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Algebraic Multigrid Methods

Jinchao Xu and Ludmil Zikatanov∗

This paper is to give an overview of AMG methods for solving large scale systems
of equations such as those from the discretization of partial differential equations.
AMG is often understood as the acronym of “Algebraic Multi-Grid”, but it can also
be understood as “Abstract Muti-Grid”. Indeed, as it demonstrates in this paper, how
and why an algebraic multigrid method can be better understood in a more abstract
level. In the literature, there are a variety of different algebraic multigrid methods
that have been developed from different perspectives. In this paper, we try to develop
a unified framework and theory that can be used to derive and analyze different al-
gebraic multigrid methods in a coherent manner. Given a smoother R for a matrix A,
such as Gauss-Seidel or Jacobi, we prove that the optimal coarse space of dimension
nc is the span of the eigen-vectors corresponding to the first nc eigen-values of R̄A
(with R̄ = R + RT − RT AR). We also prove that this optimal coarse space can be ob-
tained by a constrained trace-minimization problem for a matrix associated with R̄A
and demonstrate that coarse spaces of most of existing AMG methods can be viewed
some approximate solution of this trace-minimization problem. Furthermore, we
provide a general approach to the construction of a quasi-optimal coarse space and
we prove that under appropriate assumptions the resulting two-level AMG method
for the underlying linear system converges uniformly with respect to the size of the
problem, the coefficient variation, and the anisotropy. Our theory applies to most
existing multigrid methods, including the standard geometric multigrid method, the
classic AMG, energy-minimization AMG, unsmoothed and smoothed aggregation
AMG, and spectral AMGe.
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1. Introduction

Multigrid methods are among the most efficient numerical methods for solving
large scale systems of equations, linear and nonlinear alike, arising from the dis-
cretization of partial differential equations. This type of methods can be viewed as
an acceleration of traditional iterative methods based on local relaxation such as
Gauss-Seidel and Jacobi methods. For linear systems arising from finite element
or finite difference discretization of elliptic boundary value problems, local relax-
ation method were observed to converge very fast on the high frequency part of the
solution. The low frequency part of the solution, although slow to converge, corre-
sponds to a relatively smoother part of the function that can be well-approximated
on a coarser grid. The main idea behind such multigrid methods is to project the
error obtained after applying a few iterations of local relaxation methods onto a
coarser grid. The projected error equations have two characteristics. Firstly, the
resulting system has a smaller size. Secondly, part of the slow-to-converge low fre-
quency error on a finer grid becomes relatively high frequency on the coarser grid
and these frequencies can be further corrected by a local relaxation method, but this
time on the coarse grid. By repeating such a process and going to further coarser
and coarser grids, a multilevel iterative process is obtained. Such algorithms have
been proven to have uniform convergence with nearly optimal complexity for a
large class of linear algebraic systems arising from the discretization of partial dif-
ferential equations, especially elliptic boundary problems of 2nd and 4th order.
One main component of this type of multilevel algorithm is a hierarchy of geomet-
ric grids, typically a sequence of nested grids obtained by successive refinement.
The resulting algorithms are known as geometric multigrid (GMG) methods.

Despite of their extraordinary efficiency, however, the GMG methods have their
limitations. They depend on a hierarchy of geometric grids which is often not
readily available and it can be argued that the range of applicability of the GMG
methods is, therefore, limited.

The Algebraic MultiGrid (AMG) methods were designed in an attempt to ad-
dress such limitations. They were proposed as means to generalize geometric
multigrid methods for systems of equations that share properties with discretized
PDEs, such as the Laplacian equation, but potentially have unstructured grids in
the underlying discretization. The first AMG algorithm in (Brandt, McCormick
and Ruge 1982a) was a method developed under the assumption that such a prob-
lem was being solved. Later, the AMG algorithm was generalized using many
heuristics to extend its applicability to more general problems and matrices. As a
result, a variety of AMG methods have been developed in the last three decades
and they have been applied to many practical problems with success.

In this paper, we give an overview of AMG methods from a theoretical view-
point. AMG methods have been developed through a combination of certain theo-
retical consideration and heuristic arguments, and many AMG methods work, with
various degrees of efficiency, for different applications. We find it very hard to give
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1 INTRODUCTION

a coherent picture on the state of the art of AMG methods if we choose to simply
make a comprehensive list of existing algorithms without digging into their the-
oretical foundation. But, unfortunately, a good theoretical understanding of why
and how these methods work is still seriously lacking.

In preparing this article, we have undertaken the task of making a thorough in-
vestigation on the design and analysis of AMG from a theoretical point of view.
While there are many bits and pieces of ideas spreading out in the literature, we
managed to re-examine most of the existing results and “re-invent the wheel” try-
ing to deliver a coherent theoretical description. To do this, we have developed
several tools for the design and analysis of AMG.

With very few exceptions, the AMG algorithms have been mostly targeting the
solution of symmetric positive definite (SPD) systems. In this paper, we choose
to present our studies for a slightly larger class of problems, namely symmetric
semi-positive definite (SSPD) systems. This approach is not only more inclusive,
but more importantly, the SSPD class of linear systems can be viewed as more
intrinsic to the AMG ideas. For example, while the standard discretizations of the
Laplacian operator with homogeneous Dirichlet boundary condition results in an
SPD system, the design of AMG may be better understood by using local problem
(defined on subdomains) with homogeneous Neumann boundary condition, which
would amount to an SSPD sub-systems.

In short, in this paper we consider AMG techniques for solving a linear system
of equations:

Au = f , (1.1)

where A is a given SSPD operator or sparse matrix, and the problem is posed in a
vector space of a large dimension. The starting point of an AMG procedure is to
first choose a smoother, which is often taken to be some local relaxation iterative
methods such as the point Jacobi, Gauss-Seidel method, or more generally, over-
lapping Schwarz methods. The use of pointwise smoothers seems to encompass
most of the efforts in the literature in constructing and implementing most (if not
all) of the AMG methods. More general smoothers based on overlapping Schwarz
methods are necessary for some problems, but we shall not study them in detail in
this paper. In any event, any chosen smoother is expected to only converge well on
certain components of solution, which will be known as algebraic high frequencies
with respect to the given smoother. With the smoother fixed, the main task of an
AMG method then is to identify a sequence of coarse spaces that would comple-
ment well this smoother. Roughly speaking, an ideal sequence of coarse spaces
is such that any vector (namely solution to (1.1) for any f ) in the finest space can
be well represented by a linear combination of all the algebraic high frequencies
on all coarse spaces. As a result, the AMG method would converge well for the
problem (1.1).

It is hard to make a theoretically concise statement for what is said above in
the multilevel setting. Instead we will focus on first answering such a question
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for a two-level setting. For a two-level setting, the first theoretical question is
as follows: “Given a smoother, say R, what is the optimal coarse space of given
dimension so that the resulting AMG has the best convergence rate?” This question
will be thoroughly addressed in §5. As it turns out, the optimal coarse space will
consist of the eigenvectors corresponding to the lower-end of the spectrum of the a
matrix such as RA. While our two level theory is theoretically pleasing, it does not
offer a practical solution as finding these eigenvectors will be too expensive. Thus,
the task of the AMG design is to find good but inexpensive approximation of this
algebraic low frequency eigen-space which will still result in an AMG algorithm
with desirable convergence properties. We call such an approximation of optimal
coarse space as “quasi-optimal” coarse space.

In the design of all these AMG algorithms, one key component is the coars-
ening of spaces or the graph associated with the matrix A. Two main strategies
are: independent-set based and the aggregation-based. We will present several
approaches on the construction of quasi-optimal coarse spaces. We would espe-
cially advocate two approaches that have sound theoretical foundation. The first
approach is outlined in §5 and later on in §11. We will first prove that the opti-
mal coarse space from the theory in §5 can be characterized, in a mathematically
equivalent manner, by solutions to a trace minimization problem. In a functional
setting, such a trace-minimization can be interpreted as minimization of the sum
of the energy norm of a set of coarse basis functions. These precise equivalents
give a very clear guidance how some AMG methods can be constructed. One
practical approach based on such a theorem is to look for energy-minimization ba-
sis functions among locally supported function classes. The resulting algorithms
are known as energy-min AMG. Other AMG methods, such as classical AMG
and aggregation-based AMG, can be viewed as approximations to the energy-min
AMG. The second approach is outlined in §6. The main idea is to construct quasi-
optimal coarse space by piecing together the low-end eigenspaces of some appro-
priately defined local operators or matrices. This approach can be used to pro-
vide quasi-optimal coarse spaces for various AMG methods, including the stan-
dard geometric multigrid method, the classic AMG, energy-minimization AMG,
unsmoothed and smoothed aggregation AMG, and spectral AMGe. As a sim-
ple example, this method relies on the fact that nc = Jm dimensional low-end
eigenspace of an operator can be well approximated by gluing together J-pieces
of m-dimensional low-end eigenspaces for some carefully chosen local operators.
Here m is a very small integer. For example, m = 1 for the for the Laplacian
operator and m = 3 (resp. m = 6) for 2−dimensional (resp. 3−dimensional) lin-
ear elasticity operator. This important property of eigenspaces is closely related to
the Weyl’s Lemma on the asymptotic behavior of eigenvalues for elliptic boundary
value problems, discussed in §2.3.

Most AMG methods are designed in terms of the adjacency graph of the coeffi-
cient matrix of a given linear algebraic system. In §7, we give a brief description
of graph theory and the adjacency graph of a sparse matrix. One highlight in §7
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1 INTRODUCTION

is the concept of M-matrix relative. This simple tool is instrumental in the design
and analysis of the classical AMG method.

One important step in the design of most AMG methods is to zero out some
entries of the coefficient matrix A by using the concept of strength of connec-
tions to get a filtered matrix Ã, which is equivalent to dropping out the weakly
connected edges in the adjacency graph G(A) to get G(Ã). Several definitions of
strength functions are introduced in §8 to describe the strength of connection. In
§9, the graph G(Ã) is then coarsened by either keeping a maximal independent set
(MIS) as a coarse vertex set C and the dropping the rest of grid, or use aggrega-
tion/agglomeration. In §9, some technical details are also given on the construction
of coarse space by using degrees of freedom.

By using the aforementioned general approaches and theoretical techniques, we
then motivate and present a number of AMG methods. Some of the highlights in
the paper are outlined below.

We first give an overview of GMG and its relationship with AMG in §10. After
describing some details in a typical GMG method for linear finite element matrix,
we argue that the geometric information used in defining a GMG is essentially the
graph information of the underlying finite element grid (without using other geo-
metric information such as coordinates of the grid points). This is a strong indica-
tion that at least some GMG method can be realized by a pure algebraic fashion:
only using the stiffness matrix, an algebraic smoother, and the adjacency graph of
the stiffness matrix. On the other hand, we prove that a GMG method can also be
formally obtained by our general AMG approach presented in §6. Furthermore,
we use the example of AMGe in §10.4 to demonstrate that geometric information
on the grid can be effectively used to construct a geometry-based AMG.

In §11, we give a detailed account on AMG methods based on energy-minimization.
We first present our new theory that the optimal coarse space shown in the 2-level
theory in §5 can be actually obtained through trace-minimization (§11.1). After
proving that the trace-minimization can be equivalently formulated to an energy-
minimization problem in §11.1, we then derive energy-min AMG method by seek-
ing a set of locally supported coarse basis functions for energy-minimization.

Classical AMG, as the first class of AMG algorithms studied in the literature,
will be presented in §12. We derive and analyze this type of methods using the
framework in §6 and also the notion of M-matrix relatives introduced in §7.2. We
further discuss how a classical AMG method can be viewed as an approximation
of energy-min AMG method.

Aggregation-based AMG will be presented in §13. Again we derive and analyze
this method using the framework in §6. One remarkable feature of the aggregation
AMG methods is their ease to preserve multi-dimensional near-null space, such as
the rigid-body modes in linear elasticity.

To demonstrate how an AMG method addresses possible heterogeneous prop-
erties in a given problem, we devote §14 to show how classical AMG is designed
to address the difficulties arising from the discretized elliptic problems with strong
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discontinuous jumps or anisotropy in the coefficients of the underlying PDE. Fi-
nally we make some concluding remarks in §16.

In §15, we outline a class of AMG methods that attempt to choose the coarse
spaces in a bootstrap and adaptive fashion. This line of AMG algorithms do not fall
into the theoretical frameworks presented in this paper, but they provide a practical
approach to generalize many existing AMG techniques to a more general class of
problems.

We conclude these introductory remarks by a brief summary of the acronyms
used in different AMG algorithms reviewed in this paper.

1 Aggregation-based AMG

• Unsmoothed aggregation UA-AMG
• Smoothed aggregation SA-AMG

2 Bootstrap & Adaptive AMG

• Classical αAMG
• Smoothed aggregation αSA-AMG
• Bootstrap AMG BAMG

3 Element-based AMG AMGe
4 Spectral AMGe ρAMGe

2. Model problems and discretization
While AMG has found applications to a wide range of linear algebraic systems, its
development has been mainly motivated by the solution of systems arising from the
discretization of partial differential equations by finite element, finite difference or
other numerical methods. In this section, we will discuss a model of second order
elliptic boundary problem, their finite difference and finite element discretization
and relevant properties of the relevant underlying differential operators and their
discretization.

2.1. Model elliptic PDE operators

We consider the following boundary value problems

Lu = −∇ · α(x)∇u = f , x ∈ Ω (2.1)

where α : Ω 7→ Rd×d is an SPD matrix function satisfying

α0‖ξ‖
2 ≤ ξTα(x)ξ ≤ α1‖ξ‖

2, ξ ∈ Rd. (2.2)

for some positive constants α0 and α1. Here d = 1, 2, 3 and Ω ⊂ Rd is a bounded
domain with boundary Γ = ∂Ω.

A variational formulation for (2.1) is as follows: Find u ∈ V such that

a(u, v) = ( f , v), ∀v ∈ V. (2.3)
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2 MODEL PROBLEMS AND DISCRETIZATION

Here

a(u, v) =

∫
Ω

(α(x)∇u) · ∇v, ( f , v) =

∫
Ω

f v.

and V is a Sobolev space that can be chosen to address different boundary condi-
tions accompanying the equation (2.1). One case is the mixed boundary conditions:

u = 0, x ∈ ΓD,
(α∇u) · n = 0, x ∈ ΓN ,

(2.4)

where Γ = ΓD ∪ ΓN . The pure Dirichlet problem is when ΓD = Γ while the pure
Neumann problem is when ΓN = Γ. We thus have V as

V =

{
H1(Ω) = {v ∈ L2(Ω) : ∂iv ∈ L2(Ω), i = 1 : d};
H1

D(Ω) = {v ∈ H1(Ω) : v|ΓD = 0}. (2.5)

When we consider a pure Dirichlet problem, ΓD = Γ, we denote the space by
V = H1

0(Ω). In addition, for pure Neumann boundary conditions, the following
condition is added to assure the existence of the solution to (2.3):∫

Ω

f = 0. (2.6)

One most commonly used model problem is when

α(x) = 1, x ∈ Ω, (2.7)

which corresponds to the Poisson equation

−∆u = f . (2.8)

This simple problem provides a good representative model for isotropic problems.
There are other two cases that are of special interests. The first case is when α is

a scalar and it has discontinuous jumps such as

α(x) =

ε, x ∈ Ω1,

1, x ∈ Ω2.
(2.9)

The second case is when α is a diagonal matrix such as (for d = 2):

α(x) =

(
1 0
0 ε

)
, (2.10)

which corresponds to the following operator

−uxx − εuyy = f . (2.11)

In both cases above, we assume that ε is sufficiently small to investigate the robust-
ness of algorithms with respect to discontinuous jumps and an-isotropy.
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2.2 Examples of finite difference and finite element discretizations

2.2. Examples of finite difference and finite element discretizations

As an illustrative example, we consider a finite difference discretization of the
Poisson equation (2.8) with pure Dirichlet boundary conditions on the unit square
Ω = (0, 1) × (0, 1). We consider a uniform triangulation of Ω (see the two left
figures in Fig.2.1) and we set

(xi, y j) =

( i
n + 1

,
j

n + 1

)
, ui, j ≈ u(xi, y j), (i, j = 0, · · · , n + 1).

Figure 2.1. Regular (uniform) triangulations for the unit square (left and center)
and unstructured mesh approximating the unit disk (right).

We use the standard center difference approximation to the Laplacian operator

(−∆u)(xi, y j) ≈
4ui, j − ui+1, j − ui−1, j − ui, j+1 − ui, j−1

h2 .

The finite difference scheme is then given by

4ui, j − (ui+1, j + ui−1, j + ui, j+1 + ui, j−1) = h2 fi, j, (2.12)

where
fi, j = f (xi, y j) (2.13)

and ui, j ≈ u(xi, y j). The approximations ui, j are found by solving a linear system.
We order the points (xi, y j) lexicographically and we have for k = 1, . . . , n2,

k = ( j − 1)n + i, xh
k = (xi, y j), µk = ui, j, 1 ≤ i, j ≤ n, (2.14)

We can then write (2.12) as
Aµ = b, (2.15)

where
A = tridiag(−I, B,−I), and B = tridiag(−1, 4,−1). (2.16)

A slightly different scheme is obtained using more of the neighboring points of
(xi, y j). We can build an approximation using 8 points (xi±1, y j±1) together with the
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2 MODEL PROBLEMS AND DISCRETIZATION

“center” point (xi, y j). As a result we have the 9-point finite difference scheme as
follows:

8µi, j − µi−1, j − µi+1, j − µi, j−1 − µi, j+1 (2.17)

− µi−1, j−1 − µi+1, j−1 − µi−1, j+1 − µi+1, j+1 = 2h2 fi, j.

Again, if we order (xi, y j) lexicographically, then (2.17) is the linear system (2.15)
corresponding to the 9-point finite difference discretization of the Laplace equation
with

A = tridiag(−C, B,−C) with B = tridiag(−1, 8,−1),C = tridiag(1, 1, 1). (2.18)

We now give an example of finite element discretization. Given a triangulation
Th for Ω, such as that given in Figure 2.1, let Vh ⊂ V be a finite element space
consisting of piecewise linear (or higher order) polynomials with respect to the
triangulation Th. The finite element approximation of the variational problem (2.3)
is: Find uh ∈ Vh such that

a(uh, vh) = ( f , vh), ∀ vh ∈ Vh. (2.19)

Assume {φi}
N
i=1 is the nodal basis of Vh, namely, φi(x j) = δi j for any nodes x j. We

write uh(x) =
∑N

j=1 µ jφ j(x) the equation (2.19) is then equivalent to

N∑
j=1

µ ja(φ j, φi) = ( f , φi), j = 1, 2, · · · ,N,

which is a linear system of equations:

Aµ = b, (A)i j = a(φ j, φi), and (b)i = ( f , φi). (2.20)

Here, the matrix A is known as the stiffness matrix of the nodal basis {φi}
N
i=1.

For d = 2 and the special uniform triangulation as shown on the in Figure 2.1,
this stiffness matrix for the Laplacian operator turns out to be exactly the one given
by (2.12). This special case is an example of the close relationship between finite
difference and finite element methods.

We note that the finite element method is based on the variational formulation
(2.3), whereas the finite difference method is not. In the development of AMG
method, however, variational method is also used to derive coarse level equations
for finite difference methods.

For any T ∈ Th, we define

hT = diam (T ), hT = |T |
1
d , hT = 2 sup{r > 0 : B(x, r) ⊂ T for x ∈ T }. (2.21)

We say that the mesh Th is shape regular if there exists a uniformly bounded
constant σ ≥ 1 such that

hT ≤ hT ≤ hT ≤ σhT , ∀T ∈ Th. (2.22)

And we call σ the shape regularity constant.
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2.3 Spectral properties

Let h = maxT∈Th hT , with hT defined in (2.21). We say that the mesh Th is
quasi-uniform if there exists a uniformly bounded constant C > 0 such that

h
hT
≤ C. (2.23)

2.3. Spectral properties

We now discuss the spectral properties of the partial differential operator L given
in (2.1).

We recall the well-known Courant-Fischer min-max principle (Courant and Hilbert
1924) for eigenvalues of symmetric matrices.

Theorem 2.1. Let T be a n×n symmetric matrix with respect to (·, ·)∗, and {λ j, ζ j}

are its eigenpairs with λ1 ≤ λ2 ≤ · · · ≤ λn, then

λk = min
dim W=k

max
x∈W,x,0

(T x, x)∗
(x, x)∗

, (2.24)

where the minimum is achieved if

W = span{ζ j : j = 1 : k}, (2.25)

and

λk = max
dim W=n−k+1

min
x∈W,x,0

(T x, x)∗
(x, x)∗

, (2.26)

where the maximum is achieved if

W = span{ζ j : j = k : n}. (2.27)

Next, we recall Theorem 1 in (Fan 1949) which is known as Ky-Fan trace mini-
mization principle.

Theorem 2.2. We suppose T is symmetric with respect to (·, ·)∗, and {λ j, ζ j} are
its eigenpairs with λ1 ≤ λ2 ≤ · · · ≤ λn, then

min
P∈Rn×k ,P∗P=I

trace(P∗T P) =

k∑
j=1

λ j.

Furthermore, the minimum is achieved when

range(P) = span{ζ j}
k
j=1 and P∗P = I.

Here P∗ ∈ Rk×n is the adjoint of P corresponds to (·, ·)∗ inner product, namely

(P∗u, v) = (u, Pv)∗, for all u ∈ Rn, v ∈ Rk.

Finally, following (Xu 1992), we use the notation a . b to represent the ex-
istence of a generic positive constant C, which is independent of important pa-
rameters, such as problem size, anisotropic ratio, or other, and such that a ≤ Cb.
Furthermore, we write a �b iff a . b and b . a.
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2 MODEL PROBLEMS AND DISCRETIZATION

Theorem 2.3. The PDE operatorL has a complete set of eigenfunctions (ϕk) and
nonnegative eigenvalues

0 ≤ λ1 ≤ λ2 ≤ . . .

such that
Lϕk = λkϕk, k = 1, 2, 3 . . . .

1 limk→∞ λk = ∞.
2 (ϕi) forms an orthonomal basis of V as well as for L2(Ω).

Furthermore

1 For pure Neumann problem, λ1 = 0 and ϕ1 is the constant function.
2 For pure Dirichlet problem, λ1 > 0 is simple and ϕ1 does not change sign.

We have the well-known Weyl’s estimate on the asymptotic behavior of the
Laplacian operator (Weyl 1911, Weyl 1912, Reed and Simon 1978).

Lemma 2.4. (Weyl’s law) Assume that Ω is contented (which means Ω can be
approximated by unions of cubes in Rd, see (Reed and Simon 1978, page 271) for
the exact definition). For homogeneous Dirichlet boundary condition, the eigen-
values of the pure Laplacian operator satisfy:

lim
k→∞

λk

k
2
d

= wΩ, with wΩ =
(2π)2

[ωd Vol(Ω)]
2
d

, (2.28)

where ωd is a volume of the unit ball in Rd, and the eigenvalues of the operator L
given in (2.1) satisfy:

λk

�k
2
d , ∀k ≥ 1. (2.29)

Next, we extend the above Weyl’s law to discretized PDE operators. The follow-
ing theorem gives a discrete version of the Weyl’s law for the finite element dis-
cretization. Further details on such a result are found in (Xu, Zhang and Zikatanov
2016b).

Theorem 2.5. Let Vh ⊂ H1
0(Ω) be a family of finite element spaces on a quasi-

uniform mesh with dim Vh = N. Consider the discretized operator of (2.1)

Lh : Vh 7→ Vh, (Lhu, v) = a(u, v), ∀u, v ∈ Vh,

and its eigenvalues:
λh,1 ≤ λh,2 ≤ · · · λh,N .

Then, for all 1 ≤ k ≤ N, there exists a constant Cw > 0 independent of k such that
we have the following estimates:

λk ≤ λh,k ≤ Cwλk. (2.30)

and
λh,k

�k2/d. (2.31)
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2.4 Properties of finite element matrices

2.4. Properties of finite element matrices

The main algebraic property for the stiffness matrices given by (2.20) is that: it
is sparse with O(N) nonzeros, symmetric-postive definite (for both Dirichlet and
mixed boundary conditions) and semi-definite for pure Neumann boundary condi-
tions; Its eigenvalues satisfy the discrete Weyl’s law.

For simplicity, we will only consider the pure Dirichlet boundary conditions in
the rest of this section.

Lemma 2.6. The stiffness matrix A given by (2.20) has the following properties:

1 The condition number of A, defined by the ratio of the extreme eigenvalues
of A,

κ(A) =
λmax(A)
λmin(A)

,

satisfies

κ(A) �h−2.

Furthermore,

λmin(A) �h2 and λmax(A) �1.

2 The discrete version of the Weyl’s law holds:

λk(A) �

(
k
N

)2/d

.

We next discuss some more refined spectral properties of finite element stiffness
matrices from uniform grids for the unit square domain Ω = (0, 1)×(0, 1) for d = 2.
We begin with the Poisson equation. It is easy to derive a closed-form solution of
the eigenpairs of A given by (2.15) and we have:

λkl(A) = 4
(
sin2 kπ

2(n + 1)
+ sin2 lπ

2(n + 1)

)
, (2.32)

and

φkl
i j = sin

kiπ
n + 1

sin
l jπ

n + 1
, 1 ≤ i ≤ n, 1 ≤ j ≤ n. (2.33)

Consider now the important case of anisotropic problem (2.11). We order the
vertices of the triangulation lexicographically, and, as before, denote them by
{(ih, jh)}ni, j=0. The stiffness matrix then is

A = tridiag(−I, B,−I) with B = tridiag(−ε, 2(1 + ε),−ε). (2.34)

Obviously,

A = I ⊗ B + C ⊗ I with C = tridiag(−1, 0,−1),

14



3 LINEAR VECTOR SPACES AND DUALS

and it is easily verified that

λi(B) = 2(1 + ε) − 2ε cos
iπ

(n + 1)
, λ j(C) = −2 cos

jπ
(n + 1)

, 1 ≤ i, j ≤ N.

which leads to the following expression for the eigenvalues

λi j(A) = 4ε sin2 iπ
2(n + 1)

+ 4 sin2 jπ
2(n + 1)

.

and the corresponding eigen-vectors

φk`
i j = sin

kiπ
n + 1

sin
` jπ

n + 1
.

3. Linear vector spaces and duals
In this paper, we will mainly consider linear system of equation of the following
form:

Au = f . (3.1)

Here
A : V 7→ V ′, (3.2)

f ∈ V ′,

V is a finite-dimensional linear vector space and V ′ is the dual of V . If we use
the notation 〈·, ·〉 to denote the pairing between V ′ and V , we can write (3.1) in a
variational form: Find u ∈ V such that

a(u, v) = 〈 f , v〉, ∀v ∈ V (3.3)

where
a(u, v) = 〈Au, v〉. (3.4)

3.1. Dual and inner product

For convenience of exposition, we will assume that V is equipped with an inner
product (·, ·). By Riesz representation theorem, for any f ∈ V ′, there is a unique
u ∈ V such that

(u, v) = 〈 f , v〉, ∀v ∈ V. (3.5)

It is through this representation, we will take V ′ = V . In the rest of this paper, for
convenience, we will always assume that V ′ = V for any finite dimensional vector
space V . As a result, we have

V ′′ = (V ′)′ = V ′ = V. (3.6)

Thanks to the identification V ′ = V via (3.5), the identities in (3.6) are clear without
any ambiguity.
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3.1 Dual and inner product

We would like to point out that, in an abstract discussion of all iterative methods
for problem (3.1), it suffice to use the abstract dual pairing 〈·, ·〉 without having to
introducing an inner product (·, ·) on V . But we find that the use an inner product is
convenient for exposition as we shall see later. We further point out that we will not
use an inner product to identify V ′ = V for any infinite dimensional vector space
in this paper.

If {φi}
N
i=1 is a basis of V , we will always choose a basis, {ψi}

N
i=1, of V ′ that is dual

to the basis of V . Namely

(ψ j, φi) = δi j, 1 ≤ i, j ≤ N. (3.7)

Such a dual basis will only used for theoretical consideration and it will not be used
in actual implementation of any algorithms.

We will only consider two kinds of linear vector spaces: The first kind is V = Rn

and the inner product is just the dot product

(u, v)`2 =

n∑
i=1

uivi, ∀u = (ui), v = (vi) ∈ Rn,

A canonical basis of RN is formed by the column vectors of the identity matrix,
{ei}

N
i=1, it is easy to see that its dual basis of (RN)′ = RN is just the original basis

{ei}
N
i=1 itself.

The second kind is a finite dimensional functional subspace of L2(Ω) for a given
domain Ω ⊂ Rd (1 ≤ d ≤ 3), equipped with the L2 inner product:

(u, v) =

∫
Ω

u(x)v(x).

One commonly used linear vector space is a finite element space Vh and oftentimes
the nodal basis functions {φi}

N
i=1 are used as a basis. In this case, the dual basis,

{ψi}
N
i=1, of V ′ are not the original nodal basis functions anymore, but rather, a set

of functions (which are usually globally supported) that satisfy (3.7). This set of
dual basis functions is usually needed in deriving matrix representation of opera-
tors between various spaces and their duals, but they are not needed in the actual
implementation of relevant algorithms.

For a linear operator
L : V 7→ V, (3.8)

its adjoint:
L′ : V 7→ V, (3.9)

is defined as follows
(L′u, v) = (u, Lv), u, v ∈ V. (3.10)

Since V plays the role of both V and its dual V ′, the notion (3.8) and (3.9) can have
four different meanings:

16
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1. If L : V 7→ V , then L′ : V ′ 7→ V ′;
2. If L : V 7→ V ′, then L′ : V 7→ V ′;
3. If L : V ′ 7→ V , then L′ : V ′ 7→ V;
4. If L : V ′ 7→ V ′, then L′ : V 7→ V .

Thanks to the identification we made between V ′ and V through (3.5), the definition
(3.10) is applicable to all the above four different cases.

If V = Rn and (u, v) = (u, v)`2 , L′ = LT , namely the matrix transpose. We say
that an operator A : V 7→ V ′ is symmetric positive definite (SPD) if

A′ = A, (Av, v) > 0 ∀v ∈ V \ {0}.

When A is SPD, it defines another inner product (·, ·)A on V:

(u, v)A = (Au, v), u, v ∈ V

and a corresponding norm

‖v‖A = (v, v)1/2
A , v ∈ V.

We use the superscript “*” for the adjoint operator with respect to (·, ·)A, i.e.

(Bu, v)A = (u, B∗v)A.

It is easy to see that

(BA)∗ = B′A, (3.11)

and (BA)∗ = BA if and only if B′ = B.

3.2. Matrix representation

Let Vc ⊂ V be a subspace and consider the inclusion operator ıc : Vc 7→ V . Assume
that {φc

i }
nc
i=1 and {φi}

n
i=1 are basis functions of Vc and V respectively, the matrix

representation of ıc is a matrix

P : Rnc 7→ Rn satisfying (φc
1, . . . , φ

c
nc

) = (φ1, . . . , φn)P. (3.12)

The identity written above is a shorthand for the expansion of the basis in Vc via
the basis in V:

φc
k =

n∑
j=1

p jkφ j, P = (p jk), k = 1, . . . , nc, j = 1, . . . , n. (3.13)

What is the matrix representation of ı′c : V ′ 7→ V ′c? Although we have V ′ = V and
V ′c = Vc, we need to use dual bases {ψc

i }
nc
i=1 ⊂ V ′c and {ψi}

n
i=1 ⊂ V ′ respectively.

With respect to these dual bases, the matrix representation of ı′c is simply PT (the
transpose of P) since it is easy to verify that

(ı′cψ1, . . . , ı
′
cψn) = (ψc

1, . . . , ψ
c
nc

)PT .
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3.2 Matrix representation

Consider now a linear operator

A : V 7→ V. (3.14)

There are two different ways to get a matrix representation of A because V plays
two roles here. First V is V itself, and secondly V = V ′. For the first case, we use
the same basis {φi} for V as the domain of A and V as the range of A. In this case,
the matrix representation of A is the matrix

Â ∈ Rn×n satisfying (Aφ1, . . . , Aφn) = (φ1, . . . , φn)Â. (3.15)

In the second case, we use the basis {φi} for V as the domain space of A, but use
the dual basis {ψi} for V ′ = V as the range space of A. In this case, the matrix
representation of A is the matrix

Ã ∈ Rn×n satisfying (Aφ1, . . . , Aφn) = (ψ1, . . . , ψn)Ã. (3.16)

It is easy to see that

Ã =

(
(Aφ j, φi)

)
(3.17)

and

Ã = MÂ, M =

(
(φ j, φi)

)
. (3.18)

The matrix Ã in (3.17) is often called the stiffness matrix of A and the matrix M in
(3.18) is called the mass matrix.

In the early multigrid literature, a discrete inner product equivalent to the L2 in-
ner product was often introduced for finite element spaces so that the correspond-
ing mass matrix becomes diagonal. But if we view the underlying finite element
operator as in (3.14) in a slightly different way:

A : V 7→ V ′, (3.19)

and we will then see easily that the introduction of the discrete L2 inner product is
not necessary.

If V = Rn and we choose the canonical basis {ei} for V , we would not encounter
the mass matrix problem as in the functional space case since in this case {ei} is
also the dual basis of V ′. This is certainly convenient, but such a convenience tends
to hide some subtle but important difference between various vectors and matrices
in a given problem and the objects (functions) that they represent.

Given a matrix A ∈ Rn×n, we can either view it as

A : Rn 7→ Rn, (3.20)

or
A : Rn 7→ (Rn)′. (3.21)

As it turns out, when A is obtained from the discretization of partial differential
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3 LINEAR VECTOR SPACES AND DUALS

equations, (3.21) is more informative than (3.20). Hence we write a matrix equa-
tion

Ax = b (3.22)

it is sometimes helpful to view that x and b live in two “different” spaces:

x ∈ Rn and b ∈ (Rn)′. (3.23)

3.3. Eigenvalues and eigenvectors

Let us discuss briefly on eigenvalues and eigenvectors for symmetric operator T :
V 7→ V . If (λ, φ) is an eigen-pair of T ,

Tφ = λφ.

Then it is easy to see that (λ, φ̃) is an eigenpair of the matrix representation T̃ of T :

T̃ φ̃ = λφ̃.

Here φ̃ =∈ Rn is the vector representation of φ:

φ = (φ1, . . . , φn)φ̃.

We note that for an operator A defined in (3.14), we need to be cautious when
we talk about eigenvalues of A. Although we identity V ′ = V through (3.5), V ′

and V play two different roles and thus A is essentially a mapping between two
“different” spaces V and V ′ and the spectrum of A should be defined carefully. But
if we consider a symmetric operator

R : V ′ 7→ V. (3.24)

Then RA : V 7→ V is an operator that is symmetric with respect to A-inner product.
In this case if (λ, φ) is an eigenpair of RA, then (λ, φ̃) is an eigenpair of R̃Ã (that is
equal to the matrix representation of RA)

If we consider a trivial identification operator

 : V ′ 7→ V such that ψi = ψi, ∀i.

Namely v = v for all v ∈ V ′ = V . It is easy to see that the matrix representation of
 is the inverse of the mass matrix M = ((φ j, φi)), namely

̃ = M−1.

Using this identification operator, the operator A : V 7→ V is a symmetric operator
from V to V . We can then talk about its spectrum. For example, if (λ, φ) is an
eigen-pair of A, then (λ, φ̃) satisfies

Ãφ̃ = λMφ̃.

This is often the generalized eigenvalue problem appearing in finite element anal-
ysis.
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Although for all v ∈ V , Av = Av because of the identification introduced above,
A and A are, strictly speaking, two different operators: they have two different
ranges and their matrix representations are different.

The discussions above, although simple, may sound a little bit confusing at first
glance, but an unambiguous understanding and clarification of these concepts and
the underlying subtleties will be helpful for the presentation of algebraic multigrid
methods in the rest of this article. For more detailed discussions on relevant topics,
we refer to (Xu 2016).

3.4. Bibliographical notes

For a general reading on the basic linear algebra materials used here, we refer
to (Halmos 1974, Xu 1992, Xu 2016). In particular, for a more detailed discussion
related to dual spaces and matrix representations, we refer to (Xu 1992, Xu 2016).

4. Basic iterative methods
We now consider linear iterative methods for solving (2.20). We will focus on two
most commonly used algorithms, namely Jacobi and Gauss-Seidel methods. Let us
first give a brief introduction of linear iterative methods in a more general setting.
Recall the basic problem under consideration: Given a finite dimensional vector
space V equipped with an inner product (·, ·), we consider

Au = f , (4.1)

where A : V 7→ V ′ is symmetric positive definite (SPD) and V ′ is the dual of V . As
mentioned in §3, we will identify V ′ = V through an inner product (·, ·).

4.1. Basic iterative methods

A general linear iterative method for solving (4.1) can be written as follows: given
u0 ∈ V ,

um = um−1 + B( f − Aum−1), m = 1, 2, · · · , (4.2)

where B : V ′ 7→ V is a linear operator which can be thought of as an approximate
inverse of A.

Sometimes it is more desirable that the iterator B is symmetric. If B is not
symmetric, there is a natural way to symmetrize it. Consider the following iteration{

um−1/2 = um−1 + B( f − Aum−1),
um = um−1/2 + B′( f − Aum−1/2). (4.3)

The symmetrized iteration (4.3) can be written as

um = um−1 + B̄( f − Aum−1), m = 1, 2, · · · (4.4)

where
B̄ = B′ + B − B′AB, (4.5)
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4 BASIC ITERATIVE METHODS

which satisfies
I − B̄A = (I − BA)∗(I − BA). (4.6)

Obviously, ρ(I − B̄A) < 0⇐⇒ B̄ > 0⇐⇒ G ≡ (B′)−1 + B−1 − A > 0.

Theorem 4.1. The following results hold

1 (4.3) converges⇐⇒ G > 0 =⇒ (4.2) converges. Furthermore

‖I − BA‖2A = λmax(I − B̄A) = 1 −
 sup
‖v‖A=1

(B̄−1v, v)
−1

(4.7)

2 If B′ = B, G > 0⇐⇒ (4.2) converges and, with η = λmin(G),

2η
η + 1

(Bv, v) ≤ (B̄v, v) ≤ 2(Bv, v), v ∈ V. (4.8)

Exercise 4.2. Generalize Theorem 4.1 to the case that A is SSPD.

4.2. Jacobi and Gauss-Seidel methods

For A = (ai j) ∈ Rn×n, we write

A = D + L + U,

where D is the diagonal of A, L and U are the strict lower and upper triangular
parts of A respectively.

Given ω > 0, the (modified) Jacobi method can be written as (4.2) with

B = ωD−1 = (ω−1D)−1,

and the resulting algorithm is as follows:

Algorithm 1 Modified Jacobi

For i = 1 : n, xm
i = xm−1

i + ωa−1
ii

bi −

n∑
j=1

ai jxm−1
j

 .
The (modified) Gauss-Seidel method can be written as (4.2) with

B = (ω−1D + L)−1

and the resulting algorithm is as follows:
The following result, which follows easily from Theorem 4.1, is well-known.

Theorem 4.3. The modified Jacobi method converges if and only

0 < ω <
2

ρ(D−1A)
, (4.9)
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Algorithm 2 Modified Gauss-Seidel Method

For i = 1 : n, xm
i = xm−1

i + ωa−1
ii

bi −

i−1∑
j=1

ai jxm
j −

n∑
j=i

ai jxm−1
j

 .
and the modified Gauss-Seidel method converges if and only if

0 < ω < 2. (4.10)

In practice, it is often easy to properly choose ω to satisfy (4.9) so that the modified
Jacobi method is guaranteed to converge. In the rest of this paper, we may always
assume that such a choice of ω is made. For Gauss-Seidel method, we will always
choose ω = 1 (optimal SOR is not usually used in multigrid method). The Jacobi
and Gauss-Seidel methods together with their convergence theory can be extended
to block-matrices in a straightforward fashion.

4.3. The method of subspace corrections

We consider a sequence of spaces V1, . . . ,VJ . These spaces, which will be known
as auxiliary spaces, are not necessarily subspaces of V , but each of them is related
to the original space V by a linear operator

Πk : Vk 7→ V. (4.11)

Our very basic assumption is that the following decomposition holds:

V =

J∑
i=1

ΠiVi. (4.12)

This means that for any v ∈ V , there exists vi ∈ Vi (which may not be unique) such
that

v =

J∑
i=1

Πivi. (4.13)

Furthermore, we assume that each Vi is equipped with an energy inner product
ai(·, ·). We define

Ai : Vi 7→ V ′i ,

by
(Aiui, vi) = ai(ui, vi), ui, vi ∈ Vi.

Let Π′i : V ′ 7→ V ′i be the adjoint of Πi:

(Π′i f , vi) = ( f ,Πivi), f ∈ V ′, vi ∈ Vi.

Let Pi = Π∗i : V 7→ Vi be the adjoint of Πi with respect to the A-inner products:

(Piu, vi)Ai = (u,Πivi)A, u ∈ V, vi ∈ Vi.

22



4 BASIC ITERATIVE METHODS

The following identity holds

Π′i A = AiPi. (4.14)

If u is the solution of (4.1), by (4.14), we have

Aiui = fi, (4.15)

where

ui = Piu, fi = Π′i f .

This equation may be regarded as the restriction of (4.1) to Vi. We assume that
each such Ai has an approximate inverse or preconditioner:

Ri : V ′i 7→ Vi. (4.16)

The parallel subspace correction (PSC in short) method is (4.2) with B = Bpsc
given by

Bpsc =

J∑
i=1

ΠiRiΠ
′
i . (4.17)

The successive subspace correction (SSC in short) method is defined as:

Algorithm 3 Successive Subspace Correction Method
Given u0 ∈ V , for any m = 1, 2, . . .,

1. v← um−1

2. v← v + ΠiRiΠ
′
i( f − Av), i = 1, 2, . . . J,

3. um ← v

The Algorithm 3 is equivalent to (4.2) with B = Bssc given by

I − BsscA = (I − TJ)(I − TJ−1) . . . (I − T1), (4.18)

where

Ti = ΠiRiΠ
′
i A = ΠiRiAiPi. (4.19)

Theorem 4.4. Assume that all Rk are SPD. Then

(B−1
pscv, v) = min∑

i Πivi=v

J∑
k=1

(R−1
k vk, vk) (4.20)

with the unique minimizer given by

v∗k = RkΠ
′
kB−1

pscv. (4.21)
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Theorem 4.5. Under the assumptions given above the following identity holds:

‖I − BsscA‖2A = ‖(I − TJ)(I − TJ−1) . . . (I − T1)‖2A

= 1 −
1

1 + c0
(4.22)

= 1 −
1
c1
. (4.23)

Here

c0 = sup
‖v‖A=1

c0(v), c1 = sup
‖v‖A=1

c1(v) = 1 + c0,

and, with wi = (I − T−1
i )Πivi +

∑J
j=i+1 Π jv j

c0(v) = inf∑
i Πivi=v

J∑
i=1

(TiT
−1
i T ∗i wi,wi)A, (4.24)

and

c1(v) = (B
−1
sscv, v) = inf∑

i Πivi=v
(T
−1
i (T iT−1

i Πivi +T ∗i wi), (T iT−1
i Πivi +T ∗i wi))A. (4.25)

In particular, if Ri = A−1
i , then

c0(v) = inf∑
i Πivi=v

J∑
i=1

‖Pi

J∑
j=i+1

Π jv j‖
2
Ai
, (4.26)

and

c1(v) = inf∑
i Πivi=v

J∑
i=1

‖Pi

J∑
j=i

Π jv j‖
2
Ai
. (4.27)

Lemma 4.6. If Rk = A−1
k for all k, and Vk are subspaces of V , then

1
4

(B−1
pscv, v) ≤ (B̄−1

sscv, v) ≤ c∗(B−1
pscv, v), v ∈ V. (4.28)

where

c∗ = max
1≤k≤M

[N(k)]2 with N(k) =
{
j ∈ {1, . . . , J}

∣∣∣ and V j ∩ Vk , {0}
}
.

Proof. Given v =
∑J

i=1 vi, with vi ∈ Vi. It follows that

‖v‖2A =

J∑
k, j=1

(vk, v j)A =

J∑
k=1

(vk, vk)A + 2
J∑

j>k

(vk, v j)A = −

J∑
k=1

(vk, vk)A + 2
J∑

j≥k

(vk, v j)A.
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Thus
J∑

k=1

‖vk‖
2
A ≤ 2

J∑
k=1

(vk,

J∑
j=k

v j)A = 2
J∑

k=1

(vk, Pk

J∑
j=k

v j)A

≤ 2(
J∑

k=1

‖Pk

J∑
j=k

v j‖
2
A)1/2(

J∑
k=1

‖vk‖
2
A)1/2.

Consequently
J∑

k=1

‖vk‖
2
A ≤ 4

J∑
k=1

‖Pk

J∑
j=k

v j‖
2
A.

By (4.20), (4.27) and (4.25), we have

(B−1
pscv, v) ≤ 4c1(v) = 4(B̄−1

sscv, v).

The upper bound also follows easily. From ‖Pk‖A = 1 and the Schwarz inequality,
we obtain

J∑
k=1

‖Pk

J∑
j=k

v j‖
2
A =

J∑
k=1

‖Pk

∑
j∈N(k); j≥k

v j‖
2
A

≤

J∑
k=1

‖
∑

j∈N(k); j≥k

v j‖
2
A ≤

J∑
k=1

N(k)
∑

j∈N(k); j≥k

‖v j‖
2
A

≤
√

c∗
J∑

k=1

∑
j∈N(k); j≥k

‖v j‖
2
A ≤ c∗

J∑
k=1

‖vk‖
2
A.

The proof is concluded by taking the infimum over all decompositions on both
sides and applying (4.27).

Remark 4.7. We would like to point that the estimate in (4.28) holds for anisotropic
and jump coefficient problems, and the constant c∗ only depends on the “topology”
of the overlaps between the subspaces and does not depend on other ingredients
and properties.

The Jacobi and Gauss-Seidel method can be interpreted as PSC and SSC based
on the decomposition

Rn =

n∑
i=1

span{ei}

with exact subspace solves such that

Bpsc = D−1, Bssc = (D + L)−1, B̄ssc = (D + U)−1D(D + L)−1.

25



4.4 Bibliographical notes

By Theorem 4.5

c0 = sup
‖v‖A=1

(D−1Uv,Uv), c1 = sup
‖v‖A=1

(D−1(D + U)v, (D + U)v).

By Lemma 4.6

1
4

(Dv, v) ≤ (D−1(D + U)v, (D + U)v) ≤ c∗(Dv, v), v ∈ Rn (4.29)

We note that

c1 = sup
v∈V

(B̄−1
sscv, v)
‖v‖2A

≤ σ sup
v∈V

‖v‖2D
‖v‖2A

where

σ = sup
v∈V

‖v‖2
B̄−1

ssc

(Dv, v)
, (4.30)

In the above presentation, most results are for SPD problems. We would like to
point out that all of these results can be extended a more general class of prob-
lems: namely symmetric, semi-positive definite problems. When A is a matrix, we
further assume that all the diagonals of A are non-zero and hence positive. When
the method of subspace correction is used for a more general symmetric, semi-
positive definite operator A, we further assume that each Ai is SPD. We should use
the acronym SSPD to denote matrices or operators that satisfy the aforementioned
properties.

4.4. Bibliographical notes

The general notion of subspace corrections by means of space decompositions was
described in Xu (Xu 1992) based on (Bramble, Pasciak, Wang and Xu 1991c,
Bramble, Pasciak, Wang and Xu 1991b). It is an abstract point of view encom-
passing the theory and practice of a large class of iterative algorithms such as
multigrid and domain decomposition methods. In the last two decades a great deal
of effort has been put into the investigation of the theoretical and practical issues
related to these methods. General results, applicable in many cases, in the the-
ory of additive and multiplicative methods in Hilbert space is found in (Xu and
Zikatanov 2002). For a literature review and basic results we refer the reader
to some monographs and survey articles: (Hackbusch 1985), (Bramble 1993),
(Vassilevski 2008a), (Xu 1989, Xu 1997), (Xu and Zou 1998),(Yserentant 1993),
(Toselli and Widlund 2005), (Griebel and Oswald 1995), (Smith, Bjørstad and
Gropp 1996). For detailed studies of classical iterative methods, we refer to the
monographs (Young 1971), (Hackbusch 1994), (Varga 2000), (Saad 2003a).

We note that in this section we have considered SSPD matrices, and according
to (Lee, Wu, Xu and Zikatanov 2008, Lee, Wu, Xu and Zikatanov 2007, Ayuso de
Dios, Brezzi, Marini, Xu and Zikatanov 2014) all the results in this section are valid
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for SSPD problems with the semi-norm. Relations between auxiliary space method
and the subspace correction methods is drawn in (Chen 2011). In the classical
multigrid literature (Brandt, McCormick and Ruge 1982b, Brandt, McCormick and
Ruge 1985, Ruge and Stüben 1987, Trottenberg, Oosterlee and Schüller 2001) the
notions of algebraically smooth (low) frequencies and algebraic high frequencies
play an important role. They are also instrumental in the design of new AMG
methods. As indicated by the convergence estimates, for a given a smoother, the
desirable coarse spaces should capture or approximate well the lower end of the
spectrum of the relaxed matrix R̄A or D−1A. This is usually referred to as near-
null space (Treister and Yavneh 2015, Lai and Olson 2011, Xu 2009), (Brezina,
Falgout, MacLachlan, Manteuffel, McCormick and Ruge 2006a).

5. Abstract multigrid methods and 2-level theory

In this section, we will present algebraic multigrid methods in an abstract setting.
The acronym “AMG” for Algebraic Multi-Grid can also be used to stand for Ab-
stract Multi-Grid.

Our focus will be on two level methods. In view of algorithmic design, the
extension of two-level to multi-level is straightforward: a general multilevel V-
cycle algorithm can be obtained by recursively applying a two-level algorithm. But
the extension of a two-level convergence theory to multi-level case can be highly
nontrivial.

We will only consider SSPD problems as described in §4. As is done in most
literature, the designing principle of an AMG is to optimize the choice of coarse
space with a given a smoother. The most commonly used smoothers are the Gauss-
Seidel method and (modified or scaled) Jacobi method. As these smoothers are
qualitatively convergent as an iterative method itself, the resulting AMG method
is always qualitatively convergent. The task of our AMG convergence theory is to
make sure such a convergence is also quantitatively fast. In particular, for system
arising from the discretization of partial differential equations, we hope that our
AMG method converges uniformly with respect to the size of the problem and/or
some crucial parameters from the underlying PDEs. We sometimes call such a
convergence “uniformly convergent” or “uniform convergence”.

As it turns out, we are often able to establish such a uniform convergence for
two-level AMG, but very rarely we can extend such a uniform convergence result
to multi-level case. For second order elliptic boundary value problems, multilevel
convergence are very well-understood for geometric multigrid methods. But a rig-
orous multilevel convergence theory for an AMG without using geometric infor-
mation is still a widely open problem.

We will mainly focus on two-level convergence theory on AMG methods in this
section and also in the rest of this paper.
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5.1 A two-level method

5.1. A two-level method

A two-level method typically consists of the following components:

1. A smoother R : V ′ 7→ V;
2. A coarse space Vc, which may or may not be a subspace of V but linked with V

via a prolongation operator:

P : Vc 7→ V.

3. A coarse space solver Bc : V ′c 7→ Vc.

In the discussion below we need the following inner product

(u, v)R̄−1 = (T
−1

u, v)A = (R̄−1u, v), T = RA, (5.1)

and the accompanying norm ‖ · ‖R̄−1 . Here we recall that the definition of R̄ is
analogous to that in (4.5).

We always assume that R̄ is SPD and hence the smoother R is always convergent.
Further more,

‖v‖2A ≤ ‖v‖
2
R̄−1 . (5.2)

The restriction of (4.1) is then

Acuc = fc, (5.3)

where

Ac = P′AP, fc = P′ f .

The coarse space solver Bc is often chosen to be the exact solver, namely Bc =

A−1
c , for analysis, but in a multilevel setting, Bc is recursively defined and it is an

approximation for A−1
c . We distinguish these two different cases in choosing Bc:

exact two level method if Bc = A−1
c . (5.4)

inexact two level method if Bc , A−1
c . (5.5)

In the case that A is semi-definite, we use N to denote the kernel of A and we
always assume that N ⊂ Vc. Let

W := N⊥, and Wc := Vc ∩W, (5.6)

where the orthogonality is understood with respect to the (·, ·)R̄−1 inner product. Let
Q1 : V 7→ W be the orthogonal projection respect to (·, ·)R̄−1 inner product

(Q1v,w)R̄−1 = (v,w)R̄−1 , for all v ∈ V,w ∈ W. (5.7)

Ac is semi-definite on Vc but invertible on Wc. We denote the restriction of Ac on
Wc by Âc, and define the psudo-inverse of Ac

A†c := Q′1Â−1
c Q1. (5.8)
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With a slight abuse of notation, we will still use A−1
c to denote the psudo-inverse of

Ac, namely

A−1
c = A†c .

We will use similar notation for psudo-inverse of other relevant singular operators
and matrices in the rest of the paper.

We choose to define an AMG algorithm in terms of an operator B : V ′ 7→ V ,
which can be considered as an approximate inverse or a preconditioner of A. A
typical two level MG method is as follows.

Algorithm 4 A two level MG method
Given g ∈ V ′ the action Bg is defined via the following three steps

1 Coarse grid correction: w = PBcP′g.
2 Post-smoothing: Bg := w + R(g − Aw).

In the rest of this section, we take Bc = A−1
c .

There are usually two different (and mathematically equivalent) ways to choose
Vc, V , P and R. The first one, known as operator version, is such that

Vc ⊂ V.

In this case, P = ıc where

ıc : Vc → V, (5.9)

is the natural inclusion of Vc into V . In the application to finite element discretiza-
tion for 2nd order elliptic boundary value problems, Vc and V are just the finite
element subspaces of H1(Ω). This type of notation is convenient for analysis. But
this is not the algorithm that can be directly used for implementation.

The second one, known as matrix version, is such that

Vc = Rnc and V = Rn,

and

P : Rnc 7→ Rn, (5.10)

is the prolongation matrix.
These two different set of notations are related through the use of basis functions

of {φc
i }

nc
i=1 ⊂ Vc and {φi :}ni=1 ⊂ V . As noted earlier, the prolongation matrix P given

in (3.12)–(3.13) is simply the matrix representation of ıc given in (5.9), and we
have

(φc
i , . . . , φ

c
nc

) = (φi, . . . , φn)P. (5.11)

The following observation is clear.
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Observation 5.12. Finding a coarse space Vc ⊂ V is equivalent to finding a pro-
longation matrix P in (5.10).

Lemma 5.1. The error propagation operator for two-level AMG operator E =

I − BA is

E = (I − RA)(I − Πc), (5.13)

where Πc = ıcA−1
c ı′cA, which is the (·, ·)A orthogonal projection on Vc, in matrix

notation Πc = PA−1
c PT A.

5.2. An optimal two-level AMG theory

The design of AMG method is to balance the interplay between smoother R and the
coarse space Vc. The design of most existing AMG is to first fix a smoother, which
is often given by Jacobi or Gauss-Seidel method (or their combinations and varia-
tions), and then to optimize the choice of coarse space. This is the approach that
we discuss mostly in this paper. But we also comment on a different approach by
first fixing the coarse space and then trying to optimize the choice of the smoother.
It is also possible to try to make optimal choice of smoother and coarse space si-
multaneously, but we will not address this approach in this paper.

Let Qc : V 7→ Vc be orthogonal projection respect to (·, ·)R̄−1 inner product

(Qcu, vc)R̄−1 = (u, vc)R̄−1 , for all vc ∈ Vc. (5.14)

By the definition of W and Wc we have that (·, ·)A is an inner product on W, ‖ · ‖A
is a norm on W, and the projection Πc : V 7→ Wc is well defined:

(Πcu, vc)A = (u, vc)A, ∀u ∈ V, vc ∈ Wc. (5.15)

The two level convergence rate is obtained in the following theorem.

Theorem 5.2. Assume that N ⊂ Vc. The convergence rate of an exact two level
AMG is given by

‖E‖2A = 1 −
1

K(Vc)
, (5.16)

where

K(Vc) = max
v∈W

‖(I − Qc)v‖2
R̄−1

‖v‖2A
= max

v∈W
min
vc∈Wc

‖v − vc‖
2
R̄−1

‖v‖2A
. (5.17)

Proof. We notice that.

‖(I − T )v‖2A = ((I − T̄ )v, v)A,∀v ∈ V.
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Then we have

‖E‖2A = max
w∈W

‖(I − T )(I − Πc)w‖2A
‖w‖2A

= max
w∈W

((I − T )(I − Πc)w, (I − Πc)w)A

‖w‖2A

= 1 −min
w∈W

(T (I − Πc)w, (I − Πc)w)A

‖w‖2A

= 1 −min
w∈W

(Q1T (I − Πc)w, (I − Πc)w)A

‖(I − Πc)w‖2A + ‖Πcw‖2A

= 1 − min
v∈W⊥A

c

(Q1Tv, v)A

‖v‖2A

= 1 − min
v∈W⊥A

c

((I − Πc)Q1Tv, v)A

‖v‖2A
= 1 − λmin (X),

where

X = (I − Πc)Q1T : W⊥A
c 7→ W⊥A

c ,

and it is easy to see that X is self-adjoint with respect to (·, ·)A.
One key observation is that the inverse of X can be explicitly written as

Z = (Q1T )−1(I − Qc),

since by definition, we have, for any u, v ∈ V

(ΠcZu, v)A = ((Q1T )−1(I − Qc)u,Πcv)A = (T (Q1T )−1(I − Qc)u,Πcv)R̄−1

= (Q1T (Q1T )−1(I − Qc)u,Πcv)R̄−1 = ((I − Qc)u,Πcv)R̄−1 = 0,

which implies ΠcZ = 0. Thus we have

Z : W⊥A
c 7→ W⊥A

c ,

and furthermore

XZ = (I − Πc)(I − Qc) = I − Πc = I on W⊥A
c .
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Consequently λmin (X) = 1
λmax (Z) . Finally,

λmax (Z) = max
v∈W⊥A

c

((Q1T )−1(I − Qc)v, v)A

(v, v)A
= max

v∈W⊥A
c

(T (Q1T )−1(I − Qc)v, v)R̄−1

(v, v)A

= max
v∈W⊥A

c

(Q1T (Q1T )−1(I − Qc)v, v)R̄−1

(v, v)A
= max

v∈W⊥A
c

((I − Qc)v, v)R̄−1

(v, v)A

= max
v∈W⊥A

c

‖(I − Qc)v‖2
R̄−1

(v, v)A
= K(Vc).

The last identity holds because I − Qc = (I − Qc)(I −Πc) and we can then take the
maximum over all v ∈ W. This completes the proof.

Theorem 5.2 can be stated as follows using the matrix representation introduced
in §3.

Theorem 5.3. Assume that P ∈ Rn×nc and N(Ã) ⊂ Range(P). The convergence
rate of an exact two level AMG is given by

‖E‖2A = 1 −
1

K̃(P)
, (5.18)

where

K̃(P) = max
v∈Rn

min
vc∈Rnc

‖v − Pvc‖
2
˜̄R−1

‖v‖2
Ã

. (5.19)

Remark 5.4. The result in the theorem above can be viewed as follows. We note
that T

−1
(I−Qc) is a selfadjoint operator in A inner product. Hence, we immediately

have
K(Vc) = ‖T

−1
(I − Qc)‖A = ‖(RA)−1(I − Qc)‖A.

In case of two subspaces, we have the following theorem giving the precise
convergence rate of the corresponding SSC method.

Theorem 5.5. Let {µ j, ζ j}
n
j=1 be the eigenpairs of T̄ = R̄A. And let assume that

{ζ j} are orthogonal with respect to (·, ·)R̄−1 . The convergence rate ‖E(Vc)‖A is mini-
mal for coarse space

Vopt
c = span{ζ j}

nc
j=1 ∈ arg min

dim Vc=nc,N⊂Vc

K(Vc). (5.20)

In this case,
‖E‖2A = 1 − µnc+1. (5.21)

Proof. By Theorem 5.2, we just need to maximize 1
K(Vc) . For any v ∈ V⊥c , where

⊥ is with respect to the R̄−1 inner product, we have

min
vc∈Vc
‖v − vc‖

2
R̄−1 = ‖v‖2R̄−1 . (5.22)
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Then it follows that

1
K(Vc)

= min
v∈V

max
vc∈Vc

‖v‖2A
‖v − vc‖

2
R̄−1

≤ min
v∈V⊥c

max
vc∈Vc

‖v‖2A
‖v − vc‖

2
R̄−1

= min
v∈V⊥c

‖v‖2A
‖v‖2

R̄−1

.

By the min-max principle (Theorem 2.1), we have

max
dim Vc=nc

1
K(Vc)

≤ max
dim Vc=nc

min
v∈V⊥c

‖v‖2A
‖v‖2

R̄−1

= µnc+1.

On the other hand, if we choose Vopt
c = span{ζ j}

nc
j=1, it is easy to compute that

K(Vopt
c ) = 1

µnc+1
. So we have

max
dim Vc=nc

1
K(Vc)

= µnc+1,

with optimal coarse space
Vopt

c = span{ζ j}
nc
j=1.

Using the matrix representation introduced in §3, we state the matrix version of
Theorem 5.5 below. For simplicity, with an abuse of notation, we still use A to
denote the matrix representation of operator A.

Theorem 5.6. Let {µ j, ζ j}
n
j=1 be the eigenpairs of T̄ = R̄A. And let assume that

{ζ j} are orthogonal with respect to (·, ·)R̄−1 . The convergence rate ‖E(P)‖A is mini-
mal for P such that

Range(P) = Range(Popt) (5.23)

where
Popt = (ζ1, . . . ζnc) (5.24)

In this case,
‖E‖2A = 1 − µnc+1 (5.25)

The following theorem is important in motivating most AMG algorithms.

Theorem 5.7. Given η > 0, let Xη be defined as

Xη =

{
P ∈ Rn×nc : (Pv, Pv)R̄−1 ≥ η(v, v), v ∈ Rnc

}
, (5.26)

Then, with Popt given by (5.24), we have P ∈ arg minQ∈Xη trace(QT AQ) if

P ∈ Xη and Range(P) = Range(Popt)).

Since the eigenvalues of R̄A are expensive to compute, the practical value of
Theorem 5.5 is limited. But it provides useful guidance in the design practical
AMG method.
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5.3 Quasi-optimal theories

For finite element discretizations we can use the Weyl’s Law combined with
Theorem 5.5 to prove an estimate on the convergence rate of a two-grid method
with optimal coarse space.

Corollary 5.8. Let the assumptions of the discrete Weyl’s law (Theorem 2.5)
hold and the smoother R̄ be spectrally equivalent to the diagonal of the stiffness
matrix A. Let γ > 0 be such that γn ≤ nc < n. Then, for the optimal coarse space,
we have the estimate,

µnc+1 ≥ δ0, and, ‖E‖2A ≤ 1 − δ0.

where δ0 ∈ (0, 1) only depends on γ and the constants γ0 and γ1 in (2.31).

Proof. By the assumptions in Theorem 2.5 and the fact that R̄ is spectrally equiv-
alent to the diagonal of A we have

|w|21

�

‖w‖2A, ‖w‖20

�h2‖w‖2R̄−1 . (5.27)

Further, Lemma 2.4 and Theorem 2.5 then show that

µnc+1(R̄A) = min
W⊂Vh

dim W=k

max
w∈W

‖w‖R̄−1,0

‖w‖2A
‖w‖2

R̄−1

�h2λnc+1 = O

( nchd

Vol(Ω)

)2/d . (5.28)

The desired result follows immediately from Theorem 5.5 because Vol(Ω) �hdn
and γn ≤ nc < n, which gives µnc+1

�1.

Remark 5.9. Since the coarse space which minimizes the convergence rate is the
coarse space which minimizes also K(Vc) and as a corollary we have the following
equality

K(Vc) =
1

1 − ‖E‖2A
≥

1
µnc+1

,

or

‖E‖2A ≥ 1 − µnc+1.

Theorem 5.2 provides an explicit estimate on the convergence of a two level
method in terms of K(Vc). For a given method, a smaller bound on K(Vc) means
a faster convergence rate. In particular, the two-level AMG method is uniformly
convergent if K(Vc) is uniformly bounded with respect to mesh parameters.

5.3. Quasi-optimal theories

We now look at the necessary and sufficient condition for uniform convergence of
a two level method as proved in §5.2 (see Theorem 5.2):

min
vc∈Vc
‖v − vc‖R̄−1 ≤ K(Vc)‖v‖2A. (5.29)
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Here K(Vc) is the smallest constant for which (5.29) holds for all v ∈ V . The
space Vc which minimizes K(Vc) is Vopt

c . Similar argument was used in the proof
of Theorem 5.5 in §5.2. We generalize here the result to semidefinite A.

For a given smoother R, one basic strategy in the design of AMG is to find
a coarse space such that K(Vc) is made as practically small as possible. There
are many cases, however, in which the operator R̄−1 in the definition of K(Vc) is
difficult to work with.

One commonly used approach is to replace R̄−1 by a simpler but spectrally equiv-
alent SPD operator. More specifically, we assume that D : V 7→ V ′ is an SPD
operator such that

cD(Dv, v) ≤ (R̄−1v, v) ≤ cD(Dv, v), ∀v ∈ V, (5.30)

Namely
cD‖v‖2D ≤ ‖v‖

2
R̄−1 ≤ cD‖v‖2D, ∀v ∈ V, (5.31)

where
(u, v)D = (Du, v), ‖v‖2D = (v, v)D.

Example of such equivalent norms for Schwarz smoothers are given in (4.20)
and (4.27). As a rule, the norm defined by R̄ corresponding to the symmetric
Gauss-Seidel method, i.e. R defined by pointwise Gauss-Seidel method can be
replaced by the norm defined by the diagonal of A (i.e. by Jacobi method, which,
while not always convergent as a relaxation provides an equivalent norm).

In terms of this operator D, we introduce the following quantity

K(Vc,D) = max
v

‖v − QDv‖2D
‖v‖2A

= max
v

min
vc∈Vc

‖v − vc‖
2
D

‖v‖2A
, (5.32)

where QD : V 7→ Vc is the (u, v)D-orthogonal projection.
By (5.17), (5.32) and (5.31), we have

cDK(Vc,D) ≤ K(Vc) ≤ cDK(Vc,D). (5.33)

Theorem 5.10. The two level algorithm satisfies

1 −
1

cDK(Vc,D)
≤ ‖E‖2A ≤ 1 −

1
cDK(Vc,D)

≤ 1 −
1

cDC
. (5.34)

where C is any upper bound of K(Vc,D), namely

min
w∈Vc
‖v − w‖2D ≤ C‖v‖2A, for all v ∈ V. (5.35)

The proof of the above theorem is straightforward and indicates that, if cD and
cD are “uniform” constants, the convergence rate of the two-level method is “uni-
formly” dictated by the quantity K(Vc,D).

We say that Vc is quasi-optimal if the following inequality holds

min
w∈Vc
‖v − w‖2D ≤ γµ

−1
nc+1‖v‖

2
A, for all v ∈ V, (5.36)
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with a constant γ > 0 independent of the size of the problem.
The construction of an approximation to the optimal coarse space Vopt

c which is
used in most AMG algorithms relies on two operators AM and DM which satisfy:

c1‖v‖2D ≤ ‖v‖
2
DM
, ‖v‖2AM

≤ c2‖v‖2A, for all v ∈ V, (5.37)

with constants c1 and c2 independent of the problem size. Here, on the right side,
we have a seminorm ‖ · ‖AM , because sometimes AM is only semi-definite. We point
out that here AM and DM are analogues to A˜W and D˜ defined in (6.6) and (6.7),
respectively, in the general framework in §6. And the assumptions in (5.37) are
analogous to the Assumptions 6.9 which we made in the general AMG framework
in §6.

Theorem 5.11. If DM and AM satisfy (5.37), and Vc is a coarse space such that

min
w∈Vc
‖v − w‖2DM

≤ γµ−1
nc+1‖v‖

2
AM
, for all v ∈ V, (5.38)

Then

1 The following estimate holds

min
w∈Vc
‖v − w‖2R̄−1 ≤

cD

cD

c2

c1
γµ−1

nc+1‖v‖
2
A, for all v ∈ V. (5.39)

2 The corresponding two-level AMG algorithm satisfies

‖I − BA‖2A ≤ 1 −
cD

cD

c1

c2

1
γ
µnc+1 (5.40)

5.4. Algebraically high and low frequencies

In geometric MG, algebraically smooth error is also smooth in the usual geometric
sense. However, in AMG settings, smooth error can be geometrically non-smooth.
In order to make this distinction, we use the term algebraically smooth error when
we refer to the error in the AMG setting that is not damped (eliminated) by the
smoother R. In general, a good interpretation of the algebraically smooth error
leads to an efficient and robust AMG algorithm. A careful characterization of the
algebraically smooth error is needed, since in such case we can try to construct a
coarser level which captures these error components well.

Here is a more formal definition of a algebraically smooth error.

Definition 5.12. Let R : V 7→ V be a smoothing operator such that its sym-
metrization R = R + RT − RT AR is positive definite. Given ε ∈ (0, 1), we say that
the vector v is algebraically ε-smooth (or v is an ε-algebraic low frequency) with
respect to A if

‖v‖2A ≤ ε‖v‖
2
R̄−1 . (5.41)

The set of algebraically smooth vectors will be denoted by:

Lε = {v : ‖v‖2A ≤ ε‖v‖
2
R̄−1}. (5.42)
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We point out that this is a set of vectors (a ball, or, rather, an ellipsoid) and not a
linear vector space in general. It is then clear that the elements of this set need to
be approximated well by elements from the coarse space.

The rationale of the above definition can be seen from the following simple result
(We notice it is always true that (R̄Av, v) ≤ ‖v‖2A).

Lemma 5.13. Any vector v ∈ V that satisfies

(RAv,v)A ≤ ε‖v‖2A. (5.43)

is ε-algebraically smooth.

Proof. By the Schwarz inequality for the inner product defined by R
−1

and (5.43)
we have

‖v‖2A = (RAv,R
−1
v) ≤ (RAv, Av)1/2(R

−1
v,v)1/2 ≤

√
ε(R

−1
v,v)1/2‖v‖A.

We can easily show that this definition is equivalent to saying that the alge-
braically smooth error components are the components for which the smoother
converges slowly. Indeed, the inequality (5.43) is clearly equivalent to ((I−RA)v, v)A ≥

(1 − ε)(v, v)A, namely,

‖Sv‖2A
‖v‖2A

≥ 1 − ε, S = I − T, and T = RA. (5.44)

The property (5.44) is often referred to as smoothing property.

Remark 5.14. In the classical multigrid literature algebraically smooth error is
defined as e ∈ V such that

‖e‖2AD−1A ≤ ε‖e‖
2
A, (5.45)

for a small and positive parameter ε which implies

‖e‖2A ≤ ‖e‖D‖e‖AD−1A ≤
√
ε‖e‖D‖e‖A. (5.46)

Namely,

‖e‖2A ≤ ε‖e‖
2
D. (5.47)

As it is clearly seen from Definition 5.12, Lemma 5.13 implies (5.46) with R ≈
D−1, where D is the diagonal of A.

Thanks to (7.9), we have

Lemma 5.15. If e is algebraically smooth, namely e satisfies (5.47). Then

‖e‖2Ã . ε‖e‖
2
D̃. (5.48)

Namely e is also algebraically smooth with respect Ã, the M-matrix relative of A.
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5.5 Smoothing properties of Jacobi and Gauss-Seidel methods

On the other hand, note that by the definition of ‖ · ‖R̄−1 , we always have ‖v‖R̄−1 ≥

C‖v‖A with constant C independent of the parameters of interest. Drawing from
analogy with geometric multigrid method we introduce the notion of algebraic
high frequency as follows:

Definition 5.16. Given δ ∈ (0, 1], we call v ∈ V an δ-algebraic high frequency if,

‖v‖2A ≥ δ‖v‖
2
R̄−1 .

The set of algebraically high frequency vectors will be denoted by:

Hδ =

{
v : ‖v‖2A ≥ δ‖v‖

2
R̄−1

}
. (5.49)

The concept of algebraic high-and low-frequencies will be used in a 2-level
AMG theory §5.3 and also be used in the design of classical AMG §12.1.

Lemma 5.17. Let (φi, µi) are all the eigen-pairs for R̄A, namely R̄Aφi = µiφi.
Then

span{φi : µi ≤ ε} ⊂ Lε

and
span{φi : µi ≥ δ} ⊂ Hδ

We now introduce the notion of near-null space as follows.

Definition 5.18. (Near-null space) For sufficiently small ε ∈ (0, 1), we call span{φi :
µi ≤ ε} an ε-near-null space of R̄A.

5.5. Smoothing properties of Jacobi and Gauss-Seidel methods

The essence of multigrid methods is that simple iterative methods such as Jacobi
and Gauss-Seidel methods that have a special property, known-as the smoothing
property. As an illustration, we apply the Gauss-Seidel method to

Aµ = b,

with A given by (2.16) for isotropic problem and (2.34) for anisotropic problem
respectively. We first choose µ randomly (as shown in Fig. 5.2) and then compute
Aµ for both (2.16) and (2.34) to compute right hand sides b = Aµ respectively. We
then apply Gauss-Seidel method to both equations with initial guess µ0 = 0.

We note that, for A given by (2.34) when ε � 1, we have

λ11 < λ21 < . . . < λN1 < λi j, i ≥ 1, j ≥ 2.

The corresponding eigen functions, which can be viewed as “algebraic low-frequencies”
can be highly oscillatory in x-direction.

As an illustration of the difference between algebraic high/low frequencies and
geometric high/low frequencies, we consider the linear system given by (2.34) for
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Figure 5.2. Initial error for both (2.16) and (2.34).
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Figure 5.3. Left: error after applying 5 Gauss-Seidel iterations to (2.16). Middle:
error after applying 5 Gauss-Seidel iterations to (2.34). Right: error after applying
1 block Gauss-Seidel iterations to (2.34).

anisotropic problem. Clearly, A can be written as

A = εI ⊗ M + M ⊗ I with M = tridiag(−1, 2,−1).

We define the vector µ ∈ RN as

µ = x ⊗ y, with x = 1n, and y = (1 0 1 0 · · · 1 0 1)T ∈ Rn.

Then it is easy to compute that

Mx =



1
0
0
...
0
1


, and My =



2
−2
2
...
−2
2


.

We have

Aµ = ε(I ⊗ M)(x ⊗ y) + (M ⊗ I)(x ⊗ y) = ε(x ⊗ My) + (Mx ⊗ y),
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5.6 Convergence theory in view of algebraic high- and low-frequencies

and

‖µ‖2A = µT Aµ = ε(x ⊗ y)T (x ⊗ My) + (x ⊗ y)T (Mx ⊗ y)
= ε(xT x) ⊗ (yT My) + (xT Mx) ⊗ (yT y) = εn(n + 1) + n + 1.

Letting D be the diagonal of A, we then have

‖µ‖2D = 2(1 + ε)µTµ = (1 + ε)n(n + 1).

This shows that
‖µ‖2A

‖µ‖2D
=

ε

1 + ε
+

1
(1 + ε)(n + 1)

,

which implies that µ is an algebraic low frequency if ε is sufficiently small.
On the other hand, if we denote the nodal basis functions corresponding to the

uniform finite element mesh by {φi j : 1 ≤ i, j ≤ n}, namely, φi j is a piecewise linear
function such that

φi j(kh, lh) = δikδ jl.

Then we define
Φ = (φ11, φ12, · · · , φ1n, φ21, · · · , φnn).

if we consider the finite element function corresponding to µ, namely, the function
defined by

u = Φµ =

n+1
2∑

i=1

n∑
j=1

φ2i−1, j. (5.50)

Then, in the geometric point of view, this function is highly oscillatory on the x
direction, which is a geometric high frequency (see Figure 5.4)

5.6. Convergence theory in view of algebraic high- and low-frequencies

We next present a convergence theory based on algebraic high- and low-frequencies.
We first prove the following lemma.

Lemma 5.19. If Vc ⊂ V is such that the following “stable decomposition” holds:

V = Vc + Vh f

for some Vh f ⊂ V which consists of δ-algebraic high frequencies (see Defini-
tion 5.16). Namely, for any v ∈ V , there exists vc ∈ Vc and vh f ∈ Vh f such that

v = vc + vh f , ‖vh f ‖
2
A ≤ c1‖v‖2A.

Then the corresponding 2-level AMG satisfies

‖E‖A ≤ 1 −
δ

c1
.
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Figure 5.4. Graph of function defined in (5.50). This function is highly
oscillatory on the x direction.

Proof. It follows that

inf
wc∈Vc

‖v − wc‖
2
R̄−1 ≤ ‖vh f ‖

2
R̄−1 ≤ δ

−1‖vh f ‖
2
A ≤

c1

δ
‖v‖2A.

As a result,

K(Vc) ≤
c1

δ
,

and, finally, we have,

‖E‖A = 1 −
1

K(Vc)
≤ 1 −

δ

c1
.

Corollary 5.20. If Vh f consists of δ-algebraic high frequencies, then for the coarse
space Vc given by

Vc = Range(I − Ph f ), (5.51)

where Ph f : V 7→ Vh f is the A-orthogonal projection. Then

‖E‖A ≤ 1 − δ.

5.7. Bibliographical notes

One of the first results on two level convergence of AMG methods are found in
earlier papers (Brandt et al. 1982b, Ruge and Stüben 1987). There have been a
lot of research on reflecting the MG theory through algebraic settings: (Maitre and
Musy 1983, Bank and Douglas 1985, Mandel 1988); algebraic variational approach
to the two level MG theory (McCormick 1985, McCormick 1984, McCormick and
Ruge 1982).
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For the two grid convergence, sharper results, including two sided bounds are
given in (Zikatanov 2008) and also considered in (Falgout and Vassilevski 2004)
and (Falgout, Vasilevski and Zikatanov 2005). These two-level results are more or
less a direct consequences of the abstract theory provided in (Bramble et al. 1991c,
Xu 1992, Xu and Zikatanov 2002). A survey of these and other related results is
found in a recent article (MacLachlan and Olson 2014). The two approaches for
analyzing that are included in this section were recently developed in (Xu, Zhang
and Zikatanov 2016c, Xu, Zhang and Zikatanov 2016a).

Theorem 5.2 can be found in (Zikatanov 2008) and can be viewed as a con-
sequence of the XZ identity (Xu and Zikatanov 2002) in the special case of two
subspaces from the general framework of the method of subspace corrections. The
original proof of this theorem in (Zikatanov 2008) was based on the XZ identity.
The proof here is new and is more direct.

Multilevel results are difficult to establish in general algebraic settings, and most
of them are based on either not realistic assumptions or they use geometrical grids
to prove convergence. We refer to (Vaněk, Mandel and Brezina 1996b, Brezina
and Vassilevski 2011) for results in this direction. Rigorous multilevel results for
finite element equations can be derived using the auxiliary space framework, which
is developed in (Xu 1996) for quasi-uniform meshes. More recently multilevel
convergence results for adaptively refined grids were shown to be optimal in (Chen,
Nochetto and Xu 2012). A multilevel convergence result on shape regular grids
using AMG based on quad-tree (in 2D) and oct-tree (in 3D) coarsening is shown
in (Grasedyck, Wang and Xu 2015).

Finally, we point out that the notation used in parts of this section originates
in (Bank and Dupont 1980, Bramble and Pasciak 1987, Bramble, Pasciak and Xu
1990) and is convenient for the analysis, especially when finite element equations
are considered.

6. A general approach to the construction of coarse space

In this section, we describe an abstract framework for constructing coarse spaces
by using the notion of space decomposition and subspace corrections.

Let us first introduce some technical results that are used as analytic tools later.

Lemma 6.1. Let V˜ and V be two vector spaces and let Π : V˜ 7→ V be a surjective
map. Let B˜ : V ′˜ 7→ V˜ be an SPD operator. Then B := ΠB˜Π′ is also SPD.
Furthermore

(B−1v, v) = min
Πv˜=v
〈B˜−1v˜, v˜〉, (6.1)

with the unique minimizer given by

v˜∗ = B˜Π′B−1v. (6.2)

Lemma 6.2. Assume that following two conditions are satisfied for Π:
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6 A GENERAL APPROACH TO THE CONSTRUCTION OF COARSE
SPACE

1. For all v˜ ∈ V˜,

‖Πv˜‖A ≤ µ̃1‖v˜‖B˜−1 . (6.3)

2. For any v ∈ V , there exists v˜ ∈ V˜ such that Πv˜ = v and

‖v˜‖B˜−1 ≤ µ̃0‖v‖A. (6.4)

Then

κ(BA) ≤
(
µ̃1

µ̃0

)2

.

A direct consequence of the above Lemma 6.2 is the following result.

Theorem 6.3. (Fictitious Space Lemma) Assume that following two conditions
are satisfied for Π. First

‖Πv˜‖A ≤ µ1‖v˜‖A˜, ∀v˜ ∈ V˜
Secondly, for any v ∈ V , there exists v˜ ∈ V˜ such that Πv˜ = v and

‖v˜‖A˜ ≤ µ0‖v‖A.

Then κ(Π) ≤ µ1/µ0 and, under the assumptions of Lemma 6.1

κ(BA) ≤
(
µ1

µ0

)2

κ(B˜A˜).

We assume there exist a sequence of spaces V1,V2, . . . ,VJ , which are not neces-
sarily subspaces of V , but each of them is related to the original space V by a linear
operator

Π j : V j 7→ V. (6.5)

We assume that V can be written as a sum of subspaces and (4.12) and (4.13) hold.
Denote

W˜ = V1 × V2 × ... × VJ ,

with the inner product

(u˜, v˜) =

J∑
i=1

(ui, vi),

where u˜ = (u1, ..., uJ)T and v˜ = (v1, ..., vJ)T . Or more generally, for f˜ = ( f1, . . . , fJ)T ∈

V˜′ with fi ∈ V ′i , we can define

( f˜, v˜) =

J∑
i=1

( fi, vi).
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We now define ΠW : W˜ 7→ V by

ΠWu˜ =

J∑
i=1

Πiui, ∀u˜ = (u1, ..., uJ)T ∈ W˜ .
Formally, we can write

ΠW = (Π1, . . . ,ΠJ) and Π′W =


Π′1
...

Π′J

 .
We assume there is an operator A j : V j 7→ V ′j which is symmetric, positive

semi-definite for each j and define A˜W : W˜ 7→ W˜ ′ as follows

A˜W := diag(A1, A2, . . . , AJ). (6.6)

For each j, we assume there is a symmetric positive definite operator D j : V j 7→

V ′j, and define D˜ : W˜ 7→ W˜ ′ as follows

D˜ := diag(D1,D2, . . . ,DJ). (6.7)

We associate a coarse space Vc
j , Vc

j ⊂ V j, with each of the spaces V j, and con-
sider the corresponding orthogonal projection Q j : V j 7→ Vc

j with respect to (·, ·)D j .
We define Q˜ : W˜ 7→ W˜ ′ by

Q˜ := diag(Q1,Q2, . . . ,QJ). (6.8)

Assumption 6.9.

1 The following inequality holds for all w˜ ∈ W˜ :

‖ΠWw˜‖2D ≤ Cp,2‖w˜‖2D˜, (6.10)

for some positive constant Cp,2.
2 For each w ∈ V , there exists a w˜ ∈ W˜ such that w = ΠWw˜ and the following

inequality holds
‖w˜‖2A˜W

≤ Cp,1‖w‖2A (6.11)

with a positive constant Cp,1 independent of w.
3 For all j,

N(A j) ⊂ Vc
j . (6.12)

Remark 6.4. The above assumption implies that

w ∈ N(A)⇒ w˜ ∈ N(A1) × . . . × N(AJ).

We define the global coarse space Vc by

Vc :=
J∑

j=1

Π jVc
j . (6.13)
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6 A GENERAL APPROACH TO THE CONSTRUCTION OF COARSE
SPACE

Further, for each coarse space Vc
j , we define

µ−1
j (Vc

j ) := max
v j∈V j

min
vc

j∈V
c
j

‖v j − vc
j‖

2
D j

‖v j‖
2
A j

, (6.14)

and

µc = min
1≤ j≤J

µ j(Vc
j ), (6.15)

which is finite, thanks to Assumption 6.9.3 (namely, (6.12)).
By the two level convergence theory, if D j provides a convergent smoother, then

(1 − µ j(Vc
j )) is the convergence rate for two-level AMG method for V j with coarse

space Vc
j . Next theorem gives an estimate on the convergence of the two level

method in terms of the constants from Assumptions 6.9 and µc.

Theorem 6.5. If Assumption 6.9 holds, then for each v ∈ V , we have the follow-
ing error estimate

min
vc∈Vc
‖v − vc‖

2
D ≤ Cp,1Cp,2µ

−1
c ‖v‖

2
A. (6.16)

Proof. By Assumption 6.9, for each v ∈ V , there exists v˜ ∈ V˜ such that

v = ΠWv˜ (6.17)

and (6.11) is satisfied.
By the definition of µc, we have

‖v˜− Q˜v˜‖2D˜ ≤ µ−1
c ‖v˜‖2A˜W

. (6.18)

We let vc = ΠW Q˜v˜. Then vc ∈ Vc and by Assumption 6.9, we have

‖v − vc‖
2
D = ‖ΠW(v˜− Q˜v˜)‖2D ≤ Cp,2‖v˜− Q˜v˜‖2D˜ ≤ Cp,2µ

−1
c ‖v˜‖2A˜W

≤ Cp,1Cp,2µ
−1
c ‖v‖

2
A.

We define another product space

V˜ := Vc × V1 × V2 × · · · × VJ , (6.19)

and we set Πc : Vc 7→ V to be the natural inclusion from Vc to V . Then we define
Π : V˜ 7→ V by

Π := (Πc Π1 Π2 · · · ΠJ), (6.20)

and A˜ : V˜ 7→ V˜′ by

A˜: =


Ac

A1
. . .

AJ

 , (6.21)
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6.1 Bibliographical notes

where Ac : Vc 7→ V ′c is given as

Ac := Π′cAPic. (6.22)

And B˜ : V˜ 7→ V˜′ is given as

B˜ :=



A−1
c

D−1
1

D−1
2

. . .

D−1
J


, (6.23)

We introduce the additive preconditioner B̂

B̂ := ΠB˜Π′ = ΠcA−1
c Π′c +

J∑
j=1

Π jD−1
j Π′j, (6.24)

and we have the following results.

Lemma 6.6. If Assumption 6.9 holds, then for any v ∈ V , there exists v˜ ∈ V˜ such
that (6.4) holds, namely

‖v˜‖B˜−1 ≤ µ̃0‖v‖A

with µ̃0 being a constant depending on Cp,1, Cp,2, µc and cD.

Lemma 6.7. If Assumption 6.10 holds, then (6.3) holds with constant µ̃1 depends
on Cp,2 and cD.

By directly applying Lemma 6.2, we immediately have

Theorem 6.8. If Assumption 6.9 holds, then

κ(B̂A) ≤
(
µ̃1

µ̃0

)2

. (6.25)

The following two-level convergence result is an application of the convergence
theorem (Theorem 5.2) with the error estimate in Theorem 6.5.

Theorem 6.9. If Assumption 6.9 holds. Then the two-level AMG method with
coarse space defined in (6.13) converges with a rate

‖E‖2A ≤ 1 −
µc

Cp,1Cp,2cD .

6.1. Bibliographical notes

The fictitious space Lemma was first proved in (Matsokin and Nepomnyashchikh
1985). Related is also the work on auxiliary space method (Xu 1996). Additive
version of Lemma 6.1 is found in (Xu and Zikatanov 2002), and the most general
case (including multiplicative preconditioners) is in (Xu 2016).
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7 GRAPHS AND SPARSE MATRICES

In later sections we show how the general theory used here can be applied to
various AMG algorithms, e.g. classical AMG (Brandt et al. 1982b, Ruge and
Stüben 1987), smoothed aggregation AMG (Mı́ka and Vaněk 1992b, Mı́ka and
Vaněk 1992a), spectral AMGe (Chartier, Falgout, Henson, Jones, Manteuffel, Mc-
Cormick, Ruge and Vassilevski 2003, Efendiev, Galvis and Vassilevski 2011), and
other algorithms.

Many of the works in the Domain Decomposition (DD) literature also use tech-
niques for defining coarse spaces, which, to a large extend, have similar aims
as the coarse space constructions for AMG outlined in this section. We refer
to (Toselli and Widlund 2005, Widlund 2009, Widlund 1994, Dohrmann, Klawonn
and Widlund 2008, Spillane, Dolean, Hauret, Nataf, Pechstein and Scheichl 2014)
and the references therein for more details on using local eigenspaces for construct-
ing coarse space in DD methods.

7. Graphs and sparse matrices

In this section, we give a brief introduction to some basic notion of graph theory
that is often used for sparse matrices and also for the study of AMG.

7.1. Sparse matrix and its adjacency graph

An undirected graph (or simply a graph) G is a pair (V,E), whereV is a finite set
of points called vertices and E is a finite set of pairs of vertices, known as edges.
We often write V = {1, . . . , n} for some fixed n. We will not consider directed
graphs in this article because the graphs corresponding to the symmetric sparse
matrices are undirected.

An edge e ∈ E is an unordered pair ( j, k), where j, k ∈ V. The vertices j and
k are said to be adjacent if ( j, k) ∈ E. A path from a vertex j to a vertex k is a
sequence ( j0, j1, j2, ..., jl) of vertices where j0 = j, jl = k, and ( ji, ji+1) ∈ E for
all i = 0, 1, ..., l − 1. A vertex j is connected to a vertex k if there is a path from
j to k. G = (V, E) is connected if every pair of vertices is connected by a path,
otherwise it is said to be disconnected. A graph G0 = (V0,E0) is called a subgraph
of G = (V,E) ifV0 ⊂ V and E0 ⊂ E.

The neighborhood N(i) are the vertices adjacent to the vertex i. The degree or
valency of a vertex is the number of edges that connect to it. These are defined as:

N(i) = { j : (i, j) ∈ E}, di = |{ j : (i, j) ∈ E}|. (7.1)

A path connecting two vertices i and j is a sequence of edges (k0, k1), (k1, k2), . . . ,
(km−1, km) in E such that k0 = i and km = j. The length of the path is the number of
edges in it. The distance between two vertices i and j is the length of the shortest
path connecting i and j, and we denote it by dist(i, j). If i, j are not connected, then
dist(i, j) = ∞. The diameter of a graph is the largest distance between two vertices,
i.e. diam(G) = max

(i, j)∈E
dist(i, j). An independent set is a set of vertices in which no
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7.1 Sparse matrix and its adjacency graph

two of which are adjacent. A maximal independent set is an independent set such
that adding any other vertex to the set forces the set to contain an edge.

Given a symmetric matrix A ∈ Rn×n, the adjacency graph of A is an undirected
graph, denoted by G(A), G = (V, E) with V = {1, 2, ..., n}. The edges E are
defined as

E = {( j, k)
∣∣∣ a jk , 0}.

A matrix A is called irreducible if its adjacency graph G(A) = (V,E) is connected.
Otherwise, A is called reducible.

An example of a symmetric matrix is shown in Figure 7.5 (left) and a drawing
of the corresponding graph is in Figure 7.5 (right). The pictorial representation
of a graph is often not available and a graph can be drawn in different ways with
different coordinates of the vertices. As a general rule, sparse matrices do not
provide any geometrical information for the underlying graph and only the combi-
natorial/topological properties of G(A).

A =



∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0
∗ 0 ∗ ∗ ∗ 0
∗ 0 ∗ ∗ ∗ 0
∗ 0 0 0 0 ∗


1

2

3

4

5 6

Figure 7.5. A sparse symmetric matrix (left) and its associated graph (right).

Given
S ⊂ {1, . . . , n} × {1, . . . ,m},

we define

Rn×m
S =

{
X = (xi j) ∈ Rn×m : xi j = 0 if (i, j) < S

}
(7.2)

We say that X has sparsity pattern given by S if and only if X ∈ Rn×m
S .

Often, the sparsity pattern of a matrix is determined in advance and the set S is
determined by a given matrix. For Y ∈ Rn×m we denote

S(Y) =
{
(i, j)

∣∣∣ yi j , 0
}
.

We now consider the graphs associated with finite element or finite difference
stiffness matrices. In the case of finite elements, this is the space of FE functions

48



7 GRAPHS AND SPARSE MATRICES

Vh, and, for finite difference discretizations this is the space of mesh-functions Vh,
which can be identified with RN .

We assume that we have a finite dimensional space VN
h which we use to dis-

cretize the Neumann problem. We also have the FE space for the Dirichlet (or
mixed boundary conditions) problem and we assume that the following inclusions
hold Vh = VD

h ⊂ VN
h . Equivalently, we have that a subspace of the degrees of

freedom vanishes on Vh: for example, the values of the finite element or finite
difference solution at the nodes on the Dirichlet boundary vanish.

Let AN be the matrix corresponding to the finite element or finite difference
discretization of the model second order elliptic equation with Neumann boundary
conditions. Clearly we have the following identity,

(ANu, v) =
∑
e∈E

ωeδeuδev, (7.3)

Here, the sum is over all edges E of the graph G(AN ) = (V,E), δev = vi − v j if
E 3 e = (i, j), i < j. Also, ωe = −(AN )i j are the off-diagonal entries of AN . Note
that, since we consider the Neumann problem, the bilinear form defined by AN

vanishes for u (resp. v) such that ui = 1 (resp. vi = 1) for all i. For both 5-point
and 9-point stencils we have that ωe = 1 for all e.

We consider the stiffness matrix AN , corresponding to the model problem (2.1)
with Neumann boundary conditions on a bounded domain Ω ⊂ Rd, namely we
have boundary condition:

α∇u · n = 0, on ∂Ω, (7.4)

where n is the unit normal vector to ∂Ω pointing outward. It is easy to derive
the stiffness matrices corresponding to the Dirichlet or mixed boundary condition
problem: we just restrict the bilinear form defined by AN to a subspace:

(Au, v) =
∑
e∈E

ωeδeuδev, u j = v j = 0 x j ∈ ΓD. (7.5)

Remark 7.1. Similar relations between differential problems with natural (Neu-
mann) and essential (Dirichlet) boundary conditions are seen not only for the model
problem considered here, but also for problems on H(curl), H(div), linear elasticity
and other.

7.2. M-matrix relatives of finite element stiffness matrices

A symmetric matrix A ∈ Rn×n is called an M-matrix if it satisfies the following
three properties:

aii > 0 for i = 1, ..., n, (7.6)
ai j ≤ 0 for i , j, i, j = 1, ..., n, (7.7)
A is semi-definite. (7.8)

49



7.2 M-matrix relatives of finite element stiffness matrices

As first step in creating space hierarchy the majority of the AMG algorithms for
Au = f with positive semidefinite A uses a simple filtering of the entries of A and
construct an M-matrix which is then used to define crucial AMG components.

Definition 7.2. (M-matrix relative) We call a matrix Ã an M-matrix relative of
A if Ã is an M-matrix and satisfies the inequalities

(v, v)Ã . (v, v)A, and (v, v)D . (v, v)D̃, for all v ∈ V, (7.9)

where D̃ and D are the diagonals of Ã and A respectively.

A few remarks are in order: (1) We have used the term M-matrix to denote
semidefinite matrices, and we are aware that this is not the precise definition. It
is however much more convenient to use reference to M-matrices and we decided
to relax a bit the definition here with the hope that such inaccuracy pays off by
better appeal to the reader; (2) We point out that the restricted M-matrix relatives
are instrumental in the definition of coarse spaces and also in the convergence rate
estimates. This is clearly seen later in §5.2 where we present the unified two level
theory for AMG. (3) Often, the case is that the one sided inequality in (7.9) is in
fact a spectral equivalence.

By definition, we have the following simple but important result.

Lemma 7.3. Let A+ be an M-matrix relative of A and let D and D+ be the diag-
onal matrices of A and A+, respectively. If Vc ⊂ V is a subspace, then the estimate

‖u − uc‖
2
D . ‖u‖

2
A (7.10)

holds for some uc ∈ Vc, if the estimate

‖u − uc‖
2
D+
. ‖u‖2A+

(7.11)

holds.

This result means that we only need to work on the M-matrix relative of A in order
to get the estimate (7.10).

In this section we show how to construct M-matrix relative to the matrix re-
sulting from a finite element discretization of the model problem (2.1) with linear
elements. We consider first an isotropic problem with Neumann boundary condi-
tion (7.4) and isotropic α = a(x)I. Construction of M-matrix relatives in the case
of anisotropic tensor α(x) in (2.1) is postponed to §14.2.

In the rest of this section, we make the following assumptions on the coefficient
and the geometry of Ω:

• The domain Ω ⊂ Rd is partitioned into simplices Ω = ∪T∈ThT .
• The coefficient a(x) is a scalar valued function and its discontinuities are

aligned with the partition Th.
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7 GRAPHS AND SPARSE MATRICES

• We consider the Neumann problem, and, therefore, the bilinear form (2.3) is∫
Ω

a(x)∇v · ∇u =
∑

(i, j)∈E

(−ai j)δeuδev =
∑
e∈E

ωeδeuδev. (7.12)

• It is well known that the off-diagonal entries of the stiffness matrix A are
given by

ωe = −(φ j, φi)A =
∑
T⊃e

ωe,T

ωe,T =
1

d(d − 1)
aT |κe,T | cotαe,T , aT =

1
|T |

∫
T

a(x) dx.

Here, e = (i, j) is a fixed edge with end points xi and x j; T ⊃ e is the set of
all elements containing e; |κe,T | is the volume of (d − 2)-dimensional simplex
opposite to e in T ; αe,T is the dihedral angle between the two faces in T not
containing e.

• Let E denote the set of edges in the graph defined by the triangulation and let
E− be the set of edges where ai j ≥ 0, i , j. The set complementary to E− is
E+ = E \ E−. Then, with ωe = −ai j, and, δeu = (ui − u j), e = (i, j) we have∫

Ω

a(x)∇v · ∇u =
∑
e∈E+

ωeδeuδev −
∑
e∈E−
|ωe|δeuδev. (7.13)

• We also assume that the partitioning is such that the constant function is the
only function in the null space of the bilinear form (7.12). This is, of course,
the case when Ω is connected (which is true, as Ω is a domain).

The non-zero off-diagonal entries of A may have either positive or negative sign,
and, usually E− , ∅. The next theorem shows that the stiffness matrix A defined
via the bilinear form (7.12) is spectrally equivalent to the matrix A+ defined as

(A+u, v) =
∑
e∈E+

ωe(ui − u j)(vi − v j). (7.14)

Thus, we can ignore any positive off-diagonal entries in A, or equivalently, we may
drop all ωe for e ∈ E−. Indeed, A+ is obtained from A by adding to the diagonal
all positive off diagonal elements and setting the corresponding off-diagonal ele-
ments to zero. This is a stronger result that we need later, because it gives spectral
equivalence with the M-matrix relative A+.

Theorem 7.4. If A is the stiffness matrix corresponding to linear finite element
discretization of (2.1) with boundary conditions given by (7.4). Then A+ is an
M-matrix relative of A which is spectrally equivalent to A. The constants of equiv-
alence depend only on the shape regularity of the mesh. Moreover, the graph cor-
responding to A+ is connected.

A simple corollary which we use later in proving estimates on the convergence
rate is as follows.
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Corollary 7.5. Assume that A is the stiffness matrix for piece-wise linear dis-
cretization of equation (7.12) and A+ is the M-matrix relative defined in Theo-
rem 7.4. Then the diagonal D of A and the diagonal D+ of A+ are spectrally equiv-
alent.

Proof. For the diagonal elements of A and A+ we have

[D] j = (φ j, φ j)A

�(φ j, φ j)A+
= [D+] j.

The equivalences written above follow directly from Lemma 7.4.
Corollary 7.5 together with Lemma 7.3 provide a theoretical foundation for us-

ing M-matrix relative to design AMG for finite element matrices.

7.3. Bibliographical notes

We have introduced some standard notions from graph theory. For the reader inter-
ested in more details descriptions, we refer to classical textbooks (Diestel 2010,
Gibbons 1985) as general introduction on graph theory; and to (Saad 2003a),
(Varga 2000) for considerations linking graphs, sparse matrices and iterative meth-
ods.

Our results on M-matrix relatives are related to the some of the works on pre-
conditioning by Z-matrices and L-matrices (Kraus and Schicho 2006, Kraus 2008).
They are implicitly used in most of the AMG literature (Ruge and Stüben 1987)
where the classical strength of connection definition gives an M-matrix. We point
out that the M-matrix property and the existence of M-matrix relative is often not
sufficient to achieve even a two-level uniform convergence of AMG. A typical ex-
ample is a matrix which has been re-scaled and the constant is not in the kernel of
the discrete operator anymore. In such case, the standard AMG application may
fail, and the near kernel needs to be recovered by different means, such as the
adaptive AMG processes considered in §15 and the references given there-in.

8. Strength of connections
A central task in AMG is to obtain an appropriate coarse space or prolongation.
This process is known as a coarsening process. In a geometric grid or, more gener-
ally, the adjacency graph of the stiffness matrix, we need to identify vertices to be
deleted from the graph. We need the coarsened graph still provide a good approxi-
mation for algebraically low frequencies.

8.1. Basic idea and strength function

If a subset of vertices on which an algebraically smooth vector, say v, change very
slowly, we only need to keep one degree of freedom to represent v in this subset. In
other words, we can either aggregate this subset together or keep one of vertex and
delete the rest of vertices in this subset. We say vertices in this subset are strongly
connected to each other. The strength of connection is a concept introduced to
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8 STRENGTH OF CONNECTIONS

identify strongly connected pairs of vertices. Roughly speaking, we say i and j is
strongly connected if vi ≈ v j.

We imagine to coarsen the graph with two different steps: first step is to remove
some edges and the second step is to remove some vertices. The second step is
the goal. Let us exam how the second step is carried out: we either (1) aggregate
some neighboring vertices together or (2) pick an MIS, denoted as C, in the filtered
graph and then remove all the remaining vertices. Using the argument above, (1)
each aggregate should only consists of strongly connected, or (2) each one of all
the deleted vertices should be strongly connected to some point in C. To guarantee
either of these two situations, we then have to remove all the weakly connected
edges in the first step.

Let us further use some heuristic arguments to motivate how the strength of
connection should be defined. Let v be an algebraically smooth (5.41), namely

‖v‖2A ≤ ε‖v‖
2
R̄−1 .

Let u = v/‖v‖R̄−1 , we then have

(Au, u) ≤ ε ⇒
∑

e=(i, j)∈E

(−ai j)(ui − u j)2 ≤ ε. (8.1)

Thanks to Lemma 5.15, we can assume that A is an M-matrix, namely −ai j = |ai j|.
It follows from (8.1), we have the following observations:

1 A larger |ai j| means a smaller (ui − u j)2;
2 An algebraically smooth error varies more slowly in the direction where |ai j|

is larger;

The observation leads to the following definition of the strength of connection:
Given a threshold θ > 0, we say that the vertex j of the adjacency graph is θ-
strongly connected to vertex i if

−ai j ≥ θmax
k,i
−aik (8.2)

We note that, by the definition above we may have j strongly connected to i, while
i is not strongly connected to j. As a result, the adjacency graph corresponding to
the matrix with the strong connections may not be symmetric.

But our theoretical framework is given in terms of the symmetrized operator R̄,
regardless if the original smoother R is symmetric or not. This is due to the fact
that we used the energy norm, namely A-norm, to measure the convergence rate and
the resulting convergence rate is given in terms of R̄. This is the best convergence
theory we have, and we will use this theory to study AMG algorithms. As a result,
we will only consider the strength functions that are symmetric. Associated with
an SSPD matrix, a strength function is such that

sc : V ×V 7→ R+, (8.3)
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which is symmetric, namely sc(i, j) = sc( j, i).
Given a threshold θ > 0, we say i and j are θ-strongly connected if

sc(i, j) ≥ θ.

We then define the strength matrix:

S =
∑

sc(i, j)≥θ

eieT
j . (8.4)

Notice that S is a boolean matrix with entries equal to 0 or 1 depending on the
strength of connection.

Consider non-overlapping decomposition

V =

m⋃
i=1

Ai =
⋃
Ã∈VA

Ã, VA = (A1, . . . ,Am). (8.5)

We extend the definition of strength function

sc : VA ×VA 7→ R+. (8.6)

and we assume that sc is symmetric.
Given a threshold θ > 0, we say Ai and A j are θ-strongly connected to each

other if

sc(Ai,A j) ≥ θ.

An example of such a strength function is given in (8.13).
In the AMG literature, a number of heuristics have been proposed for identify-

ing strong connections, particularly when considering discretizations of anisotropic
equations. In general, the strength of connection is a notion that is difficult to ad-
dress theoretically or to relate it with the convergence rate of an algorithm. We
refer to the classical papers and monographs mentioned in §9.6 for further discus-
sions on related issues. Current trends in AMG development aim to re-evaluate the
role of the classical definition of the strength of connection.

We would finally like to comment that the strength of connection is used to de-
fine the sparsity of P and it is crucial, for example, in the proof of the convergence
of the two-level method for discretizations of elliptic equation with jump coeffi-
cients. Choosing the “right” sparsity of P is crucial as a denser P would lead to
a better approximation from a coarser space; and a sparser P would lead to a less
expensive algorithm.

In the rest of section, we discuss different definitions of strength of connections:

1 classical AMG;
2 lean AMG;
3 local-optimization based.
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8.2. Classical AMG

With the above motivation, we define the strength function as follows:

sc(i, j) =
−ai j

min
(

maxk,i(−aik),maxk, j(−a jk)
)

=
ai j

max
(

mink,i aik,mink, j a jk

) . (8.7)

The definition (8.7) is symmetrized version of strength function used in the classi-
cal AMG literature (see (8.2)).

The following definition is also commonly used in classical AMG algorithms

sc(i, j) =
|ai j|

min
(

1
|N(i)|

∑
k,i |aik|,

1
|N( j)|

∑
k,i |a jk|

) . (8.8)

Again, this is a symmetrized version of strength functions used in the AMG litera-
ture.

Finally we may also have the following two definitions which are based on
Cauchy-Schwarz for SSPD matrices:

s1(i, j) =
|ai j|
√aiia j j

(8.9)

and

s2(i, j) =
−2ai j

aii + a j j
(8.10)

Note that the definition (8.7) (which is mostly associated with Classical AMG)
ignores all the non-negative entries of the stiffness matrix A = (ai j).

8.3. Local-optimization strength function

Suppose that each pair of the index {i, j} ⊂ {1, . . . , n} is associated with a space
Vi j, which is not necessarily a subspace of V . Assume now we have two operators:
Ai j : Vi j 7→ V ′i j which is symmetric positive, semi-definite and Di j : Vi j 7→ V ′i j
which is SPD.

Given a number ki j < dim Vi j, we define a coarse space Vc
i j ⊂ Vi j as follows

Vc
i j := span{ζ(k)

i j , k = 1 : ki j},

where ζ(k)
i j is the eigenvector corresponds to the k-th smallest eigenvalue of D−1

i j Ai j.
We denote Qi j : Vi j 7→ Vc

i j to be the orthogonal projection with respect to (·, ·)Di j .
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8.3 Local-optimization strength function

Motivated by (6.14), we define the strength function sc as follows

sc(i, j) :=

sup
v∈Vi j

‖(I − Qi j)v‖2Di j

‖v‖2Ai j


−1

. (8.11)

A special case of the above definition is introduced in AGMG. Suppose now we
have a set of aggregates {A1, . . . ,AJ}. We fix a pair {i, j} ⊂ {1, . . . , J}, and define

G = Ai

⋃
A j.

We then define by Vi j the restriction of V on G as follows

Vi j := {v|G : v ∈ V}, (8.12)

where

v|G (x) =

v(x), if x ∈ G,
0, if x < G.

We denote the restriction of A and D on G by Ai j and Di j respectively. We then
choose ki j = 1 and define the local coarse space Vc

i j

VC
i j = span{ζG}, ζG = ζ(1)

i j .

and the orthogonal projection Qi j : Vi j 7→ VC
i j with respect to (·, ·)Di j , namely,

Qi jv =
(v, ζG)Di j

‖ζG‖
2
Di j

ζG.

The strength function based on aggregation is defined as follows:

sc(i, j) :=

sup
v∈Vi j

‖(I − Qi j)v‖2Di j

‖v‖2Ai j


−1

. (8.13)

Another example is choosing Vi j = R2 and

Ai j =

(
aii ai j
ai j a j j

)
, Di j =

(
aii 0
0 a j j

)
.

We choose ki j = 1 and define the coarse space Vc
i j ⊂ Vi j as follows

Vc
i j = span

{(
1
1

)}
.

By a direct computation, we have the strength function defined in (8.11) is

sc(i, j) =
1 − s2

1

1 − s2
, s1 =

|ai j|
√aiia j j

, s2 = −
2ai j

aii + a j j
. (8.14)
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We notice that s1 ≥ s2 and hence

sc(i, j) ≤ 1 + s2 ≤ 1 + s1. (8.15)

We would like to point out that the strength function given by (8.14) is obtained
by using the theory in §6, while the other strength functions such as (8.7) are ob-
tained by heuristic considerations.

8.4. Lean AMG

Instead of using the absolute value of matrix entries as the criteria to determine if
two points are strongly coupled, Lean AMG use the affinity to measure the strength
of connections, which is based on the following heuristic observation:

Given a vector v, if (i, j) is a strong connected pair of vertices, after several
relaxation on v, namely

v← (I − RA)νv,

the values of vi and v j should be close.
In Lean AMG, we generate K Test Vectors (TVs). Each TV is the result of

applying ν GS relaxation sweeps to Ax = 0, staring from randomly generated
vectors x(1), . . . , x(K) ∈ Rn. And we denote

Xn×K :=


XT

1
...

XT
n

 = (I − RA)ν
(
x(1) . . . x(K)

)
. (8.16)

Here XT
i is the i-th row of Xn×K . The strength function for the Lean AMG is then

defined as follows

sc(i, j) :=
|(Xi, X j)|2

(Xi, Xi)(X j, X j)
(8.17)

8.5. Bibliographical notes

Classical algorithms for determining strength of connection are found in (Brandt
et al. 1982b, Stüben 1983, Brandt et al. 1985, Ruge and Stüben 1987, Briggs,
Henson and McCormick 2000). The original measure of strength of connection
given in (Ruge 1985, Mccormick and Ruge 1989, Brandt et al. 1985, Ruge 1983)
is nonsymmetric, but for theoretical considerations, which only depend on the sym-
metrized smoothers, it suffices to use the slightly more restrictive, but symmetric
versions of the strength of connection.

Some extension of these classical algorithms for defining strong connections
are based on different measures for connectivity and distance such as measure of
importance, and algebraic distance. Details are found in (Ruge and Stüben 1987)
and (Trottenberg et al. 2001, Appendix A).

The strength of connection measures has had little theoretical backing in the
past. The results developed in this section, such as local Poincaré inequalities and
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especially the strength functions (8.15) shows that such heuristics are reasonable
and their choice can be motivated by theoretical results.

For aggregation AMG, typically, a symmetric strength of connection function as
defined in (Vaněk et al. 1996b) is used. Some recent aggregation algorithms also
define strength of connection based on sharp theoretical results and use the local
two-level convergence rate (8.11) as a measure (Notay 2010, Napov and Notay
2012).

For aggregations based on matching (aggregates of size 2) the the “heavy edge”
matching algorithms in (Karypis and Kumar 1998) corresponds to a strength of
connection function selecting aggregates depending on the edge weight in the ad-
jacency graph. Some recent works (Livne and Brandt 2012) use strength of con-
nection functions based on the size of the entries in the Gramm matrix formed by
a set of smoothed test vectors.

9. Coarsening strategies

Once the smoother is identified, the central task of an AMG method is to identify
a sequence of coarse spaces, in functional terminology, or equivalently, in an al-
gebraic setting, to identify a sequence of prolongation matrices. This procedure
is known as a “coarsening” procedure. In this section, we will discuss how this
coarsening procedure.

Roughly speaking, given the equation (1.1), namely Au = f , on a vector space
V , the goal is to find a subspace Vc ⊂ V such that the solution uc ∈ Vc of the
following “coarsened” problem:

Acuc = fc, Ac = ı′cAıc, fc = ı′c f (9.1)

would provide a good approximation to the original solution u ∈ V . More specifi-
cally, the solution of uc of (9.1) would provide good approximation to those “alge-
braically smooth” components of the error for which the given smoother does not
converge well.

9.1. Motivations

In some sense, “coarsening” is done almost everywhere in numerical analysis. For
example, the finite element equation (2.19) can be viewed as a coarsened equation
of the original equation (2.3). In this case the finite element space Vh is a coarsened
subspace of V = H1

0(Ω).
It is therefore informative for us to exam how a finite element space is con-

structed in general. While there are many different ways to construct finite element
spaces, mathematically speaking, the most convenient approach is through the use
of “degrees of freedom” which refers to a basis of a dual space. More specifically,
in a finite element discretization, the finite element space Vh is obtained by speci-
fying the dual space V ′h (the so called space of degrees of freedom) first. For linear
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finite elements, V ′h = {ψi : i = 1 : nh} is such that

ψi(v) = v(xh
i ).

With such degrees of freedom (nodal evaluation), we then find a dual basis {φi :
i = 1 : nh} which are piecewise linear functions such that

ψi(φ j) = δi j, 1 ≤ i, j ≤ n.

The finite element space Vh is then defined by

Vh = span{φi : i = 1 : nh}.

In fact, mathematically speaking, all existing finite element spaces Vh can be ob-
tained by first constructing Vh. This is the approach taken in the classical literature
on finite element methods , c.f. (Ciarlet 2002).

Similar to finite element method, we will therefore focus on techniques for con-
structing a coarse space Vc ⊂ V by first identifying its dual basis V ′c. Such an
approach is rather abstract, but it turns out to be more intrinsic, more general, and,
in fact, more commonly used in AMG literature (implicitly).

It is interesting to note that we rarely use the word “coarsening” in the design of
a geometric multigrid method. Instead, we use a “refinement” procedure to define
a sequence of nested spaces. As an example, Figure 9.6 shows a uniformly refined
triangular grid used for discretization of Poisson equation with with linear finite
elements.

In AMG, we do not have the luxury of this hierarchy of spaces given by a ge-
ometric refinement. Instead, we carry out a reverse-engineering process of the
refinement process, namely coarsening.

Figure 9.6. Regular refinement of a coarse grid element. •-coarsest level vertices,
◦-first level of refinement, �-second level of refinement.

Conceivably, we can also use such an inverse-engineering process to recover the
geometric multigrid method by starting from the finest geometric grid, at least for
some special case. For example, if all triangles in the triangulation as shown in
Figure 9.6 are of acute type and then the graph corresponding to the mesh is also
an adjacency graph of the stiffness matrix. It is clear that the coarse grid vertices,
i.e. the set C (known from the refinement), is a maximal independent set (MIS)
of vertices in the graph corresponding to the refined mesh. In the simplest case,
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the degrees of freedom associated with the coarse grid (the dual basis for Vc) pre-
cisely corresponds to the MIS. Such an observation is explored later in constructing
algorithms in the framework of Classical AMG for a selection of coarse grid ver-
tices via the MIS algorithm in §9.3.1. For further examples on relations between
geometric AMG and GMG coarsening we refer to §10.2.

The above reverse-engineering process for GMG gives some hint how a coarsen-
ing process needs to be done in AMG, but we need to study the process in a broader
framework and more importantly we will use the degrees of freedom, namely basis
of dual basis, to obtain coarse spaces. In the above GMG example, each grid point
in the geometric grid corresponds exactly to one degree of freedom. But this is not
always the case in applications.

9.2. Basic approach

By mimicking the construction of finite element space as described above, given a
linear algebraic system of equation Au = f , we adapt a coarsening strategy con-
sisting of the following steps:

1 We consider the adjacency graph G(A) of the coefficient matrix A. Based
on certain strength function sc as described in §8, we remove the weakly
connected edge in G(A), namely drop certain entries in A to form a filtered
matrix Ã.

2 We carry out one of the following two:

(a) Classical AMG: Find an MIS of G(Ã) to form the set of coarse vertices
C. Then remove the rest, namelyV \ C ≡ F .

(b) Aggregation AMG: Agglomerate using some greedy algorithm: pick a
point and agglomerate its neighbors and go from there.

3 We obtain a subset of d.o.f. obtained from the above steps, namely (V ′)c

4 We use (V ′)c to define a high frequency space Vh f = (V ′)(0)
c by

Vh f = (V ′)(0)
c := {v ∈ V : 〈g, v〉 = 0, ∀g ∈ (V ′)c}. (9.2)

5 Find a tentative coarse space Wc such that

V = Vh f ⊕Wc (9.3)

6 Apply certain postprocess (such as smoothing) to Wc to obtain Vc:

Vc = S Wc

7 Using Vc, or equivalently the prolongation P, we form coarse matrix Ac =

PT AP.
8 We then repeat the above steps to Ac in place of A until a desirable coarsest

level is reached.
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9 COARSENING STRATEGIES

9.2.1. Construction of (V ′)c

Given A ∈ Rn×n and the associated graph G = (V,E), we proceed as follows:

1. Form the following two non-overlapping decompositions

V = C ∪ F , C =

nc⋃
i=1

Ai.

2. Identify (V ′)c = span{Ni : i = 1 : nc} ⊂ V ′.

Here are three examples which will be discussed in detail in later sections (c.f.
§11, §12, and §13).

Aggregation AMG : F = ∅ and

Ni(v) = 〈v〉Ai ≡
1
|Ai|

∑
j∈Ai

ψ j(v) =
1
|Ai|

∑
j∈Ai

v j, i = 1 : nc. (9.4)

Classical AMG : F , ∅ and

Ai = {ki}, Ni(v) = ψki(v) = vki . (9.5)

In this case, C usually consists of disconnected vertices.
Energy-min AMG : F , ∅ andAi are aggregates

Ni(v) = 〈v〉Ai ≡
1
|Ai|

∑
j∈Ai

ψ j(v) =
1
|Ai|

∑
j∈Ai

v j, i = 1 : nc. (9.6)

9.2.2. Construction of Vc

Given coarse grid degrees of freedoms (V ′)c ⊂ V ′, we define Vh f as in (9.2). The
following lemma shows how to find a subspace Wc, a “pre-coarse space”, such that
V = Vh f ⊕Wc.

Lemma 9.1. If φk,c, k = 1, . . . , nc are elements of V such that the “Gramm”
matrix

G = (Gkm) = (Nm(φk,c)),

is nonsingular, then we have

V = Vh f ⊕Wc, Wc = span{φk,c}
nc
k=1.

Proof. We first show Wc ∩ Vh f = {0}. In fact, if v :=
∑nc

k=1(ṽ)kφk,c ∈ Wc ∩ Vh f ,
then we have

0 = Nm(v) =

nc∑
k=1

Nm(φk,c) =

nc∑
k=1

(ṽ)kGkm, m = 1, . . . , nc.

Hence,
Gṽ = 0,
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9.2 Basic approach

and since by assumption, G is nonsingular, we must have v = 0. Therefore, Wc ∩

Vh f = {0}.
Next, for any v ∈ V , we define wc ∈ Wc as

wc =

nc∑
k=1

(w̃c)kφk,c, w̃c = G−1


N1(v)
...

Nnc(v).

 .
It is immediate to check that

Nm(v − wc) = 0, m = 1, . . . nc.

This means that (v − wc) ∈ Vh f . This proves that v = wc + (v − wc︸ ︷︷ ︸
∈Vh f

) and completes

the proof.
The above lemma gives us a way to construct a subspace Wc such that V =

Vh f ⊕Wc.

Lemma 9.2. If the coarse grid degrees of freedom are defined as

Nk :=
∑
j∈Ak

α jψ j, k = 1, . . . , nc,

where
∑

j∈Ak α j = 1 and {ψ j} is dual basis of {φ j}. If {φk,c : k = 1, . . . , nc} are
elements of V such that the “Gramm” matrix

G = (Nl(φk,c)) = I,

then, we have

φk,c =
∑
j∈Ak

φ j + vh f , vh f ∈ Vh f . (9.7)

Proof. We fix a k and consider the subset Wk ⊂ V such that

Wk := {v ∈ V : Nk(v) = 1 and Nl(v) = 0,∀l , k}

Pick any v1, v2 ∈ Wk, we have

Nl(v1 − v2) = Nl(v1) − Nl(v2) = 0, ∀l = 1, . . . , nc,

and this shows that (v1 − v2) ∈ Vh f .
Furthermore, if we define vc

k =
∑

j∈Ak φ j, then

Nk(vc
k) =

∑
j∈Ak

∑
i∈Ak

α j(ψ j, φi) =
∑
j∈Ak

α j = 1.

and Nl(vc
k) = 0 for all l , k sinceAk andAl have no overlap. We then have vc

k ∈ Wk
and hence,

Wk = {vc
k + vh f : vh f ∈ Vh f }.
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9 COARSENING STRATEGIES

Next, we describe how one can construct the coarse space Vc using Wc.

Lemma 9.3. Assume that V = Vh f ⊕Wc and ϕ1,c, . . . ϕnc,c is a basis in Wc. Then
φk,c = Sϕk,c, k = 1, . . . , nc are linearly independent if S : V 7→ V satisfies one of
the following conditions

1. S maps a linear independent set in Wc into a linear independent set in V .
2. S is invertible;
3. S = I − Qh f where Qh f : V 7→ Vh f .

As a result, we have

V = Vh f ⊕ Vc, Vc = span{Sϕk,c : k = 1, . . . , nc}.

Proof. We only need to prove the third case as the first two cases are trivial. If
φk,c were linearly dependent, there would be a linear combination of {φk,c}

nc
k=1 which

vanishes. Equivalently, this means that there exists wc ∈ Wc such that (I−Qh f )wc =

0, which implies that wc ∈ Vh f . Since V f ∩ Wc = {0} we have that wc = 0 and
the only vanishing linear combination in span{φk,c}

nc
k=1 is the trivial one and this

completes the proof.

Remark 9.4.

1. For smoothed aggregation, S = I−ωD−1A for some properly chosenω so that S
is nonsingular, or maps a special linearly independent set of vectors to linearly
independent set of vectors (see §13).

2. For classical AMG with ideal interpolation, S = I−Qh f and Qh f is A-othogonal
projection (see §12).

3. For classical AMG with standard interpolation, S = I − Qh f and Qh f is an
approximation to the ideal interpolation (see §12).

To give a summary of above discussions, the coarsening algorithms in AMG
are methods for determining the coarse grid degrees of freedom (or coarse grid
variables). Such algorithms are based on selecting degrees of freedom associated
with subsets of vertices in the adjacency graph that corresponds to the matrix A or
to the strength matrix S as is done in geometric coarsening, when the hierarchy of
meshes or adjacency graphs is known.

9.3. Two basic coarsening algorithms

In the next two sections we present typical algorithms for finding the coarse grid
degrees of freedom. Each such degree of freedom is associated with a vertex or
a subset of a graph. Two types of algorithms are distinguished: Classical AMG
algorithm pick coarse grid degrees of freedom that correspond to a maximal inde-
pendent set of vertices in adjacency graph of the strength matrix; and aggregation
based AMG algorithms which use splitting of adjacency graph of the strength ma-
trix in connected subgraphs.
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9.3 Two basic coarsening algorithms

9.3.1. A maximal independent set (MIS) algorithm
We present here a simple “greedy” maximal independent set (MIS) algorithm,
which has been used in the Classical AMG algorithms to identify coarse grid de-
grees of freedom. Given adjacency graph of the strength matrix, the simple greedy
MIS algorithm is as follows.

Algorithm 5 MIS
1. Set C = ∅, i← 1.
2. If i and all its neighbors are not visited, then set C = C ∪ {i} and mark i and all

vertices in N(i) as visited.
3. If all vertices are visited, then output C and stop; else set i← i + 1 and go to 2.

Remark 9.5. We note that the MIS Algorithm 5 recovers the geometric coarsen-
ing if the vertices are visited in an order so that coarse grid vertices are ordered first
and all the connections in Figure 9.6 are strong. This is obvious, but, nevertheless,
shows that the geometric coarsening can sometimes be recovered by an algebraic
algorithm.

Let us point out that for finite element stiffness matrices obtained via adaptive
refinement algorithms, the hierarchy of vertices is naturally included in the re-
finement procedure. For regular refinement such choice of MIS is illustrated in
Figure 9.6.

9.3.2. An aggregation algorithm
The class of algorithms, known as aggregation algorithms refer to splitting of adja-
cency graph of the strength matrix as a union of connected subgraphs. Let {Vk}

nc
k=1

be a non-overlapping splitting of the set of vertices

V = ∪
nc
k=1Vk, V j ∩Vk = ∅, for j , k.

We then define

Ek = {(l,m) ∈ E
∣∣∣ l ∈ Vk and m ∈ Vk}, (9.8)

to be the set of edges associated withVk.
An aggregation can be done in many different and some very sophisticated ways.

In general all combinatorial graph partitioning algorithms can be used for aggre-
gation. We, however, will not consider in details such algorithms, but rather, we
provide here (Algorithm 6) the basic and most important example of greedy aggre-
gation algorithm.

Such algorithm can be recursively applied to provide a multilevel hierarchy of
aggregates.
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9 COARSENING STRATEGIES

Algorithm 6 Greedy aggregation algorithm
Input: Graph G with n vertices; Output: V = ∪

nc
k=1Vk, and Vk ∩ V j = ∅ when

k , j.

1. Set nc = 0 and for k = 1 : n do:

a. If k and all its neighbors have not been visited, then: (a) we set nc = nc + 1;
(b) label with nc the subgraph whose vertices are k and the neighbors of k;
and (c) mark k and all its neighbors as visited.

b. If at least one neighbor of k has been visited, we continue the loop over the
vertices.

2. Since after this procedure there might be vertices which do not belong to any
aggregate (but definitely have a neighboring aggregate), we add each such ver-
tex to a neighboring aggregate and we pick the one which has minimal number
of vertices in it.

3. The algorithm ends when all vertices are in a subset.

9.3.3. Aggressive coarsening
The extended strong connections and the corresponding strength operator are used
to construct coarse spaces of smaller dimension. This procedure is also known as
aggressive coarsening. We recall the definition of a path in the graph given in §7.1
and all our considerations are on the adjacency graph G(S ) of the strength matrix
S ∈ Rn×n defined in (8.4). Aggressive coarsening refers to selection of coarse grid
vertices as independent set in the adjacency graph corresponding to the strength
operator are at distances larger than 2.

Definition 9.6. (Strong connection along a path) A vertex i is said to strongly
connect to a vertex j along a path of length l if there exits a path (k0, k1, . . . , kl) in
G(S ), such that k0 = i, kl = j, and sc(km, km+1) ≥ θ, m = 0, 1, . . . , l − 1.

Next definition is related to the number of strongly-path-connected vertices.

Definition 9.7. ((m, l)-strong connection) For given integers m > 0 and l > 0, a
vertex i is (m, l)-strongly connected to a vertex j if and only if i strongly connect to
j along at least m paths of length l (per Definition 9.6).

An aggressive coarsening algorithm generates a MIS using Algorithm 5 for the
graph Gm,l = (V,Em,l) with a set of vertices V = {1, . . . , n and set of edges Em,l
defined as

Em,l := {(i, j)
∣∣∣ i is (m, l) strongly connected to j} (9.9)

As is well known (Diestel 2010) (S l)i j is nonzero if and only if there is a path of
length ≤ l between i and j. An aggressive coarsening exploits this property and is
an algorithm which selects a set of coarse grid degrees of freedom corresponding to
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9.4 Adaptive coarsening for classical AMG

vertices in the graph which are at graph distance larger than l. It uses the adjacency
graph G(S l) of S l in place of G(S ) in an aggregation or a MIS algorithm.

As an example, let us consider aggressive coarsening with l = 2 and m = 1.
The set of coarse grid degrees of freedom is obtained by applying the standard
MIS Algorithm 5 twice: (1) we find a MIS in G(S ) and then obtain a set of coarse
grid degrees of freedom C (these are at graph distance at least 2); (2) Apply the
MIS algorithm for a second time on the graph with vertices the C-points and edges
between them given by the strength operator corresponding to S 2.

Similarly, for aggregation, an aggressive coarsening corresponds to applying the
aggregation Algorithm 6 recursively, or applying it directly to the graph corre-
sponding to S l for a given l.

9.4. Adaptive coarsening for classical AMG

An adaptive coarsening algorithm is an algorithm which adaptively chooses the
coarse grid degrees of freedom based on a given definition of strength function
based on the smoother in a two grid algorithm. One example of adaptive coarsening
follows from the classical compatible relaxation introduced by A. Brandt. The
algorithm takes as input a smoother which leaves the coarse grid variables invariant
and only smooths the components in the algebraic high-frequency space Vhf.

A typical adaptive coarsening algorithm follows the steps given below:

Step 0 Set k = 0 and choose (V ′)k,c ⊂ V ′, for example, using the MIS or aggrega-
tion method introduced in §9.3.

Step 1 Define Vk, f as the subspace of V which is annihilated by the functionals in
(V ′)k,c, namely

Vk, f = {v ∈ V : (g, v) = 0,∀g ∈ (V ′)k,c}.

Step 2 Let ık, f : Vk, f 7→ V be the natural inclusion operator and compute an es-
timate ρk, f of the norm of the smoother on Vk, f . Below, Rk, f could be the
restriction of the smoother R on Vk, f , or more generally, any relaxation on
Vk, f .

ρk, f ≈ sup
v∈Vk, f

‖(I − ık, f Rk, f ı
′
k, f A)v‖2A

‖v‖2A
.

Step 3 Given a threshold δ f > 0, if ρk, f > δ f , we set k = k + 1, add more func-
tionals to (V ′)c and go to Step 1. Otherwise, we set (V ′)c = (V ′)k,c, and
accordingly V f = Vk, f and stop the iteration.

In Step 3, if the stopping criteria is not satisfied, we need to enrich the space
(V ′)c. by extending the set . One example of doing so is introduced in compatible
relaxation method by extending the set C using the following procedure:

First we randomly choose a vector v0 ∈ Vk, f , and form

v = (I − ık, f Rk, f ı
′
k, f A)νv0 for some ν ≥ 1.
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9 COARSENING STRATEGIES

Then, with a given threshold θ ∈ (0, 1), we let

C1
0 = {i ∈ F : |vi| > θmax

k
|vk|}.

and
C1 = C0 ∪MIS(C1

0).

Finally, we update C ← C1 and we proceed with the next CR iteration.
As is clear from the algorithm outlined above, we can use any of the definitions

of strength of connections to obtain (V ′)0,c at Step 0. When ρk, f > δ f , it means that
C obtained from the strength function s0 is not satisfactory, namely too coarse. This
either means that the threshold for s0 is too small, or s0 itself is not satisfactory.
We could still use s0 but with a smaller threshold to obtain a C′0 which is bigger
than C0, but not necessarily contain C0. For example, if we initially use the (m, l)-
strong connection defined in Definition 9.7, C can be extended by increasing the
value of m or decreasing the value of l. This approach may not be computationally
efficient. A more effective approach, as it is used in compatible relaxation, is to
find candidates for additional C-points by examining the following filtered matrix:

A(1) =

{
ai j : i, j ∈ F0

}
,

where F0 = Ω \ C0, to get the set of coarse grid degrees of freedom C1
0 and add

them to C0 to extend the size of C.

9.5. AGMG coarsening: a pairwise aggregation

AGMG uses the strength function defined in (8.13) to form aggregations such that
the local convergence rate (c.f (6.14) in §6) on each aggregate is bounded by a
given threshold. The main idea of the algorithm can be explained as follows:

It first splits the index set Ω into aggregates each of which has at most two
elements, namely

Ω =
⋃

j

A
(0)
j , A

(0)
i

⋂
A

(0)
j = ∅, and |A(0)

j | ≤ 2. (9.10)

This process is done by a greedy algorithm. At each step, the algorithm finds the
pair G = {i, j} for which the strength function defined in (8.14) is maximal.

Using these pairs as aggregates {A(0)
j }, we form the unsmoothed aggregation

prolongation P, which is piecewise constant with respect to the aggregates and P
has orthogonal columns.

We denote A(0) := A and P(0) := P. Then A(1) := (P(0))T A(0)P(0). We then apply
pairwise aggregation algorithm on A(1) and find larger aggregates {A(1)

j }. Each

A
(1)
j is union of two pairs in {A(0)

j } which minimize the strength function defined
in (8.13). Then we obtain P(1) and A(2). Applying this procedure recursively, we
obtain the final aggregatesA j each of which is a union of several pairs in {A(0)

j }.
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The pairwise aggregation strategy aims to find the aggregates on which the Pon-
caré constant µ j(Vc

j )
−1, which is introduced in our abstract framework by (6.14),

is bounded . And as it is stated in the abstract convergence theorem, bounding
µ j(Vc

j )
−1 will bound the convergence rate of the AMG method.

9.6. Bibliographical notes

The coarsening strategies used in AMG are basically two types: the first one uses
strength of connection to define a “strength” graph, and then performs greedy ag-
gregation or MIS algorithms and the other is a based on algorithms such as Com-
patible Relaxation coarsening which uses the smoother to detect slow to converge
components. These are heuristic approaches, which work well on a certain class
of problems, but rarely have a theoretical justification of their efficiency as AMG
splitting algorithms.

Classical algorithms for selection of the coarse grid degrees of freedom are found
in (Brandt et al. 1982b, Stüben 1983, Brandt et al. 1985, Ruge and Stüben 1987),
and the MG the tutorial (Briggs et al. 2000).

Parallel coarse-grid selection algorithms are found in (Sterck, Yang and Heys
2006) and, in combination with scalable interpolation algorithms in (De Sterck,
Falgout, Nolting and Yang 2008). Coarsening using information about discretiza-
tion, i.e. AMGe, are given in (Jones and Vassilevski 2001, Brezina, Cleary, Fal-
gout, Henson, Jones, Manteuffel, McCormick and Ruge 2001). Spectral AMGe
coarsening considered in detail in (Chartier et al. 2003). Many of the “upscaling”
and related techniques in homogenization (c.f. (Efendiev, Hou and Wu 2000, Hou,
Wu and Cai 1999)), resemble the coarsening procedures introduced in the classical
and modern AMG literature.

More sophisticated maximal independent set (MIS) algorithm for selection of
coarse grid degrees of freedom, using different measures for connectivity and dis-
tance in the graph corresponding to A such are found in (Ruge and Stüben 1987)
and (Trottenberg et al. 2001, Appendix A). Most of these algorithms are refine-
ments of the greedy algorithm given in this section. For parallel versions we refer
to (Luby 1986), (Cleary, Falgout, Henson and Jones 1998), (Sterck et al. 2006) for
specific details on parallel and parallel randomized MIS algorithms. Other coars-
ening schemes that are also suitable for parallel implementation are the coupled
and decoupled coarsening schemes (Yang 2006, Henson and Yang 2002).

Regarding the aggregation coarsening methods we refer to (Vakhutinsky, Dudkin
and Ryvkin 1979), (Blaheta 1986), and Marek (Marek 1991) a for earlier work on
such methods. The greedy aggregation algorithm presented here is found in (Vaněk
et al. 1996b). A special class of aggregation coarsening method based on matching
were first employed by Kumar and Karypis for fast graph partitioning (Karypis and
Kumar 1998) and later used in several of the AMG methods. One example is the
AGMG algorithm described in §9.5 and found in (Napov and Notay 2012, Notay
2012). The algorithm given in (Kim, Xu and Zikatanov 2003) also uses such coars-
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ening approach.Special matching techniques which optimize matrix invariants are
used in (D’Ambra and Vassilevski 2014, D’Ambra and Vassilevski 2013). a The
Compatible Relaxation (CR) algorithm, first introduced in (Brandt 2000a) and fur-
ther investigated in (Livne 2004), (Falgout and Vassilevski 2004), and (Brannick
and Falgout 2010), is a device that reduces the role of the strength of connection to
only define initial set of coarse grid degrees of freedom and then use the smoother
to select additional degrees of freedom. Other coarse-fine degrees of freedom parti-
tioning algorithms are considered in (MacLachlan and Saad 2007) from both clas-
sical as well as compatible relaxation point of view. A somewhat different adaptive
coarsening algorithms are the aggregation algorithms which aggregates vertices
together based on a local measure for two-level convergence (Notay 2010, Napov
and Notay 2012, Livne and Brandt 2012).

10. GMG, AMG and a geometry-based AMG

Historically, the algebraic multigrid, AMG, method was motivated by the geo-
metric multigrid, GMG, method. In this section, we will give exploration on the
relationship between these two types of methods.

10.1. Geometric multigrid method

We begin out discussion for a simple 1D model problem, namely (2.1) for d =

1,Ω = (0, 1) and α ≡ 1 with zero Dirichlet boundary condition. For any integer N,
we consider a uniform grid, denoted by Th, of the interval [0, 1] as follows:

0 = x0 < x1 < · · · < xN+1 = 1, x j =
j

N + 1
( j = 0 : N + 1). (10.1)

This partition consists of uniform subintervals with the length h = 1
N+1 , i.e., Th =⋃

i{τi} where τi = (xi−1, xi) for d = 1. Such a uniform partition is shown in Figure
10.7.

x0 x j xN+1

Figure 10.7. One-dimensional uniform grid

We define a linear finite element space associated with the partition Th

Vh = {v : v is continuous and piecewise linear w.r.t. Th, v(0) = v(1) = 0}. (10.2)

Let Vh = Vh. Recall from previous section, the finite element approximation of
our model problem is then uh ∈ Vh satisfying (2.19). We introduce the operator:
Ah : Vh 7→ Vh such that

(Ahvh,wh) = a(vh,wh), vh,wh ∈ Vh.
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10.1 Geometric multigrid method

Then the finite element solution uh satisfies

Ahuh = fh (10.3)

where fh ∈ Vh is the L2 projection of f : ( fh, vh) = ( f , vh), vh ∈ Vh.
To describe a geometric multigrid algorithm, we need to have a multiple level

of grids, say Tk with k = 1 : J and TJ = Th being the finest mesh. One simple
definition of the grid points in Tk is as follows:

xk
i =

i
2k , i = 0, 1, 2, · · · ,Nk + 1, k = 1, 2, · · · , J,

where Nk = 2k − 1. Note that Tk can be viewed as being obtained by adding
midpoints of the subintervals in Tk−1. For each k the set of above nodes will be
denoted by Nk.

n=31

n=15

n=7

n=3

n=1

Figure 10.8. Multiple grids in one dimension

For k = 1 : J, similar to finite element space Vh defined as in (10.2), we define
finite element space Vk associated with the grid Tk to obtain a nested sequence of
finite element spaces as follows:

V1 ⊂ . . . ⊂ Vk ⊂ . . . ⊂ VJ . (10.4)

The classic V-cycle geometric multigrid method simply applies Algorithm 4 re-
cursively with the following setting:

1 Vk = Vk;
2 Ak : Vk 7→ Vk defined by

(Akuk, vk) = a(uk, vk), uk, vk ∈ Vk;

3 ıkk−1 : Vk−1 7→ Vk is the inclusion operator;
4 Rk : Vk 7→ Vk corresponding a smoother such as Gauss-Seidel method.

Algebraic setting
The equation 10.3 may be called the operator form of the finite element equation.
To get an equation in terms of vectors and matrix, we use the nodal basis functions
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for Vh

φi(x) =


x−xi−1

h , x ∈ [xi−1, xi];
xi+1−x

h , x ∈ [xi, xi+1];
0 elsewhere.

(10.5)

On each level, similarly as (10.5), we can introduce a set of nodal basis functions,
denoted by {φ(k)

i : i = 1 : Nk}, for finite element space Vk.

n=7

12 34 5 6 7

n=3

2 1 3

n=1

1

Figure 10.9. 1D nodal basis functions on each level

Each v ∈ Vk can be uniquely written as the following linear combination of the
basis functions

v = ξ1φ
(k)
1 + ξ2φ

(k)
2 + · · · + ξNkφ

(k)
Nk
. (10.6)

This gives an isomorphism from Vk to RNk , which maps v ∈ Vk to µ ∈ RNk as
following

v = ξ1φ
(k)
1 + ξ2φ

(k)
2 + · · · + ξNkφ

(k)
Nk
−→ µ =


ξ1
ξ2
...
ξNk

 . (10.7)

µ is called matrix representation of v. Recall from the discussion earlier in §2.2,
giving a basis of Vh defined in (10.5), the (2.19) is equivalent to the linear system
equations in (2.20).

We introduce auxiliary space Vk := RNk .
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10.2 Obtaining AMG from GMG

The transition operator Pk+1
k from Vk to Vk+1 is a matrix in RNk+1×Nk and satisfies

(φ(k)
1 · · · φ

(k)
Nk

) = (φ(k+1)
1 · · · φ(k+1)

Nk+1
)ık+1

k . (10.8)

For the special 1D problem we are now considering, we have for k = 1, 2, . . . , J−1

φ(k)
j =

1
2
φ(k+1)

2 j−1 + φ(k+1)
2 j +

1
2
φ(k+1)

2 j+1 , (10.9)

The matrix which encodes this relation is

Pk+1
k =



1
2
1
1
2

1
2
1
1
2

1
2
1
1
2

. . . 1
2
1
1
2



. (10.10)

The classical V-cycle AMG method following from simply applying Algorithm 4
recursively with the following setting:

1. Vk = RNk ;
2. Ak ∈ R

Nk×Nk : Vk 7→ Vk defined by

(Ak)i j = a(φ(k)
i , φ(k)

j ), 1 ≤ i, j ≤ Nk;

3. Pk
k−1 : Vk−1 7→ Vk a matrix in RNk+1×Nk defined by (10.8);

4. Rk : Vk 7→ Vk corresponding a smoother such as Gauss-Seidel method.

A similar multigrid algorithm can be obtained for problems in 2D and 3D as long
as we have a multiple level of grids and the corresponding finite element spaces on
each level.

10.2. Obtaining AMG from GMG

The first barrier of extending GMG to AMG is the geometric information used in
GMG. But a close inspection of the GMG reveals that a GMG method only depends
on the following 2 major ingredients:

1. The stiffness matrix corresponding to the finest grid;
2. The prolongation matrix on each level.
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10 GMG, AMG AND A GEOMETRY-BASED AMG

Once all the prolongation matrices are given, the stiffness matrices on all coarser
levels are given by

Ak = PT
k APk, k = J − 1, J − 2, . . . 1, Pk =

J−1∏
j=k

P j+1
j . (10.11)

Of course, a smoother is also needed on each level, but its definition can be con-
sidered, for the moment purely algebraic.

As the stiffness matrix on the finest grid is always available in any given ap-
plication, the only thing left is the prolongation matrices. We will now use the
example of linear finite element method to discuss about the relationship between
the prolongation matrix and geometric information. Two observations are most
relevant:

Observation 1 The prolongation matrix only depends on the natural graph asso-
ciated with the underlying grid, but not on the coordinates of grid points.

Observation 2 The graph of the underlying grid is very close to the adjacency
graph of the stiffness matrix.

Based on the above discussions, roughly speaking, we can essentially recover
a geometric multigrid method for the stiffness matrix corresponding to the con-
tinuous linear finite element discretization of Laplace equation by only using the
algebraic and graph information provided by the stiffness matrix.

1. Form the adjacency graph G(A) of the stiffness matrix A;
2. Coarsen G(A).

As an illustrative example, let us consider the stiffness matrices corresponding to
a discretization of the Laplace equation on a square domain with bilinear elements.
It is well known, (Ciarlet 2002), that the stiffness matrix in this case is the same as
the scaled matrix for the 9-point finite difference stencil (2.18). The corresponding
adjacency graph, shown on the right in Figure 10.10 is denser (has more edges) than
the mesh graph shown on the left in Figure 10.10. The set of its edges includes the
diagonals of each of the squares forming the mesh. For the construction of the
prolongation/interpolation matrix we recall that the prolongation matrix gives the
coefficients of the expansion of a coarse grid basis function on a grid of size 2h
in terms of the finer grid basis on a grid of size h. Locally this matrix looks as
follows:

[(Ph
2h)T ]i =


1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4

 .
This matrix is often dubbed as “prolongation stencil” and it shows in a compact
form the coefficients in the expansion of a coarse grid basis function. In the center
we have the coefficient 1, in front of the fine grid basis function associated with a

73



10.3 Obtaining GMG from AMG

Figure 10.10. A 6 × 6 uniform grid (left), graph of the matrix corresponding to the
5-point finite difference stencil (middle) and graph of the matrix corresponding to
the 9-point finite difference stencil (right)

coarse grid vertex. The rest of the entries correspond to the coefficients in front of
the fine grid basis functions in the expansion.

On regularly refined, triangular grids we have an analogous situation. We refer
to §9 for details on the selection of coarse grid degrees of freedom in this case.
Prolongation and restriction matrices only depend on the topological structure of
this graph. Similar observations led to the development of the AMG: if the geo-
metric coordinates are unknown, different avenues for constructing coarse spaces
are needed, leading to different variants of AMG algorithms.

10.3. Obtaining GMG from AMG

In this section, we use the unified theory in §6 to obtain GMG from AMG. The
main ingredients needed are spaces V j, operators Π j, A j, D j and coarse spaces Vc

j .
We now consider constructing a two-level geometric multigrid method for (2.1)

(or the variabtional formulation (2.3)). Suppose we have two grids: a fine grid Th
and a coarse grid TH . On each grid, we define a linear finite element space Vh
and VH with nodal basis functions {φh

j} and {φH
j } respectively and we consider the

following partition of the domain Ω:

Ω =

J⋃
j=1

Ω j, with Ω j = supp(φH
j ). (10.12)

We then define V j as
V j := {χ jv : v ∈ Vh}, (10.13)

where χ j is the characteristic function of Ω j. We note that V j is not a subspace of
H1(Ω). The operator Π j : V j 7→ Vh is defined in the following way:

Π jv j := Ih(φH
j v j), ∀v j ∈ V j, j = 1, . . . , J, (10.14)

where Ih is the nodal interpolation operator on the fine grid. Here we note that φH
j v j
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10 GMG, AMG AND A GEOMETRY-BASED AMG

is continuous in Ω. We notice that, by definition, φH
j χ j = φH

j on Ω which implies
the identities

J∑
j=1

Π jχ jv = Ih

 J∑
j=1

φH
j χ jv

 = Ih

 J∑
j=1

φH
j v

 = Ih(v) = v,

and hence
J∑

j=1

Π jχ j = Id.

The operator A j : V j 7→ V ′j is the local restriction of the bilinear form a(·, ·),
namely,

(A ju j, v j) := a(u j, v j)Ω j =

∫
Ω j

α(x)∇u j · ∇v j, u j, v j ∈ V j (10.15)

The following estimate tells us that A j satisfies (6.11) with decomposition v =∑J
j=1 Π jv j where v j = χ jv:

mc∑
j=1

‖v j‖
2
A j

=

mc∑
j=1

a(v, v)Ω j ≤ C1‖v‖2A,

where C1 depends on the number of overlaps of Ω j.
We choose D : V 7→ V ′ using the fine grid basis functions as follows

(Dφh
i , φ

h
j) := a(φh

i , φ
h
j)δi j, 1 ≤ i, j ≤ n, (10.16)

and

(Du, v) :=
n∑

j=1

a(φh
j , φ

h
j)u jv j, u, v ∈ V. (10.17)

Note that (D·, ·) is an inner product on V which induces a norm ‖ · ‖D.
In the above definition, the matrix representation of D is the diagonal of the

matrix representation of A. In a similar way, we can define D j : V j 7→ V ′j using the
basis functions for V j.

By a simple scaling argument, we obtain

‖v‖20

�hd‖v‖2
`2 .

From (10.17), using inverse inequality, we then have

‖v‖2D . h−2
n∑

j=1

‖φh
j‖

2
0v2

j

�hd−2‖v‖2
`2

�h−2‖v‖20.

We also have

‖Ihv‖20

�hd‖Ihv‖2
`2 = hd‖v‖2l2

�

‖v‖20.
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10.4 Spectral AMGe: a geometry-based AMG

Assumption 6.10 then can then be verified by the following

‖

J∑
j=1

Π jv j‖
2
D . h−2‖

J∑
j=1

Π jv j‖
2
0 = h−2‖Ih

 J∑
j=1

φH
j v j

 ‖20

� h−2‖

J∑
j=1

φH
j v j‖

2
0 = h−2

J∑
i, j=1

∫
Ω

φH
i viφ

H
j v j

≤ h−2
J∑

i, j=1

‖φH
i ‖∞‖φ

H
j ‖∞

∫
Ω

viv j ≤ h−2
J∑

i, j=1

∫
Ωi

⋂
Ω j

viv j

≤ Co

J∑
j=1

h−2
∫

Ω j

|v j|
2 . Co

J∑
j=1

‖v j‖
2
D j
.

By the definition of A j, the kernel of A j consists of all constant functions in V j and
we choose Vc

j to be the one dimensional space of constant functions on Ω j. Then

µ j(Vc
j ) = λ(2)

j , (10.18)

where λ(2)
j is the second smallest eigenvalue of the operator D−1

j A j.
The global coarse space Vc is defined as in (6.13). Note that in this case, it is

easy to show by the definition that the coarse space Vc constructed by (6.13) is in
fact identical to VH , namely

Vc = span{φH
j : j = 1, . . . , J}. (10.19)

By Theorem 6.9, the converges rate of this two-level geometric multigrid method
depends on the min j(λ

(2)
j ). If the Poincaré inequality is true for each V j, namely,

inf
vc∈Vc

j

‖v − vc‖
2
D j
≤ c j‖v‖2A j

, ∀v ∈ V j, (10.20)

with c j to be a constant, then the two-level geometry multigrid method converges
uniformly.

10.4. Spectral AMGe: a geometry-based AMG

We now consider the element based AMG approaches, and also define the ingredi-
ents needed to fit these methods in the general results in §6. The AMGe methods
are less algebraic as they assume an underlying grid and use element local stiffness
matrices to define interpolation operators. In the AMGe setting, it is assumed that
we know a decomposition of the n × n matrix A,

A =
∑
τ∈T

Ãτ, (10.21)
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10 GMG, AMG AND A GEOMETRY-BASED AMG

where, T is the set of finite elements used to discretize the problem and for each
element τ ∈ T , and Ãτ is the zero-extension of the local stiffness matrix Aτ on τ
(which is symmetric positive semi-definite).

To define V j, D j, A j and Π j in §6, corresponding to AMGe, we partition the do-
main Ω into disjoint subdomains, Ω1, . . . ,ΩJ . Each subdomain is an agglomerate
of elements, and Ω̄ =

⋃J
j=1 Ω̄ j. For each subdomain Ω j, we introduce the cutoff

operator χ j : V 7→ V j whose action on v ∈ V is defined by

(χ jv)(x) :=

v(x), if x ∈ Ω̄ j,

0, if x < Ω̄ j.
(10.22)

Then we define the space V j by

V j := χ jV. (10.23)

A j is defined by summing up all the associated stiffness matrices for elements in
Ω j, namely,

A j :=
∑
τ⊂Ω j

Ãτ. (10.24)

Clearly, A j is symmetric positive semi-definite. It is easy to verify that (6.11) holds.
In fact, we have the following equations

J∑
j=1

‖χ jv‖2A j
=

J∑
j=1

a(v, v)Ω j =
∑
τ∈T

a(v, v)τ = ‖v‖2A. (10.25)

If we denote the diagonal of A by D, then D j is a diagonal matrix defined fol-
lowing

[D j]ii :=

Dii, if i ∈ Ω j,

0, if i < Ω j.
(10.26)

The operator Π j is provided by diagonal matrices defined as

[Π j]ii :=

[A j]ii/[A]ii, if i ∈ Ω j,

0, if i < Ω j.
(10.27)

Note that [Π j]ii = 1 if i is an inner point of Ω j. (6.10) is verified in Lemma 12.4.
On each local space V j, spectral AMGe chooses locally the “best” coarse space

Vc
j which is the subspace spanned by eigenvectors of D−1

j A j belonging to its mc
j

smallest eigenvalues. The global coarse space is then defined by (6.13).
By the abstract convergence theorem (Theorem 5.2), the convergence rate of two

level spectral AMGe depends on minimum of each mc
j + 1 smallest eigenvalue of

D−1
j A j on V j, more precisely,

‖E‖A ≤ 1 −
µc

Cp,1Cp,2
,
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with µc = min1≤ j≤J µ
( j)
mc

j+1.

10.5. Bibliographical notes

The main ideas of GMG method were first demonstrated by pioneering works of
Fedorenko (Fedorenko 1961, Fedorenko 1964), and Bahvalov (Bahvalov 1966).
Similar ideas, using group relaxation methods, can be traced back to the works
of Southwell in the 1940s (Southwell 1940, Southwell 1946). The first descrip-
tion of truly multi-grid method is found in the seminal work by Brandt (Brandt
1973). Further developments in multilevel methods are by Brandt (Brandt 1977)
and also by Hackbusch (Hackbusch 1977, Hackbusch 1978). These works have
drawn a lot of attention from computational mathematics and engineering com-
munity. Advances of convergence analysis of multigrid methods have been made
by Nicolaides (Nicolaides 1975, Nicolaides 1977), Bank and Dupont (Bank and
Dupont 1980) Braess and Hackbush (Braess and Hackbusch 1983), Bramble and
Pasciak (Bramble and Pasciak 1987), Bramble, Pasciak and Xu (Bramble et al.
1990, Bramble, Pasciak and Xu 1991a), Bramble, Pasciak, Wang and Xu(Bramble
et al. 1991c), Xu(Xu 1992).

BoxMG (Dendy 1982, Dendy 1983) is a method that uses geometrically refined
grids and defines interpolation using algebraic techniques. We refer to (Dendy
1982, Dendy 1983), (de Zeeuw 1990) for details and aslo to (MacLachlan, Moulton
and Chartier 2012) for results on the equivalence between BoxMG and Classical
AMG.

The element based AMG approaches, which are less algebraic as they assume
an underlying grid and use element stiffness matrices to define interpolation oper-
ators. Such methods include plain AMGe, element-free AMGe, spectral AMGe,
and spectral agglomerate and are developed to improve AMG robustness for finite
element problems element based AMG. We refer to results and discussions on dif-
ferent flavors of AMGe to (Jones and Vassilevski 2001, Brezina et al. 2001, Henson
and Vassilevski 2001, Brezina, Falgout, MacLachlan, Manteuffel, McCormick and
Ruge 2006c).

11. Energy-min AMG
Here we consider the energy minimization algorithms for construction of coarse
spaces. While this is not historically the first AMG approach to coarsening, we
focus on this technique first, as it can be used to motivate most other AMG algo-
rithms.

11.1. Energy-minimization versus trace-minimization

In the next Theorem we add a constraint to Theorem 5.7 and give a relation between
the optimal coarse space Vopt

c and the energy minimization. We refer to §5.2 for
the definition of Popt and Xη.
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11 ENERGY-MIN AMG

Theorem 11.1. (Trace-minimization theorem) Given η > 0, let Zη be defined
as

Zη =

{
P ∈ Rn×nc : (Pv, Pv)R̄−1 ≥ η(v, v), v ∈ Rnc and P1 =

√
ncηζ1

}
(11.1)

Then, P ∈ arg minQ∈Zη
trace(QT AQ) if

P ∈ Zη and Range(P) = Range(Popt).

Let P̂ = R̄−
1
2 P and define

Yη =

{
P ∈ Rn×nc : (Pv, Pv) ≥ η(v, v), v ∈ Rnc and P1 =

√
ncηζ̂1

}
, (11.2)

where ζ̂ j is the eigenvector corresponding to the j-th smallest eigenvalue of R̄
1
2 AR̄

1
2 .

It is clear that R̄
1
2 AR̄

1
2 and R̄A have the same spectrum. Theorem 11.1 can be written

as

Theorem 11.2. Given η > 0, let Yη be defined as in (11.2). Then,

P ∈ arg min
Q∈Yη

trace(QT R̄
1
2 AR̄

1
2 Q) if P ∈ Yη and Range(P) = Range(Popt).

Suppose now we have a bilinear form a(·, ·) on V which is symmetric, positive
semi-definite, and an inner product (·, ·)R̄−1 on V . Here, for example, the operator R̄
is the scaled parallel (resp. successive) subspace correction method corresponding
to the splitting of V as

V =

n∑
i=1

span{φi}.

In practice, R̄ can be a symmetrization of any A-norm convergent smoother on V .
Here, for simplicity, we choose R̄ = D−1.

We now consider a finite element space V with basis functions {φ j : j = 1 : n}.
Let P = (pi j) ∈ Rn×nc be such that

(φc
1, . . . , φ

c
nc

) = (φ̂1, . . . , φ̂n)P, φ̂ j = φ j/‖φ j‖A, j = 1 : n. (11.3)

Denote by {(µ j, ζ j)} the eigen-pairs of R̄A, and ζ̂ j = ζ j/‖ζ j‖A. We then define

Xη =

{
(φc

1, . . . , φ
c
nc

) : it satisfies (11.3) with P ∈ Yη
}
. (11.4)

We consider the minimization problem

min
(φc

1,...,φ
c
nc )∈Xη

nc∑
j=1

‖φc
j‖

2
A (11.5)
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We notice that
nc∑
j=1

‖φc
j‖

2
A =

nc∑
j=1

a(φc
j, φ

c
j) =

nc∑
j=1

a(
n∑

k=1

pk jφ̂k,

n∑
l=1

pl jφ̂l)

=

nc∑
j=1

n∑
k=1

n∑
l=1

pk ja(φ̂k, φ̂l)pl j = trace(PT D−
1
2 ÃD−

1
2 P).

Then Theorem 11.1 implies that

span{ζ j, 1 ≤ j ≤ nc} = span{φ0
j , 1 ≤ j ≤ nc}, (11.6)

where

(φ0
1, . . . , φ

0
nc

) ∈ arg min
(φc

1,...,φ
c
nc )∈Xη

nc∑
j=1

‖φc
j‖

2
A. (11.7)

In the next section, we use the functional setting and provide details on the design
of energy minimizing basis.

11.2. Energy minimization basis for AMG and Schwarz methods

The discussion above motivates the computation of an energy minimizing basis as
the solution of a global optimization problem with constraint. This could be of con-
cern regarding the efficiency of the proposed approach. As we show later in this
section, however, this is not a concern because the optimization problem is well
conditioned and can be solved efficiently. We also show below that that the ba-
sis functions solving the energy minimization problem are locally harmonic within
each coarse grid “element”. Such property of the energy minimizing basis sug-
gests that various “harmonic extension” techniques, used to define coarse spaces in
multigrid method (see (Chan, Xu and Zikatanov 1998, Brezina et al. 2001, Jones
and Vassilevski 2001)) are very closely related to the energy minimization algo-
rithms. This property also suggests that the energy minimizing basis may also be
used for numerical homogenization for problems having a multiscale nature (see
(Efendiev et al. 2000, Hou et al. 1999)).

We start our description with a given set of subdomains Ωi with the property that
none of the subdomains is fully contained in the union of the rest of them. More
precisely, we have,

Ω =

nc⋃
i=1

Ωi and Ω̄i

⋂(⋃
j,i

Ω j

)c
, ∅, (11.8)

where the superscript c is the standard set-complement. Equivalently, in pure alge-
braic setting, when there is no function space in the back ground, we may set up Ωi
as subset of vertices of the adjacency graph corresponding to a matrix A). The aim
is to construct basis functions {φH

i }
nc
i=1 that are in Xη with the following additional
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11 ENERGY-MIN AMG

restrictions:
supp(φH

i ) ⊂ Ω̄i, 1 ≤ i ≤ nc.

We want the basis functions to have a total minimal energy among all such func-
tions, namely {φH

i }
J
i=1 is the minimizer of:

min
nc∑

i=1

‖ψi‖
2
A subject to ψi ∈ Vi and (ψ1, . . . , ψnc) ∈ Xη. (11.9)

Here
Vi = {v ∈ Vh : supp(v) ⊂ Ω̄i}, 1 ≤ i ≤ nc. (11.10)

Thanks to (11.8), the decomposition (11.11) holds, namely

V =

nc∑
i=1

Vi. (11.11)

Remark 11.3. In AMG, the minimization problem (11.9) written in terms of the
prolongation matrices is as follows: Find P ∈ Rn×nc such that

P = arg min
Y∈Rn×nc

F (Y), Y1nc = 1n, F (Y) = trace(YT AY). (11.12)

In terms of vectors, local support means that few non-zeroes per column (or per
row) are allowed in P. We note that the functions {φH

i } satisfying the properties
mentioned above are linearly independent due to the second assumption in (11.8)
and the constraint in (11.12). This linear independence is equivalent to assuming
that P is a full rank matrix (i.e. rank(P) = nc).

By the assumption in (11.8), for each j, there exists k ∈ Ω j such that k < Ωi for
all i , j. We define

A j = {k ∈ Ω j : k < Ωi, i , j}, j = 1 : nc.

ThenA j ∩Ai = ∅ if i , j. We then define

C =

nc⋃
j=1

A j and F = Ω \ C.

We define N j ∈ V ′ as follows

N j(v) =
1
|A j|

∑
i∈A j

ψi(v) =
1
|A j|

∑
i∈A j

vi, j = 1 : nc.

Clearly, {N j}
nc
j=1 are linearly independent, and if supp(v) ⊂ Ω j, then Ni(v) = 0 for

all i , j.
We define (V ′)c ⊂ V ′

(V ′)c = span{N j : j = 1 : nc},
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11.2 Energy minimization basis for AMG and Schwarz methods

and Vh f ⊂ V
Vh f = {v ∈ V : (g, v) = 0,∀g ∈ (V ′)c}.

If {ϕ j}
nc
j=1 satisfy

supp(ϕ j) ⊂ Ω j and
nc∑
j=1

ϕ j = 1,

then we have the “Gramm” matrix G = (Gi j) = (N j(ϕi)) = I. By Lemma 9.1, we
have

V = Vh f ⊕Wc, Wc = span{ϕ j : j = 1 : nc}.

Let us first introduce some notation. We define the restriction Ai of A on each
subspace Vi as

(Aiui, vi) = (Aui, vi), ∀ ui, vi ∈ Vi, i = 1 : nc. (11.13)

Let Qi : V ′ 7→ V ′i be a projection defined as the adjoint of the natural inclusion
Vi ⊂ V:

〈Qiu′, vi〉 = 〈u′, vi〉 ∀vi ∈ Vi, u′ ∈ V ′.

We now define the following PSC type preconditioner (c.f. (4.17))

B =

nc∑
i=1

A−1
i ı′i =

nc∑
i=1

ıiA−1
i ı′i . (11.14)

Thanks to (11.8), it is easy to see that the operator T : V 7→ V is an isomorphism.
We are now in a position to state and prove the first result in this section.

Theorem 11.4. The minimization problem (11.9) has a unique solution which is
given by

φH
i = A−1

i QiB−11 (11.15)

satisfying
supp(φH

i ) ⊂ Ωi

Proof. This results actually follows directly from Theorem 4.4 with v = 1. Let
us give a different proof below. then is obtained by finding the critical point of the
following quadratic functional:

L =

nc∑
i=1

(1
2
‖φi‖

2
A − 〈λ, φi〉.

)
Differentiating this functional gives that

[∂φi L]ξi = (Aφi, ξi) − 〈λ, ξi〉, ξi ∈ Vi.

Hence the the i-th component of the critical point (φH
i ) is given by

(φi, ξi)A = 〈λ, ξi〉, ∀ξi ∈ Vi, i = 1 : nc. (11.16)
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11 ENERGY-MIN AMG

From the above equations we obtain that

φH
i = A−1

i Qiλ.

Summing up leads to:
λ = B−11.

This gives a derivation of (11.15).
It is obvious that this unique critical point (φH

i ) is indeed the unique global min-
imizer of (11.9) that has a convex objective functional and a convex constraint.

We now show that the constructed basis functions are locally discrete A-harmonic.
We say that a function w ∈ V is discrete a-harmonic on a subdomain D if

(w, v)A = 0, for all v ∈ Vh,0(D) ≡ {v ∈ Vh : supp(v) ⊂ D̄}.

This property requires defining the “subdomains” D on which it holds. Below, we
introduce such subdomains in terms of function spaces. Matrix/vector representa-
tions of the considerations below are easy to write. To define an analogue of coarse
grid elements (an analogue to a finite element coarse grid), we first consider the set
of all the points in Ω that are interior to all Ωi’s:

ω0 =

( nc⋃
i=1

∂Ωi

)c ⋂
Ω.

Given x ∈ ω0, define the following function with values in the subsets of {1, . . . , nc}

which is the set of indices of subdomains Ωi that contain x:

I(x) = {i : x ∈ Ωi}. (11.17)

To rule out any ambiguity we shall assume that for any x ∈ ω0 the set I(x) is
ordered in ascending order. We then define

Kx = {y ∈ ω0 : I(y) = I(x)}. (11.18)

Namely Kx is the intersection of all Ωi that contain x (see Figure 11.11).
The following simple proposition will lead us to an appropriate definition of

coarse grid elements.

Proposition 11.5. For the sets Kx defined in (11.18) we have

(a) Kx = Ky, ⇔ I(x) = I(y).
(b) Either Kx ∩ Ky = ∅ or Kx = Ky, x ∈ ω0, y ∈ ω0.
(c) There are a finite number mH of different sets Kx, x ∈ ω0.

Proof. The (⇒) direction in (a) follows from the fact that x ∈ Kx = Ky, and
hence I(x) = I(y). The other direction follows from the definition of Kx,y.

To prove (b) let us assume that there exists z ∈ ω0, such that z ∈ Kx and z ∈ Ky.
The definition of Kx and Ky then gives that I(x) = I(y) = I(z). By (a), Kx = Ky.
This proves (b).
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11.2 Energy minimization basis for AMG and Schwarz methods

The conclusion (c) follow directly from (b).
Let TH denote the finite collection of mH sets in (c) from the above Proposition

11.5. We have

ω0 =
⋃
x∈ω0

Kx =
⋃

K∈TH

K.

As it is obvious that ω̄0 = Ω̄,

Ω̄ = ω̄0 =
⋃

K∈TH

K =
⋃

K∈TH

K̄. (11.19)

This means that the collection of TH forms a non-overlapping partition of Ω. Each
element in TH will be called a coarse grid element.

Remark 11.6. It is tempting to show how these macroelements look on an un-
structured grid, and in Fig 11.11, we have depicted three such supports together
with their intersection. But let us point out that an essential feature of the tech-
nique we present here is that the coarse elements need not be defined it explicitly
and they might have quite complicated shape.

Figure 11.11. A piece of triangular grid and supports of three basis functions. On
the right bottom picture, the intersections are plotted. The darker colored domain
correspond to a coarse element and is intersection of all three supports. The
lighter shaded domains are intersections of two supports and the white area
corresponds to no intersection.

Lemma 11.7. Let λ = B−11. Assume that for each coarse element K ∈ TH as
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11 ENERGY-MIN AMG

defined above, we have (1,wK)A = 0 for all wK supported in K. Then

〈λ, ξ〉 = 0, for all ξ ∈ Vh,0(K).

Proof. By definition K = Ky for some y ∈ Ω. Thus

Vh,0(K) =
⋂

i∈I(y)

Vi and
∑

i∈I(y)

φH
i (x) = 1, x ∈ K.

Thus, by (11.16), we have

(φi, ξ)A = 〈λ, ξ〉, ∀ξ ∈ Vh,0(K)

and
〈λ, ξ〉 =

∑
i∈I(y)

(φi, ξ)A = (1, ξ)A = 0.

The desired result then follows.
When the coarsening corresponds to a geometric multigrid and uniform refinement,
the lemma shows that λ = B−11 ∈ V ′ is a discrete edge δ-function with respect to
the coarse elements (namely λ is supported around ∂K). Figure 11.12 is an example
profile of λ and a basis function ΦH

i .
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Figure 11.12. The profile of λ = B−11 (left) and a typical basis function φH
i (right)

Combining the above result with the identity (11.16), we immediately obtain our
second main result in this section.

Theorem 11.8. Each basis function φH
i is discrete a-harmonic on each coarse

element K ∈ TH , namely

(φH
i , v)A = 0, v ∈ Vh,0(K). (11.20)

In one space dimension (d = 1), the above result is rather trivial and it is in fact
already contained in (Wan, Chan and Smith 1999/00). In this case, the basis func-
tion (φH

i ) is analogous to the generalized finite element basis function in Babuška
and Osborn (Babuška and Osborn 1983).

The local harmonic properties in all aforementioned literature are obtained by
construction from local element boundaries. It is interesting to note that the energy
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11.3 Convergence of energy minimization AMG

minimizing basis studied here is a result of a more global construction and the local
harmonic properties is a by-product from the construction.

11.3. Convergence of energy minimization AMG

We present a proof for the two-level convergence of AMG based on energy mini-
mization.

We define cut off operators χ j on the subdomains Ω j introduced in (11.8) as
following

(χ jv)(x) :=

v(x), if x ∈ Ω̄ j,

0, if x < Ω̄ j.

Then we define spaces W j by

W j := χ jV = χ jv, : v ∈ V .

And it is easy to verify that

{χ jφi : supp φi ∩Ω j , ∅} (11.21)

forms a basis of W j.
The operator Π j : W j 7→ V is defined as in (10.14) with φH

j being the solution of
the minimization problem (11.9) ((11.15) in Theorem 11.4).

We then have that
nc∑
j=1

Π jχ j = Id

In fact, we have
nc∑
j=1

φH
j (x) =

∑
j:x∈Ω j

φ j(x) =
∑
j∈I(x)

φ j(x) = 1,

which implies the identity

nc∑
j=1

Π jχ jv = Ih

 nc∑
j=1

φH
j χ jv

 = Ih(v) = v, and hence
nc∑
j=1

Π jχ j = Id. (11.22)

The operator A j : W j 7→ W′j is the local restriction of the bilinear form a(·, ·) as
in (10.15).

(6.11) is satisfied with decomposition v =
∑nc

j=1 Π jv j where v j = χ jv ∈ W j:

mc∑
j=1

‖v j‖
2
A j

=

mc∑
j=1

a(v, v)Ω j ≤ Co‖v‖2A

where Co depends on the number of overlaps of Ω j.
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11 ENERGY-MIN AMG

We choose D : V 7→ V ′ using the fine grid basis functions as following

(Dφh
i , φ

h
j) := (Aφh

i , φ
h
j)δi j, 1 ≤ i, j ≤ n. (11.23)

Notice that, in the above definition, the matrix representation of D is the diagonal
of the matrix representation of A. In a similar way, we can define D j : W j 7→ W′j
using basis functions of W j defined in (11.21), and the matrix representation of D j
is the diagonal of the matrix representation of A j. It is well known that

‖v‖2D

�h−2‖v‖20,∀v ∈ V, and ‖v j‖
2
D j

�h−2‖v j‖
2
0,∀v j ∈ W j.

(6.10) can be verified by the following

‖

nc∑
j=1

Π jv j‖
2
D . h−2

∫
Ω

 nc∑
j=1

φH
j v j


2

= h−2
nc∑

i, j=1

∫
Ω

φH
i viφ

H
j v j

≤ h−2
nc∑

i, j=1

‖φi‖∞‖φ j‖∞

∫
Ω

viv j

≤ h−2( max
1≤ j≤nc

‖φ j‖∞)2
nc∑

i, j=1

∫
Ωi

⋂
Ω j

viv j

≤ Co( max
1≤ j≤nc

‖φ j‖∞)2
nc∑
j=1

h−2
∫

Ω j

|v j|
2

. Co( max
1≤ j≤nc

‖φ j‖∞)2
nc∑
j=1

‖v j‖
2
D j
.

We choose local coarse spaces Wc
j ⊂ W j to be the space of constant functions on

Ω̄ j. Then the global coarse space Vc is defined as

Vc :=
nc∑
j=1

Π jWc
j .

In fact, for this case, Vc is the subspace spanned by {φH
j }:

Vc = span{φH
j : j = 1, . . . , nc}. (11.24)

We choose the subdomain Ω j in a way so that the Poincaré inequality holds

inf
vc∈Wc

j

‖v − vc‖
2
0 ≤ cd2

j |v|
2
1,

where d j is the diameter of Ω j, and c is a constant independent of the mesh size
and the size of Ω j. Since

‖v‖2D j

�h−2‖v‖20, ‖v‖2A j

�

|v|21,
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We have

inf
vc∈Wc

j

‖v − vc‖
2
D j
≤ c

(
d j

h

)2

‖v‖2A j
,

Combining above discussion with Theorem 6.9, we obtain

Theorem 11.9. The convergence rate of the two-level AMG based on energy
minimization is bounded as following

‖E‖A ≤ 1 − µ, (11.25)

with 0 < µ < 1 depends only on the size and overlaps of the subdomains Ω j.

11.4. Bibliographical notes

The energy minimization seem to encompass several algorithms: the Lagrange
equations for this minimization are solved approximately in Classical AMG (§12),
while the functional is approximately minimized in the smoothed aggregation (§13).

For energy minimization approaches we refer to the works by (Mandel, Brezina
and Vaněk 1999, Wan et al. 1999/00, Chan et al. 1998, Xu and Zikatanov 2004,
Brannick and Zikatanov 2006). An interesting fact is that for regularly refined
grids, given the right supports, the trace (energy) minimization prolongation re-
covers the coarse basis very closely, although not exactly. The small discrepancies
are due effects from the boundary and the further in graph distance the coarse grid
basis function is, the closer it is to piece-wise linear.

The extensive numerical experiments reported in (Wan et al. 1999/00, Wan 1998,
Mandel et al. 1999, Xu and Zikatanov 2004) show that the energy minimizing basis
leads to uniformly convergent two-grid and multigrid methods for many problems
of practical interest and especially for problems with rough coefficients. These
methods also provide framework for numerical homogenization and are related to
the homogenization methods in (Grauschopf, Griebel and Regler 1997) and the M3

techniques in (Lipnikov, Moulton and Svyatskiy 2011).
The “smoothed-aggregation” approach in the algebraic multigrid method, as

well as theoretical framework is reported in works by Vaněk, Mandel and Brez-
ina (Vaněk, Mandel and Brezina 1998, Mandel et al. 1999, Vaněk, Mandel and
Brezina 1996a) an explicit relation is drawn between the construction of a base for
the coarse space and the “energy” of the basis functions. As pointed out in (Wan et
al. 1999/00) and (Mandel et al. 1999), this can be viewed as one (or several) steps
toward obtaining basis functions minimizing a quadratic (energy) functional which
we consider above.

Different sparsity patterns including long distance energy minimizing prolonga-
tions are explored in (Olson, Schroder and Tuminaro 2011a), and for anisotropic
problems in (Schroder 2012).

Constrained energy minimization preserving multiple vectors is considered in (Vassilevski
and Zikatanov 2006). In the FE settings, when the element stiffness matrices are
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12 CLASSICAL AMG

available, local energy minimization provides coarse spaces which result in a uni-
form two level convergence (Kolev and Vassilevski 2006).

12. Classical AMG
A coarse space in classical AMG is always viewed as a subspace defined via a
prolongation (interpolation) matrix. Its dimension, nc, is a fraction of the dimen-
sion of the finer space. Popular interpolation schemes in classical AMG are direct,
standard, or multipass interpolation. The matrix representations of such interpo-

lations are of the form P =

(
W
I

)
, with W ∈ RnF×nC , and they can be viewed as

sparse approximations to the so called “ideal” interpolation with W = −A−1
FF AFC ,

which is, in general, a full matrix. Here, the matrix AFF is the block of the matrix
corresponding to the F-points and AFC is the block corresponding to the connec-
tions between the C-points and F-points. The splitting of vertices of the adjacency
graph corresponding to A in subsets F and C is done using one of the coarsening
strategies described in §9.

12.1. Coarse spaces in classical AMG

The coarsening algorithm in classical AMG uses a splitting of the set of vertices
{1, 2, . . . , n} of the graph corresponding to A into two disjoint sets

C ∪ F = {1, 2, . . . , n}, C ∩ F = ∅. (12.1)

where C is a maximal independent set where the independence is with respect to
the graph of the strength operator S defined in §8.2 and the splitting is referred
to as a “C/F-splitting”. A simple greedy C/F-splitting algorithm is introduced
in §9.3.1, Algorithm 5.

We assume that V is equipped with a basis {φk}
n
k=1 and we let n f = |F |, nc = |C|

to denote the cardinality of the sets forming the C/F splitting. Not always, but
when convenient we we assume that

F = {1, . . . , n f } and C = {n f + 1, . . . , n}. (12.2)

In this case, the high frequency space Vh f as defined in (9.2) can be written as

Vh f = span{φ j, j ∈ F }. (12.3)

Following the procedure in §9, we first proceed to identify a tentative coarse space
Wc. One easiest choice is as follows:

Wc = span{φ j, j ∈ C}. (12.4)

Obviously the above tentative space satisfies (9.3), namely

V = Vh f ⊕Wc.

But Wc is hardly a low frequency space. Given a basis function in Wc, φ jk , we filter
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12.1 Coarse spaces in classical AMG

out its high frequency component to obtain the following coarse basis function,

φk,c := (I − Πh f )φ jk = φ jk +
∑
j<C

p jkφ j. (12.5)

Here Ph f is the (·, ·)A orthogonal projection onto Vh f . By the definition of Πh f :

Πh fφk =

φk, if k ∈ F ,
−

∑
j∈F

p jkφ j, if k ∈ C,

where p jk satisfies

−
∑
j∈F

p jk(φ j, φi)A = (φk, φi)A, for all i ∈ F , k ∈ C. (12.6)

In a matrix notation, with the ordering given by (12.2), the matrix form of the
equations in (12.6) is

AFFW = AFC , where A =

(
AFF AFC
AT

FC ACC

)
. (12.7)

Here, W jk = p jk, j ∈ F , k ∈ C, where p jk are the coefficients given in (12.6).
In view of Lemma 9.3, we have S = I − Πh f . Vc is the span of the functions in

(12.5)
Vc = span{φk,c}

nc
k=1 = Range(I − Ph f ).

We note that

(φ1,c, . . . , φnc,c) = (φ1, . . . , φn)
(
W
I

)
.

Thus the corresponding prolongation matrix is

P =

(
W
I

)
, W = −A−1

FF AFC . (12.8)

The functions {φk,H} given in (12.5) form a basis of Vc similar to geometric multi-
grid method for Lagrangian finite elements. We denote the prolongation matrix
defined in (12.8) by Popt and refer to it as the ideal interpolation below.

The following result can be easily established.

Lemma 12.1. If A satisfies A1 = 0, the solution of (12.7) also satisfies the con-
straint in (11.12), namely, W1nc = 1nF .

Next, we introduce the set of the prolongations PC ,

PC =

{
P

∣∣∣ P =

(
W
I

)}
.

and recall from the definition given in (5.26) in §11, that

PC ⊂ ηX,
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12 CLASSICAL AMG

for some constant η > 0. For example, η �max1≤ j≤n |D j j| if R̄−1 �D, where D is
the diagonal of A. Equivalently, P ∈ PC means that the coarse grid basis is defined
as

φk,H = φ jk + v f , jk ∈ C, v f ∈ V f , k = 1, . . . , nc.

Clearly, all elements of PC are full rank and we also have that Popt ∈ PC by defini-
tion.

We have the following theorem, showing that the coarse grid matrix correspond-
ing to Vopt

c = Range(Popt) has a minimal trace.

Theorem 12.2. If we fix the set of indexes C and coarse grid degrees of freedom
then for Popt we have

Popt = arg min
P∈PC

trace(PT AP). (12.9)

Furthermore, if we denote Ac = (Popt)T APopt, then

‖vc‖
2
Ac

= min
{
‖v‖2A

∣∣∣∣∣ 〈φ′jk , v〉 = vc,k, k = 1, . . . , nc

}
(12.10)

Proof. The relation (12.9) follows from the following simple identities.

trace(Ac) =

nc∑
k=1

‖φk,H‖
2
A =

nc∑
k=1

‖(I − Ph f )φ jk‖
2
A

=

nc∑
k=1

min
vk∈Vh f

‖φ jk + vk‖
2
A

= min

 nc∑
k=1

‖φ jk + vk‖
2
A

∣∣∣∣∣ vk ∈ Vh f , k = 1, . . . , nc


= min

P∈PC
trace(PT AP).

To prove (12.10), we note that any v ∈ V such that 〈φ′jk , v〉 = vc,k can be written
as

v = wc + v f , where wc =

nc∑
k=1

vc,kφ jk .

By the definition of Ph f , we have (I − Ph f )v f = 0 and vc = (I − Ph f )(v − v f ) =

(I − Ph f )v. We then have

‖v‖2A = ‖Ph f v‖2A + ‖(I − Ph f )v‖2A = ‖Ph f v‖2A + ‖vc‖
2
Ac
≥ ‖vc‖

2
Ac

Theorem 12.2 shows that the minimizer P satisfies the equation (12.7). By The-
orem 12.2 it follows that the minimizer of (11.12) and the solution to (12.7) are the
same in case A1 = 0.
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12.2 Quasi-optimality of ideal interpolation

12.2. Quasi-optimality of ideal interpolation

The following two-level convergence result is well known (see, for example (MacLachlan,
Manteuffel and McCormick 2006)).

Theorem 12.3. For Popt defined as solution to the minimization problem (11.12),
or, equivalently the solution to (12.7), the two-level AMG method with prolonga-
tion Popt converges with a rate ‖E‖A ≤ 1 − δ, with δ a constant depending only
on the maximum degree of the vertices in the graph corresponding to A and the
threshold θ in choosing the strong connections.

Proof. According to Corollary 5.20, we only need to verify that Vh f consists
of δ-algebraic high frequencies as defined in Definition 5.16. Clearly, from the
discussion in §7.2, we can assume A is an M-matrix with all connections being
strong connections. We consider the graph corresponding to A by and recall that
the set of coarse grid degrees of freedom is a maximal independent set of vertices
in this graph. By the definition of the strength of connection, for any j ∈ {1, . . . , n}
and any i ∈ N( j) we have

a j j =
∑
k∈N j

−a jk ≤ |N j|max
k∈N j

(−a jk) ≤ −
|N j|

θ
a ji

Next, for any j ∈ F, let k j ∈ C be such that such that |ak j, j| > 0. Such k j
exists because the set of C-vertices is a maximal independent set. This choice is
not unique, and we just fix one such index k j for every j. Using the notation from
§9, and the fact that v ∈ Vh f vanishes at the C-vertices, we obtain

‖v‖2R̄−1 ≤ cD‖v‖2D = cD
∑
j∈F

a j jv2
j = cD

∑
j∈F

a j j(v j − vk j)
2

≤ cD
∑
j∈F

−
|N j|

θ
a j,k j(v j − vk j)

2

≤ max
j

(|N j|)
cD

θ

∑
(i, j)∈E

−ai j(vi − v j)2

≤ max
j

(|N j|)
cD

θ
‖v‖2A.

We note that interpolations like Popt are not (with possible exception of 1D prob-
lems) used in practice, because the prolongation matrix Popt could have a lot of
fill-in and (Popt)T APopt is dense. It is, however, also important to note that sparse
approximations to Popt are what is used in practice. Thus, the energy minimiza-
tion technique in constructing coarse space may be viewed as a motivation for
the other AMG techniques used to construct approximations of Vopt

c . For exam-
ple, most of the known techniques approximate the minimizer of the functional
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12 CLASSICAL AMG

F given in §11.2, Equation (11.12): (1) The prolongation matrices constructed in
the classical AMG framework approximate the solution to equation (12.7) over the
subset ofPC consisting of sparse matrices; (2) The energy minimization techniques
outlined in §11.2, and the smoothed aggregation considered in §13.3 minimize (ap-
proximately) the trace of the coarse grid matrix F (P) over a set of sparse matrices
P.

12.3. Construction of prolongation matrix P

12.3.1. Prolongation
An intuitive idea to find an approximate solution of the problem (12.7) is to use
some basic iterative methods such as Jacobi method and then properly rescale the
coefficients of W so that it satisfies

W1nc = 1n f , (12.11)

and also fits into a sparsity pattern:

W ∈ Rn f×nc
S . (12.12)

Following this idea, we construct the interpolations used in classical AMG (Trottenberg
et al. 2001, Section A.7): (1)direct interpolation; (2) standard interpolation; and (3)
multi-pass interpolation in a unified fashion.

• Direct interpolation: Direct interpolation approximates the solution to (12.7)–
(12.12) by one Jacobi iteration with initial guess W0 = 0, namely,

W1 = −D−1
FF AFC .

In order to satisfy the constraint (12.11), we rescale W1, to obtain that

W = M(−D−1
FF AFC) = [diag(AFC1)]−1AFC .

where M is a rescaling operator defined as follows

M(Y) = [diag(Y1)]−1Y (12.13)

• Standard interpolation: The construction of prolongation matrix via standard
interpolation can be viewed in several different ways. The most natural way
probably is to view it as a smoothing of the direct interpolation again followed
by rescaling. Indeed, assuming that the smooth error (eT

F , e
T
C) satisfies

AFFeF + AFCeC = 0,

we approximate this equation (using the same notation eF , eC for the approx-
imations) by (see (Trottenberg et al. 2001)):

eF = −D−1
FF AFCeC + D−1

F AFF(D−1
FF AFC)eC (12.14)

W = (I − D−1
FF AFF)W1, W1 = −D−1

FF AFC . (12.15)
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12.3 Construction of prolongation matrix P

This is equivalent to a Jacobi smoothing iteration applied to the unscaled di-
rect interpolation W1. Rescaling is also needed for the standard interpolation
and the final formula is

W = [diag((I − D−1
FF AFF)W11)]−1(I − D−1

FF AFF)W1. (12.16)

The similarity with the smoothed aggregation discussed in §13.3 is obvious,
as this is indeed a smoothing applied to W1.

• Multipass interpolation: The multipass interpolation is an approximation to
the solution of (12.7) when the C/F splitting has been constructed by means
of aggressive coarsening, namely, using the (m, l)-strong connection defined
in Definition 9.7. The set of F is divided into l disjoint subsets F1, F2, . . . , Fl
as follows: we first define the distance from a point j to a subset of points C,

dist( j,C) = min{dist( j, i) : i ∈ C}.

Then, we set

Fk = { j ∈ F : dist( j,C) = k}, k = 1, 2, . . . , l, l = max{dist( j,C) : j ∈ F}.

Then AFF , AFC can be written as the following block matrices:

AFF =


AF1F1 AF1F2 · · · AF1Fl

AF2F1 AF2F2 · · · AF2Fl
...

...
. . .

...
AFlF1 AFlF2 · · · AFlFl

 , AFC =


AF1C
AF2C
...

AFlC

 . (12.17)

We can also write W block-wise as WT = (WT
F1
,WT

F2
, . . . ,WT

Fl
) and then

(12.7) takes the form
AF1F1WF1 + AF1F2WF2 + · · · + AF1FlWFl + AF1C = 0
AF2F1WF1 + AF2F2WF2 + · · · + AF2FlWFl + AF2C = 0

...
AFlF1WF1 + AFlF2WF2 + · · · + AFlFlWFl + AFlC = 0

(12.18)

To define the entries of WFk via multipass interpolation we use the following
steps:

1 For k = 1, use direct interpolation to approximate WF1 . More precisely,
we write the first equation in (12.18) as

AF1F1WF1 + ÂF1C = 0,

with ÂF1C = AF1F2WF2 + · · · + AF1FlWFl + AF1C . Then apply direct inter-
polation and write WF1 as a function of WF j , j > 1.

2 While k < l:

(a) Write the (k + 1)-st equation in (12.18) substituting the expressions
for WFm , m < (k + 1) obtained from the previous steps. The (k + 1)-th
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12 CLASSICAL AMG

equations then has the form

ÂFk+1Fk+1WFk+1 + ÂFk+1Fk+2WFk+2 + · · · ÂFk+1FlWFl + ÂFk+1C = 0.
(12.19)

(b) Apply direct interpolation to (12.19) to write WFk+1 as a function of
WF j , j > (k + 1).

(c) Set k ← k + 1.

From the derivation and the definitions above we have the following set inclu-
sions describing the sparsity patterns of the prolongations defined earlier:

S(P) ⊂ S
(
AFC

I

)
(direct interpolation (12.3.1))

S(P) = S
(
ÂFC

I

)
(standard interpolation (12.16))

S(P) = S



ÂF1C

ÂF2C
...

ÂFlC
I


(multipass interpolation).

12.3.2. Interpolation preserving a given vector
From the previous discussions, it is important to have the prolongation P preserves
some vectors which can represent algebraic smooth errors. The direct and stan-
dard interpolation use a diagonal scaling to make sure the prolongation preserves
constant vectors, which is the kernel of scalar elliptic operators. To generalize this
idea, here we introduce αAMG interpolation which constructs prolongation matrix
by choosing an initial guess that preserves the near null component v(1), which may
not necessarily be constant vectors.

We construct P ∈ PC such that it “preserves” a given vector v, namely,

vF = WvC .

To do this, we first pick an initial guess W0 for W (or P),

W0 = D−1
v AFC , (12.20)

where Dv is a diagonal matrix such that the following identity holds

vF = D−1
v AFCvC .

It is easy to derive that the explicit formula for diagonal entries of Dv is

dkk =

∑
j∈C ak jv

(1)
j

v(1)
k

.
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Then the W in such “vector preserving” interpolation is obtained by applying one
Jacobi iteration for the linear problem (12.7) with initial guess W0

W = D−1AFC + D−1
FF(−AFC − AFF D−1AFC).

A fully detailed description of the construction a prototype vector v and coarse
space interpolating this vector exactly, using αAMG (the classical AMG version
of adaptive AMG) is found in (Brezina, Falgout, MacLachlan, Manteuffel, Mc-
Cormick and Ruge 2006b). The ideas, however are outlined earlier in (Brandt et
al. 1982b).

12.4. Classical AMG within the abstract AMG framework

The classical AMG falls in the abstract theory we developed earlier in §5 and §6.
To do this, we first consider an M-matrix relative of A using the adjacency graph
corresponding to a strength function. We then use an MIS algorithm to identify C,
the set of coarse points, to form a C/F-splitting. We further split the set of indices
Ω = {1, 2, . . . , n} into subsets Ω1,Ω2, . . . ,ΩJ so that

Ω =

J⋃
j=1

Ω j. (12.21)

Then for each j ∈ C we define

Ω j := { j}
⋃

F s
j , j = 1, . . . , J. (12.22)

where F s
j := F

⋂
s j, and s j is the set of strong neighbors of j. This depends on

the definition of strength of connection. For example, in the direct interpolation we
introduced in the previous section, we simply use the strength connection defined
in (8.8); in the standard interpolation, we use (m, l)-strong connection defined in
Definition 9.7 with m = 1 and l = 2.

For each Ω j we denote

Ω j = {m1,m2, . . . ,mn j}, (12.23)

and let n j := |Ω j|, namely, n j is the cardinality of Ω j. In accordance with the
notation in §6. We then define

V j := Rn j , (12.24)

and the associated operator Π j : V j 7→ V

(Π jv)i =

pmk ,kvk, if i = mk,

0, if i < Ω j
, (12.25)

where pmk ,k are given weights. As all the constructions below will be based on the
M-matrix relative of A, and without loss of generality, we may just use A to denote
the M-matrix relative.
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12 CLASSICAL AMG

Following §6, we introduce the operator χ j : V 7→ V j:

(χ jv)i := vmi . (12.26)

which takes as argument a vector v and returns only the portion of it with indices
are in Ω j. Namely, χ jv is a vector in Rn j . It is immediate to verify that

J∑
j=1

Π jχ j = I.

To estimate the convergence rate using the theory in §5 We need to verify all the
items in Assumptions 6.9. To do this, we choose a decomposition v =

∑J
j=1 Π jv j

with v j = χ jv. We further define Cp,2 as a constant depending on the overlaps in
the partition {Ω j}

J
j=1,

Co = max
1≤ j≤J

∣∣∣{l : Ωl ∩Ω j , ∅}
∣∣∣ . (12.27)

The local operators A j on V j are defined as follows

(A ju, v) =
∑
e∈E

e⊂Ω j

ωeδ j,euδ j,ev. (12.28)

Here, e ⊂ Ω j means the two vertices connected by e are in Ω j, and δ j,eu = umk−ml

for e = (k, l) and ωe are the eights determined by the off-diagonal elements in the
M-matrix relative of A. Notice that A j is a symmetric positive semi-definite matrix
because all the weights ωe are non-negative. Then (6.11) easily verified:∑mc

j=1 ‖χ jv‖2A j
=

∑mc
j=1

∑
e∈E

e⊂Ω j

ωe(δev)2 ≤ Co
∑

e∈E ωe(δev)2

= Co‖v‖2AM
≤ CoCM‖v‖2A,

(12.29)

If D is the diagonal of A, then we set D j, j = 1 : J to be the restriction of D on Ω j,
namely, in Rn j×n j and

(D j)ii = Dmi,mi , or equivalently D j = χ jD jχ
′
j (12.30)

We have the following lemma which shows (6.10).

Lemma 12.4. For D j defined in (12.30), the following inequality holds

‖

mc∑
j=1

Π jw j‖
2
D ≤ Co

mc∑
j=1

‖w j‖
2
D j
, ∀w j ∈ V j. (12.31)

Proof. Recall from the definition of Π j, we have

‖Π jv‖D ≤ ‖v‖D j , ∀v ∈ V j. (12.32)
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Therefore,

‖

J∑
j=1

Π jv j‖
2
D =

D
J∑

i=1

Πivi,

J∑
j=1

Π jv j

 =

J∑
i=1

J∑
j=1

(DΠivi,Π jv j)

=
∑

1≤i, j≤J
Ωi∩Ω j,∅

(DΠivi,Π jv j) ≤
∑

1≤i, j≤J
Ωi∩Ω j,∅

‖Π jvi‖
2
D + ‖Π jv j‖

2
D

2

≤ Co

J∑
j=1

‖v j‖
2
D j
.

We choose the local coarse spaces Vc
j as

Vc
j := span{1n j}, (12.33)

Then by definition, we have

µ j(Vc
j ) =

1

λ(2)
j

, (12.34)

where λ(2)
j is the second smallest eigenvalue of the matrix D−1

j A j. The global coarse
space Vc is then obtained by (6.13), and is

Vc = span{P1, P2, · · · , PJ}. (12.35)

Finally, by Theorem 5.2, the converges rate of this two-level geometric multigrid
method depends on the min j(λ

(2)
j ). If the discrete Poincaré inequality is true for

each V j, namely ,

inf
vc∈Vc

j

‖v − vc‖
2
D j
≤ c j‖v‖2A j

, ∀v ∈ V j, (12.36)

with c j to be a constant, then the two-level classical AMG method converges uni-
formly.

12.5. Bibliographical notes

The classical coarse space definition in AMG was introduced in (Brandt et al.
1982b), and then somewhat improved in (Stüben 1983, Brandt et al. 1985, Ruge
and Stüben 1987).

Despite its great success in practical applications, classical AMG algorithms still
lack solid theoretical justifications beyond theory for two-level methods. It is im-
portant to note that a multigrid method that converges uniformly in the two-level
case with an exact coarse grid solver may not converge uniformly in the multilevel
case (see Brandt (Brandt 1986) and Ruge and Stüben (Ruge and Stüben 1987)). For
classical AMG, the early theoretical studies of convergence date back to the 1980’s
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13 AGGREGATION-BASED AMG

(see (Mandel 1988, McCormick 1982, Brandt 1986, Ruge and Stüben 1987)).
A survey of these results by Stüben is found in the monograph (Trottenberg et
al. 2001) where also the three classical prolongation constructions (direct, standard
and multipass) are given. In all cases, it is crucial to define coarsening and inter-
polation operators so that the interpolation error is uniformly bounded. The role
of the ideal interpolation as minimizer of an upper bound for the convergence rate
was emphasized in (Falgout and Vassilevski 2004).

13. Aggregation-based AMG

Aggregation (or agglomeration) refers to an algorithm that splits the set of vertices
of the graph of the filtered matrix as a union of non-overlapping subsets (aggre-
gates) (each of which forms a connected sub-graph):

{1, . . . , n} =

J⋃
j=1

A j, Ai

⋂
A j = ∅, i , j, (13.1)

Such a partition can be obtained algorithms described in §9.
If we are solving a finite element system, the partition (13.1) would correspond

to a non-overlapping decomposition of Ω

Ω =

J⋃
j=1

Ω j, Ωi

⋂
Ω j = ∅, i , j (13.2)

such that A j contains the indices associated with the enumerations of the vertices
in the subdomain Ω j.

We denote the elements inA j by

A j = {m1,m2, . . . ,mn j}, (13.3)

and let n j := |A j|, namely, n j is the number of elements inA j.

13.1. Unsmoothed aggregation: preserving 1 kernel vector

Using the framework we introduced in §6, we define

V j := Rn j ,

and the associated operator Π j : Rn j 7→ Rn is the trivial extension of v ∈ Rn j

(Π jv) =

vk i = mk,

0 i < A j.
(13.4)

P = (p1, p2, . . . , pJ), p j = Π j1n j . (13.5)
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This prolongation matrix obviously satisfies

P1J =

J∑
j−1

P j = 1n. (13.6)

The local coarse space Vc
j is

Vc
j := span{1n j}

Then the global coarse space Vc is obtained by (6.13). In fact

Vc = span{p1, p2, . . . , pJ}.

We note that

(φ1,c, . . . , φJ,c) = (φ1, . . . , φn)P (13.7)

where

φ j,c =
∑
k∈A j

φk, j = 1, 2, . . . , J. (13.8)

Furthermore, Π j corresponds to matrix representation of the operator Ih(φH
j ·) with

the coarse grid basis φ j,c defined above. In view of §10.3 (see especially (10.14)).
Aggregation based AMG can be also viewed as a GMG method.

The above procedure gives a full description of the un-smoothed aggregation
AMG method. We can use the framework in S6 to carry out a two-level conver-
gence analysis. The local matrices A j are defined exactly the same as in the case
of classical AMG in §12.4, namely, we write A as in (12.4) and then define A j by
(12.28). The matrices D j are defined as the restriction of the diagonal of A on Ω j
as in (12.30). Using the same argument as in §12.4, Assumption 6.9 is verified
by (12.29) and Lemma 12.4. Theorem 5.2 can then be applied to prove that the
two-level unsmoothed aggregation method has a convergence rate depending only
on the local Poincaré constants in (12.36).

13.2. Unsmoothed aggregation: preserving multiple vectors

One great advantage of aggregation AMG method is that it can be easily extended
to case that the stiffness matrix A has multiple kernel or near-kernel vectors.

To give an illustration how to construct prolongation preserving more than one
vector, we consider the 2D elasticity problems. In this case, we have 3 functions,
namely the rigid body motion, to preserve:

u1 =

(
1
0

)
, u2 =

(
0
1

)
, u3 =

(
−y
x

)
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The corresponding vectors are

ζ1 =



1
0
1
0
...
1
0


, ζ2 =



0
1
0
1
...
0
1


and ζ3 =



−y1
x1
−y2
x2
...
−yn
xn


∈ R2n

On each aggregateA j, we consider

ζ
( j)
1 =



1
0
1
0
...
1
0


, ζ

( j)
2 =



0
1
0
1
...
0
1


and ζ( j)

3 =



−ym1

xm1

−ym2

xm2
...

−ymn j

xmn j


∈ R2n j

The prolongation matrix is then given by

P = (p1, p2, . . . , pJ) ∈ R(2n)×(3J) P j = Π j(ζ
( j)
1 , ζ

( j)
2 , ζ

( j)
3 ) ∈ R(2n)×3.

This prolongation matrix satisfies

P(1J ⊗ e j) = ζ j, 1 ≤ j ≤ 3. (13.9)

The rest of the AMG algorithm based on this prolongation matrix is similar to
the 1-vector case.

Extension from 3-vector case as mentioned above to arbitrary m-vector is straight-
forward. We denote m = dim(N(A)) and consider the case when m ≥ 1. We now as-
sume that we are given m vectors {ζ j}

m
j=1 which are linearly independent and m � n

and we can then proceed to construct a prolongation P such that P(1nc ⊗ e j) = ζ j,
j = 1 : m.

We would like to point out for the multiple kernel or near-kernel vector case, we
often need some geometric information to describe the corresponding vectors. In
the finite element case, these vectors should be obtained by taking the canonical
interpolation of the corresponding kernel functions of the underlying partial differ-
ential operators and we then split these vectors into different aggregates by using
the local degrees of freedom associated with different aggregates.

13.3. Smoothed aggregation

The aggregation procedure described above provides a simple and yet efficient
AMG method. The resulting method is known as un-smoothed aggregation AMG
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13.3 Smoothed aggregation

(UA-AMG) method. Such a terminology may be justified by examining the shape
of the basis function as defined by (13.8). A typical basis in this form, is not
smooth. There is a procedure to smooth out these basis function by using a smoother
to smooth these basis functions, which is equivalent to a few applications of smooth-
ing on the prolongation matrix as defined (13.5) as follows:

PS = (I − RsA)νP, for some ν ≥ 1. (13.10)

A typical choice is the scaled Jacobi smoother with RS = ωD−1. We note that, in
view of (13.9), if ζ j is in the kernel of A, we still have

PS (1J ⊗ e j) = ζ j, 1 ≤ j ≤ m.

Conceivably, a bigger ν in (13.10) would lead to an AMG algorithm that has
a better convergence rate. But a bigger ν in (13.10) also means a denser PS and
hence a denser Ac, and hence a more expensive setup for the resulting AMG al-
gorithm. As an example, the graphs of the coarse grid matrices corresponding to
unsmoothed and smoothed aggregation are shown in Figure 13.13. Clearly, the
smoothed aggregation graph is denser than the unsmoothed one.

Figure 13.13. Graph of the coarse grid matrix corresponding to the unsmoothed
aggregation (left) and the “denser” graph for the coarse grid matrix obtained by
smoothed aggregation (right).

In view of Lemma 9.3, the basis function (13.8) and the resulting UA-AMG
corresponds to the use of tentative coarse space Wc. The smoothed basis func-
tions by means of (13.10) and resulting SAMG corresponds to the use of the Vs in
Lemma 9.3 with S = (I − RsA)ν.
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13.4. Bibliographical notes

One of the first aggregation algorithms comes from applications in economics and
is due Vakhutinsky in 1979 (Vakhutinsky et al. 1979). Later, aggregation meth-
ods have been developed and used for solving discrete elliptic problems by Bla-
heta (Blaheta 1986) and in the calculation of stationary points of Markov chains by
Marek (Marek 1991).

A special class of aggregation coarsening method is based on matching in graphs
(also known as pairwise aggregation) and such methods were employed in (Kim et
al. 2003) and for nonsymmetric problems in (Kim, Xu and Zikatanov 2004). Ag-
gregations using matching in graphs were further used in (Notay 2010, Brannick,
Chen and Zikatanov 2012, Livne and Brandt 2012, D’Ambra and Vassilevski 2014,
D’Ambra and Vassilevski 2013). To improve the scalability of the unsmoothed
aggregation a number of algorithms were developed: in (Kim et al. 2003) vari-
able V-cycle was used; (Notay and Vassilevski 2008a) propose non-linear Krylov
subspace acceleration; in (Olson, Schroder and Tuminaro 2011b) a procedure for
correcting the energy of the coarse-level Galerkin operator is designed.

The aggregation, especially the unsmoothed aggregation, can be used in con-
junction with nonlinear (variable-step/flexible) preconditioning methods to result
in an optimal algorithm. Such nonlinear methods are called Algebraic Multi-
level Iteration Methods and were introduced in (Axelsson and Vassilevski 1991).
Nonlinear multilevel preconditioners were proposed and an additive version of
them was first analyzed in (Axelsson and Vassilevski 1994) (see also (Golub and
Ye 1999/00, Notay 2000, Saad 2003b, Kraus 2002). In these nonlinear multilevel
preconditioners, n steps of a preconditioned CG iterative method provide a poly-
nomial approximation of the inverse of the coarse grid matrix. The same idea
can be used to define the MG cycles, as shown in (Vassilevski 2008b, Notay and
Vassilevski 2008b). A comprehensive convergence analysis of nonlinear AMLI-
cycle multigrid method for symmetric positive definite problems has been con-
ducted in (Hu, Vassilevski and Xu 2013). Based on classical assumptions for ap-
proximation and smoothing properties, the nonlinear AMLI-cycle MG method is
shown to be uniformly convergent.

The smoothed aggregation AMG method, first developed by Mı́ka and Vaněk
(Mı́ka and Vaněk 1992b, Mı́ka and Vaněk 1992a) and later extended by Vaněk,
Mandel, and Brezina (Vaněk et al. 1996a), was motivated by some early work on
aggregation-based MG studied by R. Blaheta in (Blaheta 1986) and in his disserta-
tion (Blaheta 1988).

A major work on the theory and SA algorithm is found in (Vaněk et al. 1998).
The convergence result proved there is under the assumptions on the sparsity of the
coarse grid matrix and the ratio between the number of coarse and fine degrees of
freedom. For general sparse matrices, and even for general adapted finite element
matrices corresponding to elliptic equations, verifying such assumptions is difficult
and is yet to be done.
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14. Problems with discontinuous and anisotropic coefficients

A good AMG method should be robust with respect to possible heterogeneity fea-
tures such discontinuous jumps and anisotropy in a given problem. These hetero-
geneity should be detected and properly resolved automatically in an AMG pro-
cess. Extensive numerical experiments have shown that AMG such as classical
AMG and SA-AMG are very robust with respect to these heterogeneities. One
main technique used to detect and to resolve these heterogeneities is through the
strength of connections (see §8.2). In this section, we shall use the model problem
(2.1) with two special set of coefficients, (2.9) and (2.10), to discuss how classical
AMG work for problem with strong heterogeneities.

14.1. Jump coefficients

In this section we consider an the Classical AMG method when applied to a prob-
lem with heterogenous (jump) coefficients, namely (2.1) with (2.9). We begin with
a discussion on how the strength of connection is used to define the sparsity pattern
of the prolongation.

The strength of connection measure was introduced to handle cases such as jump
coefficients and anisotropies in the matrices corresponding to discretizations of
scalar PDEs. An important observation regarding the classical AMG is that the
prolongation matrix P, which defines the basis in the coarse space, uses only strong
connections. We need here the strength operator S : V 7→ V defined in (8.4). We
now focus on the jump coefficient problem defined in (2.9)

α(x) =

ε, x ∈ Ωε

1 x ∈ Ω1

with ε sufficiently small so that the graph corresponding to the strength operator
has at least two connected components. Directly from the definition of S i in (8.8)
we have the following:

• The graph corresponding to the strength of connection matrix S is obtained
from the graph corresponding to A by removing all entries ai j corresponding
to an edge connecting a vertex from the interior of Ωε to a vertex in Ω1.

• In another word, in this setting we have a block-lower-triangular S with at
least two blocks, in which the first block corresponds to the vertices interior
to Ωε and the second block corresponds to the rest of the vertices.

• The considerations above apply to any configuration of the subsets Ωε and
Ω1, in fact, they can even be disconnected, form cross points and so on.

In Figures 14.14–14.16 we illustrate the strength of connection graphs and their
connected components for specific coefficients α(x) which is defined as in (2.9)
with ε = 10−3. The domain Ωε is a union of elements, and, T ∈ Ωε if and only
if (xT −

1
2 )(yT −

1
2 ) < 0, where (xT , yT ) is the barycenter of T . The domain Ω1
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is Ω1 = Ω \ Ω1. In Figure 14.15, Ωε and Ω1 are disconnected in the graph of the
strength matrix S . In the graph of S , Ωε is split into two connected components,
we denote them by Ω

(1)
ε and Ω

(2)
ε . Ω1 is split into two parts, denoted by Ω

(1)
1 and

Ω
(2)
1 , which are connected through only one point x0 = ( 1

2 ,
1
2 ). With a re-ordering

of indices, the strength matrix for this case can be written as

S =


S ε,1

S ε,2
S 11

S 12
S x1 S x2 S x

 ,
where S ε,1 and S ε,2 are two diagonal blocks corresponds to the two connected
component Ω

(1)
ε and Ω

(2)
ε ; S 11 and S 12 are two diagonal blocks corresponds to the

two connected component Ω
(1)
1 and Ω

(2)
1 ; S 0 is the diagonal entry corresponds to

the grid point x0; S x1 and S x2 are low rank matrices with only a few nonzero entries
(2 nonzero entries in this example) which contain the connections from x0 to points
in Ω

(1)
1 and Ω

(2)
1 respectively.

Figure 14.14. Jump coefficient problem on a uniform mesh. Left: the shaded
region the coefficient is 1, blank region the coefficient is 10−3. Right: the strongly
connected components in the graph corresponding to the strength matrix S .

We define an operator AS : V 7→ V ′ using A and S

(AS u, v) :=
∑

S i j,0

ωi j(ui − u j)(vi − v j),

where ωi j = |ai j|. We have the following lemma.

Lemma 14.1. For all v ∈ V , we have

(AS v, v) ≤ (A+v, v) . (Av, v).
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14.1 Jump coefficients

Figure 14.15. Unstructured mesh: jump coefficient problem on an unstructured
mesh. Left: the shaded region the coefficient is 1, blank region the coefficient is
10−3. Right: the strongly connected components in the graph corresponding to the
strength matrix S .
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Figure 14.16. Jump coefficient problem: Nonzero pattern of strength matrix S
when reordered in block lower triangular form. Structured uniform grid (left) and
unstructured mesh (right)

For the classical AMG, the definition of the prolongation matrix P only uses
strong connections, and the coarse space is union of the coarse spaces in each
strongly connected component of the graph of A+. Note that the classical AMG
construction gives the same coarse space for both A and its M-matrix relative A+.
For this reason, in the considerations that follow we write A instead of A+ and E
instead of E+, as the coarse space is defined using only entries from A+.

We now consider the convergence of classical two-level AMG with standard in-
terpolation for the jump coefficient problem and we prove a uniform convergence
result for the two level method. The same result for direct interpolation can be
obtained by a slight modification of the proof for standard interpolation case. Be-
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fore we go through the AMG two-level convergence proof, we first introduce the
following result on a connected graph, which can be viewed as a discrete version
of Poincaré inequality.

Lemma 14.2. We consider the following graph Laplacian on a connected undi-
rected graph G = (V,E)

〈Au, v〉 =
1
2

∑
(i, j)∈E

(ui − u j)(vi − v j). (14.1)

For any v ∈ V , the following estimate is true

‖v − vc‖
2
`2 ≤ µn2d〈Av, v〉, (14.2)

where n = |V| is the size of the graph, vc =
∑n

j=1 w jv j is a weighted average of v,
µ =

∑n
j=1 w2

j , and d is the diameter of the graph.

We now consider the Classical AMG coarsening as defined in §12.4 and with
an abuse of notation, we use Ω j to denote the set of vertices defined via the C/F
splitting in (12.21). Next Lemma is a spectral equivalence result, showing that
the local operators A j, defined in (12.28), for shape regular mesh, are spectrally
equivalent to a scaling of the graph Laplacian operators AL, j defined as

(AL, ju, v) =
1
2

∑
(i,k)∈Ω j

(ui − uk)(vi − vk). (14.3)

Lemma 14.3. With the assumption we made on the shape regularity of the finite
element mesh, the following inequalities hold for A j defined as in (12.28) using the
standard interpolation

cLhd−2〈AL, jv j, v j〉 ≤ (A jv j, v j) ≤ cLhd−2〈AL, jv j, v j〉, (14.4)

where AL, j is a graph Laplacian defined in (14.1) on the graphG j, h is the mesh size
and cL, cL are constants depend on the shape regularity constant, and the threshold
θ for the strength of connections.

Proof. By the definition of the strength of connection, we have

aii =
∑
k∈Nk

−aik ≤ −
|Ni|

θ
ai j,

Since A is symmetric, we also have

aii ≤ −
|Ni|

θ
a ji,

By the definition of Ω j in standard interpolation, for any i ∈ Ω j \ { j}, either i ∈ F s
j

or there exists a i ∈ F s
j such i ∈ F s

k . For the latter, ( j, k, i) forms a path between j
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and i going along strong connections. We have then

−aik ≥ −
θ

|Nk|
akk ≥ −

θ

|Nk|
ak j ≥ −

θ2

|Nk||N j|
a j j.

and

a j j ≥ −a jk ≥
|Nk|

θ
akk ≥ −

(
|Nk|

θ

)2

aik

Combining the above two inequalities and using the assumption that the mesh is
shape regular, for any l ∈ Ω j that is connected with i we have

σ1ai j ≤ −ail ≤ σ2a j j

with constants σ1 and σ2 which depend on the shape regularity constant and θ.
Since in the definition of A j in (12.28), ωe = −ai j/2 for e = (i, j) , we obtain

c1a j j〈AL, jv j, v j〉 ≤ (A jv j, v j) ≤ c2a j j〈AL, jv j, v j〉. (14.5)

Then by a scaling argument, a j j

�hd−2 and the proof is complete.

Theorem 14.4. The two level method using a coarse space defined as Vc defined
via the classical AMG is uniformly convergent.

Proof. By Theorem 5.2, we only need to show that µc is bounded, which can be
easily obtained by combining Lemma 14.2 – 14.3 with Lemma 7.3.

14.2. Anisotropic problem

We consider the following problem−uxx − εuyy = f , in Ω,
∂u
∂n = 0, on ∂Ω.

(14.6)

We discretize the problem using finite element method on an n × n uniform
triangular grid in Ω = (0, 1) × (0, 1). We order the vertices of the triangulation
lexicographically and denote them by {(ih, jh)}ni, j=0. The stiffness then matrix is

A = diag(−εI, B,−εI) with B = diag(−1, 2(1 + ε),−1). (14.7)

It is immediate to see that, for sufficiently small 0 < ε � 1 the strength operator
S has the form:

S = diag(0, S B, 0) with S B = diag(1, 1, 1). (14.8)

and the M-matrix relative of A is

A+ = diag(0, B+, 0) with B+ = diag(−1, 2,−1). (14.9)

If we use uniform coarsening to solve above linear problem, it is proved in (Yu,
Xu and Zikatanov 2013) (see also (Zikatanov 2008)) that uniform convergence is
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not achieved when using point relaxation as a smoother and standard coarsening. A
fix for this is to use strength of connection and coarsen the adjacency graph of the
strength operator S . The C/F splitting constructed in this way using the MIS algo-
rithm from §9.3.1 results in semi-coarsening (coarsening only in one direction).

We now move on to show uniform convergence of the two-level classical AMG
for the anisotropic problem (14.6). Recall that we consider a uniform grid in R2

with lexicographical ordering of the vertices. The stiffness then matrix is (14.7).
We further assume, without loss of generality, that n = 2m + 1 for some m. The
coarse grid points using the strength operator defined in (14.8) then are with coor-
dinates ((2i)h, jh), where i = 1 : m and j = 1 : n.

Further, as each coarse grid function is uniquely determined by its values at the
coarse points, the function that corresponds to the point ((2i)h, jh) for some i and j
is defined as the unique piece-wise linear function φi, j,H satisfying:

φ((2i)h, jh) = 1, φ((2i − 1)h, jh) = 1/2, φ((2i + 1)h, jh) = 1/2,

and φi, j,H(x) = 0 at all other grid nodes.
Or we can use the basis functions for bilinear element, which can be written as

tensor product. Let us define first the piece-wise linear basis in 1D:

φ j,h(t) =


(t−( j−2)h)

h , t ∈ (( j − 2)h, ( j − 1)h)
( jh−t)

h , t ∈ (( j − 1)h, jh),
0, otherwise

The basis in Vh then is

φi j,h(x, y) = φi,h(x)φ j,h(y) (14.10)

and for the coarse grid basis we have

φi j,H(x, y) = φi,2h(x)φ j,h(y). (14.11)

The basis functions for the linear elements is the piece-wise linear interpolation
of the bilinear basis.

The subset Ωi j is the support of this basis function, i.e. the grid points where
φi j,H is non-zero. More precisely,

Ωi j = {((2i − 1)h, jh), (2ih, jh), ((2i + 1)h, jh)}. (14.12)

Ωi j consists of the coarse grid point (2ih, jh) and its neighbors on x direction. Then
we define V j := R3.

The operator Π j : V j 7→ V is defined by the matrix representation of Ih(φi j,H ·).
Ai j is defined as in (12.28). In this case

Ai j =

 1 −1 0
−1 2 −1
0 −1 1

 (14.13)
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Ai j is symmetric positive semi-definite and since for any vi j ∈ Vi j , we have∑
i, j

(vi j, vi j)Ai j =
∑

i j

∑
(k,l)∈E
k,l∈Ωi j

−akl(vk − vl)2

≤ 2
∑

(k,l)∈E

−akl(vk − vl)2

= 2(v, v)A,

Ai j satisfies (6.11).
We define Di j as in (12.30). As Ai j1 = 0, the minimum eigenvalue of D−1

i j Ai j is
0 and the corresponding eigenvector is the constant vector, we choose local coarse
space Vc

i j to be the space of all constant vectors in Vi j. The corresponding global
coarse space is then defined as in (6.13).

Theorem 14.5. The two level method with coarse space defined above converges
uniformly for the anisotropic problem in (14.6), with convergence rate independent
of ε and the mesh size h.

Proof. By Theorem 5.2, the convergence rate depends on the second smallest
eigenvalue of D−1

i j Ai j which is 1 for all i and j.
Next, Theorem 5.2 can be applied to this case, and we obtain

‖E‖A ≤ 1 −
1
C
, (14.14)

with C independent of ε and the mesh size, which proves the uniform convergence
of the AMG method.

14.3. Bibliographical notes

Fast solvers for problems with heterogeneous and or anisotropic coefficients have
been in the focus of research for the last 3-4 decades. The AMG methods are
among the preferred solvers due their robust behavior with respect to the coeffi-
cient variation and independence of the geometry. Standard multilevel methods
for these problems do have limitations as their convergence may deteriorate as
shown in (Alcouffe, Brandt, Dendy and Painter 1981). The cause for this in ge-
ometric multigrid with standard coarse spaces is discussed in (Bramble and Xu
1991, Xu 1991) and later in (Oswald 1999). Attempts to remove the dependence
on the size of the coefficient jumps was made by introducing the matrix dependent
prolongations. We refer to (Dendy 1982, Dendy 1983), Reusken (Reusken 1993),
(de Zeeuw 1990). Several theoretical and numerical results on geometric and alge-
braic methods for discontinuous coefficients are found in the survey paper (Chan
and Wan 2000) and the references therein. Anisotropic equations and AMG coars-
ening is considered in (Brannick, Brezina, MacLachlan, Manteuffel, McCormick
and Ruge 2006).
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15 BOOTSTRAP AND ADAPTIVE AMG

Finally, in addition to the theory presented here, some partial theoretical results
on convergence of an AMG are found in the classical papers on AMG (Ruge and
Stüben 1987), smoothed aggregation (SA) (Vaněk et al. 1996b). Related works are
the frequency filtering and decompositions found in (Hackbusch 1989), (Wittum
1992, Wagner and Wittum 1997, Weiler and Wittum 1997, Nägel, Falgout and
Wittum 2008).

15. Bootstrap and adaptive AMG

In all the algorithms studied earlier, we assume that the near-null spaces are known
in advance. Eliminating such an assumption and extending the range of applica-
bility of optimal multigrid techniques is attempted in the framework of the Boot-
strap/Adaptive AMG methods which we describe in this section. In summary, the
adaptive AMG (αAMG, αSA) and bootstrap AMG (BAMG) algorithms are aimed
at the solution of harder problems for which the standard variants of the Classical
AMG method or the Smoothed Aggregation method may converge slow. The boot-
strap/adaptive algorithms make special choices coarse spaces. Based on a given a
smoother. self- improve until achieving the desired convergence rate.

15.1. Sparsity of prolongation matrices

We give here a very short summary on the sparsity patterns of the prolongation
matrices that we have defined for energy minimization AMG in §11, Classical
AMG in §12, and Aggregation AMG in §13. First, for the energy minimizing
AMG we have that the sparsity pattern of the prolongation could be prescribed in
advance, and in some sense this approach is more general as it can also use the
sparsity patterns given below for the Classical AMG and Aggregation AMG ap-
proaches. For specific restrictions related to the number of vectors interpolated ex-
actly by the energy minimizing prolongation we refer to (Xu and Zikatanov 2004)
and (Vassilevski and Zikatanov 2006). There are also ways to define the prolon-
gation with changing pattern. Such algorithms are useful because they provide a
mechanism to control the sparsity pattern of the prolongation. The Algorithm 7 is
first described in (Brandt 2002) and later included in the bootstrap adaptive AMG
algorithm designed in (Brandt, Brannick, Kahl and Livshits 2011a). In the algo-
rithm description, we refer to the graph of the M-matrix relative as defined in §9.
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Algorithm 7 Prolongation via least squares minimization
1: Input: Matrices Ψ ∈ Rn×m, Ψc ∈ R

nc×nc , a norm ‖ · ‖, initial sparsity pattern
S(P) for P; bound on maximum nonzeroes per row smax ;

2: Output: Prolongation matrix P such that PΨc ≈ Ψ.
3: Set i = 1.
4: while (i ≤ n) do
5: Find p̃i = arg minp̃i∈R

nc
S i
‖ΨT

c p̃i − Ψ̃i‖.

6: if (‖ΨT
c p̃i − Ψ̃i‖ > ε) and (|S (i)| ≤ smax) then

7: S (i)← S (i)∪ jc { jc}, where jc are close to i in graph (algebraic) distance.
8: else
9: i← i + 1

10: end if
11: end while
12: for i = 1 : n, jc ∈ S (i) do
13: if (pi, jc ≤ εp) then Set pi, jc = 0 end if
14: end for
15: return P

Algorithm 8 Prolongation via aggregation
1: Input: Matrix Ψ ∈ Rn×m, an aggregation ∪nc

i=1Ai = {1, . . . , n}, and a prolonga-
tor smoother S : Rn 7→ Rn (in case of Smoothed Aggregation (SA)).

2: Output: Prolongation matrix P such that Range(PΨc) ≈ Range(Ψ).

3: Set (ΨAi)k j =

Ψk j, k ∈ Ai, j = 1 : m
0, k < Ai, j = 1 : m,

.

4: Set P = (ΨA1 , . . . ,ΨAnc
)

5: if (SA) then P← (I − RsA)P end if
6: return P

15.2. Notation

Given a matrix A ∈ Rn×n and a relaxation (smoother) R for this matrix, adaptive
procedure to construct a sequence of coarse spaces which are characterized by the
sequence of prolongation matrices

Pm
j : Rnm

j 7→ R
nm

j+1 .

The corresponding V-cycle matrix is denoted Bm. We introduce the following no-
tation, used throughout this section

• For a matrix Y ∈ Rn×m we set

Y = (y1, . . . , ym) =


ỹT

1
...

ỹT
n


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Clearly, here {yi}
m
i=1 are the columns of Y and {̃yT

j }
n
j=1 are the rows of Y .

• V = (V1, . . .VJ) is a multilevel hierarchy of spaces V j ⊂ V j+1, j = 1 : (J − 1)
and the fine grid spaces is denoted by VJ .

• By {P j
j−1}

J
j=2 we denote the prolongation matrix from a coarser level ( j−1) to

finer level j, and P j = PJ
J−1PJ−1

J−2 . . . P
j+1
j , j = 1, . . . (J − 1) is the prolongation

from level from level j to level J
• The set of all prolongations up to level j we denote by P j = {P j

j−1}
j
j=2, and

P = PJ . As we have mentioned on several occasions, the set of prolongation
matrices P completely determines the multilevel hierarchy of spacesV.

• Set of test vectors on every level

C = {Ψ1, · · · ,ΨJ}, Ψ j ∈ R
n j×m.

In an adaptive method, the hierarchy of coarse spaces is constructed so that
Ψ j ≈ P j

j−1Ψ j−1, or, P j
j−1 is constructed so that Ψ j can be well approximated

by elements from Range P j
j−1.

• We need the standard V-cycle preconditioner B(P j) with hierarchy of spaces
given by P j starting at level j.

• A j is the restriction of the fine grid matrix A on level j and M j is the restriction
of the “mass” matrix, defined as: A j = PT

j AP j, M j = PT
j P j.

A generic adaptive AMG algorithm changes the set P, adjusting the hierarchy
of spaces V. In general, in adaptive procedure the number of levels is not known
and in some of the algorithms below we use V1 as the finest space by mapping the
indexes in the notations above as

j← J − j + 1, j = 1, . . . J.

15.3. A basic adaptive algorithm

We describe now a generic Adaptive algorithm for constructing coarse spaces. We
use an approach slightly different than what is in the literature and fit into one
framework both BAMG and αSA.

Step 0 Given A ∈ Rn×n and the associated graph G(A) = (V,E).
Step 1 Initialization

1. Given m0 ≥ 1, q ≥ 1, 1 ≤ n0 < n and δ0 ∈ (0, 1).
2. P ← ∅.
3. Vc ← V = Rn;V ← {Vc}.
4. nc ← n; m← m0.
5. B← R.
6. Randomly pick m test-vectors Ψ0 = (ψ1, . . . ψm), Ψ0 ∈ R

n×m.
7. Ψ← Ψ0; C ← {Ψ0}.

Step 2 If nc ≤ n0, go to Step 3, else do:
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1 Make a copy of Ψ: Ψ̂← Ψ. Then compute

Ψ← (I − BA)qΨ, δ = max
1≤i≤m

‖Ψi‖A

‖Ψ̂i‖A
. (15.1)

2 If δ ≤ δ0 then Stop.
3 Use a coarsening strategy (c.f. §9) to update nc and find a set of coarse

grid DOFs {Ni(·)}
nc
i=1. Then set

Vc ← R
nc , V ← V ∪ {Vc}.

4 Form the “restriction” of Ψ to the coarse space:

Ψc ← Restrict(Ψ, {Ni(·)}
nc
i=1)

Then set C ← C ∪ {Ψc}.
5 Identify a sparsity pattern S(P) (c.f. §15.1 also §12.3, and §13.2).
6 Find a prolongation matrix P using Ψc and Ψ by applying Algorithm 7

or Algorithm 8. Then set

P ← P ∪ {P}, A← PT AP, Ψ← Ψc, B← Rc,

where Rc is the relaxation on the coarse grid Vc.

Step 3 Order the spaces inV increasing with respect to their dimension as

V = {V1,V2, . . . ,VJ} with VJ = Rn,

and the corresponding prolongation matrices

P = {P j+1
j }

J−1
j=1 , P j+1

j : V j 7→ V j+1, j = 1, 2, . . . , J − 1.

Set B to be the V-cycle AMG method based on above coarse spaces and
prolongation matrices.

Step 4 Compute δ in (15.1) using current B. If δ ≤ δ0, Stop. Else, update C,
P and V by modifying, removing from, or adding to the set of test-vectors
(Bootstrap AMG uses Algorithm 9, adaptive SA uses Algorithm 10). Then
go to Step 3.

The restrict operator in Step 2.4 is following:

Ψc =

(
Ni(ψ j)

)
1≤i≤nc,1≤ j≤m

, bootstrap AMG

Ψc =

(
Ni(ψ j)

)
1≤i≤nc

⊗ e j j = 1 : m, adaptive aggregation

15.4. Bibliographical notes

The AMG approaches we have considered are aimed at adaptive choice of coarse
spaces and multilevel hierarchies in an AMG algorithm. The majority of known
to date adaptive AMG methods use the operator A and aim to capture the worst
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Algorithm 9 MGE algorithm: approximating of le eigenpairs of A
for j = J, . . . , 1 do

if j = J (coarsest grid) then
Find {(ϕ(k)

J , λ(k)
J )}lek=1– the solutions to the eigenvalue problems:

AJϕ
(k)
J = λ(k)

J MJϕ
(k)
J , k = 1, . . . , le;

else
for k = 1, . . . , le do

Set v(k)
j = (P j

j−1)Tϕ(k)
j−1, µ(k)

j = λ(k)
j−1, and C(k)

j = A j − µ
(k)
j M j

Relax on C(k)
j w = 0, i.e., ϕ(k)

j = (I − S (k)
j C(k)

j ) v(k)
j .

Set λ(k)
j =

〈A jϕ
(k)
j , ϕ

(k)
j 〉

〈M jϕ
(k)
j , ϕ

(k)
j 〉

end for
end if

end for

case errors. All particular details regarding bootstrap AMG (BAMG) are found
in (Brandt 2002), (Brandt et al. 2011a), and (Brandt, Brannick, Kahl and Livshits
2015). The Adaptive Classical AMG is described in adaptive AMG or αAMG (Brezina
et al. 2006b), and the adaptive Smoothed Aggregation or αSA is discussed in de-
tail in (Brezina, Falgout, MacLachlan, Manteuffel, McCormick and Ruge 2004b),
(Brezina, Falgout, MacLachlan, Manteuffel, McCormick and Ruge 2005a). While
the adaptive and bootstrap MG processes have been successful in several settings,
they are still only a heuristic attempt to overcome serious barriers in achieving good
performance from the classical AMG point of view. Indeed, the costs of achieving
added robustness using a bootstrap or adaptive MG algorithm are significant.

Central to the adaptive MG framework is an important distinction between the
role of the underlying multigrid algorithm (aggregation or classical AMG) and
what the additional, adaptive elements it should provide. If the idea of self-improving
the coarse spaces is poorly implemented, the adaptive and bootstrap multigrid
algorithms can easily degenerate into an algorithm with no better convergence
properties than a classical Krylov method preconditioned by the MG smoother
(Falgout 2004).

The basic ideas on adaptive AMG are outlined in the early works on classical
AMG (Brandt et al. 1982b). In fact, the adaptive process of constructing interpola-
tion based on fitting a set of test vectors for badly scaled matrices was introduced
as early as in (Ruge 1983). Some of the basic ideas of adaptive AMG are also
found in (Ruge 1985, Ruge 1986, Mccormick and Ruge 1989, Brandt et al. 1985).
Further advancement in the adaptive AMG methods, and new ideas for using eigen-
vector approximations to guide the adaptive process were introduced in the boot-
strap AMG (BAMG) framework in (Brandt 2001). The BAMG is a self-learning
multigrid algorithm that automatically determines the algebraically smooth errors
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15.4 Bibliographical notes

Algorithm 10 αSA: adding a test vector ψ to the current set of test vectors ΨJ

Step 1 Update ΨJ by adding ψ as a new column: ΨJ ← [ΨJ , ψ].
Step 2 For l = J, . . . , 3:

(1) Update Ψl−1 by evaluating the coarse grid degrees of freedom N j(ψ), j =

1 : nl−1. This process adds nl−1 rows to Ψl−1.
(2) Use Algorithm 8 (SA) to define a prolongation Pl

l−1 matrix and coarse
grid operator Al−1.

(3) Update Pl ← {Pl
l−1} ∪ Pl−1.

(4) As the number of rows in Ψl−1 was increased in Step 2(1), we need to
change Pl−1

l−2 in Pl−1 in order to keep the set P consistent. We define P̃l−1
l−2

as the “bridge” prolongation via algorithm 11 and we set

P̃l−1 =← {P̃l−1
l−2} ∪ Pl−2

(5) Test the convergence of B(P̃l−1) on the newly added test vector ψl−1:

ψ̂l−1 ← ψl−1, ψl−1 ← (I − Bl−1(P̃l−1)A)q(ψl−1).

If
(
‖Pl−1ψl−1‖

2
A

‖Pl−1ψ̂l−1‖
2
A

)1/q
≤ δ then Stop.

(6) Update the coarse representation of Ψl−1:

Ψl−1 ← [Ψ̂l−1, ψl−1].

Algorithm 11 αSA setup: construction of a “bridging” prolongator

1 Denote the last column of Ψl−1 by ψl−1, and let Ψ̂l−1 consist of all other
columns of Ψl−1.

2 Create a prolongation Pl−1
l−2 using Algorithm 8 with the Ψl−2 by fitting all the

vectors in Ψ̂l−1.

in a given problem and was further developed in (Brandt et al. 2011a), and (Brandt
et al. 2015). Adaptive AMG algorithms were further developed and new were
introduced in some more recent works: (αAMG) in the framework of Classical
AMG (Brezina et al. 2006c); and (αSA) in the framework of Smoothed Aggre-
gation AMG (Brezina, Falgout, MacLachlan, Manteuffel, McCormick and Ruge
2004a, Brezina, Falgout, Maclachlan, Manteuffel, Mccormick and Ruge 2005b).
Other adaptive multilevel algorithms are the adaptive filtering and the filtering de-
compositions (Wittum 1992, Wagner and Wittum 1997) and the multilevel multi-
graph algorithms (Bank and Smith 2002).

These references have more specific details on the implementation of BAMG/αAMG/αSA.
One improvement on the original BAMG method is given in (Manteuffel, Mc-
Cormick, Park and Ruge 2010), where an indirect BAMG (iBAMG) method is
introduced. Compared to BAMG, the iBAMG follows more closely the spirit of
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classical AMG, which attempts to collapse unwanted connections based on the
assumption that the smooth error is locally constant.

In the work (Brandt, Brannick, Kahl and Livshits 2011b), BAMG is paired
with an adaptive relaxation (Brandt 2000b, Kahl 2009) and a multigrid eigensolver
(Brezina, Manteuffel, McCormick, Ruge, Sanders and Vassilevski 2008). A com-
bination of the bootstrap cycling scheme (Livshits 2008, Kahl 2009) and then the
multigrid eigensolver is used to compute sufficiently accurate sets of test vectors
and adaptive relaxation is used to improve the AMG setup cycle.

In the recent years there have been introduced also other adaptive approaches to
constructing hierarchy of spaces. Classical AMG based approach in defining the hi-
erarchy of spaces is considered in the framework of adaptive reduction algorithms
in (Brannick, Frommer, Kahl, MacLachlan and Zikatanov 2010) and (MacLachlan
et al. 2006). Adaptive BoxMG was considered in (MacLachlan et al. 2012). Spe-
cialized adaptive approach for Markov Chains is presented in (De Sterck, Miller,
Treister and Yavneh 2011).

16. Concluding remarks

In this paper, we try to give a coherent presentation of a number algebraic multigrid
(AMG) methods. But this presentation, limited by our current theoretical under-
standing of AMG algorithms in general, is by no means complete. We choose to
include those AMG algorithms that can fit into the theoretical frameworks that are
presented in this paper. One notable exception is the bootstrap and adaptive AMG
presented in §15. This type of algorithms still lack a good theoretical understand-
ing, but they provide an algorithmic framework to leverage and extend those AMG
algorithms presented in §10-13 for a wider range of applications.

There are still many AMG algorithms in the literature that we are not able to
include in this article for two main reasons. One is that those algorithms can not be
easily cast within our theoretical frameworks; another is that there are algorithms
that the authors are yet to comprehend on a reasonable theoretical level. Exam-
ples of algorithms and results that need further investigation and analysis include
adaptive filtering, multilevel ILU methods, the multilevel convergence properties
of SA-AMG, BAMG, Adaptive AMG and many others.

The AMG methods studied in this paper are obtained by optimizing the choice
of coarse spaces based on a given smoother. Indeed, almost all the existing AMG
method follow this strategy. It is possible, however, that an AMG method can also
be designed by optimizing the choice of smoother based on a given coarsening
strategy. This, in our view, is a subject worthy further investigation. Theoretically,
it is also conceivable to optimize both coarsening and smoother simultaneously.

Finally, we would like to note that several AMG software packages have been
developed and are currently in use, most noticeably:
Hypre: http://acts.nersc.gov/hypre/,
Trilinos: https://trilinos.org/,
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Multigraph: http://ccom.ucsd.edu/˜reb/software.html,
AGMG: http://homepages.ulb.ac.be/˜ynotay/AGMG/,
PyAMG: http://pyamg.org/,
FASP: http://fasp.sourceforge.net/.
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H. Weyl (1911), ‘Über die asymptotische verteilung der eigenwerte’, Nachrichten von der

Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse
1911, 110–117.

H. Weyl (1912), ‘Das asymptotische verteilungsgesetz der eigenwerte linearer partieller
differentialgleichungen’, Math. Ann 71, 441–479.

O. B. Widlund (1994), Exotic coarse spaces for Schwarz methods for lower order and spec-
tral finite elements, in Domain decomposition methods in scientific and engineering
computing (University Park, PA, 1993), Vol. 180 of Contemp. Math., Amer. Math.
Soc., Providence, RI, pp. 131–136.

126



16 CONCLUDING REMARKS

O. B. Widlund (2009), The development of coarse spaces for domain decomposition algo-
rithms, in Domain decomposition methods in science and engineering XVIII, Vol. 70
of Lect. Notes Comput. Sci. Eng., Springer, Berlin, pp. 241–248.

G. Wittum (1992), Filternde Zerlegungen, Teubner Skripten zur Numerik. [Teubner Scripts
on Numerical Mathematics], B. G. Teubner, Stuttgart. Schnelle Löser für große
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