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Abstract

The perceptron learning algorithm yields quite naturally an algorithm for
finding a linearly separable boolean function consistent with a sample of such
a function. Using the idea of a specifying sample, we give a simple proof that
this algorithm is not efficient, in general.

A boolean function ¢ defined on {0, 1}" is linearly separable if there are o € R"™ and

0 € R such that
1 if({a,z) >0
t(z) = { 0 if (o, 2) <6,

where (o, x) is the standard inner product of o and z. Given such a and 6, we say
that ¢ is represented by [«, 0] and we write ¢ < [«, 0]. The vector a is known as the
weight-vector, and 6 is known as the threshold. This class of functions is the set of
functions computable by the simple boolean perceptron (see [8, 9, 6]), and we shall
denote it by BPF,.



We now give a fleeting description of the perceptron learning algorithm, and refer
to [6, 1] for more details. For any learning constant v > 0, we have the perceptron
learning algorithm L,, devised by Rosenblatt [8, 9], which acts sequentially as fol-
lows. Let ¢ be any function in BFP,, which may be thought of as the target. The
algorithm [, maintains at each stage a current hypothesis, which is updated on
the basis of an example in {0,1}", presented together with its classification t(x).
(The initial hypothesis is some fixed ‘simple’ hypothesis. We shall take the initial
hypothesis to have the all-0 vector as weight-vector, and threshold 0.) Suppose the
current hypothesis is h « [«, 0] and that an example z is presented. Then the new
hypothesis is b’ < [/, §'] where

o =a+v(tlx)—hx)z, 0=0—v(t)—hx).

The Perceptron Convergence Theorem [8, 6] asserts that no matter how many exam-
ples are presented, the algorithm makes only a finite number of changes, or updates
(provided v, which can be a function of n, is small enough).

As indicated in [3], given t € BP, and a sample x = (1, %, ..., Z,) of examples,
we may use L, to find a linearly separable boolean function which agrees with ¢ on
x—that is, which is consistent with t on x. We simply keep cycling through x; to
ZTm in turn, until no updates are made in a complete cycle. Thus, the perceptron
algorithm (for any learning constant ) can be used as a consistent-hypothesis-finder
(using terminology from [3]). A natural question is whether this is an efficient means
of finding a consistent function. In fact, it is not, in the sense that the number of
complete cycles required can be exponential in m, the size of the sample. This result
appears to be accepted, but we have been unable to find a proof of it in the liter-
ature. We note that this is a very different result from those presented by Minsky
and Papert[6] and Hampson and Volper [4] in their studies of the perceptron learn-
ing algorithm. Their results show that when the perceptron learning algorithm is
used as an exact learning algorithm, the running time can be exponential in n, the
domain dimension. Our result shows that, for fixed n, the running time of the re-
lated consistent-hypothesis-finder can be exponential in m, the number of examples
presented. We remark that there is a polynomial time consistent-hypothesis-finder
for BP,: rephrase the problem as a linear programme and use Karmarkar’s algo-
rithm (see [3]). Thus the problem of finding a consistent hypothesis has no intrinsic
difficulty.

We shall consider the boolean function fs, of 2n variables with formula

fgn = Uon A (Ugn_l V (Ugn_g A\ (UQn_:; V ( .. (UQ A\ Ul)) . .),

in the standard notation for describing boolean functions in terms of the literals
U1, Us,, the OR connective V and the AND connective A. This function, discussed



in [7, 4, 5],is in BP,. (Indeed, all such ‘nested’ functions are; see [2].) The following
easily obtained result is along the lines of results due to Muroga [7].

Proposition 1 Let n be any positive integer and suppose fo, < [a, 0]. Then g, >
\/gnil min(ay, as). O

We have the following result, a special case of a more general ‘specification’ result
from [2].

Proposition 2 Let the set S, C {0,1}*" of cardinality 2n + 1 be defined for each
positive integer n as follows. S; = {(0,1),(1,0),(1,1)}, and, forn > 1,

Spi1 = {201 : 2 € S,} U{(11...10),(00...011)}.

Then the only function h € BP, consistent with fo, on S, is fa, itself. ad
Combining these two results, we obtain the result we seek.

Theorem 3 For any fired v > 0, the consistent-hypothesis-finder arising from the
perceptron learning algorithm L, does not always run in time polynomial in the size
of its input.

Proof: Suppose we take the target t to be f5, and we take S, as the input to the
consistent-hypothesis-finder. Suppose the initial hypothesis is h < [(00,...,0),0].
Let N be the number of updates made before a consistent hypothesis is produced. By
Proposition 2, this consistent hypothesis must be fs, itself, and so if it is represented
by [«, 6], then ay, a9 > 0 and, by Proposition 1, ag, > \/gn_1 min(aq, ag). After
N updates, the maximum entry in the new weight-vector o' is at most Nv and
the minimum entry is certainly at least v. Hence the ratio of maximum entry to
minimum entry is at most N. But, since the final output weight-vector has this
ratio at least equal to ag,/min(ay, ag) > \/gnfl, it follows that N > \/§n71, which
is exponential in n, and hence in 2n + 1, the size of the input. a

This result also holds if v = v(n) is a function of n, bounded above by some constant.
(Usually, this is certainly the case since v is taken to be decreasing with n.)
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