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Abstract

Let H and C be sets of functions from domain X to <. We say that H
validly generalises C from approximate interpolation if and only if for each
η > 0 and ε, δ ∈ (0, 1) there is m0(η, ε, δ) such that for any function t ∈ C and
any probability distribution P on X, if m ≥ m0 then with Pm-probability at
least 1− δ, a sample x = (x1, x2, . . . , xm) ∈ Xm satisfies

∀h ∈ H, |h(xi)− t(xi)| < η, (1 ≤ i ≤ m) =⇒ P({x : |h(x)− t(x)| ≥ η}) < ε.

We find conditions that are necessary and sufficient for H to validly generalise
C from approximate interpolation, and we obtain bounds on the sample length
m0(η, ε, δ) in terms of various parameters describing the expressive power of
H.

1 Introduction and Definitions

Much work has recently been carried out on probabilistic models of machine learning
such as the ‘probably approximately correct’ (or pac) model due to Valiant [26]. In
particular, the pac learning of {0, 1}-valued functions (equivalently, sets) has been
studied in great depth; see [12, 5, 18], for example. More recently, attention has been
focussed on the extension of the pac model to classes of real-valued functions; see,
for example, [14, 1, 9]. The problem studied in this paper is a problem in probability
theory which is motivated by, and has applications to, the learnability of real-valued
function classes.

1.1 The problem

Suppose we have two sets of functions H, the ‘hypothesis space’, and C, the ‘concept
space’, from a set X to <. Normally, we shall assume that X ⊆ <n for some
n, but this is not necessary. Suppose also that there is a probability measure P
defined on an appropriate σ-algebra of subsets of the domain X. In the case when
X ⊆ <n, this σ-algebra is taken to be the Borel σ-algebra. In a particular instance
of the generalisation problem, P is fixed but is unknown to us — who may be
thought of as ‘the learner’— and there is some target function t ∈ C. The aim is to
guarantee that a function from H which approximates well to the target function
on a sample of examples randomly drawn from X according to P , is likely to be
a good approximation of the target function on the whole of X. Less informally,
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we would like to be sure that if a function from H closely approximates the target
function on the points of the sample, then, with high probability, that function is,
in some sense, a good approximation to the target function on the whole domain.
Formally, let ε ∈ (0, 1) be an accuracy parameter, δ ∈ (0, 1) a confidence parameter,
and η ∈ <+ a proximity parameter. These are prescribed in advance and are part of
the ‘input’ to a particular instance of the generalisation problem. Suppose we draw
a sample x = (x1, x2, . . . , xm) of length m, with the xi being chosen independently
according to P . Let us say that h ∈ H is an η-approximate interpolant of t on
the sample x if |h(xi) − t(xi)| < η for each 1 ≤ i ≤ m. (The idea of approximate
interpolation occurs in other areas of learning theory; see Sontag [25], for example.)
Let us also say that a sample x = (x1, . . . , xm) is (P ,H, ε, η)-reliable for t if h ∈ H
and |h(xi)−t(xi)| < η for 1 ≤ i ≤ m imply that P ({x ∈ X : |h(x)− t(x)| ≥ η}) < ε.
We say that sample length m is sufficient for valid (η, ε, δ)-generalisation of C (by
H) from η-approximate interpolation if for any target t ∈ C and for any distribution
P on X (by which we mean for any probability measure defined on the fixed σ-
algebra), with Pm-probability at least 1− δ, a sample x ∈ Xm is (P ,H, ε, η)-reliable
for t.

In order to have the appropriate events measurable, some measurability constraints
must be imposed on H; we shall not discuss these here, but refer the reader to the
appendix of [14] and to [20]. These constraints are mild, and are satisfied by all
function classes discussed here. We arrive at the following formal definition.

Definition 1 Let C and H be sets of functions from X to <. We say that H validly
generalises C from approximate interpolation if for all η > 0 and ε, δ ∈ (0, 1), there
is m0(η, ε, δ) such that, for all probability distributions P on X and all t ∈ C, if m ≥
m0(η, ε, δ) then with Pm-probability at least 1 − δ, a sample x = (x1, x2, . . . , xm) ∈
Xm is (P ,H, ε, η)-reliable for t. In other words, with probability at least 1 − δ, x
satisfies:

for all h ∈ H, |h(xi)− t(xi)| < η, (1 ≤ i ≤ m) =⇒ P({x : |h(x)− t(x)| ≥ η}) < ε.

Note that the sample length m0 must be independent of t and P , depending only
on η, ε and δ; thus the requirement is similar to that of the standard ‘probably
approximately correct’ (pac) learning model [12, 26, 5]. Another noticeable feature
of this definition is the requirement that, with high probability, any η-approximate
interpolant of t on the sample is required to be a good approximation to t. Thus,
the notion of valid generalisation from approximate interpolation is a generalisation
of what has been called ‘solid learnability’ by Ben-David et al. [10] and ‘potential
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learnability’ by Anthony and Biggs [5] in the context of {0, 1}-valued functions,
where every consistent function from H is required to be close to the target function.

We shall assume throughout most of this paper that H is uniformly bounded, in
that there is some bounded subset B of < such that all functions in H map into
B. Without loss, we may assume that B = [0, 1]; the results may be modified
easily if B is some other interval, by considering an equivalent problem in which
the functions in C and H are composed with an affine transformation, and η is
transformed appropriately.

Often, when H validly generalises from approximate interpolation the set <X of
all functions from X to <, we shall say simply that H validly generalises from
approximate interpolation. We shall be particularly interested in this case and in
the case where C = H, which we shall refer to as the restricted problem. Occasionally,
for convenience, we shall omit the words ‘validly’ and ‘approximate’.

1.2 Relevance to function learning

We now briefly discuss the connection between a certain model of function learning
and valid generalisation from approximate interpolation. For a function t from X
to <, a positive integer m, and x = (x1, x2, . . . , xm) ∈ Xm, let

x(t) = ((x1, t(x1)), . . . , (xm, t(xm)))

be the labelled training sample arising from x and t. Suppose C is a set of functions
from X to < and, for a positive integer m, let

SC(m) = {x(t) : x ∈ Xm, t ∈ C}

be the set of all labelled training samples of length m for functions in C. For our
purposes, a learner is a mapping1

L : <+ ×
∞⋃
m=1

SC(m)→ H;

L receives as input a parameter η and a labelled training sample for some t ∈ C,
and L outputs some function h ∈ H. We say that L is a successful learner for C

1In considering a learner to be a function, we are unconcerned about questions of computability
and computational complexity. In practical machine learning, one needs learners which arise from
efficient algorithms. Our emphasis here, though, is on what might be termed the ‘informational
complexity’ of learning.
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by H (or that H learns C by L) if for all η > 0 and ε, δ ∈ (0, 1), there is mL(η, ε, δ)
such that for any m ≥ mL(η, ε, δ), any probability measure P on X and any t ∈ C,
the following holds: with Pm-probability at least 1 − δ a sample x is such that
P ({x : |hL(x)− t(x)| ≥ η}) < ε, where hL = L(η,x(t)).

The criterion P ({x ∈ X : |h(x)− t(x)| ≥ η}) < ε is similar to the definition of a
‘good model of probability’ introduced by Kearns and Schapire [16] in their work
on p-concepts, defined as functions from X to [0, 1]. However, the problem they
consider is quite different since, in learning a good model of probability of a p-
concept as discussed in their work, one is given examples which are labelled 0 or 1
with certain probabilities, rather than examples of the form (x, t(x)) for the [0, 1]-
valued target p-concept t.

Let us say that C is H-approximable if for any positive integer m, for any η > 0, for
any t ∈ C, if x ∈ Xm then there is h ∈ H such that |h(xi)− t(xi)| < η for 1 ≤ i ≤ m.
(This is true, in particular, if C ⊆ H.) If C is H-approximable, suppose that we have
a learner I with the property that for ε, δ ∈ (0, 1), η > 0, and t ∈ C, if m is a positive
integer and x ∈ Xm, then I(η,x(t)) is an η-approximate interpolant of t on x. The
above observations show that if C isH-approximable andH validly generalises C from
approximate interpolation, then C can be successfully learned by H and that any I
as described above is a successful learner. (An important aspect of our definition
of valid generalisation from approximate interpolation is that this ‘learning result’
holds regardless of how I produces its approximate interpolant.) Thus, in particular,
if C ⊆ H and H validly generalises H from approximate interpolation, then C can
be successfully learned by H. Note that, although the notion of H generalising from
interpolation the set of all functions from X to < may seem rather strong, it does
not translate into a result concerning the learnability of all functions by H, since
one also needs approximability.

We remark that, although it is true that if H validly generalises H from approxi-
mate interpolation, then H can be successfully learned by H, the converse is false.
This is something we shall elaborate on later in the paper. This is in contrast
to the corresponding situation in pac learning {0, 1}-valued functions, where both
‘solid learnability’ and learnability are essentially equivalent (ignoring, as we have
throughout, computational issues).
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2 Measures of Dimension and the Main Result

In this paper, we derive necessary and sufficient condition for H to validly generalise
C from approximate interpolation. The cases C = <X and C = H are of particular
interest. When C = <X , the class of all functions from X to <, a particularly
succinct characterisation theorem can be given. This is the main result of this
paper, which we state in this section. Before doing so, a number of definitions are
required.

Although not explicit in the statement of our results, one definition worth giving at
this stage is that of the Vapnik-Chervonenkis dimension [28, 12]. This combinatorial
parameter is central in the pac learning theory of {0, 1}-valued functions and is used
in the proofs of the results here. Suppose that G is a set of {0, 1}-valued functions
on X. We say that the finite subset S = {x1, x2, . . . , xd} of X is shattered by G if
for every b = (b1, b2, . . . , bd) ∈ {0, 1}d, there is a function gb ∈ G such that

gb(xi) = bi.

The VC-dimension of G, denoted VCdim(G), is then (infinity, or) the largest cardi-
nality of a shattered set.

The main results of this paper involve two generalisations of the VC-dimension
for classes of real-valued functions. One of these—the pseudo-dimension—is fairly
standard, but the other, the band dimension, has only been used rarely [19].

The pseudo-dimension [14, 20]—sometimes called the combinatorial dimension or
Pollard dimension—of a set H of real-valued functions arises from generalising to
real-valued functions the notion of shattering as follows. We say that the finite
subset S = {x1, x2, . . . , xd} of X is shattered if there is r = (r1, r2, . . . , rd) ∈ <d such
that for every b = (b1, b2, . . . , bd) ∈ {0, 1}d, there is a function hb ∈ H with

hb(xi)

{
> ri if bi = 1
< ri if bi = 0.

The pseudo-dimension of H, denoted Pdim(H), is the largest cardinality of a shat-
tered set, or infinity if there is no bound on the cardinalities of the shattered sets.
It is clear that if G is a class of {0, 1}-valued functions, then its pseudo-dimension
equals its VC-dimension. The pseudo-dimension is a well-understood and useful
measure of expressive power. One attractive feature of this dimension is that if the
set of functions is a vector space then its pseudo-dimension coincides with its linear
dimension, as shown in [14]. We are mainly concerned in this paper with sets of
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functions mapping into a bounded range and hence not with vector spaces of func-
tions, as such, but, in view of this result, if such a function class is a subset of a
vector space of dimension d, then its pseudo-dimension is at most d.

The band-dimension of a class H of real-valued functions is a ‘scale-sensitive’ ex-
tension of the VC-dimension. This means that the band-dimension is not sim-
ply one number depending on H, but is, rather, a function depending on H. (A
number of such scale-sensitive dimensions have proven to be useful in learning the-
ory [16, 1, 9, 23, 24].) Let H be a set of real-valued functions. Given any γ ∈ <+, let
us say that the finite subset T = {(x1, y1), (x2, y2) . . . , (xd, yd)} of X ×< is γ-band-
shattered by H if for every b = (b1, b2, . . . , bd) ∈ {0, 1}d, there is a function hb ∈ H
with

|hb(xi)− yi|
{
< γ if bi = 1
≥ γ if bi = 0.

The γ-band-dimension of H, denoted BdimH(γ), is the largest cardinality of a γ-
band-shattered set, or infinity if there is no bound on the cardinalities of these sets.
The band-dimension is the function BdimH(γ) of γ, from <+ to IN0 ∪ {∞}. (Here,
IN0 denotes the set of non-negative integers.) If BdimH(γ) is finite for all γ > 0,
we say that BdimH is finite. It is easy to see that if G is a class of {0, 1}-valued
functions, then for all γ > 0, BdimG(γ) = VCdim(G). The band-dimension was used
in [19, 27, 8].

We prove the following result.

Theorem 2 Suppose that H is a set of functions from a set X into [0, 1] and that
<X is the set of all functions from X into <. Then, the following are equivalent.

• H validly generalises <X from approximate interpolation.

• BdimH(γ) is finite, for all γ ∈ (0, 1).

• Pdim(H) is finite.

In proving this theorem, we shall derive a result relating the band-dimension and the
pseudo-dimension. Although the pseudo-dimension has been more widely studied,
we shall show later in the paper, when providing bounds on the ‘sample complexity’
function m0(η, ε, δ), that the band-dimension characterises the sample complexity
more precisely than does the pseudo-dimension.
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3 Characterising with the Band Dimension

In this section, we derive a necessary and sufficient condition for H to validly gener-
alise C from approximate interpolation. We then concentrate attention on the case
in which C is <X , the set of all real functions on X. In this case, we obtain bounds
on the sample complexity m0(η, ε, δ) in terms of the band-dimension of H.

We first require some standard results concerning the ‘probably approximately cor-
rect’ (pac) model of generalisation. Suppose that G is a set of functions with range
{0, 1}, defined on a domain X. We say that G validly pac-generalises if for any
ε, δ ∈ (0, 1), there is m0 = m0(ε, δ) such that for any function t : X → {0, 1} and
any probability measure P on X, with Pm probability at least 1 − δ, a sample
x ∈ Xm is such that

for all g ∈ G, g(xi) = t(xi) (1 ≤ i ≤ m) =⇒ P({x : g(x) 6= t(x)}) < ε

for m ≥ m0. Blumer et al. [12], following work of Vapnik and Chervonenkis [28],
proved that if G has finite VC dimension then G validly pac-generalises. They
obtained a bound on a suitable value of m0(ε, δ). This was subsequently improved
in [6, 22] to show that a suitable value of m0 is

m0(ε, δ) =
1

ε(1−
√
ε)

(
2VCdim(H) ln

(
6

ε

)
+ ln

(
2

δ

))
.

The problem of valid generalisation from approximate interpolation can be reduced
to the problem of valid pac generalisation of a set of {0, 1}-valued functions, as we
now describe. Let H be a class of functions from X to [0, 1] and C a class of real-
valued functions on X. Fix η > 0 and t ∈ C throughout the following discussion.
For h : X → [0, 1], define the function h[η,t] from X to {0, 1} by

h[η,t](x) = 1⇐⇒ |h(x)− t(x)| ≥ η

and let H[η,t] =
{
h[η,t] : h ∈ H

}
. Note that t[η,t] is the identically-0 function. (These

definitions implicity use the loss functions approach discussed by Haussler [14],
where we take the loss function to be lη : [0, 1]×[0, 1]→ {0, 1} defined by lη(y, y′) = 1
if and only if |y − y′| ≥ η.) Then the error of h[η,t] with respect to t[η,t] is

erP(h[η,t]) = P
(
{x ∈ X : h[η,t](x) 6= t[η,t](x)}

)
= P ({x ∈ X : |h(x)− t(x)| ≥ η}) .

Furthermore, the hypothesis h[η,t] is consistent with t[η,t] on a sample (x1, x2, . . . , xm)
if and only if h[η,t](xi) = 0 for 1 ≤ i ≤ m; that is, if and only if |h(xi) − t(xi)| < η
for 1 ≤ i ≤ m.
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Theorem 3 Let H be a set of functions from X to [0, 1] and C a set of real functions
on X. Then H validly generalises C from approximate interpolation if and only if,
for all η > 0, the set {

VCdim(H[η,t]) : t ∈ C
}

is a bounded set of integers. When this is so, then, with

d∗H,C(η) = max
t∈C

VCdim(H[η,t]),

a suitable sample length function m0(η, ε, δ) is

m0(η, ε, δ) =
1

ε(1−
√
ε)

(
2 d∗H,C(η) ln

(
6

ε

)
+ ln

(
2

δ

))
.

Furthermore, for 0 < δ ≤ 1/6 and η satisfying d∗H,C(η) ≥ 2, any sample length
function must satisfy

m0(η, ε, δ) > max

(
1− ε
ε

log
1

δ
,
d∗H,C(η)− 1

12ε

)
.

Proof: Suppose first that the set of VC-dimensions described is a bounded set
of integers, and let d∗H,C(η) be as in the statement of the theorem. Then, for each
t ∈ C, by the standard results on the basic pac-generalisation model, provided

m ≥ 1

ε(1−
√
ε)

[
2 d∗H,C(η) ln(6/ε) + ln(2/δ)

]
,

for any distribution P on X, and any t ∈ C,

Pm
({

x ∈ Xm : ∃h ∈ H with h[η,t](xi) = t[η,t](xi) (1 ≤ i ≤ m) and

erP(h[η,t]) ≥ ε
})

< δ.

But this means that for m ≥ m0(η, ε, δ), for any probability distribution P on X and
any t ∈ C, with Pm-probability at least 1 − δ, a sample x = (x1, x2, . . . , xm) ∈ Xm

satisfies:

for all h ∈ H, |h(xi)− t(xi)| < η, (1 ≤ i ≤ m) =⇒ P({x : |h(x)− t(x)| ≥ η}) < ε.

In other words, H validly generalises C from approximate interpolation, with m0 as
a suitable sample length function.

Conversely, fix η and suppose there is a function t ∈ C such that VCdim(H[η,t]) ≥
d for some d ≥ 2. Fix ε and δ. We shall use an argument similar to Blumer,
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Ehrenfeucht, Haussler, and Warmuth’s proof of Theorem 2.1 in [12] to prove the first
term in the maximum. Because d ≥ 2, there is a set {a, b} ⊆ X and a function f ∈ H
such that f[η,t](a) = 1 but f[η,t](b) = 0. Let P be the probability distribution on {a, b}
with P({a}) = ε, P({b}) = 1−ε. Suppose the sample x = (b, . . . , b) ∈ Xm is drawn.
Clearly, f η-approximately interpolates t on this sample, since |f(b)− t(b)| < η, but
P ({x : |f(x)− t(x)| ≥ η}) = P({a}) = ε. So with Pm-probability at least (1− ε)m,
a sample x ∈ Xm is not (P ,H, ε, η)-reliable for t. This probability is at least δ for

m ≤ 1− ε
ε

log
1

δ
.

To prove the second term in the maximum, we use an argument similar to one used
in [13]. Let X0 = {y0, y1, . . . , yk} ⊆ X be shattered by H[η,t], where k = d − 1.
Choose a set F ⊆ H[η,t] such that |F | = 2d and F shatters X0. Let P be the
probability distribution on X defined by

P({x}) =


1− 2ε if x = y0

2ε/k if x ∈ {y1, . . . , yk}
0 otherwise.

Let Q ⊆ Xm
0 consist of those sequences of length m which contain no more than k/2

elements of the set {y1, . . . , yk}. Then for any sample x = (x1, . . . , xm) in Q there
is a function h[η,t] in F such that |h(xi)− t(xi)| < η for i = 1, . . . ,m, but h satisfies

|{i ∈ {1, . . . ,m} : |h(yi)− t(yi)| ≥ η}| ≥ k

2
,

so P ({x : |h(x)− t(x)| ≥ η}) ≥ ε. That is, with probability at least Pm(Q), a
sample is not (P ,H, ε, η)-reliable for t.

Now, the probability of drawing a sample of length m that is not in Q is no more
than the probability of k/2 successes in a sequence of m Bernoulli trials, where the
probability of success at each trial is 2ε. From standard Chernoff bounds on the
tails of the binomial distribution (see [3]), this probability is no more than

exp

−2mε

3

(
k

4mε
− 1

)2


and for 0 < δ ≤ 1/6 and k ≥ 1, this is no more than 1− δ when m ≤ k/(12ε). ut

In what follows, it will be convenient to define d∗H,C(η) to be infinite if the set
{VCdim(H[η,t]) : t ∈ C} is unbounded or if one of these VC-dimensions is infi-
nite. Then Theorem 3 provides a necessary and sufficient condition for the general
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problem of H validly generalising a class C from approximate interpolation, namely
d∗H,C(η) <∞ for all η > 0. This is, however, a rather cumbersome condition. We now
show that if C = <X , then d∗H,C(η) is closely related to the ‘simpler’ band-dimension.
Indeed, we have the following result.

Proposition 4 Suppose that H is a set of [0, 1]-valued functions and that η > 0.
Then, if C = <X ,

d∗H,C(η) ≤ BdimH(η) ≤ 2d∗H,C(η).

Proof: Assume that both dimensions are finite and let η > 0. Suppose first that
t : X → < and that the set S = {x1, x2, . . . , xd} is shattered by H[η,t]. Then,
if ti = t(xi), it is clear that the subset {(x1, t1), (x2, t2), . . . , (xd, td)} is η-band-
shattered by H. This proves the first inequality. Now suppose that the subset

T = {(x1, y1), (x2, y2), . . . , (xd, yd)}

of X ×< is η-band-shattered by H. It is possible to have xi = xj if i 6= j. However,
it is easy to see that no X-coordinate may be repeated three times in T . It follows
that there is a subset T ′ of T , of cardinality at least d/2 such that the X-coordinates
of the points in T ′ are distinct. The set of X-coordinates of the points in T ′ is then
shattered by H[η,t], where t : X → < is any function such that if (xi, yi) ∈ T ′, then
t(xi) = yi. This proves the second inequality. ut

Combining this proposition and Theorem 3 gives the following result, which provides
a simpler characterisation of valid generalisation from approximate interpolation.

Theorem 5 Let H be a set of functions from X to [0, 1]. Then H validly generalises
from approximate interpolation if and only if BdimH(η) is finite for all η > 0. When
BdimH is finite, a suitable sample length function m0(η, ε, δ) is

1

ε(1−
√
ε)

(
2 BdimH(η) ln

(
6

ε

)
+ ln

(
2

δ

))
.

Furthermore, any sample length function must satisfy

m0(η, ε, δ) ≥ max

(
1− ε
ε

log
1

δ
,
BdimH(η)− 2

24ε

)

when δ ≤ 1/6 and BdimH(η) ≥ 4.
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In some work on function learning, such as [17, 7, 11], a dimension known as the
graph dimension has proven to be useful. The graph dimension of a class H of
functions that map from X to a set Y is the VC-dimension of the class{

(x, y) 7→
{

1 if y = h(x)
0 otherwise

: h ∈ H
}
.

It appears that this dimension is more useful for functions taking values in a finite
set, rather than in the reals, and there is some further evidence of this here. For,
although it might seem that the band-dimension is a ‘scale-sensitive’ version of the
graph dimension, the two are in fact unrelated, as the following example shows. For
each positive integer i, define a function hi from IN to [0, 1] by

hi(n) =

{
1/2 + 1/(i+ 1) if bitn(i) = 1;
1/2− 1/(i+ 1) otherwise,

where bitn(i) is the nth bit from the right in the binary representation of i. The
class H = {hi : i ∈ IN} has graph dimension 1 since no two functions of H agree at
any point of IN. However, for any η > 0, H has infinite η-band-dimension.

4 Relationships Between Dimensions

In this section, we show that the pseudo-dimension Pdim(H) and the band dimen-
sion BdimH(η) are within a factor of log 1

η
of each other. The proofs involve several

notions of dimension of discretised versions of the function class H, and provide a
characterisation of those dimensions whose finiteness is necessary and sufficient for
generalisation from approximate interpolation.

The following definitions are from [11]. Let F be a class of functions defined on X
that take values in a finite set S with |S| = n. Let Ψ be a class of {0, 1, ∗}-valued
functions defined on S. We say that F Ψ-shatters a sequence x = (x1, . . . , xd) ∈ Xd

if there is a sequence ψ = (ψ1, . . . , ψd) ∈ Ψd satisfying

{0, 1}d ⊆ {(ψ1(f(x1)), . . . , ψd(f(xd))) : f ∈ F} .

The Ψ-dimension of F is

Ψ-dim(F ) = max
{
d : ∃x ∈ Xd, F Ψ-shatters x

}
.

Two important examples of dimensions defined in this way are the ΨB-dimension
and the ΨNat-dimension, where ΨB = {0, 1}S and ΨNat = {ψa,b : a, b ∈ S, a < b}
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with

ψa,b(y) =


0 if y = a
1 if y = b
∗ otherwise.

We say that a class Ψ is a distinguisher if, for all distinct y1, y2 ∈ S, there is a ψ in
Ψ and a b ∈ {0, 1} for which ψ(y1) = b and ψ(y2) = 1 − b. Notice that ΨNat and
ΨB are distinguishers. Ben-David, Cesa-Bianchi, Haussler, and Long show in [11]
that if Ψ is a distinguisher then the Ψ-dimension is closely related to the ΨNat- and
ΨB-dimensions.

Theorem 6 ([11]) Suppose S is a set of cardinality n ∈ IN, F is a class of S-valued
functions defined on X, and Ψ is a class of {0, 1, ∗}-valued functions defined on S.
If Ψ is a distinguisher, we have

ΨNat-dim(F) ≤ Ψ-dim(F) ≤ ΨB-dim(F) ≤ 4.67 log2 n ΨNat-dim(F).

We use this result to prove the following theorem. Here, as elsewhere in the paper,
no serious attempt has been made to optimise the constants.

Theorem 7 If H is a set of functions that map from a set X to [0, 1], then

d∗H,<X (η) < 7.5Pdim(H),

for all η > 0.

Notice that if H is a set of {0, 1}-valued functions, then BdimH(η) = d∗H,<X (η) =
Pdim(H) = VCdim(H) for all η > 0. It follows that Theorem 7 cannot be improved
by more than a constant factor.

Proof: If t ∈ <X and η > 0, let h′[η,t] : X → {0, 1, 2} be defined by

h′[η,t](x) =


0 if h(x)−t(x)

2η
≤ 0

1 if 0 < h(x)−t(x)
2η

< 1

2 if h(x)−t(x)
2η

≥ 1

Let H′[η,t] =
{
h′[η,t] : h ∈ H

}
. Define ΨNat,ΨB : {0, 1, 2} → {0, 1, ∗} as above. Let

ΨG = {ψG}, where

ψG(z) =

{
1 if z = 1
0 otherwise.

13



Clearly,
d∗H,<X (η) = max

t∈<X
ΨG-dim

(
H′[η,t]

)
.

Furthermore, since all functions in ΨG are {0, 1}-valued, ΨG is a subset of ΨB so
ΨG-dim(H′[η,t]) ≤ ΨB-dim(H′[η,t]). Let ΨP = {ψ1, ψ2}, where

ψ1(z) =

{
0 if z = 0
1 otherwise

and

ψ2(z) =

{
0 if z = 2
1 otherwise.

Clearly, for all η > 0

Pdim(H) = max
t∈<X

ΨP -dim
(
H′[η,t]

)
,

and ΨP is a distinguisher. So Theorem 6 implies ΨP -dim(H′[η,t]) ≥ ΨNat-dim(H′[η,t])
and

ΨG-dim
(
H′[η,t]

)
< (4.67 log2 3) ΨP -dim

(
H′[η,t]

)
.

ut

To show a converse relationship between d∗H,<X (η) and Pdim(H), we consider a more
general discretisation.

Definition 8 Suppose t ∈ <X , h ∈ H, and η > 0. Let S = {i/2 : i ∈ Z}. Let the
function h′′[η,t] : X → S be defined by

h′′[η,t](x) = φ

(
h(x)− t(x)

2η

)
,

where

φ(α) =

{
α + 1

2
if α ∈ Z

dαe otherwise.

Let H′′[η,t] = {h′′[η,t] : h ∈ H}.

The graph of the function φ is illustrated in Figure 1. As above, we can define
various dimensions of H′′[η,t] using classes of {0, 1, ∗}-valued functions. Because, for
any fixed t and x, the functions in H[η,t] map x to a bounded subset of S, we need
consider only certain {0, 1, ∗}-valued function classes.

14
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Figure 1: The definition of the discretisation H′′[η,t] uses the function φ.

Definition 9 Let S = {i/2 : i ∈ Z} and suppose that Ψ is a sequence of sets
Ψ = 〈Ψ1,Ψ2,Ψ3, . . .〉, where each Ψi is a set of functions from S to {0, 1, ∗}. For
such a sequence, let

Ψ-dimH(η) = max
t∈<X

Ψn-dim(H′′[η,t]),

where n =
⌈

1
2η

⌉
.

For i ∈ IN, let Si = {−1/2, 0, 1/2, 1, . . . , i − 1/2, i}. We say that the sequence Ψ is
admissible if, for all i ∈ IN, for all ψ ∈ Ψi, and for all y ∈ S − Si, Ψ(y) = ∗.

The following result shows that we can assume a sequence Ψ is admissible without
loss of generality.

Proposition 10 Let S = {i/2 : i ∈ Z}. Let Ψ be a sequence of sets of functions
from S to {0, 1, ∗}. Then there is an admissible sequence Ψ̃ satisfying

Ψ̃-dimH(η) = Ψ-dimH(η)
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for all η > 0 and all classes H of [0, 1]-valued functions.

Proof: Let Ψ = 〈Ψ1,Ψ2, . . .〉. We will show that the sequence Ψ̃ = 〈Ψ̃1, Ψ̃2, . . .〉
will suffice, where

Ψ̃n =

{
y 7→

{
ψ(y −m) if y −m ∈ Sn
∗ otherwise

: m ∈ Z, ψ ∈ Ψn

}

(Recall that Sn = {−1/2, 0, 1/2, 1, . . . , n− 1/2, n}.)

Fix η, n = d1/(2η)e, and H. Suppose there is a function t : X → < and x =
(x1, . . . , xd) ∈ Xd such that H′′[η,t] Ψn-shatters x. Then there are functions ψ1, . . . , ψd
in Ψn such that {

(ψ1(f(x1)), . . . , ψd(f(xd))) : f ∈ H′′[η,t]
}

contains {0, 1}d. Now define

ψ̃i : y 7→ ψi(y + dt(xi)/(2η)e − 1).

Let t̃(xi) = t(xi)− 2ηdt(xi)/(2η)e+ 2η. Then

ψi

(
φ

(
h(xi)− t(xi)

2η

))
= ψ̃i

(
φ

(
h(xi)− t̃(xi)

2η

))
.

Furthermore, the argument α of ψ̃i satisfies

φ

(
−t(xi)

2η

)
≤ α ≤ φ

(
1− t(xi)

2η

)

⇐⇒ φ

(⌈
t(xi)

2η

⌉
− t(xi)

2η
− 1

)
≤ α ≤ φ

(
1

2η
+

⌈
t(xi)

2η

⌉
− t(xi)

2η
− 1

)
.

If t(xi)/(2η) ∈ Z, then −1/2 ≤ α ≤ d1/(2η)e − 1. Otherwise 0 ≤ α ≤ d1/(2η)e. In
either case, α ∈ Sn. It follows that H′′

[η,t̃]
Ψ̃n-shatters x, so

max
t∈<X

Ψ̃n-dim
(
H′′[η,t]

)
≥ max

t∈<X
Ψn-dim

(
H′′[η,t]

)
.

A similar argument gives the reverse inequality. ut

We are interested here in sequences of admissible {0, 1, ∗}-valued function classes
that can distinguish intervals in the following sense.
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Definition 11 Let Ψ = 〈Ψi : i ∈ IN〉 be a sequence of {0, 1, ∗}-valued function classes
defined on the set S = {i/2 : i ∈ Z}. We say that Ψ is an interval distinguisher
if it is admissible and, for all n ∈ IN and all ∆ in {1, . . . , n}, there is an m in
{0, 1, . . . , n − ∆} such that, for some ψ ∈ Ψn and b ∈ {0, 1}, ψ(m) = b and
ψ(m+ ∆) = 1− b.

We can define two admissible sequences based on the function classes ΨNat and ΨB

defined above. Let the sequence ΨNat = 〈ΨNat,n : n ∈ IN〉 be defined by ΨNat,n =
{ψa,b : a, b ∈ Sn, a < b} with

ψa,b(y) =


0 if y = a
1 if y = b
∗ otherwise.

Let the sequence ΨB = 〈ΨB,n : n ∈ IN〉 be defined by

ΨB,n =
{
ψ ∈ {0, 1, ∗}S : ∀a ∈ Sn, ψ(a) ∈ {0, 1} and ∀a ∈ S − Sn, ψ(a) = ∗

}
.

Obviously, ΨNat and ΨB are interval distinguishers.

The following theorem relates ΨNat-dimH, ΨB-dimH, and Ψ-dimH, for any interval
distinguisher Ψ. It is analogous to Theorem 6.

Theorem 12 Suppose Ψ is an interval distinguisher, H is a set of functions from
some set X to [0, 1], and η > 0. Then

ΨNat-dimH(η) ≤ Ψ-dimH(η) ≤ ΨB-dimH(η) ≤ 4.67 log2

(
2

⌈
1

2η

⌉
+ 2

)
ΨNat-dimH(η).

Proof: Fix η and let n =
⌈

1
2η

⌉
. To prove the first inequality, assume ΨNat-dimH(η) ≥

d for some d ∈ IN. Then there is a function t : X → <, sequences x = (x1, . . . , xd) ∈
Xd and ψ = (ψ1, . . . , ψd) ∈ Ψd

Nat,n, and a subset H0 ⊆ H of cardinality 2d such that{(
ψ1(h′′[η,t](x1)), . . . , ψd(h

′′
[η,t](xd))

)
: h ∈ H0

}
= {0, 1}d.

By definition, ψi = ψai,bi for some ai and bi in Sn with ai < bi. Without loss
of generality, we can assume that ai and bi are in {0, 1, . . . , n} for i = 1, 2, . . . , d.
(Otherwise we could perturb t slightly at each of the points xi and adjust the
offending ai or bi appropriately, since H0 is finite.) Set ∆i = bi − ai. Since Ψ
is an interval distinguisher, we can find a function αi in Ψn such that, for some
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mi ∈ {0, 1, . . . , n − ∆}, αi maps one of mi and mi + ∆i to 0 and the other to 1.
Defining t′ as t′(xi) = t(xi) + 2η(ai −mi), we have{(

α1(h′′[η,t′](x1)), . . . , αd(h
′′
[η,t′](xd))

)
: h ∈ H0

}
= {0, 1}d,

which implies Ψ-dimH(η) ≥ d.

To prove the second inequality, suppose Ψ-dimH(η) ≥ d. As above, there is a
function t : X → <, and sequences x = (x1, . . . , xd) ∈ Xd and ψ = (ψ1, . . . , ψd) ∈ Ψd

n

such that {(
ψ1(h′′[η,t](x1)), . . . , ψd(h

′′
[η,t](xd))

)
: h ∈ H

}
⊇ {0, 1}d.

By the definition of ΨB, we can find functions βi in ΨB,n which are equal to ψi on
Sn. It follows that ΨB-dimH(η) ≥ d.

Now, suppose ΨB-dimH(η) ≥ d. Then there is a function t : X → <, sequences
x = (x1, . . . , xd) ∈ Xd and ψ = (ψ1, . . . , ψd) ∈ Ψd

B, and a subset H0 satisfying
|H0| = 2d such that

{0, 1}d ⊆
{(
ψ1(h′′[η,t](x1)), . . . , ψd(h

′′
[η,t](xd))

)
: h ∈ H0

}
.

Clearly, H′′0[η,t] is a set of Sn-valued functions, and so we can consider the set of
restrictions to Sn of functions in ΨB,n. Applying Theorem 6 gives

4.67 log2(2n+ 2)ΨNat,n-dim(H′′[η,t]) ≥ ΨB,n-dim(H′′[η,t]) ≥ d,

and the third inequality follows. ut

We can represent Pdim(H) and d∗H,<X (η) as dimensions of this form.

Let ΨP = {ΨP,n : n ∈ IN} be the sequence of function classes ΨP,n = {αn,m : m ∈ Sn}
with αn,m : S → {0, 1, ∗} defined by

αn,m(y) =


0 if − 1/2 ≤ y ≤ m
1 if m < y ≤ n
∗ otherwise.

Let Ψ∗ be the sequence of function classes Ψ∗n = {βn,m : m ∈ {0, 1, . . . , n}} with
βn,m : S → {0, 1, ∗} defined by

βn,m(y) =


0 if − 1/2 ≤ y ≤ n and y 6= m
1 if y = m
∗ otherwise.

Clearly, ΨP -dimH(η) = Pdim(H) and Ψ∗-dimH(η) = d∗H,<X (η). Furthermore, ΨP

and Ψ∗ are interval distinguishers, so we can apply Theorem 12.
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Theorem 13 Suppose H is a class of [0, 1]-valued functions defined on a set X.
Then for all η > 0

Pdim(H) < 4.67 log2

(
2

⌈
1

2η

⌉
+ 2

)
d∗H,<X (η).

Furthermore, for any η > 0 and any sufficiently large set X, there is a class H
of [0, 1]-valued functions defined on X such that BdimH(η) ≤ 1 but Pdim(H) ≥⌊
log2

(
1
4η

)⌋
.

Proof: Since ΨP and Ψ∗ are interval distinguishers, Theorem 12 implies that
ΨNat-dimH(η) ≤ d∗H,<X (η) and

Pdim(H) ≤ ΨB-dimH(η) < 4.67 log2

(
2

⌈
1

2η

⌉
+ 2

)
ΨNat-dimH(η)

for all η > 0

To show that this bound cannot be improved asymptotically by more than a constant
factor, let N =

⌊
log2

(
1
4η

)⌋
. If η > 1/8, the second part of the theorem is trivially

true, so assume η ≤ 1/8 and hence N ≥ 1. Define H = {hb : b ∈ 0, . . . , 2N − 1}
where hb : {1, 2, . . . , N} → [0, 1] is defined by

hb(n) =

{
2−N−1b if bitn(b) = 0
1/2 + 2−N−1b if bitn(b) = 1,

where bitn(b) is the nth bit from the right in the binary representation of b. Of
course, for any sufficiently large X, H is isomorphic to some function class defined
on X. For any distinct b1, b2 ∈ {0, 1, . . . , 2N − 1} we have

|hb1(n)− hb2(n)| ≥ 2−N−1|b1 − b2| ≥ 2η.

Clearly, BdimH(η) = d∗H,<X (η) = 1 but Pdim(H) = N . ut

We now state the following result, which follows immediately, and which completes
the proof of Theorem 2.

Theorem 14 Suppose that H is a set of functions from a set X to [0, 1]. Then
H validly generalises from approximate interpolation if and only if H has finite
pseudo-dimension. Furthermore, there are constants c1, c2 > 0 such that if H has
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finite pseudo-dimension Pdim(H) then a sufficient sample length function for gen-
eralisation from approximate interpolation is

c1

ε

(
Pdim(H) ln

(
1

ε

)
+ ln

(
1

δ

))
,

and any suitable sample length function must satisfy

m0(η, ε, δ) ≥ c2
1

ε

(
Pdim(H)

log(1/η)
+ log

(
1

δ

))

for all η > 0 and ε, δ ∈ (0, 1).

We say that a sequence Ψ of functions from S to {0, 1, ∗} characterises valid gener-
alisation from approximate interpolation if, for all classes H of [0, 1]-valued functions
defined on X, H validly generalises from approximate interpolation if and only if
Ψ-dimH(η) is finite for all η > 0. As in the proof of Theorem 13, we can use The-
orem 12 to show that any interval distinguisher characterises valid generalisation
from approximate interpolation. The following theorem also shows that the interval
distinguishers are the only such admissible function sequences, giving a characteri-
sation of those admissible function sequences that characterise valid generalisation
from approximate interpolation. The proof is in the Appendix.

Theorem 15 For any admissible sequence Ψ of {0, 1, ∗}-valued functions, Ψ char-
acterises valid generalisation from approximate interpolation if and only if Ψ is an
interval distinguisher.

It is reasonable to consider only dimensions ofH that can be expressed as Ψ-dimH(η)
for some admissible Ψ, since only discrete properties of H in relation to intervals of
width 2η are relevant to the definition of valid generalisation from η-approximate
interpolation. The Ψ-dimensions capture all properties of H when it is quantised
in all possible ways with quantisation width 2η. As Proposition 10 shows, requiring
that Ψ be admissible is only a notational convenience.

5 The Restricted Problem: C = H

In this section, we concentrate on the case in which C = H. From the previous
results, a necessary and sufficient condition for H to validly generalise H from ap-
proximate interpolation is that d∗H,H(η) < ∞ for all η > 0. We shall henceforth
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denote d∗H,H(η) simply by DdimH(η). The main purpose of this section is to show
that this measure of dimension is different from other measures of dimension which
have occurred in the learning theory of real functions.

We have already discussed the pseudo-dimension and have seen that finiteness of the
pseudo-dimension is a necessary and sufficient condition for the (unrestricted) prob-
lem of valid generalisation from approximate interpolation. We now show, however,
that finiteness of the pseudo-dimension is not a necessary condition for the restricted
problem.

Proposition 16 There is a set H of functions from the set IN of positive integers
to [0, 1] such that H validly generalises H from approximate interpolation, but H
has infinite pseudo-dimension.

Proof: For each positive integer i, let hi be the function from IN to [0, 1] given by

hi(n) =

{
1/(n+ 1) if bitn(i) = 1;
0 otherwise,

where bitn(i) is the nth bit from the right in the binary representation of i. Let
H = {hi : i ∈ IN}. For any k ≥ 1, the set {1, 2, . . . , k} is shattered: take r =
(1/2k, 1/2k, . . . , 1/2k) in the definition of shattering and, for b ∈ {0, 1}k, let hb

be hi where i is the integer whose binary expansion is bnbn−1 . . . b1. It follows that
H has infinite pseudo-dimension. To show that H generalises H from approximate
interpolation, we show that DdimH(η) is finite for all η > 0. Fix η. If d ≥ 1/η, then
for all hj ∈ H, hj(d) is either 0 or 1/(d + 1). In either case, 0 ≤ hj(d) < η. Thus,
for all t = hi ∈ H and for all j, |t(d) − hj(d)| < η. It follows that d cannot belong
to any subset of IN which is shattered by H[η,t]. Since this is true for any d ≥ 1/η,
we have VCdim(H[η,t]) < 1/η for η > 0. But this is true for all t ∈ H and hence

DdimH(η) = max
t∈H

VCdim(H[η,t]) < 1/η,

and so, since DdimH(η) is finite for all η > 0, H generalises H from interpolation.
ut

This result shows that the restricted problem is easier than the unrestricted problem.
Moreover, it shows that, while Pdim(H) <∞ implies DdimH(η) <∞ for all η > 0,
the converse is false.

Another measure of dimension which has been important in the development of the
theory of learning real functions is a ‘scale-sensitive’ version of the pseudo-dimension.

21



This dimension was introduced by Kearns and Schapire [16] in their work on the
learnability of p-concepts. Here, we use the notation and terminology of [9]. Suppose
that H is a set of functions from X to [0, 1] and that γ > 0. We say that the finite
subset S = {x1, x2, . . . , xd} of X is γ-shattered if there is r = (r1, r2, . . . , rd) ∈ <d
such that for every b = (b1, b2, . . . , bd) ∈ {0, 1}d, there is a function hb ∈ H with

hb(xi)

{
≥ ri + γ if bi = 1
≤ ri − γ if bi = 0.

Thus, S is γ-shattered if it is shattered, with a ‘width of shattering’ of at least γ. We
define fatH(γ) as the largest cardinality of a γ-shattered set, or infinity if there is no
bound on the cardinalities of such sets. The fat-shattering function is the function
fatH(γ) of γ, from <+ to IN0∪{∞}. It is easy to see that Pdim(H) = limγ→0 fatH(γ).
It should be noted, however, that it is possible for the pseudo-dimension to be
infinite, even when fatH(γ) is finite for all γ > 0. We shall say that H has finite
fat-shattering function whenever it is the case that for all γ > 0, fatH(γ) is finite.
Kearns and Schapire [16] proved that if a class of p-concepts is learnable, then the
class has finite fat-shattering dimension. Alon et al. [1] proved, conversely, that if a
class of p-concepts has finite fat-shattering function, then it is learnable. This follows
from a more general result they obtained, classifying classes that satisfy a certain
uniform convergence property (the Glivenko-Cantelli classes) as those with finite
fat-shattering function. Bartlett, Long and Williamson [9] proved that finiteness
of the fat-shattering function is a necessary and sufficient condition for a standard
model of function learning in the presence of (certain forms of) random noise. We
have the following result, which shows that finiteness of the fat-shattering function
is not a sufficient condition for restricted valid generalisation from approximate
interpolation.

Proposition 17 There is a set H of functions from [0, 1] to [0, 1] such that H has
finite fat-shattering function but such that H does not validly generalise H from
approximate interpolation.

Proof: Let H be the set of all functions h : [0, 1] → [0, 1] which are 1-Lipschitz-
continuous. Thus, H is the set of all functions h such that

|h(x)− h(y)| ≤ |x− y| for all x, y ∈ [0, 1].

Then, it is easily seen that H has finite fat-shattering function. However, H does
not validly generalise H from approximate interpolation. To see this, we can show
that DdimH(η) is infinite for some η. (Fix η < 1/2 and t : x 7→ 1/2 and con-
sider the subset of H containing functions that take values close to η + 1/2.)
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We provide an alternative proof that illustrates why H does not validly gener-
alise from interpolation. Take t to be the identically-0 function and P to be the
uniform distribution on [0, 1]. Let m be any positive integer and suppose that
a sample x = (x1, x2, . . . , xm) ∈ [0, 1]m is given and (without loss) suppose that
x1 < x2 < · · · < xm. For convenience, let x0 = 0 and xm+1 = 1. We now define
a function h piecewise, on each of the intervals [xi, xi+1] for 0 ≤ i ≤ m. On the
interval [xi, xi+1], let h(x) = min(1, g(x)), where

g(x) =

{
η − α + (x− xi) if xi ≤ x ≤ (xi + xi+1)/2
η − α + (xi+1 − x) if (xi + xi+1)/2 ≤ x ≤ xi+1,

with
0 < α ≤ min

0≤i≤m
(xi+1 − xi)/4

and α ≤ η. Clearly, for 1 ≤ i ≤ m,

|h(xi)− t(xi)| = |h(xi)| ≤ η − α < η.

It is easily checked that h ∈ H and that

P ({x ∈ [0, 1] : |h(x)− t(x)| ≥ η}) = P ({x : h(x) ≥ η}) ≥ 1/2.

Since m was arbitrary, this shows that H does not generalise H from interpolation.
ut

This result shows that finiteness of the fat-shattering function does not imply finite-
ness of DdimH(γ) for all γ. The results of this section therefore show that the
dimension function DdimH is quite distinct from two important dimensions which
have proven to be useful in other forms of function learning. In particular, since finite
fat-shattering function is a sufficient condition for function learning [9], we see that
(restricted) valid generalisation from approximate interpolation is a strictly stronger
condition than learnability, a fact briefly mentioned earlier in the paper. Finiteness
of the pseudo-dimension implies finiteness of DdimH(γ) for all γ, while it is not true
that finiteness of the fat-shattering function implies finiteness of DdimH(γ) for all
γ. It is natural to ask whether, in some sense, DdimH(γ) lies ‘between’ the pseudo-
dimension and the fat-shattering function. In fact, this is so; in [4], a relationship
is derived which shows that if DdimH(γ) is finite for all γ > 0 then H has finite
fat-shattering function. In other words, we have

Pdim(H) <∞ =⇒ ∀γ > 0, DdimH(γ) <∞ =⇒ ∀γ > 0, fatH(γ) <∞,

with neither implication reversible. The proof of the second implication is given
in [4].
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In [27] (Chapter 7), Vapnik showed that finiteness of a related dimension of H (that
he called the capacity of H) was sufficient for uniform convergence over H of

1

m

m∑
i=1

(h(xi)− t(xi))2

to E(h(x)− t(x))2.

Notice that BdimH(γ) = VCdim(H1(γ)), where

H1(γ) =

{
(x, y) 7→

{
0 if |h(x)− y| ≥ γ
1 otherwise

: h ∈ H
}
.

Vapnik’s capacity can be expressed as the VC-dimension of
⋃
γ>0H1(γ). Obviously,

finiteness of Vapnik’s capacity implies finiteness of BdimH(γ) for all γ. By Theo-
rem 2, this implies finiteness of the pseudo-dimension of H. Theorem 8 in [1] shows
that finiteness of the fat-shattering function of H (a strictly weaker condition on
H than finiteness of the pseudo-dimension) is sufficient for the uniform convergence
property studied by Vapnik.

6 The Unbounded Case

In this section, we briefly discuss the case of classes of functions which are not uni-
formly bounded. Until now, we have dealt solely with classes of functions mapping
into some fixed bounded interval. The definitions of generalisation from approximate
interpolation still make sense when H does not map into a bounded set. Analysis
of the proofs shows that the general results of Section 3 concerning generalisation
of C from approximate interpolation remain true for such classes H. In particular,
H validly generalises <X from approximate interpolation if and only if BdimH(η)
is finite for all η > 0. The proof of Theorem 7 also remains valid if functions in
H map to <, so finite pseudo-dimension is sufficient for valid generalisation from
approximate interpolation in this case also. If H is a linear space, we can find tight
bounds on the necessary sample size.

Proposition 18 If H is a linear space of real-valued functions defined on X, then

dim(H) ≤ d∗H,<X (η) < 7.5 dim(H),

where dim(H) is the (linear) dimension of H.
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Proof: Suppose dim(H) ≥ d. Then it is possible to choose an x = (x1, . . . , xd) ∈
Xd such that {(h(x1), . . . , h(xd)) : h ∈ H} = <d, which implies the first inequality.
The second inequality follows from Theorem 7 and the fact that Pdim(H) = dim(H)
(see for example [14]). ut

While finite pseudo-dimension is a sufficient condition for valid generalisation from
approximate interpolation, it is not necessary in such cases. Indeed, consider the
following example. For each positive integer i, let fi : IN→ < be defined by

fi(n) =

{
i if bitn(i) = 1;
−i otherwise,

where bitn(i) the nth digit from the right in the binary encoding of i. Let H = {fi :
i ∈ IN}. Then it is clear that H has infinite pseudo-dimension but, for all η > 0, H
has finite η-band-dimension and hence generalises from approximate interpolation.

7 Conclusions

Figure 2 summarises the necessary and sufficient conditions for valid generalisation
from approximate interpolation under various assumptions on the hypothesis and
target classes. In all cases we have presented sample complexity bounds that cannot
be improved by more than a log 1/ε factor.

One obvious variant of the problem studied here is that in which there is an extra
parameter γ > 0 and one demands that, with high probability, every η-interpolant
be (η + γ)-close to the target on a set of measure at least 1− ε (rather than η-close
there). This is a weakening of the generalisation from approximate interpolation
condition. In [4], it is shown that finiteness of the fat-shattering function is necessary
and sufficient for this weaker condition to hold.
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H ⊆ <X validly generalises

C = <X from approximate interpolation

⇐⇒ ∀η > 0, BdimH(η) <∞

⇐=
6=⇒ Pdim(H) <∞

H ⊆ [0, 1]X validly generalises

C = <X from approximate interpolation

⇐⇒ ∀η > 0, BdimH(η) <∞
⇐⇒ ∃η > 0, BdimH(η) <∞
⇐⇒ Pdim(H) <∞

⇓6⇑

H ⊆ [0, 1]X validly generalises
C = H from approximate interpolation

⇐⇒ ∀η > 0, DdimH(η) <∞

Figure 2: Necessary and sufficient conditions for valid generalisation from approxi-
mate interpolation.
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Appendix: Proof of Theorem 15

Theorem 15 For any admissible sequence Ψ of {0, 1, ∗}-valued functions, Ψ char-
acterises valid generalisation from approximate interpolation if and only if Ψ is an
interval distinguisher.
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Proof: If Ψ is an interval distinguisher, Theorem 12 shows that Ψ-dimH(η) is within
a factor of log 1

η
of BdimH(η). So Theorem 5 implies that finiteness of Ψ-dimH(η)

for all η > 0 is necessary and sufficient for valid generalisation from approximate
interpolation.

Conversely, suppose Ψ = 〈Ψ1,Ψ2, . . .〉 is not an interval distinguisher. Then there is

an η > 0 and a ∆ ∈ {1, 2, . . . , n} (with n =
⌈

1
2η

⌉
) such that, for all ψ ∈ Ψn and all

m ∈ {0, 1, . . . , n−∆}, ψ(m) = ∗ or ψ(m+ ∆) = ∗ or ψ(m) = ψ(m+ ∆).

Suppose that η ≥ 1/2, which implies n = 1. Let H = {hm : m ∈ IN} be the set of
functions from X = IN to [0, 1] with

hm(k) =

{ 1
m+4/η−1

if bitk(m) = 0

1− 1
m+4/η−1

if bitk(m) = 1

where bitk(m) is the kth bit from the right in the binary representation of m. Now,
suppose that there are points x1, x2 ∈ X, a function t : {x1, x2} → <, and functions
ψ1, ψ2 ∈ Ψ1 such that

{0, 1}2 ⊆
{(

ψ1

(
φ

(
hm(x1)− t(x1)

2η

))
, ψ2

(
φ

(
hm(x2)− t(x2)

2η

)))
: m ∈ IN

}
.

Without loss of generality, we may assume that ψ1(0) = ψ1(1) = 1. Then if

ψ1

(
φ

(
hm(x1)− t(x1)

2η

))
= 0

we must have hm(x1) = t(x1) or hm(x1) = t(x1) − 2η. But this can be true only
for two values of m. It follows that Ψ-dimH(η) ≤ 2. However, it is clear that
Pdim(H) =∞, so finiteness of Ψ-dimH(η) does not imply that H validly generalises
from η-approximate interpolation.

Assume now that η ∈ (0, 1/2). Consider the function class H = {hm : m ∈ IN}
where hm : IN→ [0, 1] is defined by

hm(k) =

{ 1
m+c/η−1

if bitk(m) = 0

2∆η + 1
m+c/η−1

if bitk(m) = 1,

where c > 1 and

c > η +
1

2
(
1−

⌈
1
2η

⌉
+ 1

2η

) .
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It is easy to show that these conditions imply that hm maps to [0, 1] and that

1

m+ c/η − 1
< η.

Now, suppose that there are points x1, x2 ∈ X, a function t : {x1, x2} → <, and
functions ψ1, ψ2 ∈ Ψn such that

{0, 1}2 ⊆
{(

ψ1

(
φ

(
hm(x1)− t(x1)

2η

))
, ψ2

(
φ

(
hm(x2)− t(x2)

2η

)))
: m ∈ IN

}
.

(1)
Consider, for any fixed η, the set

A =

{
hm(x1)− t(x1)

2η
: m ∈ IN and bitx1(m) = 0

}
.

For some a1 ∈ <, A is a subset of the interval (a1, a1 + 1/2). Similarly, the set

B =

{
hm(x1)− t(x1)

2η
: m ∈ IN and bitx1(m) = 1

}

is a subset of the interval (∆ + a1,∆ + a1 + 1/2). For {x1} to be shattered by H′′[η,t],
there must be numbers m1,m2 ∈ IN for which

φ

(
hm1(x1)− t(x1)

2η

)
− φ

(
hm2(x1)− t(x1)

2η

)
(2)

is not in {0,∆} (whatever the values of bitx1(m1) and bitx1(m2)).

If no integer falls in the interval (a1, a1 + 1/2), then for all m1 and m2 in IN, (2) is
either 0 or ∆, and {x1, x2} is not Ψn-shattered by H′′[η,t]. So assume that there is
a k1 ∈ Z satisfying k1 ∈ (a1, a1 + 1/2). Without loss of generality, we may assume
that ψ1 satisfies

ψ1(φ(α)) =

{
0 if α ∈ (a1, k1) or α ∈ (∆ + a1,∆ + k1)
1 if α ∈ (k1, a1 + 1/2) or α ∈ (∆ + k1,∆ + a1 + 1/2).

Then since (1) is true, there must be an m1 and m2 in IN satisfying

hm1(x1)− t(x1)

2η
∈ (a1, k1] ∪ (∆ + a1,∆ + k1]

and
hm2(x1)− t(x1)

2η
∈ [k1, a1 + 1/2) ∪ [∆ + k1,∆ + a1 + 1/2).
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These conditions imply that m1 ≤ D1 and m2 ≥ D1, where

D1 = 1− c

η
− 1

t(x1) + 2ηk1

.

Defining a2 and k2 in the same way for x2, we can assume without loss that ψ2

satisfies

ψ2(φ(α)) =

{
0 α ∈ (a2, k2) or α ∈ (∆ + a2,∆ + k2)
1 α ∈ (k2, a2 + 1/2) or α ∈ (∆ + k2,∆ + a2 + 1/2).

In that case, for (1) to be true there must be four distinct numbers m1,m2,m3,m4 ∈
IN satisfying

m1 ≤ D1 m1 ≤ D2

m2 ≥ D1 m2 ≤ D2

m3 ≤ D1 m3 ≥ D2

m4 ≥ D1 m4 ≥ D2

where D2 depends on c, η, t(x2) and k2, and is defined in the same way as D1. These
inequalities imply D1 ≤ m2 ≤ D2 and D2 ≤ m3 ≤ D1, so m2 = m3 = D1 = D2. But
this contradicts the assumption that the four numbers are distinct. It follows that
Ψ-dimH(η) ≤ 1. However, it is obvious that Pdim(H) = ∞, so H does not validly
generalise from approximate interpolation. ut
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