares sense. The case of unknown
initial data G to be estimated can be treated in essentially the same way.
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We usually assume that measurements Z(t) are related to observations of
the true state through an additive noise model, that is,

Z(t) = H(t)X(t) + ε(t), t ∈ (0, T ),

where H = H(t) ∈ Rnz×nx is an observation operator which maps the
state space into the observation space Rnz , and ε = ε(t) is a noise term
accounting for measurement errors. The following minimization problem is
then solved:

J(X,θ) =
1

2

∫ T

0
‖Z(t)−H(t)X(t)‖2M dt+

αθ
2
‖θ−θ0‖2P−1

θ

→ min
θ∈P

, (10.2)

where X = X(t) is the solution of (10.1). Here P ⊂ Rp × Rnx denotes
the set of admissible parameters. Additional information is usually added
to the least-squares objective expressed by the first term in (10.2), via a
background estimate θ0 of θ; M and P−1

θ are suitable symmetric positive
definite matrices (the reason why we consider an inverse matrix to define
this latter norm will be clarified in the following). This procedure goes by
the name of Levenberg–Marquardt–Tikhonov regularization. For a discussion
of classical regularization methods for inverse problems, see Kaipio and
Somersalo (2005); note that the usual penalization coefficients are embedded
in the definition of the matrix P−1

θ .
The minimization problem (10.2) can be solved by an optimization al-

gorithm based on the evaluation of the gradient of J with respect to θ. As
shown in Section 9.1, this latter can be computed by relying on the solu-
tion of a suitable adjoint problem. This is a four-dimensional variational
(4D-Var) assimilation; a three-dimensional variational (3D-Var) assimila-
tion would arise in the case of steady-state systems. See Section 10.3.1 for
further details on a relevant example in cardiovascular modelling, and Blum
et al. (2009) and Chapelle et al. (2013a) for more on 4D-Var assimilation
problems.

Since measurements Z are only available at a discrete number of times
τ1, . . . , τK , we formulate the identification problem by replacing the dynam-
ical system (10.1) with its time-discretized version:

Xk+1 = Ak|k+1(Xk,θ), k = 0, . . . ,K − 1, (10.3a)

X0 = G (10.3b)

where Ak|k+1 is a non-linear function describing the evolution of the state

from time τk to time τk+1 and Xk ≈ X(k∆τ) denotes the state vector at
time τk. Note that the length ∆τ = τk+1− τk of the time window between
two subsequent measurements is usually larger than the time step ∆t used
for time discretization, and that θ does not depend on k. From here on k
will denote the temporal index of system evolution, thus using a different
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notation from that introduced in Parts 1 and 2 (where the temporal index
was denoted by n).

We then formulate an optimal time-discretized minimization criterion
and, finally, determine the corresponding adjoint problem, rather than dis-
cretizing the adjoint problem in time. This yields the minimization problem

JK(X,θ) =
1

2

K∑
k=1

‖Zk −HXk‖2Mk
+

1

2
‖θ − θ0‖2P−1

θ

→ min
θ∈P

, (10.4)

where X = (X1, . . . ,Xk), and we set

Zk = HkX
k + εk. (10.5)

Here εk denotes the noise of the measurement device at τk = k∆τ ; a possible
choice for Mk is Mk = ∆τM , whereas Hk ≈ H(k∆τ). Also in this case a
gradient-based optimization procedure can be used to solve the constrained
optimization problem (10.3, 10.4) with gradients evaluated by introducing
a suitable adjoint problem.

10.2. Sequential approach: Kalman filter and extensions

A drawback of the variational approach is the need to wait until the whole
set of measurements has been acquired in order to perform an optimization
step. A sequential approach instead performs the assimilation of acquired
measurements on the fly, and updates the estimate of the unknown quant-
ities accordingly.

A numerical milestone for the solution of sequential estimation problems,
the Kalman filter (KF) (Kalman 1960), was introduced as a recursive filter
for the estimation of the state of a noisy dynamical system from a set of
measurements, that is, to improve the prediction of the state dynamics by
taking into account additional data. An augmented form of the Kalman
filter can be easily adapted to the problem of estimating unknown paramet-
ers, as we will see. Originally designed for linear dynamical systems, the
Kalman filter has severe memory requirements. To mitigate these two limit-
ations, several improvements and extensions have been proposed in the past
few decades, most notably the extended Kalman filter (EKF), the unscen-
ted Kalman filter (UKF) and the ensemble Kalman filter (EnKF); detailed
reviews can be found, for example, in Kaipio and Somersalo (2005), Simon
(2006), Humpherys, Redd and West (2012) and Asch, Bocquet and Nodet
(2017). In this section we recall the formulation of the basic Kalman filter
and provide some hints about its extensions, with a special focus on the
field of cardiovascular modelling where these techniques have been applied.

The literature offers many possible derivations of the Kalman filter; fol-
lowing Humpherys et al. (2012) and Chapelle et al. (2013a), we will exploit
the analogy with the solution of a recursive least-squares problem yielding
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the best linear unbiased estimator for a linear model; alternative derivations
can be obtained, for example, by relying on the so-called push-forward and
subsequent conditioning of Gaussian measures (Sullivan 2015) or a sequen-
tial Bayesian estimation framework (Law, Stuart and Zygalakis 2015).

10.2.1. The Kalman filter algorithm

The KF algorithm sequentially generates an estimate of the unknown quant-
ity by means of a linear combination of the current estimate and the acquired
measurement. Let us first consider the case where there is no dynamics, and
data are generated by the linear model

Z = HX + ε, (10.6)

where H is a given nz × nx matrix of rank nx, ε is an nz-dimensional
random variable with zero mean and known positive definite covariance
Q = E[εεT ] > 0, and Z denotes known, but inexact, measurements with
errors given by ε. The vector X ∈ Rnx is the quantity to be estimated from
the observation Z; E[·] denotes the expected value.

Among all linear estimators ofX, that is, estimators of the form X̂ = KZ

for some matrix K ∈ Rnx×nz , which are unbiased (i.e. E[X̂] = X), the best

choice is the one that minimizes the mean-square error E[(X̂−X)T (X̂−X)];
by the Gauss–Markov theorem (see e.g. Sullivan 2015, Chapter 7), the best
or minimum variance linear unbiased estimator for (10.6) is given by

X̂ = (HTQ−1H)−1HTQ−1Z. (10.7)

In that case, E[(X̂ −X)(X̂ −X)T ] = (HTQ−1H)−1. Equivalently, (10.7)
can also be obtained by solving the weighted least-squares problem

X̂ =
1

2
‖HX −Z‖2Q−1 → min

X
, (10.8)

again resorting to a variational argument. In the slightly different case
where we want to combine the observation and a background estimate X0

of X with covariance P−, (10.8) becomes

X̂ =
1

2
‖HX −Z‖2Q−1 +

1

2
‖X −X0‖2(P−)−1 → min

X
,

and instead of (10.7) we find

X̂ = X0 +K(Z −HX0), K = P+HTQ−1, (10.9)

upon defining the matrix playing the role of updated covariance as

P+ = ((P−)−1 +HTQ−1H)−1. (10.10)

Note that this estimate is given by a linear combination of the background
estimate X0 and the so-called innovation Z −HX0. K is usually referred

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


Modelling the cardiovascular system 511

to as the Kalman gain matrix; it can also be evaluated by exploiting the
prior covariance P− instead of the updated covariance P+, according to the
equivalence

P+HTQ−1 = P−HT (HP−HT +Q)−1. (10.11)

We now consider the case of a time-discretized linear system, with data
acquired over a time interval. Then the model (10.6) is replaced by

Xk = Ak−1|kX
k−1 + vk, k = 1, . . . ,K, X0 = G,

Zk = HkX
k +wk,

(10.12)

where Xk ∈ Rnx denotes the state and Zk ∈ Rnz are the measurements; vk
and wk are uncorrelated zero-mean random noise processes with positive
definite covariances Qk and Rk, modelling the uncertainty of the model and
the additive noise in the observation, respectively. The state estimation
problem is the problem of finding the state Xk given k known observations
Z1, . . . ,Zk.

The Kalman filter is a recursive algorithm that provides the best linear
unbiased estimate Xk

a of Xk in terms of both the previous estimate Xk−1
a

and the latest data Zk up to that point in time. It is based on a predictor-
corrector strategy, consisting of the following steps.

(1) A prediction step (called the forecast or the time update) consists in
letting the system dynamics evolve from Xk−1

a without taking into
account the observations, yielding the forecast state Xk

f .

(2) A correction step (called the analysis or the measurement update) up-
dates the forecast state Xk

f by assimilating the measurements into the

model, yielding the assimilated state Xk
a.

To derive the expression of the correction step, let us suppose that the cur-
rent prediction based on observations Z1, . . . ,Zk−1 is Xk

f , with covariance

matrix P fk . If the true state is Xk, model (10.6) becomes[
Xk

f

Zk

]
=

[
I
Hk

]
Xk + ε,

where ε is an (nx + nz)-dimensional random variable with zero mean and

covariance Qk = diag(P fk , Rk). The best linear unbiased estimator of this
system (see (10.7)) is given by

Xk
a = P ak

[
I HT

k

] [(P fk )−1 0
0 R−1

k

] [
Xk

f

Zk

]
= P ak

(
(P fk )−1Xk

f +HT
k R
−1
k Z

k
)
,

(10.13)
and results from the linear combination of the current estimate and the last
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observation Zk, where

P ak =

([
I HT

k

] [(P fk )−1 0
0 R−1

k

] [
I
Hk

])−1

= ((P fk )−1 +HT
k R
−1
k Hk)

−1.

Note the formal analogy with (10.10), where P fk and P ak now play the role
of P− and P+, respectively. Equation (10.13) can be written in the more
convenient form

Xk
a = P ak

[
(P ak )−1 −HT

k R
−1
k Hk))X

k
f +HT

k R
−1
k Z

k
]

= Xk
f + P akH

T
k R
−1
k (Zk −HkX

k
f ) = Xk

f +Kk(Z
k −HkX

k
f )

as a function of the innovation Zk−HkX
k
f . Similarly to (10.11), we obtain

Kk = P akH
T
k R
−1
k = P fkH

T
k (HkP

f
kH

T +Rk)
−1, (10.14)

so it is possible to evaluate the Kalman gain matrix Kk as a function of P fk ,
and then correct the covariance:

P ak = ((P fk )−1 +HT
k R
−1
k Hk)

−1

= (I −KkHk)P
f
k (I −KkHk)

T +KkRkK
T
k = (I −KkHk)P

f
k .

The prediction step instead exploits the dynamical system to propagate
the state, yielding

Xk+1
f = Ak|k+1X

k
a

for the time update of the state, and

P fk+1 = E[(Xk+1
f −Xk+1)(Xk+1

f −Xk+1)T ]

= E[(Ak|k+1X
k
a −Ak|k+1Xk −wk)(Ak|k+1X̂

k

a −Ak|k+1Xk −wk)
T ]

= Ak|k+1P
a
kA

T
k|k+1 +Qk+1

for the time update of the covariance.
Grouping the prediction and the correction steps together, we finally ob-

tain the kth step of the KF algorithm:

Xk
f =Ak−1|kX

k−1
a state prediction, (10.15a)

P fk =Ak−1|kP
a
k−1A

T
k−1|k +Qk error covariance prediction, (10.15b)

Kk =P kfH
T
k (HkP

f
kH

T
k +Rk)

−1 Kalman gain evaluation, (10.15c)

Xk
a =Xk

f +Kk(Z
k −HkX

k
f ) state correction, (10.15d)

P ak =(I −KkHk)P
f
k error covariance correction. (10.15e)

Note that from (10.15d) only, the estimated state from the above step and
the current measurement are needed to compute the estimate of the current

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


Modelling the cardiovascular system 513

state. The two prediction and correction steps alternate: the prediction
advances the state until the next measurement is acquired, and then the
correction incorporates this measurement.

Remark 10.2. The Kalman gain Kk defined in (10.14) can also be ex-

pressed as Kk = P
XfZ
k (PZk )−1. Here

P
XfZ
k = E[Xk

f (Zk −HkX
k
f )T ] = P fkH

T
k

is the cross-covariance between Xk
f and the innovation Zk −HkX

k
f , and

PZk = E[(Zk −HkX
k
f )(Zk −HkX

k
f )T ] = HkP

f
kHk +Rk

is the innovation covariance. Similarly, (10.15e) can be rewritten as P ak =

P fk −KkP
Z
k K

T
k . This interpretation is useful when dealing with the unscen-

ted Kalman filter (see Section 10.2.3).

Remark 10.3. In the linear case, the variational and the sequential ap-
proaches yield the same result at the end of a time window, provided the
following assumptions are made: the same background estimation and the
same covariance matrices are used, and the same measurements are acquired
– that is, both algorithms are optimal from a least-squares or minimum vari-
ance standpoint.

Let us now return to our problem of estimating the parameter θ. We
apply the KF algorithm to the system

Xk = Ak−1|kX
k−1 +Bkθ

k + vk, k = 1, . . . ,K, X0 = G,

θk = θk−1

with observations

Zk = HkX
k +wk, k = 1, . . . ,K.

Here θk ∈ Rp denotes the parameter vector and (under the linearity as-
sumption) Bk ∈ Rnx×p, and we assume that no random error is associated
with model parameters. This is the so-called state augmentation technique.

In order to exploit the KF algorithm, we consider X̃
k

= (Xk,θk)T as state
vector instead of Xk, thus yielding the augmented KF algorithm

X̃
k
f =Ãk−1|kX̃

k−1
a state prediction, (10.16a)

P̃ fk =Ãk−1|kP̃
a
k−1Ã

T
k−1|k + Q̃k error covariance prediction, (10.16b)

Kk =P̃ kf H̃
T
k (H̃kP̃

f
kH

T
k + R̃k)

−1 Kalman gain evaluation, (10.16c)

X̃
k
a =X̃

k
f +Kk(Z̃

k − H̃kX̃
k
f ) state correction, (10.16d)

P̃ ak =(I −KkH̃k)P̃
f
k error covariance correction, (10.16e)

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


514 A. Quarteroni, A. Manzoni and C. Vergara

(a) (b)

Figure 10.1. Variational approach (a) versus Kalman filter (b) approach: in the
former, at each optimization stage the whole state dynamics has to be computed,
whereas in the latter each measurement is sequentially used for the state (and
parameter) correction.

where

Ãk−1|k =

[
Ak−1|k Bk

0 I

]
, Z̃

k
=

[
Zk

0

]
,

H̃k =

[
Hk 0
0 0

]
, Q̃k =

[
Qk
0

]
, R̃k =

[
Rk 0
0 0

]
.

We point out that, by construction of the filtering procedure, the estimated
parameter values evolve along the simulation period and the actual estim-
ation is achieved with the final values, that is, the estimated parameter
vector is θ̂ = θKa . (Note that in the current formulation θ is independent
of time.) Hence, we expect these estimation trajectories to fluctuate less
and less during the course of the simulation (see e.g. Figure 11.3 in Sec-
tion 11.3.2); the non-converging case would therefore denote the presence
of persistent modelling errors.

We conclude this section by pointing out that when a sequential approach
like the Kalman filter is used for parameter estimation, the dynamical sys-
tem has to be solved only once, by updating the parameter value after each
assimilation of new measurements. On the other hand, a variational ap-
proach would require us to solve the dynamical system on the whole time
interval several times, assuming that an iterative approach is used to per-
form the optimization: see the sketch in Figure 10.1.

10.2.2. The extended Kalman filter
The classical Kalman filter formulation is well suited to low-dimensional,
linear dynamical systems, although in real applications these assumptions
are seldom verified. The extended Kalman filter (EKF) was introduced for
non-linear dynamical systems, where (10.12) is replaced by

Xk = f(Xk−1, τk) + εk, Zk = h(Xk, τk) + ηk, (10.17)
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where f and h are two non-linear functions. Non-linearity here involves
both the system dynamics and the observation model. The EKF consists in
applying the KF algorithm (10.15) to a linearized version of (10.17) around
the previous state, so that at each step we set

Ak−1|k =
∂f

∂X

∣∣∣∣
Xk−1
a ,θk

, Hk =
∂h

∂X

∣∣∣∣
Xk
f

.

At each step two Jacobian matrices have to be evaluated at the current
predicted state/parameters. A similar extension of the algorithm (10.16)
provides the EKF for parameter estimation. Although feasible in principle,
the EKF suffers from several drawbacks. For instance, it entails prohibitive
computational costs to invert large matrices and to propagate the covari-
ance matrix in time. Even more importantly, the EKF may lack stability,
meaning that as the estimated state deviates from the true state, the lin-
earized model becomes inaccurate, which may lead to an even larger error
in state estimation. To mitigate these shortcomings, several strategies have
been put in place: low-rank approximation of the covariance matrices have
been considered, and other extensions of the original Kalman filter such as
the UKF and EnKF have been introduced.

10.2.3. The unscented Kalman filter

While the EKF exploits the differentiation of non-linear operators, model-
ling both the state dynamics and the observation process, to evaluate the
propagation of means and covariances, the unscented Kalman filter (UKF),
introduced by Julier, Uhlmann and Durrant-Whyte (1995), relies on a set of
well-chosen deterministic points (or sigma points) whose propagation via the
non-linear operators yields the empirical means and covariances required in
the Kalman prediction-correction formulas. The rationale goes by the name
of unscented transformation, whose goal is to map a set of points so that
their sample distribution approximates the true distribution (Julier, Uhl-
mann and Durrant-Whyte 2000).

Supposing that we know the mean E[X] and the covariance Σ of a random
vector X ∈ Rnx , the simplest choice is to select 2nx (symmetric) sigma
points x(i) as

x(i) = E[X] +
(√

nxΣ
)
i
, x(nx+i) = E[X]−

(√
nxΣ

)
i
, i = 1, . . . , nx,

where
(√
nxΣ

)
i

is the ith column of the Cholesky factor of nxΣ. Different
options for the sigma points selection are however possible: see e.g. Julier
and Uhlmann (2004).

The prediction-correction strategy of the Kalman filter is then performed.
Referring to the same notation used in Section 10.2.1 and supposing that
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the current forecast based on Z1, . . . ,Zk−1 is X̂
k
f , with covariance matrix

P fk , the following correction step is performed.

• From the estimated mean X̂
k
f and covariance P fk at time τk, select a

set of 2nx sigma points

xkf,(i) = X̂
k
f +
(√

nxP
f
k

)
i
, xkf,(nx+i) = X̂

k
f−
(√

nxP
f
k

)
i
, i = 1, . . . , nx,

centred around X̂
k
f at a distance given by the standard deviation extrac-

ted from the covariance matrix, and obtain the predicted measurement

Ẑ
k

=
1

2nx

2nx∑
i=1

Ẑ
k
(i), where Ẑ

k
(i) = h(xkf,(i), τ

k), i = 1, . . . , 2nx.

• Estimate the covariance of the predicted measurement,

PZk =
1

2nx

2nx∑
i=1

(
Ẑ
k
(i) − Ẑ

k)(
Ẑ
k
(i) − Ẑ

k)T
+Rk,

and the cross-covariance between Xk
f and Ẑ

k
:

P
XfZ
k =

1

2nx

2nx∑
i=1

(
X̂

k
f − xkf,(i)

)(
Ẑ
k − Ẑk

(i)

)T
.

• Perform the Kalman gain evaluation, state correction and the error co-
variance correction similarly to (10.16c–10.16e) (recall Remark 10.2),

Kk = P
XfZ
k (PZk )−1,

X̂
k
a = X̂

k
f +Kk(Z

k − Ẑk
),

P ak = P fk −KkP
Z
k K

T
k .

In the prediction step, a set of sigma points is selected as

xka,(i) = X̂
k
a +

(√
nxP ak

)
i
, xka,(nx+i) = X̂

k
a −

(√
nxP ak

)
i
, i = 1, . . . , nx

and a forward computation of one time window is performed to get the state
prediction at step k + 1:

X̂
k+1
f =

1

2nx

2nx∑
i=1

xk+1
f,(i), where xk+1

f,(i) = f(xka,(i), τ
k+1)

(note that each sigma point is treated independently). Finally, the covari-
ance is updated as

P fk+1 =
1

2nx

2nx∑
i=1

(
X̂

k+1
f − xkf,(i+1)

)(
X̂

k+1
f − xkf,(i+1)

)T
+Qk+1.
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Provided the analysis step is performed in parallel, the cost of the whole
estimation procedure is comparable to that of a simple forward simulation.
By contrast, a variational estimation would require a significant number of
successive iterations (typically, of the order of hundreds) of both forward
and adjoint simulations.

An augmented formulation of the UKF can be easily obtained, simil-
arly to (10.16), in order to treat the case where the system depends on
a set of p parameters affected by uncertainty, which need to be estimated.
Nevertheless, the very large dimension of the state vector (depending on the
spatial discretization of the state variable) makes this filter intractable in
practice. In those cases where uncertainty only affects the parameters, and
p� nx, a much more feasible version yielding a reduced-order UKF limits
the computations of the filter operator to a subspace of small dimension and
is much more efficient. The reduction to the parametric space as regarding
the choice of the sigma-points for the sake of parameter estimation was ori-
ginally introduced by Pham (2001) and Hoteit, Pham and Blum (2002); an
initial application to the estimation of electrophysiology parameters can be
found in Wang, Zhang, Wong and Shi (2009) and Wang et al. (2011). A
detailed analysis of the reduced-order UKF can be found in Moireau and
Chapelle (2011), for example. A possible alternative, recently explored by
Pagani, Manzoni and Quarteroni (2016) and Pagani (2016), is to perform
a state reduction (rather than a reduction of the parameter space) relying
on a reduced-order model, and then consider the problem of simultaneous
state/parameter estimation.

10.3. Applications to cardiovascular modelling

In the past decade, parameter identification problems have been considered
in several applications to cardiovascular modelling. In this section we re-
port a list of relevant contributions; two substantive examples will be more
specifically discussed in Sections 10.3.1 and 10.3.2.

The problem of identifying a set of parameters of one-dimensional models
for the arterial circulation was first considered by Martin, Clément, De-
coene and Gerbeau (2005), who considered a non-linear least-squares ap-
proach based on the optimization of a cost function and the introduction
of a suitable adjoint problem. A relevant application in this context is
the estimation of the elastic coefficient of a subject-specific vessel based on
measurements of its displacement recovered from medical images. A vari-
ational approach based on the minimization of suitable functionals has been
proposed by Perego, Veneziani and Vergara (2011) and, more recently, by
Bertagna and Veneziani (2014); we present this technique in Section 10.3.1.
A different approach based on an unscented Kalman filter has been pro-
posed by Bertoglio et al. (2012) and further explored by Moireau et al.
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(2013) to estimate modelling parameters pertaining to vessel wall boundary
conditions. Similar strategies based on the unscented Kalman filter have
been considered by Lombardi (2014), for example, to solve inverse problems
in large one-dimensional arterial networks, and by Pant, Fabrèges, Gerbeau
and Vignon-Clementel (2014) to estimate lumped (e.g. windkessel) model
parameters by using the pressure curve in the ascending aorta.

Other approaches have been considered, for example in Blanco, Watanabe
and Feijóo (2012), to characterize the terminal peripheral resistances in a
network describing one-dimensional arterial blood flow, or in Spilker and
Taylor (2010) to adjust the parameters of windkessel outflow boundary
conditions of three-dimensional blood flow models, in order to match some
desired features of pressure and flow waveforms.

Several recent works have focused on parameter identification and, more
generally speaking, on the solution of inverse problems in heart model-
ling. The classical inverse problem in electrocardiology has been considered
by many authors in the past few decades. It consists in recovering the
electrical potential at the epicardial surface by using a number of remote,
non-invasive or minimally invasive potential recordings, such as those ac-
quired along the body surface (Rudy and Messinger-Rapport 1988, Pullan
et al. 2001, Cheng, Bodley and Pullan 2003), usually referred to as body
surface-potential data. In its original formulation, this problem involves the
pure (linear) diffusion model for the torso as a direct problem (Colli Fran-
zone, Taccardi and Viganotti 1978, Colli Franzone, Guerri, Viganotti and
Taccardi 1985, Yamashita 1982): see Section 7.1.5. This inverse problem
is mathematically ill-posed, and several regularization strategies have been
proposed; see e.g. the reviews by Pullan et al. (2010) and Colli Franzone
et al. (2014). Another method to solve the inverse electrocardiology problem
relies on measurements of the electrical potential within one of the heart
chambers (ventricles and atria) by means of non-contact multi-electrode
catheter arrays, and tries to estimate the endocardial surface potential from
them. Since the measurements are recorded closer to the endocardial surface
than those acquired on the body surface, this problem is less ill-conditioned
than the former. If the problem is recast in the form of a parameter es-
timation problem, that is, where the epicardial potential distribution is
described in terms of a set of parameters, the inverse problem can be more
easily tackled.

More generally speaking, inverse and parameter estimation problems have
been considered in several works in order to approximately reconstruct the
cardiac electrical activity in the myocardium, for example, and to provide
indications of the presence of ischaemic or infarcted zones by estimating
conductibility parameters. Concerning variational approaches, we can men-
tion a level set framework for identifying heart infarctions (Lykaser and
Nielsen 2006) by relying on a least-squares formulation and an adjoint
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problem to determine the gradient of the cost functional. In this case, the
infarcted region in a simplified two-dimensional domain has been described
in terms of a discrete level set function, involving a set of parameters to be
identified from synthetic ECG boundary measurements, and a Tikhonov reg-
ularization procedure. MacLachlan et al. (2006) and Nielsen et al. (2007a)
considered the solution of a parameter identification problem to locate (in
terms of size and position) ischaemic regions, where a simplified state el-
liptic system models the electrical potential in both the heart and the torso
in the resting phase. In all these papers, the PDE-constrained optimization
problem was solved using an iterative method, following an optimize-then-
discretize approach. Nielsen, Lykaser and Tveito (2007b) instead considered
an all-at-once approach for a similar problem, also taking into account aniso-
tropic cardiac conductivities and fibre orientation. A more involved version
of this problem, still focusing on the inverse electrocardiographic source loc-
alization of ischaemias, has been considered more recently by Wang, Kirby,
MacLeod and Johnson (2013).

The personalization of an eikonal model, via the identification of local
conduction velocities and parameters related to the action potential dura-
tion restitution curve, has been addressed by Chinchapatnam et al. (2008)
and Relan et al. (2011). More recently, Yang and Veneziani (2015) pro-
posed a variational approach for the estimation of cardiac conductivities
in a bidomain model, from measurements of the trans-membrane and ex-
tracellular potentials available at some locations in the tissue. Boulakia,
Fernández, Gerbeau and Zemzemi (2008) have considered parameter estim-
ation in a problem where the bidomain model for the heart is coupled with
the Laplace equation for the passive conduction in the torso, in order to
estimate the torso conductivity parameters.

The unscented Kalman filter was exploited by Wang et al. (2011) and by
Marchesseau et al. (2013) and Talbot et al. (2015) to identify scar locations
and their size from body surface-potential and MRI data, using a monodo-
main two-variable Aliev–Panfilov model. A reduced-order UKF was used
by Corrado, Gerbeau and Moireau (2015) to estimate electrical parameters
within a coupled electromechanical model, by taking advantage of observa-
tions from both electrocardiograms and myocardium displacements.

Another inverse problem in electrophysiology has been studied by Vergara
et al. (2014) and Palamara et al. (2015). Measurements of the electrical ac-
tivation time on the endocardium, acquired via NavX (see Section 6.2), were
used to find the optimal Purkinje network configuration. For this problem,
the parameters to be estimated are the coordinates of the network. In par-
ticular, starting from an initial network with a fractal shape, a functional
accounting for the discrepancy between measured and computed activa-
tion times is minimized to find the patient-specific location of the Purkinje
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muscle junctions (see Section 5.3). This methodology has been successfully
applied to real pathological scenarios: see Palamara et al. (2014).

Regarding cardiac biomechanics, Moireau, Chapelle and Le Tallec (2009)
and Moireau and Chapelle (2011) addressed the estimation of contractility
parameters using the unscented Kalman filter, where the degree of damage
in cardiac tissues caused by an infarct is estimated using velocity measure-
ments from tagged MRI; see also Moireau, Chapelle and Le Tallec (2008). A
reduced-order UKF was used by Xi et al. (2011) to identify material para-
meters in a transversally isotropic mechanical model; further details con-
cerning this application will be provided in Section 10.3.2. Subsequently,
the same technique was exploited by Chabiniok et al. (2012) to estimate
contractility values in a more complex cardiac model, where the tissue is
described by combining an active constitutive law in the muscle fibre direc-
tion and a visco-hyperelastic material, using actual clinical data consisting
of in vivo cine-MRI image sequences and pressure measurements.

Finally, for the coupled electromechanical problem, very few numerical
results are now available. The personalization of a 3D electromechanical
model has been tackled by variational approaches, for example by Sermes-
ant et al. (2006), who estimated local ventricular myocardium contractility
using MRI in an electromechanical model. Similarly, Delingette et al. (2012)
estimated both the parameters of a Mitchell–Schaeffer model and cardiac
contractilities from catheterized electrophysiology data and cine-MRI im-
ages, respectively. Marchesseau, Delingette, Sermesant and Ayache (2012)
performed the calibration of mechanical parameters of a complete electro-
mechanical model of the heart involving the eikonal model for electrophysi-
ology and an isotropic Mooney–Rivlin material model for cardiac mechanics,
relying on the unscented Kalman filter.

Although several works have made a big step forward, the solution of
parameter estimation problems remains an open computational challenge if
complex, coupled models and patient-specific data are taken into account.
Further, when UKF and EnKF techniques are exploited – which exhibit
natural parallelism to a high degree – the need to evaluate the state dynam-
ics for several different scenarios (given by the elements of the ensemble, for
example) makes the computational effort exorbitant. For this reason, sim-
plified physical models have been considered in many contexts; on the other
hand, reduced-order strategies, such as the reduced-order unscented Kal-
man filter, have recently been proposed as a possible way to overcome the
computational complexity arising from these problems. Dramatic progress
is expected in this field in the next few years.

10.3.1. A variational approach for estimating the tissue compliance

In this section we illustrate a variational approach introduced by Perego et
al. (2011) to estimate the Young’s modulus E of a cardiovascular tissue from
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displacement data. Indeed, this parameter – and, more generally speaking,
the deformability of a soft tissue – is an important index for detecting dis-
eases: low compliance may indicate atherosclerosis or hypertension in the
case of an artery, or a marker of diastolic dysfunction in the case of the
left ventricle wall. The basic steps are (i) to retrieve the vessel displace-
ment dmeas by image registration procedures on time frames of the vessel
of interest, and then (ii) to minimize the difference between dmeas and the
displacement computed by solving the coupled 3D blood vessel problem,
in order to estimate Young’s modulus. Here the structure is assumed to
be linearly elastic, and the only parameter to be estimated is E, which is
generally a function of space (e.g. an atherosclerotic plaque has a different
modulus to healthy tissue) but not of time.

The former step consists of data acquisition, image segmentation and
reconstruction, and finally registration; see Perego et al. (2011) for further
details. The latter, which we will address, is an example of an inverse fluid–
structure interaction (IFSI) problem, and results in a constrained optimiz-
ation problem, where the constraint is the FSI problem and the functional
to be minimized is a measure of the mismatch between the data and the
computed solution.

An initial formulation of the IFSI problem is obtained by assuming that
the displacement data dmeas(x, τk) for x ∈ Στk retrieved from the image
registration process are available within the interval [0, T ] in some instants
denoted by τk, k = 1, . . . ,K. Here K is the number of instants when image
registration is performed, ∆τ is the time step between two measurements,
driven by the sampling frequency of the image devices, and Στk denotes
the interface between the fluid and the structure domain. Following the
formulation of problem (10.4), we consider the functional

JK(d, E) =
1

2

K∑
k=1

∫
Στk

(
dmeas(x, τ

k)− d(x, τk)
)2

dσ

+
αE
2

K∑
k=1

∫
Ωs

(
E(x, τk)− Eref

)2
dx, (10.18)

where d(x, τk) denotes the solution of the FSI system (4.44) in the ALE
formulation, at t = τk and the second term is a non-negative Tikhonov
regularization term. Here Eref is a prior estimate (available from ex vivo
specimens, for example), so that the regularization forces E to be close to its
reference value. Given an admissible set Ead where we seek the parameter E,
a possible formulation of the IFSI problem reads as follows. For t > 0,x ∈
Ωs, find E = E(x, t) ∈ P that minimizes (10.18) under the constraint (4.44).
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A possible choice for P is

P = {E : E ∈ L∞(Ωs), 0 < Emin ≤ E ≤ Emax,with Emin, Emax ∈ R}.
(10.19)

Such a problem entails the solution of a time-dependent minimization prob-
lem, for which a classical KKT system can be obtained using the Lagrange
multiplier method. In this setting the parameter E plays the role of the con-
trol variable. However, this approach is rather involved, since the adjoint
problem results in a final value problem which would involve differentiation
with respect to the deformable domain as well: the so-called shape derivat-
ive. Moreover, it requires a massive memory occupancy as the solution at
all the time steps needs to be stored due to the back-in-time nature of the
adjoint problem.

A more convenient alternative numerical approach proposed by Perego
et al. (2011) first considers the time-discretization of the forward problem,
and formulates a minimization problem at each time step. For simplicity a
constant time step ∆t = ∆τ/m is assumed, for a suitable m ∈ N, m ≥ 1,
that is, the instants τk in which measurements are acquired are a subset of
the time discretization of (4.44); for simplicity, we will consider m = 1. For
the time discretization of (4.44), we consider implicit methods with a semi-
implicit treatment of the convective term and of the fluid domain, whereas
the fluid viscous term is treated implicitly. As in Section 4.6.1, we use the
superscript ∗ to identify fluid quantities extrapolated from corresponding
quantities at previous time steps. Moreover, we introduce the spaces

V ∗ = {v ∈H1(Ω∗f ) : v|Γ∗D,f = 0}, Q∗ = L2(Ω∗f ),

W = {ψ ∈H1(Ωs) : ψΓD,s = 0},

where Γ∗D,f and ΓD,s are the portions of the boundary where a Dirichlet
condition is prescribed. Further, we let

Z∗ = {(v,ψ) ∈ V ∗ ×W : v|Σ∗ − ψ̂|Σ∗/∆t = 0},

and introduce the following bilinear forms:

a(v,d;w,ψ)∗ =
ρf
∆t

(v,w)∗f + (T f (v, p),∇w)∗f

+ ρf (((v∗ − v∗f ) · ∇)v,w)∗f + ρs

(
d

∆t2
,
ψ

∆t

)
s

,

b(q;w)∗ = −(q,∇ ·w)∗f ,

where

(v,w)∗f =

∫
Ω∗f

v ·w dx and (ψ,χ)s =

∫
Ωs

ψ · χdx.
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Then, for any given E ∈ Ead, at each time tn+1, the time-discretized forward
FSI problem consists of the following steps.

(1) Compute extrapolations Ω∗f , v
∗ and v∗f to approximate Ωn+1

f , vn+1 and

vn+1
f .

(2) Given fn+1
f ∈ L2(Ω∗f ) and fn+1

s ∈ L2(Ωs), find (vn+1,dn+1) ∈ Z∗ and

pn+1 ∈ Q∗ such that

a(vn+1,dn+1;w,ψ)∗ +

(
E Ss(d

n+1),
1

∆t
∇ψ

)
s

+ b(pn+1;v)∗

= Fn+1
f (w) + Fn+1

s

(
ψ

∆t

)
− a(Rn+1

f ,0;w,ψ)∗ for all (w,ψ) ∈ Z∗

b(q;vn+1)∗ = 0 for all q ∈ Q∗. (10.20)

(3) Update the fluid domain to obtain Ωn+1
f .

For notation we have set

Ss(d) =
1

2(1 + ν)
(∇d+ (∇d)T ) +

ν

(1 + ν)(1− 2ν)
(∇ · d)I

so that we can write T s = E Ss. Moreover, given g ∈H1/2(Σ∗), we let

Rf (g) ∈Hdiv(Ω∗f ) = {v ∈H1(Ω∗f ) : ∇ · v = 0} and Rs(g) ∈H1(Ωs)

denote two lifting functions for the fluid–structure interface continuity, given
by

Rf (g)−Rs(g) = −g/∆t on Σ∗.

Due to the arbitrariness of one of these functions, in what follows we set
Rs(g) = 0. Moreover, when applied to function dn−1, it is possible to set
Rn
f = Rf (dn−1). Finally, the functionals Fn+1

f and Fn+1
s in (10.20) account

for forcing terms, boundary data on ∂Ω∗f \Σ∗ and ∂Ωs \Σ and terms coming
from the time discretization at previous time steps.

Regarding the parameter estimation problem, once the problem has been
discretized in time, the minimization of the cost functional

J̃k(d, E) =

∫
Σ

(dmeas(x, τ
k)− d(x, τk))2 dσ +

αE
2

∫
Ωs

(E(x, τk)− Eref)
2 dx

for each k = 1, 2, . . . ,K is considered by Perego et al. (2011), under the
constraint (10.20). Hence, a system of KKT conditions can be derived
relying on the standard Lagrange multiplier approach (see Section 9.1.2).
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With this aim we introduce the Lagrangian functional at time τk:

L(v, p,d;λv, λp,λd;E) = J̃k(d, E) + a(v,d;λv,λd)
∗+

(
E Ss(d),

1

∆t
∇λd

)
s

+ b(p;λv)
∗ + b(λp;v)∗ − Ff (λv)− Fs

(
λd
∆t

)
+ a(Rf ,0;λv,λd)

∗.

The dependence on the superscript k is omitted. By the requirement that
the gradient of L vanishes, we obtain the following.

• The adjoint problem, by forcing to zero the (Gâteaux) derivatives of the
Lagrangian functional with respect to (v, p,d), which in fact is a time-
discretized FSI problem (see below for the interface condition). Find
(λv,λd) ∈ Z∗, λp ∈ Q∗ such that

a(v,ψ;λv,λd)
∗ +

(
E Ss

(
ψ

∆t

)
,∇λd

)
s

+ b(λp;w)∗

+

∫
Σ

(d− dmeas) ·ψ dσ = 0,

b(q;λv)
∗ = 0 for all (w,ψ) ∈ Z∗, q ∈ Q∗. (10.21)

• The optimality condition

(ϕSs(d),∇λd)s = 0 for all ϕ ∈ L∞(Ωs),

by forcing to zero the derivative with respect to E.

• We also require the following state problem. Find (v,d) ∈ Z∗, p ∈ Q∗
such that

a(v,d;w,ψ)∗ +

(
E Ss(d),

1

∆t
∇ψ

)
s

+ b(p;w)∗

= Ff (w) + Fs

(
ψ

∆t

)
− a(Rf ,0;w,ψ)∗

b(q;v)∗ = 0 for all (w,ψ) ∈ Z∗, q ∈ Q∗,

formally obtained by deriving the Lagrangian with respect to (λv,λp,λd).

The adjoint problem, the optimality condition and the state problem yield
the system of KKT conditions at each τk, which couples two linearized FSI
problems and a scalar equation.

In particular, for the adjoint problem the interface velocity condition
reads

λv =
λd
∆t

on Σ∗,
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Figure 10.2. Convergence history for the estimation of Young’s modulus by means
of the algorithm proposed by Perego et al. (2011). Rectangular fluid and structure
domains are used, with synthetic measurements generated by means of forward FSI
simulations. Numerical results were obtained using the MATLAB finite element
library MLife.

whereas the interface stress condition is

T s(λd)n− T f (λv, λp)n = −(d− dmeas) on Σ∗, (10.22)

taking into account the mismatch between the data and the solution, and
modifying the homogeneous interface stress condition (4.19d) accordingly.

The same strategies described in Section 9.2 (e.g. gradient-based meth-
ods) can be exploited to solve the KKT system numerically. To take into
account the constraint E > 0 in the case at hand, it is possible to trans-
form the parameter as ψ = log(E), so that E = exp(ψ) > 0 for every
ψ ∈ L∞(Ωs), and then optimize with respect to ψ. Finally, a finite element
discretization in space is required to solve the state and the adjoint problem
numerically.

By construction, this approach provides an estimate for E at each time;
a possible option is then to average them to obtain a unique estimate, al-
though this may suffer from instabilities in the presence of highly noisy
data. A more robust approach is to solve the minimization problem over
time. In this case, however, the complexity of the problem would increase,
due to the inclusion of the shape derivatives in the minimization problem.
In Figure 10.2 we show the number of iterations and the convergence history
for the algorithm described above for the estimation of Young’s modulus.

10.3.2. A Kalman filter approach for estimating material parameters in
cardiac mechanics

In this section we illustrate a Kalman filter approach introduced by Xi
et al. (2011) to estimate material parameters occurring in the mechanical
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model describing myocardial contractility. Only passive mechanics is mod-
elled, making a quasi-static assumption, and without taking into account
the electromechanical coupling. A transversely isotropic Guccione’s con-
stitutive law (Guccione et al. 1991) is used, and four parameters are es-
timated in silico from noisy displacement measurements of material points
located on the myocardial surface. In principle, a similar approach can
also be used, for example, to identify the material parameters affecting the
orthotropic model (7.24).

The transversely isotropic strain energy function in the Guccione law can
be expressed as

Θ(E) =
1

2
θ1(eQ − 1),

where

Q = θ2E
2
ff + θ3(E2

ss + E2
nn + 2E2

sn) + θ4(2E2
fs + 2E2

fn).

Here θ = (θ1, . . . , θ4) ∈ Rp denotes a vector of p = 4 material parameters,
and Eij is the (i, j)th component of the Green–Lagrange strain tensor E =
1
2(F TF −I) = 1

2(C−I), with i, j ∈ {f, s, n} denoting fibre, sheet and sheet-
normal directions, respectively. After performing spatial discretization, at

each time step the augmented state X̃
k

= (Xk,θk)T ∈ Rnx+p, made up of
the deformed configuration Xk and the material parameter vector θk, has
to be determined by solving a non-linear problem of the form

X̃
k

= f(X̃
k−1

,uk−1) + εk, f(X̃
k−1

,uk−1) =

[
G(θk−1,uk−1)

θk−1

]
,

where the input vector uk−1 at time k − 1 is given by the external forces,
with observations

Zk = h(X̃
k

+wk), k = 1, . . . ,K.

Xi et al. (2011) take h : Rnx+p → Rnz to be a linear (interpolation) matrix
H ∈ R(nx+p)×nz , mapping the augmented state vector to the coordinates
of the points where measurements are acquired. These measurements are
assumed to be contaminated by a noise term wk with zero mean and covari-
ance Rk; note that the material parameter has no explicit time dependence.
Nevertheless, as already pointed out, the filter will provide recursively up-
dated estimates of θk. The goal is thus to compute the estimate θK at the
final time t = tK .

Moreover, since the augmented state vector X̃
k

does not depend on the

deformed configuration X̃
k−1

, the rank of the error covariance matrix P̃k
at each step will be equal to p. This is a crucial point in order to devise a
reduced-order UKF, making it possible to (i) store a covariance matrix of
dimension (nx + p) × p, (ii) perform inversion of p × p matrices and, even
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more importantly, (iii) decrease the number of model evaluations required
by the filter at each time step from O(nx + p) to O(p).

Slight differences arise with respect to the UKF formulation addressed in
Section 10.2.3, due to the reduction of the estimation process to the subset of

X̃
k

corresponding to the p parameter components. The filtering algorithm
consists of three steps.

• Initialization. A singular value decomposition P a0 = La0Λa0(La0)T of the
initial error covariance P a0 ∈ R(nx+p)×(nx+p) is performed. For instance,
P a0 can be given by a diagonal matrix with p non-zero entries repres-
enting the variances of the initial (or background) parameter estimates.
Letting La0,p be the matrix whose columns are the first p singular vec-
tors of La0 and Λa0,p, the p × p diagonal matrix of the singular values,

the reduced-rank square-root approximation Sa0 ∈ R(nx+p)×p can be ob-
tained as

Sa0 = La0,p

√
Λa0,p.

• Prediction (or time update). At each step k = 1, . . . , starting from the

assimilated state
̂̃
X

k−1

a at step k− 1, a set of sigma points is selected as

x̃k−1
a,(i) =

̂̃
X

k−1

a + (Sak−1)i, x̃k−1
a,(p+i) =

̂̃
X

k−1

a − (Sak−1)i, i = 1, . . . , p.

The sigma points are then transformed via the state dynamics to obtain

x̃kf,(i) = f
(
x̃k−1
a,(i),u

k−1
)
, i = 1, . . . , 2p,

and the mean
̂̃
X

k

f and the error covariance P fk are estimated as

̂̃
X

k

f =

2p∑
i=1

x̃kf,(i), P fk =

2p∑
i=1

(
̂̃
X

k

f − x̃kf,(i))(
̂̃
X

k

f − x̃kf,(i))
T .

To preserve the low-rank structure of the correlation matrix P fk , a sin-

gular value decomposition P fk = LfkΛf0(Lfk)T is performed, thus yielding

P fk = Sfk (Sfk )T , Sfk = Lfk,p

√
Λfk,p.

• Correction (or measurement update). At each step k = 1, . . . , the ob-

servation Zk is assimilated into the forecast
̂̃
X
k

f yielding the corrected
state ̂̃

X
k

a =
̂̃
X

k

f +Kk(Z
k −Ĥ̃Xk

f ).

In this case the Kalman gain can be shown to be

Kk = Sfk (I + (HSfk )TR−1
k HSfk )−1(HSfk )TR−1

k
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along with the square-root of the error covariance, given by

Sak = Sfk (I + (HSfk )TR−1
k HSfk )−1/2.

Note that here, compared to the UKF formulation of Section 10.2.3,
update formulas for the Kalman gain and the error covariance are dir-
ectly obtained for the square-root of the covariance matrix. For further
details see Simon (2006) or Xi et al. (2011).

Xi et al. (2011) show that such a reduced-order UKF is able to estimate
p = 4 (and subsequently p = 12) material parameters, starting from a set
of synthetic measurements generated by adding Gaussian noise to a set of
noise-free measurements, obtained via model simulation for a chosen ground
truth parameter vector. Myocardial dilatation is considered by loading the
structure with a given ventricular pressure on the endocardium, and nz =
600 material points located on the epicardium and endocardium.

We have chosen to report this example to illustrate how to take advant-
age of a Kalman filter strategy in a relatively simple cardiovascular applic-
ation; further details and more involved cases can be found in Moireau and
Chapelle (2011), Bertoglio et al. (2012), Chabiniok et al. (2012), Moireau
et al. (2013) and Corrado et al. (2015), for example. Numerical results
related to parameter identification in electrophysiology by means of an en-
semble Kalman filter – a technique that indeed shares several similarities
with the UKF – will be shown in Section 11.2.2.

11. Including uncertainty

Moving towards model personalization – that is, the adaptation of model
inputs to subject-specific conditions – the question immediately arises as
to the sensitivity of model predictions to errors and uncertainties in the
model inputs. The inputs to be personalized may include the computa-
tional domain (e.g. vascular networks), physical parameters (e.g. vascular
material properties) and boundary conditions. Because of noise in input
measurements, as well as their large biological variability, model inputs are
inevitably hampered by uncertainty. Furthermore, as already seen in Sec-
tion 10, not all model inputs are directly measurable, as in the case of the
local mechanical properties of the arterial wall, thus calling into play the
need to solve parameter estimation problems. The uncertainties carried by
patient-specific features should then be incorporated into the computational
model, to quantify their impact on the computed results and to obtain more
reliable predictions or best/worst-case scenarios (Eck et al. 2016). These are
the main reasons behind the very rapid growth of applications of sensitiv-
ity analysis and uncertainty quantification (UQ) to cardiovascular problems
in the past decade. Since UQ is a very active field (and less mature than
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PDE-constrained optimization or parameter estimation) from both a math-
ematical and computational viewpoint, in this section we only touch on
some basic, yet relevant, issues related to UQ techniques; see e.g. Sullivan
(2015), Kaipio and Somersalo (2005) and Le Mâıtre and Knio (2010) for a
more in-depth overview of numerical aspects of UQ.

Typically, UQ problems involve a mathematical model for a process of
interest, subject to some uncertainty about the correct form of this model
or, more frequently, about some of its parameters. Although exhibiting sub-
stantial overlap with the field of parameter estimation and data assimila-
tion, UQ problems also involve the propagation of uncertainty on outputs of
interest, reliability or certification problems, prediction problems and, very
often, consist of several of these aspects coupled together. For instance, after
estimating some model parameters, we may use them to forward-propagate
other uncertainties. Often, though not always, uncertainties are treated
probabilistically, thus calling into play probabilistic and statistical meth-
ods. Here we focus on basic aspects related to forward propagation and
backward propagation of uncertainty, for the latter case focusing on statist-
ical inversion methods within a Bayesian framework.

11.1. Forward uncertainty quantification

The goal of forward UQ is to derive information about the uncertainties in
system outputs of interest, given information about the uncertainties in the
system inputs. The goal is to obtain the probability density function (PDF)
of some output of interest Z = f(θ) ∈ Rnz given the probability distribution
of the input θ ∈ Rp, or evaluate moments (e.g. the expected value and
the variance), correlation functions, confidence regions or quantiles.5 Here
f : Rp → Rnz denotes an input/output map. For instance, Sankaran and
Marsden (2011) take the radius of an abdominal aortic aneurysm, the radii
and the inflow velocity of the carotid artery bifurcation, and the flow split of
the left and right pulmonary arteries as random variables to account for the
uncertainty impact on blood flows modelled by three-dimensional Navier–
Stokes equations with rigid arterial walls, by considering as outputs blood
velocity and wall shear stresses.

Once a probabilistic description of the random inputs has been provided,
a suitable strategy is needed to propagate uncertainties through the model.
The simplest case is one where the PDE system depends on a set of ran-
dom inputs that are constant with respect to space and time. In this case,

5 Sensitivity analysis (see e.g. Saltelli et al. 2008 for a detailed review) may be seen as
a precursor of forward UQ, sharing the need to provide a quantitative description of
the dependence of the solution of a model on input parameters. See Donders, Huberts,
van de Vosse and Delhaas (2015) for the application of sensitivity analysis to a pulse
wave propagation model of arterial flows.
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they can be described by means of a finite-dimensional random vector, with
a given probability distribution. A more involved case is one where input
data may vary randomly from one point of the physical domain to another
(and possibly from one time instant to another); in this case, they are
described in terms of random fields. Two popular strategies to describe cor-
related random fields include Karhunen–Loève expansions, and expansions
in terms of global orthogonal polynomials (Ghanem and Spanos 2003, Xiu
and Karniadakis 2002b). Made up of infinitely many terms, these expan-
sions are usually truncated to approximate random fields: the milder the
variations in space and time of the random field realizations, the fewer the
terms retained in the expansion.

Several approaches are available for solving PDE problems with random
input data. Monte Carlo (MC) methods are the most popular. These
are based on independent realizations θ1, . . . ,θM of the random variable
θ (whose probability distribution is denoted by µ) yielding approximations
of the expectation by averaging over the corresponding realizations of that
quantity, that is,

E[f(θ)] =

∫
Rp
f(θ)µ(dθ) ≈ 1

M

M∑
i=1

f(θi), (11.1)

where the sample θ1, . . . ,θM is generated randomly from the probability
distribution of θ. Such a method requires a deterministic PDE query for
each realization and a very large number of queries to achieve a small error,
this latter being proportional to 1/

√
M . This entails an excessive compu-

tational burden, especially for systems which are already computationally
expensive in their deterministic setting. See, for example, Fishman (1996),
Robert and Casella (2004) and Voss (2013) for more on Monte Carlo meth-
ods, and Dick, Kuo and Sloan (2013) and Giles (2015) for quasi-Monte Carlo
and multilevel Monte Carlo methods, respectively.

When the solution depends analytically on the random input paramet-
ers, other approaches exhibit much faster convergence rates. These include
spectral (global) stochastic Galerkin (SG) methods (Ghanem and Spanos
2003, Xiu and Karniadakis 2002a, Babuška, Tempone and Zouraris 2004)
and stochastic collocation (SC) methods (Babuška, Nobile and Tempone
2007, Xiu and Hesthaven 2005, Nobile, Tempone and Webster 2008); for a
mathematical and numerical discussion, see the detailed review by Gunz-
burger, Webster and Zhang (2014) and the recent books by Le Mâıtre and
Knio (2010) and Sullivan (2015). These methods are based on the dis-
cretization of a PDE system, not only with respect to spatial variables
but also with respect to the random inputs. Stochastic Galerkin methods
are intrusive approaches since the physical and the probabilistic variables
are coupled; stochastic sampling (SS) and interpolatory-type stochastic

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


Modelling the cardiovascular system 531

collocation methods are instead non-intrusive. Further, stochastic Galerkin
methods require the solution of discrete systems that couple all spatial and
probabilistic variables, whereas stochastic collocation methods can combine
standard approximations in physical space with globally defined polynomial
approximation in the probability domain, either by full polynomial spaces,
tensor product polynomial spaces or sparse tensor product polynomials.
The stochastic space can then be queried at any point in order to construct
the PDF of the output, the interpolation in the stochastic space being built
on top, and independently, of the PDE solver.

By way of illustration, Figure 11.1 gives the activation times obtained
using the monodomain model coupled with the Aliev–Panfilov cell model.
This computation is carried out on a patient-specific left ventricle geometry,
obtained by considering different levels of tissue damage (or ischaemia),
caused by an insufficient blood perfusion of the myocardium. In this case,
each component of the conductivity Σ is multiplied by a spatial field σ(x;θ)
ranging from 0 (lack of conductivity, damaged tissue) to 1 (regular conduct-
ivity, healthy tissue), which we refer to as relative conductivity; as soon as
the position and size of the ischaemia are unknown, σ is a random field,
depending on (a finite number p of) random inputs θ1, . . . , θp. We emphas-
ize that in this case input uncertainty yields significant variability in the
output, thus making uncertainty propagation a problem of interest in this
context.

11.2. Inverse uncertainty quantification

Inverse UQ (or backward uncertainty propagation) problems refer to those
situations in which input quantities are inferred starting from observed sys-
tem outputs. Variational or sequential methods described in Sections 10.1
and 10.2 provide point estimates of the quantities of interest, given a set of
observations. The statistical inversion approach provides a well-established
framework to better characterize the uncertainty in the data and the result-
ing uncertainty in the computed estimates, adopting a Bayesian formulation.
In this setting, all the model inputs included in the model are described by
random variables, where randomness accounts for the available degree of
information concerning their realizations, and is expressed in terms of prob-
ability distributions; as a result, the solution of the inverse UQ problem
is the posterior PDF of the unknown inputs. Compared to the variational
methods of Section 10.1, where classical regularization methods yield point
estimates by curing the ill-posedness of the problem, statistical inversion
aims at removing ill-posedness by recasting the inverse problem in a lar-
ger space of probability distributions (Kaipio and Somersalo 2005). This
strategy also enables better characterization of the prior information con-
tained in the regularization terms in (10.2), in the form of a prior PDF

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


532 A. Quarteroni, A. Manzoni and C. Vergara

(a)

(b)

Figure 11.1. Different degrees of tissue damage in terms of relative conductivity
(a) and activation times in milliseconds (b) for a healthy case (left) and different
ischaemic regions on the myocardium. The patient-specific geometry of the left
ventricle has been reconstructed using the semi-automatic segmentation method
proposed by Fedele et al. (2015). Numerical results were obtained using the finite
element library redbKIT v2.1 (github.com/redbKIT/redbKIT/releases).

of the unknown inputs. The task of Bayesian inversion is to improve the
knowledge of the unknown system features starting from the prior belief
and exploiting information from a set of model realizations. For more on
this topic, see Stuart (2010) and Sullivan (2015), for example.

11.2.1. Static problems

Assume that we are measuring an output z = f(θ, ε) ∈ Rnz in order to get
information on the unknown input θ ∈ Rp, and that the measured quant-
ity is contaminated by noise ε. By treating input and output as random
quantities, let us denote by Z ∈ Rnz and Θ ∈ Rp two random variables,
of which z and θ denote the corresponding realizations. Very often, the
noise is modelled as additive and mutually independent of Θ, so that the
input/output map takes the form

Z = f(Θ) + ε,

where Z, ε ∈ Rnz , Θ ∈ Rp are random variables. Here Z is called the meas-
urement, and its realization Z = z in the actual measurement process is
called the data. Moreover, let πnoise(ε) denote the PDF of the noise ε, usu-
ally encoding experimental errors. Before performing output measurements,
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all the information (e.g. structure or regularity) about the distribution of
the input Θ are encapsulated in the prior PDF πprior(θ), to be selected
according to problem-specific considerations.

The conditional probability π(z | θ) of Z | Θ = θ (i.e. of Z conditioned
on Θ = θ) is the so-called (conditional) likelihood function, and expresses
the likelihood of different measurement outcomes z given Θ = θ. In our case
the input/output map f : Rp → Rnz is the solution of a PDE problem, and
the evaluation of the output f(θ). Thanks to the assumption of mutual
independence of Θ and ε, Z | Θ = θ is distributed like ε, that is, the
likelihood function is

π(z | θ) = πnoise(z − f(θ)).

Assuming that the measurement data Z = z is given, in the Bayesian
framework the inverse problem is to find the conditional PDF π(θ | z) of
Θ. This latter is the posterior PDF of Θ given the data Z = z and can be
expressed via Bayes’ theorem as

π(θ | z) =
πprior(θ)π(z | θ)

π(z)
,

where

π(z) =

∫
Rnz

π(z | θ)πprior(θ) dθ

plays the role of a normalization constant, and often has little importance
from a computational standpoint.

Solving an inverse UQ problem in the static case – alternatively, in the
literature such a problem is referred to as the stationary inverse problem –
thus consists in finding a prior PDF πprior(θ), expressing the likelihood func-
tion π(z | θ) using the interplay between the observation and the unknown,
and finally developing suitable numerical techniques to explore the posterior
PDF. Each of these tasks is a challenging problem from a computational
standpoint; here we provide some hints on how to use this framework for
a wide range of applications related to backward uncertainty quantification
in cardiovascular modelling.

In the case where the unknown is a random variable with few components,
the posterior PDF can also be visualized in the form of a non-negative
function of these variables. Most applications, however, yield larger-scale
inverse UQ problems, and resulting PDFs in high-dimensional spaces, for
which it is much more effective to evaluate suitable point estimators, such
as the maximum a posteriori estimator

θMAP = arg max
θ∈Rp

π(θ | z)
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or the conditional mean

θCM = E[θ | z] =

∫
Rp
θ π(θ | z) dθ.

Evaluating the former requires the solution of an optimization problem,
for example using iterative, gradient-based methods; computing the latter
involves a numerical quadrature problem in high-dimensional spaces. The
evaluation of variability estimators such as the conditional covariance

Cov (θ | z) =

∫
Rp

(θ − θCM)(θ − θCM)T π(θ | z) dθ ∈ Rp×p,

or confidence regions, also provides further indicators for uncertainty quan-
tification.

The simplest probabilistic model that can be used to describe experi-
mental uncertainties is the Gaussian model, for which the noise ε ∼ N (0,Σε)
is normally distributed, with mean 0 and covariance matrix Σε. In this case,
the likelihood function is

π(z | θ) ∝ exp

(
−1

2
‖z − f(θ)‖2

Σ−1
ε

)
.

If we can also assume a Gaussian model on the prior knowledge of the
parameter distributions, that is, πprior ∼ N (θp,Σp), then the posterior PDF
will be normally distributed as well, that is,

π(θ | z) ∝ exp

(
−1

2
‖z − f(θ)‖2

Σ−1
ε
− 1

2
‖θ − θp‖2Σ−1

p

)
. (11.2)

In this case, the maximum a posteriori estimator is

θMAP = arg min
θ∈Rp

(
1

2
‖z − f(θ)‖2

Σ−1
ε

+
1

2
‖θ − θp‖2Σ−1

p

)
,

that is, it coincides with the estimator obtained by solving the (static ver-
sion, with K = 1 of the) regularized least-squares problem (10.4), as long
as we choose θ0 = θp, Pθ = Σp and M = Σ−1

ε . If we assume instead that
no information is available about the parameter distribution except that it
resides in a subset D of the parameter space Rp, then πprior(θ) ∼ U(D) is a
uniform distribution over D.

Remark 11.1. Note that the parameter estimation techniques of Sec-
tion 10.1 can be seen as strategies yielding point estimates without any
reference to underlying statistical models. However, when a Gaussian as-
sumption is made in the Bayesian framework, the regularization term and
the norms ‖ · ‖Σ−1

ε
, ‖ · ‖Σ−1

p
and the value θp have a clear interpretation in

terms of measurement noise and prior probability distribution. Hence, a
prior that carries sufficient information about the true underlying structure
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of the parameters often provides more meaningful estimates and regularizes
the inverse problem in a more natural way than relying on abstract regu-
larization terms, as in (10.4), that might not have any interpretation. The
benefit of casting parameter estimation problems in the form of inverse UQ
problems is that one is also able to characterize the variance of the predic-
tion due to measurement and model errors more precisely than from the
single-point estimates.

Exploring the posterior distribution in the case where the input space D
has a larger dimension than p = 2 or 3 calls into play suitable sampling
methods, among which the Markov chain Monte Carlo (MCMC) techniques
are the most relevant example. Instead of evaluating the posterior PDF at a
single point, an MCMC technique is a systematic way to generate a sample
which can be used to explore the distribution, as well as to perform Monte
Carlo integration as in (11.1) in order to compute the conditional mean
or conditional covariance, for example. In the former case, the posterior
π(θ | z) plays the role of target probability distribution that we want to
explore, and is obtained as a realization of a Markov chain by relying on
the following Metropolis–Hastings algorithm, for example.

(1) Pick an initial θ1.

(2) For m = 1, . . . ,M :

(a) Compute π(θm | z).

(b) Draw w ∼ N (0,Σε) and take a random step to find the next

candidate θ̂ = θk +w.

(c) Compute π(θ̂ | z).

(d) Define the acceptance ratio

αm = min

{
1,

π(θ̂ | z)

π(θm | z)

}
.

(e) Let u ∼ U([0, 1]). If u ≤ αm, accept, set θm+1 = θ̂, and add to the
set of samples Ξ; otherwise reject, and keep θm+1 = θm.

After M steps of the algorithm, the set Ξ of samples contains realizations
of the probability distribution π(θ | z). The random step in point (b) from
the current sample to the next candidate is distributed as white noise; its
covariance should be chosen as large as possible while still maintaining a
reasonable acceptance rate. Moreover, the initial points of the generated
set usually represent the distribution to be explored poorly, and are then
removed from the sample. To learn more on MCMC algorithms we refer to

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


536 A. Quarteroni, A. Manzoni and C. Vergara

Kaipio and Somersalo (2005), Robert and Casella (2004) and Voss (2013),
and references therein.

11.2.2. Dynamical problems
Backward UQ problems whose forward system is stationary, or with obser-
vations that are not acquired sequentially in time, can be cast in the form
of a Bayesian inverse problem, as shown in the previous section. In these
cases, backward UQ can be formulated in the Bayesian framework by means
of Bayesian filtering methods, among which the Kalman filter can be seen as
a particular instance. These problems are also referred to as non-stationary
inverse problems. As in Section 10.2, depending on the quantities that have
to be estimated, the problem can be formulated as a state estimation or a
joint state/parameter estimation problem. We will treat both these cases
but will limit our discussion to finite-dimensional models (which usually
arise from space and time discretization of unsteady PDEs) and using time-
discretized evolution models. Further discussion can be found in Kaipio
and Somersalo (2005), Särkkä (2013), Sullivan (2015) and Houtemaker and
Zhang (2016), for example.

Let {Xk}Kk=0 and {Zk}Kk=1 denote two stochastic processes; the former is
related to the quantity we are interested in, whereas the latter represents
the measurement. In particular, the random vector Xk ∈ Rnx is referred
to as the state vector, whereas the random vector Zk ∈ Rnz is referred to
as the observation, both considered at the kth time τk. From a Bayesian
standpoint, the goal is to use the observations until time k to get information
about the state Xk and quantify the uncertainty related to this estimate.
To frame this problem in the Bayesian setting, we assume that {Xk}Kk=0

and {Zk}Kk=1 are an evolution/observation model, as follows.

(1) {Xk}Kk=0 and {Zk}Kk=1 are Markov processes, that is,

π(xk+1 | x0,x1, . . . ,xk) = π(xk+1 | xk), k = 0, 1, . . . ,

π(zk | x0,x1, . . . ,xk) = π(zk | xk), k = 1, 2, . . . .

(2) {Xk}Kk=0 depends on the past observations only through its own his-
tory, that is,

π(xk+1 | xk, z1, . . . ,zk) = π(xk+1 | zk), k = 0, 1, . . . .

Here xk, zk denote the realizations of the processes {Xk}Kk=0 and {Zk}Kk=1,
respectively. In order to characterize such a model, we need to specify
the PDF of the initial state X0, πprior(x

0), the so-called transition kernel
π(xk+1 | xk), k = 0, 1, . . . and the conditional probability π(zk | xk), k =
1, 2, . . . , the so-called (conditional) likelihood function. We assume a state
evolution equation of the form

Xk+1 = fk+1(Xk,V k+1), k = 0, 1, . . . (11.3)
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and an observation equation of the form

Zk = hk(Xk,W k), k = 1, 2, . . . . (11.4)

Here fk+1 and hk are known functions, whereas V k+1 ∈ Rnx and W k ∈
Rnz denote the state noise and the observation noise, respectively. We
want to determine the conditional PDF π(xk | Dk) of the state at the
kth time instant given the observations Dk = (z1, . . . ,zk) up to the same
time instant; this procedure is usually referred to as filtering problem. By
recursive application of Bayes’ theorem, we have the following.

• The time evolution updating, i.e., the problem of determining π(xk+1 |
Dk) given π(xk |Dk) and the transition kernel π(xk+1 | xk), provides

π(xk+1 |Dk) =

∫
Rnx

π(xk+1 | xk)π(xk |Dk) dxk. (11.5)

• The observation updating, i.e., the problem of determining the posterior
distribution π(xk+1 | Dk+1) of Xk | Dk based on the new observation
Zk+1 given π(xk+1 | Dk) and the likelihood function π(zk+1 | xk+1),
provides

π(xk+1 |Dk+1) =
π(zk+1 | xk+1)π(xk+1 |Dk)

π(zk+1 |Dk)
, (11.6)

where

π(zk+1 |Dk) =

∫
Rnx

π(zk+1 | xk+1)π(xk+1 |Dk) dxk+1.

Formula (11.6) is Bayes’ formula, where π(xk+1 | Dk) is considered as
the prior distribution for xk+1.

The Kalman filter introduced in Section 10.2.1 is a remarkable instance
of Bayesian filter method. Indeed, let us assume that the state and the
observation equations are linear with additive noise processes, that is,

fk+1(xk,vk) = Ak|k+1x
k + vk, hk = Hkx

k +wk,

for given matrices Ak|k+1, Hk, that the noise vectors V k+1 and W k are
mutually independent, Gaussian, with zero mean and known covariances
Qk+1 and Rk, respectively, and that the prior PDF of X0 is Gaussian with
mean m0 and covariance P 0. Under these assumptions, the time evolu-
tion and the observation updating formulas (11.3, 11.4) involve Gaussian
distributions, whose means and covariances can be updated at each step
according to prediction formulas (10.15a, 10.15b) and correction formulas
(10.15d, 10.15e), respectively. In particular, we have that

π(xk+1 | xk) ∼ N(Ak|k+1x
k, Qk),

π(zk | xk) ∼ N(Hkx
k, Rk).
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The Bayesian filtering equations can be evaluated in closed form, yielding
the following Gaussian distributions:

π(xk |Dk−1) ∼ N (mk
f , P

f
k ),

π(xk |Dk) ∼ N (mk
a, P

a
k ),

π(zk |Dk−1) ∼ N (Hkm
k
f , HkP

f
kH

T
k +Rk),

where the means and the variances can be computed with the Kalman filter
prediction step

mk
f = Ak−1|km

k−1,

P fk = Ak−1|kP
a
k−1A

T
k−1|k +Qk−1

(11.7)

and the consequent correction step

Kk = P fkH
T
k (HkP

f
kH

T
k +Rk)

−1,

mk
a = mk

f + Fk(z
k −Hkm

k
f ), (11.8)

P ak = (I −KkHk)P
f
k .

In other words, under the Gaussian assumption, the density is updated only
through the mean and the covariance. A similar interpretation also holds for
the EKF, as soon as a Gaussian approximation of the densities is considered,
and the evolution of these densities is taken into account. In this respect,
Bayesian filtering can be seen as a generalization of deterministic filters,
such as the KF, EKF and UKF introduced in Section 10.2.

As already remarked in Section 10.2.2, when the evolution model is fully
non-linear, the EKF, which can be seen as a particular instance of an ap-
proximate Gaussian filter, may perform badly: this can be explained by
considering that the push-forward of the previous state estimate (which has
a Gaussian distribution) by a non-linear map is poorly approximated by a
Gaussian distribution. To avoid the linearization of the evolution and the
observation models, one can rely on Monte Carlo methods to simulate the
distributions by random samples, similarly to what has been done in the
static case. This strategy yields the so-called particle filters (also referred
to as sequential Monte Carlo methods), now very popular for complex back-
ward UQ problems.

The goal of a particle filter is to produce an ensemble {xk|k1 , . . . ,x
k|k
Ne
}

of Ne particles sequentially, that is, a random sample distributed accord-
ing to the conditional probability distribution π(xk | Dk). The ensemble
Kalman filter (EnKF), introduced by Evensen (1994, 2003), is a particle
filter exploiting the idea of approximating the means and the covariances
of the current estimate involved in the Kalman filter prediction-correction
strategy by a set of particles sampled from the distribution. Unlike the
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Kalman filter itself, we evaluate the error covariance predictions and cor-
rections by the ensemble covariance matrices around the corresponding en-
semble mean, instead of classical covariance equations (10.15b–10.15e) given
in the KF algorithm. The covariance matrices of the state vectorX need not
be evolved, thus eliminating the costs associated with storing, multiplying
and inverting the matrices appearing in the equations (10.15b–10.15e).

The ensemble is initialized by drawing Ne independent particles from,
say, a Gaussian distribution with mean m0 and covariance P0.

• At each prediction step, each particle is evolved using the Kalman filter
prediction step,

xk|k−1
e = Ak−1|kx

k−1|k−1
e + vk−1

if the system is linear, or

xk|k−1
e = fk(xk−1|k−1

e ,vk−1)

if the system is non-linear.

• At each correction step, the observation zk is replicated Ne times, ob-
taining

dke = zk + ηke , ηke ∼ N(0, Rk).

Then, the empirical mean

x̄k|k−1
e =

1

Ne

Ne∑
e=1

xk|k−1
e

and the empirical covariance

CEk|k−1 =
1

Ne − 1

Ne∑
e=1

(
xk|k−1
e − x̄k|k−1

e

)(
xk|k−1
e − x̄k|k−1

e

)T
of the particles set {xk|k−1

e }Nee=1 are computed. The exact Kalman gain
is then approximated by

KE
k = CEk|k−1H

T
k (HkC

E
k|k−1H

T
k +Rk)

−1

and, finally, the state correction is obtained by applying the formula
(10.15d) to each particle, that is,

xk|ke = xk|k−1
e +KE

k (dke −Hkx
k|k−1
e ).

Several alternative implementations can be found, for example in Evensen
(1994, 2009); for more on the ensemble Kalman filter, see also Iglesias,
Law and Stuart (2013), Kelly, Law and Stuart (2014), Ernst, Sprungk and
Starkloff (2014) and Houtemaker and Zhang (2016).
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If the backward UQ problem also involves random inputs (as in the case
of model parameters θ, which can also be time-varying), the problem of
state estimation and parameter estimation simultaneously arises. Generally
speaking, there is no unique optimal solution for this problem. Similarly to
the state augmentation technique presented in Section 10.2, a possible way
to face this problem is to treat the unknown parameters θ as part of the
state, and use conventional filtering technique to infer the parameter and
state simultaneously. This strategy goes by the name of joint estimation:
see e.g. Moradkhani, Sorooshian, Gupta and Houser (2005), Ching, Beck
and Porter (2006) and Evensen (2009) for more details. An example related
to cardiovascular modelling where an EnKF can be exploited to deal with
state and parameter estimation is addressed in Section 11.3.2.

11.3. Applications to cardiovascular modelling

Until recently, UQ has not been a priority for cardiovascular modelling.
Today, a growing number of works focus on both forward and inverse UQ
problems, taking into account uncertainties related to (i) measurement er-
rors in experimental data (also referred to as observational uncertainty),
(ii) model parameters, which may result from observational uncertainty as
well as from variability, or lack of information, (iii) boundary and/or ini-
tial conditions and, possibly, (iv) the computational model itself, because
of model limitations (model uncertainty) or systematic approximation er-
rors (which can be seen as a form of epistemic uncertainty) introduced,
for example, when the original high-fidelity model is replaced by a cheaper
surrogate model or a reduced-order model. The list of contributions we
mention is inevitably incomplete.

The effect of uncertain parameters in one-dimensional models of the arter-
ial network was first considered by Xiu and Sherwin (2007), who exploited a
high-order stochastic collocation method based on the generalized polyno-
mial chaos expansion, combined with a discontinuous Galerkin spectral/hp
element discretization in physical space, in order to analyse the effects of
parametric uncertainties related to material properties and the initial cross-
sectional area of the arterial vessel in pulse wave propagation, in a network
of up to 37 vessels connected via 16 bifurcations. Chen, Quarteroni and
Rozza (2013) have considered a more general setting, taking into account a
wider network and many more sources of parametric uncertainties, including
parameter-dependent boundary conditions in each distal boundary site and
geometric parameters describing the cross-section area in each arterial seg-
ment. Similar problems, involving both sensitivity analysis and uncertainty
propagation for networks built over patient-specific datasets, can be found
in Leguy et al. (2011), Huberts et al. (2013a, 2013b) and Brault, Dumas
and Lucor (2017).
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The use of an adaptive stochastic collocation framework to deal with UQ
in haemodynamic simulations has been considered by Sankaran and Mars-
den (2011), who extract relevant haemodynamic features – and quantify
their uncertainty – for two idealized problems, namely an abdominal aortic
aneurysm and a carotid artery bifurcation, and for a patient-specific prob-
lem, a Fontan procedure for congenital heart defects. In the former case, for
instance, the radius of the abdominal aortic aneurysm, the radius and inflow
velocity of the carotid artery bifurcation, and the flow split of the left and
right pulmonary arteries are treated as random variables, following either
Gaussian or uniform distributions, to account for the uncertainty impact on
blood flows described by three-dimensional Navier–Stokes equations with
rigid walls in small arterial portions. More detailed versions of this method-
ology have recently been exploited by Sankaran, Grady and Taylor (2015)
and Sankaran, Kim, Choi and Taylor (2016) to analyse the impact of geo-
metric uncertainties (i.e. anatomic uncertainties resulting in errors in the
reconstructed geometry) and physiological uncertainties (yielding errors in
boundary conditions or blood viscosity) for the blood flow and pressures in
the coronary arteries.

The problem of calibrating outflow boundary conditions of blood flow sim-
ulations in truncated arterial domains has been cast in a Bayesian framework
by D’Elia and Veneziani (2013) and Perdikaris and Karniadakis (2015), with
the goal of quantifying the uncertainty affecting velocity and flow-related
variables of interest, all treated as random variables.

A complete uncertainty propagation pipeline from clinical data to com-
putational results has been considered by Schiavazzi et al. (2016), focus-
ing on an example of single ventricle palliation surgery. After determining
the probability density functions of right pulmonary artery flow split and
average pulmonary pressures from clinical measurements, Bayesian para-
meter estimation is carried out in order to characterize the distributions of
boundary conditions yielding the observed flow splits and average pressure
distributions. Then, uncertainties in the boundary conditions are propag-
ated to simulation predictions by employing sparse grid stochastic colloca-
tion to statistically characterize model predictions of post-operative haemo-
dynamics in models with and without pulmonary artery stenosis, in order
to quantify the statistical variability in virtual surgery predictions. Finally,
the impact of uncertainty on the optimal design of idealized bypass graft
models has been considered by Sankaran and Marsden (2010) and Lassila
et al. (2013a, 2013b), for example.

Regarding cardiac electrophysiology, a systematic application of UQ tech-
niques to the forward problem of electrocardiography (i.e. the characteriza-
tion of the torso potential given the electrical conductivity inside the heart
and the torso) has been considered by Geneser, Kirby and MacLeod (2008),
focusing on a simplified 2D configuration representing a geometric model of
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a slice through the human thorax. The forward UQ propagation problem
yielding the standard deviation of the resulting stochastic torso potentials
depending on several uncertainties affecting, for example, the electrical con-
ductivities of the organs and the representation of cardiac sources, has been
tackled by a stochastic Galerkin method based on the generalized polyno-
mial chaos expansion. Model personalization in cardiac electrophysiology
has been considered by Konukoglu et al. (2011), who applied an efficient
Bayesian method exploiting polynomial chaos and compressed sensing to
an eikonal-diffusion model involving a large (> 10) number of parameters,
by integrating uncertainty on data and parameters.

Johnstone et al. (2016) have addressed a UQ framework for cardiac ac-
tion potential models, focusing on (i) the inverse UQ problem of inferring
the maximal conductance of ionic channels from noisy experimental record-
ings, and (ii) the forward UQ problem of propagating the uncertainty in
maximal ion channel conductances to suitable outputs of interest, such as
the action potential duration. To solve the inverse UQ problem a Bayesian
framework, such as that described in Section 11.2, has been successfully
employed, whereas the UQ propagation problem has been tackled by means
of a Monte Carlo approach exploiting suitable surrogate models, such as
Gaussian process emulators, to speed up the evaluation of the system model
under analysis. A detailed analysis of the mechanisms underlying physiolo-
gical variability in cardiac electrophysiology and pro-arrhythmic risks under
a variety of conditions can be found in Muszkiewicz et al. (2016).

Concerning heart electromechanics, Osnes and Sundnes (2012) have ad-
dressed the quantification of the effect of uncertainties in the fibre orienta-
tion and the elasticity parameters included in the strain energy function on
global output quantities such as the increase in cavity volume, the elongation
of the ventricle, the increase in the inner radius, the decrease in wall thick-
ness, and the rotation at the apex during the passive filling phase. Wallman,
Smith and Rodriguez (2014) have estimated cardiac tissue properties by in-
tegrating structural information with electrophysiological data from electro-
anatomical mapping systems, for example. By means of Bayesian inference
tools, they obtained a simultaneous description of clinically relevant elec-
trophysiological conduction properties and their associated uncertainty for
various levels of noise, together with suitable design strategies to optimize
the location and number of measurements required to maximize information
and reduce uncertainty. A relevant application of UQ techniques to non-
linear biomechanics has been considered by Biehler, Gee and Wall (2015),
where parametric uncertainties related to the constitutive law for the artery
wall of an AAA are modelled as random fields. In particular, Biehler et al.
use a lognormal three-dimensional random field to describe the inter- and
intra-patient variations of one constitutive parameter of a hyperelastic con-
stitutive model, and sampling-based approaches such as Monte Carlo to
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solve the resulting stochastic mechanical problem. A multi-fidelity Bayesian
framework incorporating information from different low-fidelity models has
been developed to speed up the intensive approximation of the resulting
problem, following some general ideas reported by Kennedy and O’Hagan
(2000) and Koutsourelakis (2009). Employment of surrogate models or more
reliable reduced-order models (for more on this subject, see Section 12) to
speed up the numerical solution of direct and inverse UQ problems is in-
deed a powerful alternative to stochastic collocation and stochastic Galerkin
methods. However, they have only been partially touched on in the case
of simple problems, for example in the works of Cui, Marzouk and Willcox
(2015), Chen and Schwab (2015), Dihlmann and Haasdonk (2016), Manzoni,
Pagani and Lassila (2016) and Pagani et al. (2016).

11.3.1. Backward uncertainty propagation in a simplified blood flow model

We want to compare the solution of a parameter estimation problem in
a variational framework and in a Bayesian setting, on a simplified blood
flow problem. We consider a two-dimensional section of a carotid artery
bifurcation where the diameters dc, db of the common carotid artery (CCA)
at the bifurcation and of the mid-sinus level of the internal carotid artery
(ICA) are the input parameters, assumed to be uncertain. In this idealized
setting, our goal is to identify θ = (dc, db)

T from the observation of the
mean pressure drop

z =
1

|Γin|

∫
Γin

p dγ − 1

|ΓICA|

∫
ΓICA

p dγ

between the internal carotid outflow ΓICA and the inflow Γin: see Fig-
ure 11.2(a). For simplicity, a steady incompressible Navier–Stokes model
is employed to model the blood flow, although the same approach concern-
ing the solution of the inverse UQ problem can be applied to the case of an
unsteady fluid model, as soon as a peak (or time average) pressure drop is
evaluated. Although presented here in a very simplified way for the sake of
illustration, the problem of recovering information about vessel features by
evaluating physical indices related to flow variables is of general interest for
diagnostic purposes too. For instance, fractional flow reserve is a procedure
exploited in coronary catheterization to measure pressure differences across
a coronary artery stenosis in order to determine the degree of stenosis.

The parameter estimation problem is first solved by minimizing a least-
squares functional for different observations of the pressure drop, z = −1400
and z = −2200, by assuming 5% relative additive noise in the measure-
ments. The results of the inverse identification problem are represented
in Figure 11.2(b) for 100 realizations of random noise in both cases. The
recovered diameter values are shown to be quite sensitive to small noise
variations. This is due to the fact that several geometric configurations – in
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(a) (b)

(c)

(d)

(e)

Figure 11.2. (a) Velocity profiles (cm s−1) for different carotid bifurcations para-
metrized with respect to the diameters dc, db. (b) Variational parameter estimation
and isolines of the pressure drop. (c) Two different choices of the prior distribution
on diameters θ = (dc, db)

T . (d, e) Results of the backward UQ problem obtained
with the priors in (c) with observed pressure drop zobs = −1400 and zobs = −2200
(dyn cm−2), respectively. Numerical results were obtained using the MATLAB
finite element library MLife.
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terms of diameters (dc, db) – may correspond to the same output observa-
tion. The backward UQ propagation problem is then solved in a Bayesian
setting, characterizing the posterior PDF of θ = (dc, db) starting from a
Gaussian prior and assuming a Gaussian model to describe experimental
noise. In particular, we can assume that the two diameters are either a pri-
ori independent (case (c), left), or correlated (case (c), right)). The two cor-
responding posterior distributions, obtained for the observations z = −1400
and z = −2200 of the pressure drop, are shown in Figure 11.2(d, e).

11.3.2. Backward uncertainty propagation in cardiac electrophysiology

We finally consider the problem of identifying the size and the position of
an ischaemic region in the myocardial tissue, as a remarkable instance of
a backward UQ problem dealing with cardiovascular applications. Such a
problem case can be cast in the form of a joint state/parameter estimation
problem, and can be tackled efficiently by an EnKF technique.

The state evolution equation is given by the (space and time discretiz-
ation of the) monodomain equation for the trans-membrane potential Vm,
coupled with an Aliev–Panfilov cellular model involving a single gating vari-
able w; the state variable is thus u = (Vm, w)T . Similarly to the example
in Section 11.1, to represent lack of conductivity in the tissue we introduce
the relative conductivity σ = σ(x;θ) ∈ [0, 1]; σ = 1 and σ = 0 correspond
to proper electrical conduction or total lack of conductivity, respectively.

Since the position and the extension of the ischaemic region is unknown,
σ(x;θ) is a random field. To make its representation low-dimensional,
we parametrize the field σ(x;θ) in terms of p = 20 random inputs θ =
(θ1, . . . , θ20)T entering into a linear combination of p = 20 radial basis func-
tions (RBFs), around p given centres {xi}20

i=1,

σ(x;θ) =
1

ν(x)

p∑
i=1

θi exp

(
−‖x− xi‖

2

λ2

)
, ν(x) =

p∑
i=1

exp

(
−‖x− xi‖

2

λ2

)
,

where ν(x) is a normalization factor so that σ(x;θ) ∈ [0, 1]. We con-
sider a patient-specific left-ventricle geometry, and assume that a dataset
z1, . . . ,zK is acquired sequentially over a time interval. In particular, at
each time τk, k = 1, . . . ,K, data are given by the trans-membrane potential
values computed at a set of nine points located on the endocardium, contam-
inated by Gaussian noise with zero mean and known covariance, to simulate
the effect of experimental noise while evaluating the so-called simultaneous
endocardial mapping in the human left ventricle; these invasive measure-
ments are usually obtained using a non-contact catheter (see e.g. Schilling,

Peters and Davies 1998, Álvarez et al. 2012). For the sake of the computa-
tional experiment, we assume that the data zk, k = 1, . . . ,K, are generated
by the monodomain model with relative conductivity σ∗ = σ∗(x;θ∗) for
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a particular choice θ = θ∗ of the input vector, that is,

zk = h(u(θ∗)) + ηk, ηk ∼ N(0, Rk).

The goal is thus to recover the (posterior) PDF of θK |Dk given the observa-
tions Dk = (z1, . . . ,zk), evaluate the conditional mean θKCM = E[θK |Dk],
and finally estimate the conductivity field as σ(x;θKCM).

Starting from a prior distribution for the input vector θ0 ∼ U([0, 1]20),
reflecting the lack of information about the possible presence and posi-
tion of the ischaemic region, we rely on the EnKF to produce sequen-
tially an ensemble {θke}

Ne
e=1 of Ne particles distributed according to the

conditional distribution π(θk | Dk), and the associated ensemble of Ne

states {uk|k(θke)}
Ne
e=1. Hence, starting from the initial ensemble {P(0),U (0)}

sampled from the prior distribution, the prediction-analysis procedure of
the EnKF is given by the following two-stage recursion.

(1) At each prediction step, compute the solution uk|k−1(θk−1
e ) of the state

system over [τk−1, τk) with initial datum uk|k−1(θk−1
e ).

(2) At each correction step, the observation zk is replicated Ne times,
obtaining

dke = zk + ηke , ηke ∼ N(0, Rk).

Then, compute the sample means

uk|k−1 =
1

Ne

Ne∑
e=1

uk|k−1(θk−1
e ),

sk|k−1
e =

1

Ne

Ne∑
e=1

h(uk|k−1(θk−1
e )),

θ
k−1
e =

1

Ne

Ne∑
e=1

θk−1
e , (11.9)

and the sample covariances

Ck
ss =

1

Ne − 1

Ne∑
e=1

vev
T
e ∈ Rnz×nz , (11.10)

Ck
θs =

1

Ne − 1

Ne∑
e=1

(θk−1
e − θk−1

e )vTe ∈ Rp×nz , (11.11)

Ck
us =

1

Ne − 1

Ne∑
e=1

(uk|k−1(θk−1
e )− uk|k−1)vTe ∈ Rnx×nz , (11.12)

where ve = h(uk|k−1(θk−1
e )). Finally, the state/parameter ensembles
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(a)

(b)

(c)

Figure 11.3. (a) 5% quantile, mean and 95% quantile of the uniform prior distri-
bution of θ0. (b) Identification of p = 20 parameters via the EnKF algorithm.
Reference values θ∗i , i = 1, . . . , 20, estimates (θ̄ke )i and confidence intervals are
reported in dotted red, solid blue and dotted blue lines, respectively. (c) 5%
quantile, conditional mean and 95% quantile of the posterior distribution of θK .
Numerical results were obtained using the finite element library redbKIT v2.1
(github.com/redbKIT/redbKIT/releases).

are updated via the Kalman formula[
θke

uk|k(θke)

]
=

[
θk−1
e

uk(θk−1
e )

]
+

[
Ck
θz

Ck
uz

]
(Rk+Ck

zz)
−1(dke−h(uk|k−1(θk−1

e ))),

(11.13)
for e = 1, . . . , Ne.

The numerical results obtained by this procedure are shown in Figure 11.3.
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The data were generated by the monodomain model with the relative con-
ductivity field σ∗ = σ∗(x;θ∗) shown in Figure 11.3(a); a uniform prior dis-
tribution θ0 ∼ U([0, 1]20) is assumed. After executing the EnKF algorithm,
we obtain the posterior distribution whose mean and 5%, 95% quantiles
are shown in Figure 11.3(c). The uncertainty in the input parameters is
greatly reduced, while the conditional mean of the posterior distribution
correctly approximates the realization of the random field reported on the
left, by which data exploited for the sake of parameter estimation have been
generated.

12. Reduced-order modelling

As seen in Sections 9–11, several numerical strategies used to tackle PDE-
constrained optimization, parameter estimation and uncertainty quantifica-
tion problems arising in cardiovascular modelling involve the approximation
of PDE systems for several input parameter values. On the other hand, the
repeated evaluation of input/output maps to characterize different scenarios
requires many queries to numerical models too. Further, if quantitative out-
puts are meant to support clinicians and medical doctors in their decisions,
each new numerical simulation should be carried out very rapidly (order of
minutes, say) on deployed platforms rather than on huge parallel hardware
architectures, possibly requiring limited data storage and memory capa-
city. Meeting all these requirements is a challenging task, with the result
that traditional high-fidelity, or full-order, techniques (e.g. the finite element
method) are ill-suited, despite the constant growth of computer resources
available.

Reduced-order models (ROMs) are emerging methodologies aimed at re-
ducing the computational complexity and costs entailed by the repeated
solution of PDE problems (Antoulas 2005, Benner, Gugercin and Willcox
2015, Quarteroni and Rozza 2014). In the case of parametrized PDEs (i.e.
PDEs depending on a vector of parameters µ ∈ P ⊂ Rp), the reduced basis
(RB) method is a remarkable example of a ROM that enables dramatic
reduction of the dimension of the discrete problems arising from numer-
ical approximation – from millions to hundreds, or thousands at most, of
variables.

Here, y(t;µ) denote the solution of a time-dependent non-linear problem
(µ ∈ P ⊂ Rp denotes a set of input parameters) of the form

M(µ)
dy(t;µ)

dt
+A(µ)y(t;µ) + F (y(t;µ)) = f(t;µ), t ∈ (0, T ],

y(0;µ) = y0(µ),
(12.1)

stemming from the (e.g. finite element) discretization of a parametrized
PDE, where A(µ) ∈ RNh×Nh , M(µ) ∈ RNh×Nh and F (µ) : RNh → RNh are

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


Modelling the cardiovascular system 549

three operators corresponding to the linear, mass and non-linear terms of
the PDE.

The dimensional reduction is made possible by exploiting the paramet-
ric dependence of the solution manifold, that is, the set Mh = {y(t;µ) :
t ∈ (0, T ],µ ∈ P}, thanks to the evaluation of a database of solutions, or
snapshots, for selected parameter values, and to a (Petrov–) Galerkin pro-
jection onto the RB space spanned by a set of RB functions. In the case of
a stationary problem, these latter are the snapshots themselves if a greedy
algorithm is used, or the first singular vectors of the snapshot matrix if
proper orthogonal decomposition (POD) is used: see e.g. Quarteroni, Man-
zoni and Negri (2016), Hesthaven, Rozza and Stamm (2016) and Cohen and
DeVore (2015). For time-dependent problems, the parameter space can still
be sampled by relying on one of the two techniques mentioned, whereas
POD is usually exploited to reduce trajectories of the system over the time
interval.

Hence, the RB method seeks an approximation VNyN (t;µ) ≈ y(t;µ)
to the solution of (12.1), where yN (t;µ) is the reduced state vector and
VN = [v1, . . . ,vN ] ∈ RNh×N is a matrix stacking the RB functions by
columns. One possible RB approximation of (12.1) might be

MN (µ)
dyN (t;µ)

dt
+AN (µ)yN (t;µ)

+V T
N F(VNyN (t;µ)) = fN (t;µ), t ∈ (0, T ]

yN (0;µ) = yN,0(µ), (12.2)

where

AN (µ) = V T
NA(µ)VN , MN (µ) = V T

NM(µ)VN , fN (t;µ) = V T
N f(t;µ).

The arrays appearing in (12.2) can be efficiently assembled in a rapid on-
line phase by combining parameter-independent quantities stored during a
more expensive offline phase. Suitable hyper-reduction techniques are in-
stead required to manage non-linear terms, in order to make their assembly
independent of the dimension Nh of the high-fidelity problem.

We emphasize that a RB method requires the solution of some full-order
– and therefore very expensive – discrete equations. The key idea is that
these demanding calculations can be done offline, before the optimization
with respect to the control parameters, or the parameter estimation, is at-
tempted. In fact, the cost of each optimization step performed online is
much smaller than that involving the full-order state approximation; simil-
arly, computing the evolution of a particle set in the ensemble Kalman filter
algorithm by querying the ROM can thus be performed in a substantially
inexpensive way.

Describing the mathematical principles and numerical algorithms under-
lying the RB method would take us a long way; interested readers can find
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a detailed presentation in Quarteroni et al. (2016), for example. We limit
ourselves to citing some notable applications of the RB method to problems
of interest in cardiovascular modelling (this list is of course incomplete).
Parametrized blood flows in idealized cardiovascular geometries have been
considered by Lassila, Quarteroni and Rozza (2012), Manzoni, Quarteroni
and Rozza (2012a), Ballarin et al. (2016), Ballarin et al. (2017), Colciago
et al. (2014) and Negri (2016), taking into account more complex (and com-
putationally challenging) patient-specific configurations; in all these cases,
solutions of Navier–Stokes equations are computed with respect to inflow
and/or geometric parameters. Applications to PDE-constrained optimiza-
tion problems arising in the context of optimal design of prosthetic devices
can be found, for example, in Manzoni et al. (2012b) and Lassila et al.
(2013a). A reduced-order model based on POD is proposed for the bido-
main equations of cardiac electrophysiology in Boulakia, Schenone and Ger-
beau (2012), yielding the efficient approximation of a restitution curve and
the estimation of ionic parameters and infarction locations from synthetic
electrocardiograms with an evolutionary algorithm. More recently, Ger-
beau, Lombardi and Schenone (2015) have proposed alternative options in
this respect. Applications of POD to parameter estimation problems with
sequential filtering techniques can be found in Chapelle, Gariah, Moireau
and Sainte-Marie (2013b), and an application of the RB method to the
computational speed-up of Bayesian inverse problems related to blood flows
modelling has been reported by Lassila et al. (2013b) and Manzoni et al.
(2014).

We emphasize that while physical coefficients, boundary and/or initial
conditions, as well as source terms, can usually be described in terms of in-
put parameters in a straightforward way, the task of dealing with geometries
of varying shape is much more involved. In this latter case, additional tech-
niques providing flexible descriptions of complex shapes are required, pos-
sibly involving few parameters. Notable examples are given by volume-based
representations, which operate on a control volume and define parametric
maps by introducing a set of control points over the control volume; con-
trol point displacements, actually inducing a shape deformation, can thus
be treated as input parameters. Within this class, free-form deformation
techniques and interpolants constructed over a family of radial basis func-
tions have been successfully employed; for further details see Manzoni et al.
(2012a, 2012b) and Ballarin et al. (2016). We also point out that the need to
derive flexible and low-dimensional parametrizations is not confined to the
realm of RB methods for parametrized PDEs. Indeed, it also arises when
dealing with random inputs or fields; in this latter case, input uncertainties
are usually parametrized with respect to a finite number of random vari-
ables, corresponding to the retained terms after truncating Karhunen–Loève
or polynomial chaos expansions.
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The analysis, development and application of reduced-order modelling
techniques is a very active field in the numerical approximation of PDEs.
Without any doubt, cardiovascular applications are one of the most relevant
testing environments.

Disclaimers

Despite being 590 pages long,6 several topics related to the cardiovascular
system have not been addressed in this review paper. Among others, we
mention the venous system (essential if one wants to consider a closed-
loop model of the cardiovascular system, and playing a crucial role in some
specific pathologies: see e.g. Toro 2016), the metabolic system (D’Angelo
2007), the respiratory system (Maury 2013, Wall, Wiechert, Comerford and
Rausch 2010, Trenhago et al. 2016), the cerebro-spinal fluid circulation (Fin
and Grebe 2003), the nervous system (Liang and Liu 2006), and the lymph-
atic system (Margaris and Black 2012). For some of them (e.g. the venous
and respiratory systems) research has made remarkable progress in recent
years. Nonetheless, the mathematical investigation of these systems is still
in its infancy; in particular, their coupling with the cardiovascular system is
almost absent. Many research avenues are open to the contribution of both
pure and applied mathematicians, with the dream of enabling mathematical
achievements to play a decisive role in everyday clinical practice.
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unterworfen sind’, Abhandlungen aus dem Mathematischen Seminar der Uni-
versität Hamburg 36, 9–15.

F. Nobile (2001), Numerical approximation of fluid–structure interaction prob-
lems with application to haemodynamics. PhD thesis, Ecole Polytechnique
Fédérale de Lausanne. Thesis 2458.

F. Nobile and C. Vergara (2008), ‘An effective fluid–structure interaction formu-
lation for vascular dynamics by generalized Robin conditions’, SIAM J. Sci.
Comput. 30, 731–763.

F. Nobile and C. Vergara (2012), ‘Partitioned algorithms for fluid–structure inter-
action problems in haemodynamics’, Milan J. Math. 80, 443–467.

F. Nobile, M. Pozzoli and C. Vergara (2013), ‘Time accurate partitioned algorithms
for the solution of fluid–structure interaction problems in haemodynamics’,
Comput. Fluids 86, 470–482.

F. Nobile, M. Pozzoli and C. Vergara (2014), ‘Inexact accurate partitioned al-
gorithms for fluid–structure interaction problems with finite elasticity in
haemodynamics’, J. Comput. Phys. 273, 598–617.

F. Nobile, R. Tempone and C. Webster (2008), ‘A sparse grid stochastic collocation
method for partial differential equations with random input data’, SIAM J.
Numer. Anal. 46, 2309–2345.

J. Nocedal (1992), Theory of algorithms for unconstrained optimization. In Acta
Numerica, Vol. 1, Cambridge University Press, pp. 199–242.

D. Nordsletten, M. McCormick, P. Kilner, P. Hunter, D. Kayand and N. Smith
(2011a), ‘Fluid–solid coupling for the investigation of diastolic and systolic

https://doi.org/10.1017/S0962492917000046 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000046


578 A. Quarteroni, A. Manzoni and C. Vergara

human left ventricular function’, Int. J. Numer. Methods Biomed. Engrg 27,
1017–1039.

D. Nordsletten, S. Niederer, M. Nash, P. Hunter and N. Smith (2011b), ‘Coupling
multi-physics models to cardiac mechanics’, Prog. Biophys. Molec. Biol. 104,
77–88.
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bilitá delle soluzioni stazionarie’, Rendiconti del Seminario Matematico della
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