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Abstract

Let G be a graph on vertex set [n], and for X � [n] let N(X) be the union of X and

it's neighborhood in G. A family of sets F � 2[n] is G-intersecting if N(X) \ Y 6= ; for

all X;Y 2 F . In this paper we study the cardinality and structure of the largest k-uniform

G-intersecting families on a �xed graph G.

1 Introduction

An intersecting family is a collection of sets F � 2[n] such that

X;Y 2 F ) X \ Y 6= ;:

The classic theorem of Erd}os-Ko-Rado [5] states that a k-uniform intersecting family

on a ground set of size n contains at most
�
n�1
k�1

�
sets. Furthermore, a family achieves

this extrema if and only if the family consists of all k-sets containing some �xed

element of [n]. For a general introduction to the theory of intersecting families see

[3].

We consider a generalization of the notion of an intersecting family (for a survey

of other generalizations of the Erd}os-Ko-Rado theorem see [4]).

First consider the following: In an intersecting family F we require that X;Y 2 F
should intersect. Suppose that we relax this to simply require that X;Y 2 F are

\close" in some sense. Can something interesting be said? We believe that it can. For

example suppose that we take \X;Y are close" to mean that there exist x 2 X; y 2 Y

�Supported in part by NSF grant CCR-9530974.
yPermanent Address: Computer and Automation Research Institute of the Hungarian Academy of Sciences, Bu-

dapest, P.O.Box 63, Hungary-1518.
zResearch was partially supported by OTKA Grants T 030059 and T 29074, FKFP 0607/1999 and by the Bolyai

Foundation.
xSupported in part by NSF grant DMS-9970622.

1



such that dist(x; y) = jx � yj � 1 (it will be convenient to have dist(n; 1) = 1 here).

What can we say about the maximum size of a k-uniform family where every pair of

distinct sets are close? A moments thought suggests that a candidate for a maximal

F is the set of k-sets which contain 2 or 3. This is almost correct. Throwing in those

sets which contain both 1 and 4 gives the correct answer, at least for n suÆciently

large,

jFj � 2

�
n� 1

k � 1

�
�
�
n� 2

k � 2

�
+

�
n� 4

k � 2

�
with equality only if F has the described structure, see Theorem 2.

Now for our full generalisation. Let G be a graph on vertex set [n]. (The above

example can be considered to be the case where G is a cycle.) For X � [n] let

N(X) = X [ fy 2 [n] : 9x 2 X such that x �G yg:

We say that a family of sets, F � 2[n], is G-intersecting if

X;Y 2 F ) N(X) \ Y 6= ;:

In other words, F is G-intersecting if for all X;Y 2 F there exist x 2 X and y 2 Y

such that x = y or x �G y. For a �xed graph G how large can a k-uniform G-

intersecting family be? For a graph G on vertex set [n] and k a positive integer

let

N(G; k) = max

�
jFj : F �

�
[n]

k

�
and F is G-intersecting

�
:

This quantity can be easily computed in some cases. For example, for the complete

graph we clearly have N(Kn; k) =
�
n
k

�
. Let G = Ka;n�a be the complete bipartite

graph having parts A;B � [n]. A G-intersecting family F can be partitioned into 3

families, F = F1 [ F2 [ F3, where X 2 F1 implies X meets both A and B, F2 is an

intersecting family of subsets of A, and F3 is an intersecting family of subset of B. It

follows that

N(Ka;n�a; k) =

�
n

k

�
�
�
a

k

�
�
�
n� a

k

�
+

�
a� 1

k � 1

�
+

�
n� a� 1

k � 1

�
: (1)

As another simple example consider the case of the unionHp of a clique on f1; 2; : : : ; pg
and an independent set on fp+ 1; p+ 2; : : : ; ng. Here we can show that

N(Hp; k) =

( �
n
k

�� �n�p
k

�
: k � n=2�

n
k

�
: k > n=2

The case k > n=2 is trivial and so assume that k � n=2. We use induction on p. H1

is an independent set and so F is H1-intersecting i� it is intersecting. Thus jFj ��
n�1
k�1

�
=
�
n
k

�� �n�1
k

�
. For p � 2 let F = F1 [ F2 where F1 = fX 2 F : p =2 Xg. F1 is
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H 0
p�1-intersecting where H

0
p�1 = Hp�fpg and so, by induction, jF1j �

�
n�1
k

�� �n�p
k

�
.

Clearly jF2j �
�
n�1
k�1

�
and the result follows. Taking F = fX : X \ [p] 6= ;g shows

the bound is tight.

The extremal G-intersecting families are analogous to the extremal intersecting

families given by Erd}os-Ko-Rado for sparse G and small k. To make this statement

more precise, we �rst note that if K � [n] is a clique in G then

F(K) :=

�
X �

�
[n]

k

�
: X \K 6= ;

�
(2)

is a G-intersecting family. It follows that

N(G; k) �
�
n

k

�
�
�
n� !

k

�
(3)

where ! = !(G) is the clique number of G. Note that if G is the empty graph

then Erd}os-Ko-Rado implies N(G; k) =
�
n�1
k�1

�
, N(G; k) equals the bound given in

(3) and any extremal family is of the form given in (2). However, for most graphs

we cannot replace the inequality in (3) with equality. If K is a clique in G and

M1;M2; : : : ;Mr � [n]nK satisfy

K � N(Mi) for i = 1; : : : ; r and Mi \N(Mj) 6= ; for i 6= j (4)

then the collection

F(K;M1; : : : ;Mr) =

�
X �

�
[n]

k

�
: X \K 6= ; or Mi � X for some i

�
(5)

is G-intersecting. Thus, if there exists a maximum clique K and M � [n]nK such

that jM j � k and K � N(M) then the bound given in (3) is not the truth. However,

for some graphs we are able to show that any maximum family is of the form given

in (5).

Theorem 1. Let G be a graph on vertex set [n] and k a positive integer such that

n � 2e(1 + �)�0(k � 1)2k(k + 1)

!

where � = �(G) is the maximum degree of G, ! = !(G) is the clique number of G,

and �0 = �0(G) is the maximum size of a second neighborhood in G:

�0(G) := max
v2[n]

jfi 2 [n] : distG(i; v) � 2gj :

If F is a G-intersecting family containing more than
�
n
k

� � �n�!
k

�
sets, then there

exists a clique K in G and M1; : : : ;Mr � [n]nK such that (4) holds and F =

F(K;M1; : : : ;Mr).
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In some sense, Theorem 1 is analogous to the results of Hilton-Milner [6] and Hajnal-

Rothschild [7] on intersecting systems which state that an intersecting family that is

`nearly' maximum is `very similar' in structure to the maximum intersecting families.

Note that Theorem 1 contains information about neither the clique K (e.g. must it

be a clique on !(G) vertices?) nor the collection of sets M1; : : : ;Mr. Therefore, when

we apply this theorem we must optimize over all possible choices of these parameters.

We do this for three classes of graphs.

Corollary 2. Let G = Cp
n be the pth power of a cycle on n vertices and k be a positive

integer. If

n � 2e(2p+ 1)(4p+ 1)(k � 1)2k(k + 1)

p+ 1
(6)

then

N(G; k) =

�
n

k

�
�
�
n� 2p� 1

k

�
� p

�
n� 2p� 2

k � 1

�
: (7)

Furthermore, a G-intersecting family F has cardinality N(G; k) if and only if F =

F
�
K;M1; : : : ;M(p+1

2 )

�
where K is a clique on p+ 1 elements and

n
M1; : : : ;M(p+1

2 )

o
=

�
fi; jg 2

�
[n]nK
2

�
: i 6�G j and K � N(fi; jg)

�
:

Corollary 3. Let G be a d-regular graph on vertex set [n] having no cycle on 5 or

fewer vertices. If

k < d;

n � (k + 1) + 2e(k � 2)k(d+ 1)(d� 1)k and (8)

n � e(d+ 1)(d2 + d+ 1)(k � 1)2k(k + 1) (9)

then

N(G; k) =

�
n

k

�
�
�
n� 2

k

�
+

k�2X
i=1

"
iX

j=0

(�1)j
�
i

j

��
n� j(d� 1)� i� 2

k � 1

�#
: (10)

Furthermore, a G-intersecting family has cardinality N(G; k) if and only if it has the

following form:

F = G0 [ G1 [ � � � [ Gk�2
where

G0 =
�
X 2

�
[n]

k

�
: X \ fx; yg 6= ;

�
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and for 1 � i � k � 2

Gi =

8>>><
>>>:
X 2

�
[n]

k

�
:

X \ fx; y; v1; v2; : : : ; vi�1g = ;;
vi 2 X;

X \ Aj 6= ;; 1 � j � i� 1;

X \B 6= ;

9>>>=
>>>;

:

Here
fx; yg is an edge of G, i.e., a maximum clique;

N(fxg) n fx; yg = fv1; v2; : : : ; vd�1g;
Aj = N(fvjg) n fvj; xg; 1 � j � d� 1;

B = N(fyg) n fx; yg:
Remark 4. Unfortunately, the p-cube Qp on n = 2p vertices does not �t the frame-

work of Corollary 3, it has cycles of length 4. It is possible to determine the maximal

families for small values of k, but the complexity of their description soon gets out of

hand. For example, if k � 3 and

n � e(p+ 1)

�
p+ 1 +

�
p+ 1

2

��
(k � 1)2k(k + 1)

then

N(Qp; k) =

�
n

k

�
�
�
n� 2

k

�
+

�
n� 3

k � 1

�
+

�
n� 4

k � 1

�
� 2

�
n� p� 2

k � 1

�
:

While we must rely on the structure of individual graphs to determine if families

of the form given in (5) are extremal and to determine the value of N(G; k) these

families give, we would expect that for most graphs (not just sparse graphs) and small

k the dominant term in N(G; k) is
�
n
k

� � �n�!
k

�
. In order to prove a version of this

assertion, we appeal to the language of random graphs. Let p; 0 < p < 1; be a �xed

real number. For the random graph Gn;p we consider N(Gn;p; k) where k is �xed and

n goes to in�nity. Since the clique number of Gn;p is whp
1 (2+ o(1)) log1=p n (see [2])

it follows from (3) that

N(Gn;p; k) � (2 + o(1)) log1=p n �
�
n� (2 + o(1)) log1=p n

k � 1

�

whp. We show that a constant multiple of this lower bound is an upper bound on

N(Gn;p; k).

Theorem 5. Let p; 0 < p < 1; be a �xed real number and k � 2 be a positive integer.

Then

Pr

�
N(Gn;p; k) � ck;p

�
n

k � 1

�
�n

�
= o(1)

1A sequence of events En occurs with high probability, whp, if Pr(En) = 1� o(1):
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where �n = maxflnn; log1=p ng and

ck;p =
8

(1� p)k�1

�
4k(k � 1)

(1� p)(k�1)2
+ 1

�
:

Note that if k = 1 then N(Gn;p; 1) is given by the clique number of Gn;p for any

0 < p < 1:

For many graphs N(G; k) is nearly equal to
�
n
k

�
when k is large.

Theorem 6. Let Æ = Æ(G) be the minimum degree of the graph G. Then

k(Æ + 1) > cn ln n ) N(G; k) � �1� n1�c
��n

k

�

Theorem 7. Let Æ and c be constants satisfying

r := c� (1� c)Æ+1 > 0:

If G is a graph on vertex set [n] having minimum degree at least Æ and having maxi-

mum degree �(G) = � < r
s

q
n

logn
and k � cn then

N(G; k) �
�
1� n�s

2=2
��n

k

�
:

Now, it follows from (1) that

N(KÆ;n�Æ; bcnc) �
�
1� (1� c)Æ

��n
k

�
for Æ; c �xed constants and n ! 1. Hence, it is not the case that N(G; k) is nearly�
n
k

�
whenever k is on the order of n.

We have seen that for most graphs N(G; k) is determined by extremal families that

`cluster' around cliques when k is small and is nearly
�
n
k

�
when k is large. As there is

a considerable gap between the values of k for which these two types of behavior have

been observed, this leaves the obvious question: what happens for k in between? Is

there a sharp phase transition between these two types of extrema? Do other types

of extrema exist? As it seems likely that the answers to these questions will depend

on the graph in question, we hazard a conjecture for only one graph, the cycle.

Conjecture 8. There exists a constant c such that for any �xed � > 0

k � (c� �)n ) N(Cn; k) = 2

�
n� 1

k � 1

�
�
�
n� 2

k � 2

�
+

�
n� 4

k � 2

�
:

k � (c+ �)n ) N(Cn; k) = (1� o(1))

�
n

k

�

Note that it follows from Theorem 7 that N(Cn; k) is nearly
�
n
k

�
for k > :32n.

The remainder of this paper is organized as follows. Theorems 6 and 7 are proven

in the next section. In Section 3 we �rst prove Theorem 1 and then show how

Corollaries 2 and 3. Finally, in Section 4, we prove Theorem 5.
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2 Large k

Both proofs in this section are probabilistic, and for both proofs we restrict our

attention to the probability space
�
[n]
k

�
with the uniform measure. Let Xn;k denote a

random element of this probability space.

Proof of Theorem 6. Let

F =

�
X 2

�
[n]

k

�
: N(X) = [n]

�
:

Clearly, F is a G-intersecting family. For a �xed vertex v 2 [n] we have

P(v 62 N(Xn;k)) =

degG(v)Y
i=0

�
1� k

n� i

�

�
�
1� k

n

�Æ+1

< e�k(Æ+1)=n :

Therefore, by the �rst moment method,

P(Xn;k 62 F) < ne�k(Æ+1)=n:

Proof of Theorem 7. Let

F =

�
X 2

�
[n]

k

�
: jN(X)j > n� k

�
:

Clearly, F is a G-intersecting family. For 1 � i � n let Yi be the random variable

Yi(X) = E [ jN(Xn;k)j : Xn;k \ [i] = X \ [i] ]

(here N(Xn;k) = [n] n N(Xn;k)), and let Y0 be the (constant) random variable Y0 =

E[jN(Xn;k)j]. Y0; : : : ; Yn is a martingale. Since

E [ jN(Xn;k)j ] �
nX
i=1

�
1� k

n

�degG(i)+1

� (1� c)Æ+1 n

and

jYi � Yi�1j � �;

it follows from Azuma's inequality (see [1, page 85]) that for � > 0

P
�
Yn > (1� c)Æ+1 n+ ��

p
n
�
< e��

2=2:

Since P(Xn;k 62 F) � P(Yn � cn), the result follows.
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3 Sparse graphs, small k

In this section we prove Theorem 1 and Corollaries 2 and 3. We �rst prove two

general Lemmas from which Theorem 1 follows directly, and then go on to prove the

corollaries. Throughout this section we assume G is a graph on vertex set [n] and k

is a positive integer satisfying

n � 2e(1 + �)�0(k � 1)2k(k + 1)

!
(11)

where � = �(G) is the maximum degree of G, ! = !(G) is the clique number of G,

and �0 = �0(G) is the maximum size of a second neighborhood in G:

�0(G) := max
v2[n]

jfi 2 [n] : distG(i; v) � 2gj :

Note that the assumptions of Corollaries 2 and 3 imply (11). We further assume F
is a large G-intersecting family; in particular, we assume F is a G-intersecting family

satisfying

jFj >
�
n

k

�
�
�
n� !

k

�
: (12)

At this point, we must introduce some notation and make some preliminary ob-

servations. For i 2 [n] let

Fi = fX 2 F : i 2 Xg and �i = jFij :

We set �max to be the largest of the �i's. Since, for X 2 F �xed, every set in F
intersects N(X) we have

jFj � jN(X)j�max � (� + 1)k�max;

and so

�max >
1

k(� + 1)

��
n

k

�
�
�
n� !

k

��
: (13)

Finally, we say a vertex i 2 [n] is saturated if

�i >
1

k(� + 1)

��
n

k

�
�
�
n� !

k

��
:

Note that it follows from (13) that there exists at least one saturated vertex. We will

make use of the following inequality:

a; b � 2;m > ab )
�
m� 2

b� 2

�
<

2e(b� 1)

m

�
m� a

b� 1

�
: (14)
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Proof of (14). Let a; b;m be integers such that a; b � 2 and ab < m.�
m�2
b�2

�
�
m�a
b�1

� < b� 1

m� a

�
m� b+ 1

m� a� b+ 2

�b�2

<
2(b� 1)

m

�
1 +

a� 1

m� a� b+ 2

�b�2

<
2(b� 1)

m
e

(a�1)(b�2)
m�a�b+2

<
2e(b� 1)

m
:

Lemma 9. If v is a saturated vertex then

v 2 N(X) 8X 2 F :

Proof. Let F 0
v = fXnfvg : X 2 Fvg. We will call a collection H � F 0

v separated if

8X;Y 2 H distG(X;Y ) � 3 :

Let H be a maximum separated collection in F 0
v. The number of vertices at a distance

less than or equal to 2 from an element of H is at most

M = jHj(k � 1)�0:

Using the maximality of H, (11), and (14) we have

jFvj �
�
n� 1

k � 1

�
�
�
n�M � 1

k � 1

�

�M

�
n� 2

k � 2

�

� M2e(k � 1)

n

�
n� !

k � 1

�

<
M2e(k � 1)

n!

��
n

k

�
�
�
n� !

k

��

<
jHj

k(k + 1)(� + 1)

��
n

k

�
�
�
n� !

k

��
:

Since v is a saturated vertex we have

jHj � k + 1:

Now consider an arbitrary X 2 F . By the pigeonhole principle, some vertex of X

must be adjacent to at least two sets in H. Since H is separated, such a vertex can

only be an element of N(fvg).
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Lemma 10. If u and v are saturated vertices then u �G v.

Proof. Let u and v be saturated vertices and assume for the sake of contradiction

that u6�Gv. It follows from Lemma 9 that every element of Fu intersects N(fvg).
Therefore, using (14),

jFuj � (� + 1)

�
n� 2

k � 2

�

� (� + 1)2e(k � 1)

n

�
n� !

k � 1

�

<
(� + 1)2e(k � 1)

n!

��
n

k

�
�
�
n� !

k

��

<
1

(1 + �+�2)(k � 1)k(k + 1)

��
n

k

�
�
�
n� !

k

��
:

It follows from Lemma 10 that the saturated vertices form a clique K in G, and

it follows from Lemma 9 that any set X 2 F satis�es K � N(X). Thus, we have

proven Theorem 1 (note that we can simply take the collection fM1; : : : ;Mrg to be

those sets in F that do not intersect K).

Proof of Corollary 2. For notational convenience we identify the vertex set [n] of G =

Cp
n with the cyclic group Zn in the natural way; to be precise,

� �G � , �� � 2 f1; : : : ; p; n� p; : : : ; n� 1g

where the di�erence is taken in Zn. Let F be a maximum G-intersecting family. We

may assume that F is of the form given in (5).

If jKj = p+ 1 then K = f�; � + 1; : : : ; � + pg for some � 2 Zn. Furthermore, for

each set M 2 fM1; : : : ;Mrg

9� + p+ x; �� y 2M such that x; y 2 f1; : : : ; pg and x+ y � p+ 1: (15)

However, if Mi and Mj satisfy (15) then Mi\N(Mj) 6= ;. So, we can take the family

fM1; : : : ;Mrg to be the collection of all 2 element sets that satisfy (15), and it suÆces

to show jKj = p+ 1.

Assume for the sake of contradiction that there exists � 2 K such that �+1 62 K

and K \f�+2; : : : ; �+ pg 6= ;. Since F is maximum and �+1 is not saturated, the

set F 0 := fX 2 F : � + 1 62 N(X)g is nonempty. Therefore,

jF�+1j � k(2p+ 1)

�
n� 2

k � 2

�
:

10



Since an arbitrary element of F 0 must contain � � p and some element of f� + p +

2; : : : ; � + 2pg we have

jF 0j � (p� 1)

�
n� 2

k � 2

�
:

It follows from (14) and (6) that

jF�+1j+ jF 0j � [k(2p+ 1) + p� 1]

�
n� 2

k � 2

�
<

�
n� 1

k � 1

�
:

Since the family

(FnF�+1nF 0) [
�
X 2

�
[n]

k � 1

�
: � + 1 2 X

�

is G-intersecting, this is a contradiction.

Thus, we may assume K = f�; � + 1; : : : ; � + lg for some � 2 Zn and l � p.

Assume for the sake of contradiction that l < p. Let F 00 = fX 2 F : �� 1 =2 N(X)g.
Since an arbitrary element of F 00 covers � without covering ��1, we have F 00 � F�+p.

Since neither �� 1 nor � + p is saturated we have

jF��1j+ jF�+pj � 2

k(2p+ 1)

��
n

k

�
�
�
n� p� 1

k

��
<

2

k

�
n� 1

k � 1

�
:

This yields a contradiction because the family

(FnF��1nF�+p) [
�
X 2

�
[n]

k

�
: �� 1 2 X

�

is G-intersecting and is larger than F .
To establish (7) we assume that K = f1; 2; : : : ; p+ 1g. Then we can take

F =

�
[n]

k

�
n
 

p[
i=0

Gi
!

where

G0 =
�
X 2

�
[n]

k

�
: X \ (K [ fn� p+ 1; : : : ; ng) = ;

�
and

Gi =
�
X 2

�
[n]

k

�
: n� i+ 1 2 X;X \ fn� i+ 2; : : : ; 2p+ 3� ig = ;

�
:

Equation (7) follows immediately.

Proof of Corollary 3. Assume F is a maximumG-intersecting family. We may assume

F is of the form given in (5). Let M be the collection fM1; : : : ;Mrg de�ned in (5).
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We �rst note that jKj = 2: If x is the unique saturated vertex then

jFj � jFxj+
X
v:v�x

jFvj

<

�
n� 1

k � 1

�
+

d

k(d+ 1)

��
n

k

�
�
�
n� 2

k

��

<

�
n

k

�
�
�
n� 2

k

�
;

which is a contradiction.

Now, let K = fx; yg,

A = N(fxg)nfx; yg and B = N(fyg)nfx; yg:

For v 2 A [B let

Av = N(fvg)nfx; y; vg:

Note that since G contains no small cycle, these sets are pairwise disjoint. Further-

more, the only edges between these sets are those connecting v 2 A[B with Av and

possibly edges connecting Av and Au where u 2 A and v 2 B.

It remains to determine the size and structure of

F0 := fX 2 F : X \K = ;g:

It follows from Theorem 1 that all elements of F0 intersect both A and B (it follows

immediately that F0 is empty for k = 1; we henceforth assume k � 2). We proceed

in stages. In the �rst stage we show that there exists a vertex v1 2 A[B (we assume

without loss of generality that v1 2 A) such that

M1 := ffv1; bg : b 2 Bg

is a subset of M and that all sets in

F1 := fX 2 F0 :6 9Y 2M1 such that Y � Xg

must intersect A1 := Av1 . Since F1 � F0 all sets in F1 must intersect A1, Anfv1g and
B (note that any set in F0 that contains v1 must contain some set in M1). In stage

2 � i � k � 1 we show that there exists a vertex vi 2 Anfv1; : : : ; vi�1g such that

Mi :=

�
Y 2

�
[n]

i+ 1

�
: vi 2 Y and Y intersects B;A1; : : : ; Ai�1

�

is a subset of M and that all sets in

Fi := fX 2 Fi�1 :6 9Y 2Mi such that Y � Xg

12



must intersect Ai. Thus, all sets in Fi must intersect Anfv1; : : : ; vig, B, A1, : : : , Ai.

We have a complete characterization of F after the (k � 1)st stage because Fk�1 is

empty: an element of Fk�1 has k elements and intersects Anfv1; : : : ; vk�1g, B, A1,

: : : , Ak�1.

We begin with the �rst stage. As noted above, every element of F0 must intersect

both A and B. For (a; b) 2 A�B let

Fa;b = fX 2 F0 : fa; bg � Xg:

Let P be the set of pairs (a; b) for which Fa;b is nonempty. We say that the pair

(a; b) 2 P covers (a0; b0) 2 P if

X 2 Fa;b ) N(X) \ fa0; b0g 6= ;:

Now, if (a; b) 2 P does not cover (a0; b0) then there exists X 2 Fa;b such that N(X)\
fa0; b0g = ;, and

jFa0;b0 j � jN(X)j
�
n� 5

k � 3

�
� (d+ 1)k

�
n� 5

k � 3

�
: (16)

On the other hand, if (a; b) covers (a0; b0) and fa; bg \ fa0; b0g = ; then every set in

Fa;b contains some element of Aa0 [ Ab0 , and

jFa;bj � 2(d� 1)

�
n� 5

k � 3

�
: (17)

We call a pair (a; b) 2 P good if every pair in P covers (a; b) and

(a; b) covers (a0; b0)) fa; bg \ fa0; b0g 6= ;:

Note that if (a; b) is good then we may assume that F contains all sets that contain

fa; bg. A pair (a; b) 2 P that is not good will be called bad. It follows from (16) and

(17) that

jFa;bj � (d+ 1)k

�
n� 5

k � 3

�

for any bad pair (a; b). Thus, the number of sets in F containing at least one bad

pair is at most

d2(d+ 1)k

�
n� 5

k � 3

�
:

By (8) and (14) this quantity is less than
�
n�2d
k�2

�
which is a lower bound on the number

of sets containing some �xed good pair (and no other good pair). Thus, F has the

maximum possible number of good pairs.

13



How many good pairs could F have? Note that if (a; b) and (a0; b0) are good pairs

then fa; bg \ fa0; b0g 6= ;. Clearly, we optimize the number of good pairs by taking

all pairs that contain some �xed vertex. Therefore, there exists a vertex v1 such that

the collection

M1 = ffv1; bg : b 2 Bg

is a subset of M. Furthermore, by the de�nition of a good pair and the condition

k < d, any set in F1 (i.e. any set in F0 that does not contain some set in M1) must

intersect A1. We have completed the �rst stage.

We now proceed by induction. Suppose stage l for 1 � l � k � 2 has been

completed as described above. Each set in Fl, the collection of sets in F that have

not yet been characterized (i.e. sets in F that neither intersect K nor contain a set in

M1 [ � � � [Ml), intersects Anfv1; : : : ; vlg, B, A1, : : : , and Al. We proceed as above:

For

� = (a; b; x1; : : : ; xl) 2 (Anfv1; : : : ; vlg)� B � A1 � � � � � Al

we de�ne

F� = fX 2 Fl : fa; b; x1; : : : ; xlg � Xg :

and set

Pl = f� 2 A�B � A1 � � � � � Al : F� 6= ;g :

We say that � 2 Pl covers �
0 = (a0; b0; x01; : : : ; x

0
l) 2 Pl if

X 2 F� ) N(X) \ fa0; b0; x01; : : : ; x0lg 6= ;

and that � = (a; b; x1; : : : ; xl) 2 Pl is good if every �0 2 Pl covers � and

� covers (a0; b0; x01; : : : x
0
l)) fa; b; x1; : : : ; xlg \ fa0; b0; x01; : : : x0lg 6= ; :

Following the argument above, we conclude that Fl must have the maximum number

of good vectors. This maximum is achieved by taking the set of good vectors to be

all vectors that contain some �xed vertex. As the number of good vectors is then the

product of the cardinalities of the sets that do not contain this �xed vertex, we must

take the �xed vertex to be in the smallest of the sets: Anfv1; : : : ; vlg.
Now put Gi = Fi n Fi+1 for 0 � i � k � 2 to obtain the collection described in the

statement of the theorem.

Then to obtain (10) we see that

jG0j =
�
n

k

�
�
�
n� 2

k

�

14



and

jGij =
iX

j=0

(�1)j
�
i

j

��
n� j(d� 1)� i� 2

k � 1

�

for 1 � i � k � 2.

4 Random graphs

We begin with de�nitions and notation. For �nite sets A;B, not necessarily disjoint,

let K(A;B) be the graph on vertex set A [B having edge set

ffa; bg : a 2 A; b 2 Bg:
If A;B � V (G) are disjoint vertex sets in a graph G then we set

eG(A;B) = e(A;B) = jffx; yg 2 E(G) : x 2 A; y 2 Bgj:
For an arbitrary hypergraph H we set �(H) equal to the size of the largest matching

in H (i.e. collection of pairwise disjoint edges) and �(H) equal to the size of the

smallest vertex cover in H (i.e. collection of vertices that meets all edges). Clearly,

H k-uniform) �(H) � k�(H) : (18)

Proof. To prove Theorem 5 we �x 0 < p < 1 and a positive integer k � 2.

Let G = Gn;p, and let F � �[n]
k

�
be a G-intersecting family. For X � [n] let

FX = fY � [n] nX : Y [X 2 Fg and �X = jFX j :
In other words, �X is the number of sets in F that contain X. If jXj = k � 1 we

will think of FX as a set (rather than a collection of one element sets). We say that

X 2 � [n]
k�1

�
is saturated if

�X � 8k(1� p)�k+1�n

(note that this de�nition of saturated di�ers from that of Section 3). We form the

(k � 1) -uniform hypergraph

H = HF =

�
X 2

�
[n]

k � 1

�
: X is saturated

�
:

We prove Theorem 5 by showing that for an arbitrary G-intersecting family F ,
the hypergraph HF is not too `spread-out.' One measure of the degree to which a

hypergraph is `spread-out' is the vertex cover number. We �rst observe that if �(H)

is small then we have the desired bound on F : If there exists a vertex cover A of H
such that

jAj < 32k(k � 1)(1� p)k�k
2

�n

15



then

jFj = 1

k

" X
X saturated

�X +
X

X not saturated

�X

#

� 1

k

"
k
X
v2A

�fvg +
X

X not saturated

�X

#

� jAj
�

n

k � 1

�
+

1

k

�
n

k � 1

�
� 8k(1� p)�k+1�n

<
h
32k(k � 1)(1� p)k�k

2

+ 8(1� p)�k+1
i� n

k � 1

�
�n:

(19)

In order to prove Theorem 5, we let F to be a G-intersecting family such that

jFj �
h
32k(k � 1)(1� p)k�k

2

+ 8(1� p)�k+1
i� n

k � 1

�
�n :

We show that such a family F exists only with probability o(1): It follows from (19)

that �(H) � 32k(k� 1)(1� p)k�k
2
�n, and by (18) there exists a matching X1; : : : ; Xr

in H � � [n]
k�1

�
where

r = d32k(1� p)k�k
2 � �ne :

We show that such a matching exists only with probability o(1):

Why can there not exist a large collection of disjoint saturated sets with high

probability? We begin with an observation about pairs of sets in the matching.

Consider disjoint Xi 6= Xj for which e(Xi; Xj) = 0. For

x 2 FXi
and y 2 FXj

it follows from the G-intersecting property that one of the following holds:

x 2 N(Xj); y 2 N(Xi) or x �G y :

In more global terms, if A = FXi
nN(Xj) and B = FXj

nN(Xi) then

K(A;B) � G : (20)

However, if A and B are large then whp such subgraphs do not appear in the random

graph Gn;p.

Lemma 11. If Q is the event that there exists A;B � [n] such that

jAj; jBj > 2 log1=p n and K(A;B) � E(G);

then Pr(Q) = o(1).
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The proof of Lemma 11 is deferred to the end of this section. It follows from Lemma 11

and (20) that we can assume that for i 6= j

e(Xi; Xj) = 0) minfjFXi
nN(Xj)j; jFXj

nN(Xi)jg � 2 log1=p n: (21)

We shall see, using (21), that there exists a set Xa in the matching for which many

of the sets N(Xj) have a large intersection with FXa
. We �nish the proof by showing

that whp neighborhood intersections of this kind do not occur in the random graph

Gn;p.

In order to establish the existence of the set Xa mentioned above, we form a

digraph D on vertex set [r]. We connect i to j with an arc if

e(Xi; Xj) = 0 and jFXi
nN(Xj)j < jFXj

nN(Xi)j

It follows from (21) that

(i; j) 2 D ) jFXi
nN(Xj)j � 2 log1=p n: (22)

Since G is random, the following lemma shows that D has whp many arcs.

Lemma 12. If R is the event that there exist disjoint sets Y1; : : : ; Yr 2
�
[n]
k�1

�
such

that ����
�
fi; jg 2

�
[r]

2

�
: e(Yi; Yj) = 0

����� � 1

2

�
r

2

�
(1� p)(k�1)

2

:

then Pr(R) = o(1).

The proof of Lemma 12 is deferred to the end of this section. It follows from Lemma 12

that there exists a 2 [r] having out degree in D at least

s :=

�
1

r

�
1

2

�
r

2

�
(1� p)(k�1)

2

��
� 8k(1� p)�k+1�n � 1

4
(1� p)(k�1)

2

:

It follows from (22) and the fact that Xa is saturated that the set S := FXa
and the

collection of disjoint (k � 1)-sets

fY1; : : : ; Ysg := fXi : (a; i) 2 Dg

satisfy

(1) jSj � s, and

(2) jN(Yi) \ Sj � s� 2 log1=p n for i = 1; : : : ; s.

We complete the proof by showing that whp such a collection of sets does not appear

in G.
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Lemma 13. If S is the event that there exist S � [n] and a collection of disjoint sets

Y1; Y2; : : : ; Ys 2
�
[n]
k�1

�
satisfying (1) and (2) then Pr(S) = o(1).

The proof of Lemma 13 is deferred to the end of this section.

Proof of Lemma 11. Let q = 2 log1=p n, and for j = 1; : : : ; q let Qj be the event that

there exists A;B � [n] such that

jAj; jBj = q; jA \Bj = j and K(A;B) � E(G):

Consider a �xed j and set l = q � j. An application of the �rst moment method

yields

Pr(Qj) �
�

n

2l + j

��
2l + j

j

�
� pl2+2lj+(j2)

� n2l+j

(2l + j)!

(2l + j)!

(2l)!j!
� pq2�j2=2�j=2

=
�
nqpq

2
�
� nlp�j2=2 � p�j=2 � 1

(2l)!j!

� p�j � 1

(2l)!j!

= o

�
1

log n

�
:

Proof of Lemma 12. For disjoint sets Y1; : : : ; Yr the random variable

E :=

����
�
fi; jg 2

�
[r]

2

�
: e(Yi; Yj) = 0

�����
is distributed as B

��
r
2

�
; (1� p)(k�1)

2
�
. The Cherno� bound then implies that

Pr

�
E � 1

2

�
r

2

�
� (1� p)(k�1)

2

�
< exp

�
�r(r � 1)

16
� (1� p)(k�1)

2

�
:

Therefore,

Pr(R) �
�

n

k � 1

�r

exp

�
�r(r � 1)

16
� (1� p)(k�1)

2

�

� nr(k�1) exp
n
�2rk(1� p)�k+1�n +

r

16
(1� p)(k�1)

2
o

� nr(k�1) exp
��2rk(1� p)�k+1�n + 2k(1� p)�k+1�n + 1

	
� O(nr(k�1)�(2rk�2k)(1�p)

�k+1

)

= o(1) :
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Proof of Lemma 13. Let ŝ = s � k + 1. Consider A;B � [n] such that jAj = s and

jBj = k � 1. The random variable

MA;B = jfx 2 AnB : e(fxg; B) = 0gj

is stochastically dominated by B(ŝ; (1 � p)k�1). It follows from the Cherno� bound

that

Pr(MA;B � 2 log1=p n) � Pr

�
B(ŝ; (1� p)k�1) � 1

2
� ŝ(1� p)k�1

�

� exp

�
�1

8
� ŝ(1� p)k�1

�

Therefore, the probability that �xed S; Y1; : : : ; Ys satisfy (1) and (2) is at most

exp

�
�1

8
� ŝs(1� p)k�1

�
:

Thus,

Pr(S) �
�
n

s

��
n

k � 1

�s

exp

�
�1

8
� ŝs(1� p)k�1

�

< ns+(k�1)s exp

�
�1

8
� ŝs(1� p)k�1

��
1

s!

�

� exp

�
sk�n � 1

8
� ŝs(1� p)k�1

��
1

s!

�

� exp

(
s

8

 
(1� p)k

2�k

4
+ (k � 1)(1� p)k�1

!)�
1

s!

�

= o(1) :
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