
Combinatorics, Probability and Computing (2001) 10, 397–416. c© 2001 Cambridge University Press

DOI 10.1017/S0963548301004849 Printed in the United Kingdom

Spanning Trees in Dense Graphs

J Á N O S K O M L Ó S1, G Á B O R N. S Á R K Ö Z Y2

and E N D R E S Z E M E R É D I1,3

1 Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA

2 Computer Science Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA

3 Hungarian Academy of Sciences, Budapest, Hungary

Received 27 December 1997; revised 7 April 2001

In this paper we prove the following almost optimal theorem. For any δ > 0, there exist

constants c and n0 such that, if n > n0, T is a tree of order n and maximum degree at most

cn/ log n, and G is a graph of order n and minimum degree at least (1/2 + δ)n, then T is a

subgraph of G.

1. Introduction

1.1. Notation and definitions

We will sometimes use + and Σ to denote disjoint unions of sets. V (G) and E(G) denote

the vertex set and the edge set of the graph G, and we write v(G) = |V (G)| (order of G)

and e(G) = |E(G)| (size of G). (A,B) or (A,B, E) denote a bipartite graph G = (V , E),

where V = A+B, and E ⊂ A×B. In general, given any graph G and two disjoint subsets

A,B of V (G), the pair (A,B) is the graph restricted to A×B. N(v) is the set of neighbours

of v ∈ V . Hence the size of N(v) is |N(v)| = deg(v) = degG(v), the degree of v. δ(G) stands

for the minimum, and ∆(G) for the maximum degree in G. More generally, for A ⊂ V (G)

we write N(A) = ∪v∈AN(v). N(u, v) = N(u) ∩ N(v) is the set of common neighbours. For

a vertex v ∈ V and set U ⊂ V − {v}, we write deg(v, U) for the number of edges from

v to U. The length of a path is the number of its edges, and the distance between two

vertices x and y, denoted by dist(x, y), is the minimum length of an x − y path. We let

e(A,B) denote the number of edges of G with one end-point in A and the other in B. For

non-empty A and B,

d(A,B) =
e(A,B)

|A||B|
is the density of the graph between A and B.

398 J. Komlós, G. N. Sárközy and E. Szemerédi

Definition 1. The pair (A,B) is ε-regular if

X ⊂ A, Y ⊂ B, |X| > ε|A|, |Y | > ε|B|
imply

|d(X,Y)− d(A,B)| < ε;

otherwise it is ε-irregular.

Definition 2. G = (A,B, E) is said to be (ε, δ)-super-regular if it is ε-regular, and

deg(a) > δ|B| for all a ∈ A, and deg(b) > δ|A| for all b ∈ B.

Given a rooted tree and a vertex v, we write A(v) for the set of ancestors of v, C(v) for

the set of children of v, G(v) for the set of grandchildren of v, and T (v) for the set of

descendants of v (including v itself). In a tree T we denote the set of leaves by L(T). In

a star S we denote the middle vertex (or the root) by M(S). A rooted forest is a forest of

rooted trees. We will use a � b to denote that a is sufficiently small compared to b. For

simplicity, we do not always compute these dependences, although it could be done.

1.2. Packings and subtrees in dense graphs

Definition 3. An embedding of a graph G = (V , E) into a graph G′ = (V ′, E ′) is an

edge-preserving one-to-one map from V to V ′, that is, an injection ϕ : V → V ′ such that

{u, v} ∈ E implies {ϕ(u), ϕ(v)} ∈ E ′.

Such a map ϕ induces an injection from E into E ′; we will use the notation ϕ for that

map, too. In particular, we will write ϕ(E) for the image set of the edges of G.

Definition 4. Given a set of graphs G1, G2, . . . , Gl , we say that G1, G2, . . . , Gl can be packed

into G if we can find embeddings ϕi of Gi into G such that the edge sets ϕi(E(Gi)) are

pairwise disjoint. If G = Kn, the complete graph on n vertices, then we say simply that

there is a packing of G1, G2, . . . , Gl .

The notion of packing plays an important role in the investigation of computational

complexity of graph properties. Thus it is not surprising that in recent research literature

there is considerable interest in packing-type results and problems (see, e.g., [2, 3, 4, 13]).

Along these lines, solving an old conjecture of Bollobás [2] we proved the following [6].

Theorem 1.1. Let ∆ and c < 1/2 be given. Then there exists a constant n0 with the

following properties. If n > n0, T is a tree of order n with ∆(T) 6 ∆, and G is a graph of

order n with ∆(G) 6 cn, then there is a packing of T and G.

We proved this theorem in the following equivalent embedding form.

Theorem 1.1′. Let ∆ and δ > 0 be given. Then there exists a constant n0 with the following

properties. If n > n0, T is a tree of order n with ∆(T) 6 ∆, and G is a graph of order n

with δ(G) > ((1/2) + δ)n, then T is a subgraph of G.

Spanning Trees in Dense Graphs 399

In this form, the theorem can be considered as a generalization of Dirac’s theorem

on Hamiltonian paths. The proof in [6] laid the foundations for a series of papers in

which we developed a new method based on the Regularity Lemma and the Blow-up

Lemma (see [6, 8, 9, 10, 7, 11]). The method is usually applied to finding certain constant

maximum degree spanning subgraphs in dense graphs. Typical examples are spanning

trees (above), Hamiltonian cycles or powers of Hamiltonian cycles [10, 7] or H-factors for

a fixed graph H [11].

Returning to Theorem 1.1′ and the original paper [6], it is a natural question (first

asked by P. Erdős) whether in this theorem the constant degree requirement on T can be

relaxed. The purpose of this paper is to prove the following almost optimal result in this

direction.

Theorem 1.2. Let δ > 0 be given. Then there exist constants c and n0 with the following

properties. If n > n0, T is a tree of order n with ∆(T) 6 cn/ log n, and G is a graph of

order n with δ(G) >
(
(1/2) + δ

)
n, then T is a subgraph of G.

This result is optimal apart from a constant factor. In fact, let c1 be a sufficiently large

constant, and let T and G be as follows: T is a rooted tree with root r and depth 2,

deg(r) = (log n)/c1 and the degrees of the children of r are as equal as possible; G is

a random n-graph with edge-probability 0.9. An easy calculation shows that, with high

probability for large n, G satisfies δ(G) > 0.8n but T is not a subgraph of G.

In addition to being an almost optimal result, Theorem 1.2 is the first case when we

were able to apply the Regularity Lemma/Blow-up Lemma method for finding spanning

subgraphs with higher than constant maximum degree.

2. Main tools

2.1. Regularity Lemma

In the proof the following lemma of the third author plays a central role.

Lemma 2.1 (Regularity Lemma). For every ε > 0 and positive integer m there are positive

integers M = M(ε, m) and N = N0(ε, m) with the following property: for every graph G with

n > N vertices there is a partition of the vertex set into k + 1 classes (clusters)

V = C0 + C1 + C2 + · · ·+ Ck

such that

• m 6 k 6M,

• |C0| < εn,

• |C1| = |C2| = · · · = |Ck|,
• at most εk2 of the pairs (Ci, Cj) are ε-irregular.

The proof can be found in [15], although an earlier version appeared in [16].

We will also use the following easy consequence of the Regularity Lemma (see [6]).

400 J. Komlós, G. N. Sárközy and E. Szemerédi

Lemma 2.2 (Degree form of the Regularity Lemma). For every ε > 0 and positive integer

m there are positive integers M = M(ε, m) and N = N0(ε, m) with the following property: if

G = (V , E) is any graph with n > N vertices and d ∈ [0, 1] is any real number, then there is

a partition of the vertex set into k+1 clusters C0, C1, . . . , Ck , and there is a subgraph H ⊂ G
with the following properties:

• V (H) = V (G),

• m 6 k 6M,

• |C0| 6 εn,
• |C1| = |C2| = · · · = |Ck|,
• degH (v) > degG(v)− (d+ ε)n for all v ∈ V ,

• all H |Ci are empty (the Cis are independent in H),

• all pairs H |Ci×Cj , 1 6 i < j 6 k, are ε-regular, each with a density either 0 or exceeding d.

Furthermore, if G satisfies δ(G) > (1
2

+2d+2ε)v(G), then the following additional conditions

can also be met:

• k is even,

• the clusters can be matched
∑
Ci = (

∑
Ai) + (

∑
Bi) in such a way that H restricted to

any pair (Ai, Bi) is (ε, d)-super-regular.

We will refer to the pairs (Ai, Bi) as the ‘edges of the 1-factor’.

In [6] the proof of Theorem 1.1′ reduced the general embedding problem to two special

cases, namely, embedding forests of stars and forests of paths into bipartite graphs. Here

we again use these two special cases in Section 4.1.

2.2. Embedding a forest of stars

Given a bipartite graph G = (A,B, E) and a vector d = (da : a ∈ A),
∑
da 6 |B| of

positive integers, we say that G has a d-matching from A to B if there is a partition

B = B0 +
∑

a∈A Ba such that, for all a ∈ A,

|Ba| = da and {a} × Ba ⊂ E.

Lemma 2.3 (Embedding a forest of stars). Let G = (A,B, E) be a bipartite graph, and

write

δA = min
a∈A deg(a), δB = min

b∈B deg(b).

We are also given a vector d = (da : a ∈ A),
∑
da 6 |B| of positive integers, and we write

∆ = max da.

If G has the weak expanding property

(X ⊂ A, Y ⊂ B, |X| > δA/∆, |Y | > δB) imply e(X,Y) > 0,

then there is a d-matching from A to B.

This lemma is a relatively straightforward consequence of Hall’s theorem (for details

see [6]).

Spanning Trees in Dense Graphs 401

2.3. Embedding a forest of paths

Definition 5. A four-layer graph is a graph G = (V , E) where V = V1+V2+V3+V4, |Vi| =
m, 1 6 i 6 4, and E ⊂∑3

i=1 Ai × Ai+1.

A four-layer super-regular graph is a four-layer graph in which the graphs G|Vi+Vi+1
are

all super-regular.

Lemma 2.4. For every δ > 0, there are ε, m0 > 0 such that the following holds for all

m > m0. If G is a four-layer (ε, δ)-super-regular graph on 4m vertices, then for any one-to-

one map between V1 and V4 there exists a set of m vertex-disjoint paths of order 4, each

one connecting mapped pairs.

We note that three layers would not be sufficient, since a vertex on layer 1, while

certainly connected (by paths of order 3) to at least (1 − ε)n vertices of layer 3, is not

necessarily connected to all vertices of layer 3. Furthermore, it would be much easier to

prove a 5-layer version of the lemma: namely, one can choose a random one-to-one map

between V1 and V3, and this has to be modified at only a few vertices. We just used the

4-layer version because it is optimal.

2.4. Random ε-regular subgraphs

Our final tool is the following lemma.

Lemma 2.5. Let 0 < ε � d. There exist constants C, n0 > 0 and ε � ε′ � d with the

following properties. Let n > n0, m > m′ > n0, and let (A,B) be an ε-regular pair of density

d with |A| = m and |B| = n. Let us select at random a subset A′ ⊂ A with |A′| = m′. Then

with probability close to 1 we have the following:

(1) the pair (A′, B) is ε′-regular,

(2) if m′ > C log n, then (with probability 1 − O(ne−m′)) every vertex v ∈ B has degree

deg(v, A′) > deg(v, A)m
′
m
− εm′.

Indeed, (2) is just the consequence of the law of large numbers.

For (1), observe that, with high probability (about 1− O(m′e−εm′)), apart from at most

4ε|A′|2 exceptional pairs in A′, for a pair {x, x′} ⊂ A′ we have

|N(x, x′)| > (d− ε)2|B|.
This so-called quasi-random property is known to imply (1) (see [14, 1, 5]).

3. Sketch of the proof of Theorem 1.1′

In [6] the proof of Theorem 1.1′ followed the following rough outline. We started by

splitting the graph G into a 1-factor of super-regular pairs as guaranteed by Lemma 2.2,

and splitting the tree T into a constant number of small trees. These small trees were

assigned to the edges of the 1-factor first in an approximate manner, and then, moving

some vertices around, we made this assignment exact. Then we embedded the bulk of T

402 J. Komlós, G. N. Sárközy and E. Szemerédi

with the application of a simple greedy technique, and finally an application of Lemma 2.3

or Lemma 2.4 concluded the proof.

4. Proof of Theorem 1.2

4.1. Special cases when the proof of Theorem 1.1′ works

Here we will use the following main parameters:

β � ε′ � α� δ. (4.1)

Let us make T rooted by picking an arbitrary vertex r as the root. The proof method

in [6] works with minor modifications for ∆(T) 6 cn/ log n as well in the following special

cases:

• T contains at least αn vertex-disjoint paths of length 3 (induced, with counting edges),

• T contains at least αn non-leaf vertices with at least one leaf child.

We sketch briefly that this is in fact the case. For further details see [6].

We decompose T into small trees. Find a vertex v such that

• |T (v)| > βn, and

• |T (u)| < βn for every u ∈ C(v).

Each subtree T (u) is a piece of the decomposition and the (u, v) edges are called bridges.

We cut these pieces out and continue with the remaining part of T . The obtained pieces

in this decomposition are all of size less than βn, and their number is at most(
1

β
+ 1

)
cn

log n
.

We decompose G into a matching of clusters using Lemma 2.2, with ε′ playing the role

of ε. We define two types of buffer vertices B1, B2 in T . In both cases these vertices are

disjoint from the bridges. In the first case they are bαn/2c vertex-disjoint paths of length

3, where the first type of buffer vertices (B1) are the end-points of the paths, and the other

type (B2) is the set of the middle vertices on the paths. In the second case, B1 is a set of

bαn/2c non-leaf vertices with at least one leaf child, and B2 is the set of their leaf children.

The crucial observation is that the number of bridges is much less than the number of

both types of buffer vertices. We first assign the pieces to clusters as follows. We assign the

next piece to the next pair where we have so far assigned fewer vertices to both clusters

than the actual number of vertices in the two clusters. We fill up the two clusters in a

balanced way and we ensure that we assign sufficiently many B1 (and thus also B2) buffer

vertices to each cluster. This can easily be achieved by a simple greedy strategy. Then in

each pair we consider the assigned buffer vertices and we set aside random buffer zones

for them (separately for B1 and B2). We start the actual embedding.

• We embed the pieces in a top-down breadth-first manner, first finishing the embedding

of a whole piece (apart from the B2 buffer vertices) before moving over to the next

piece. Thus, we first embed the piece P1 containing r and we put the pieces that are

connected to P1 through bridges in a left-to-right ordering into a first-in first-out queue.

We remove the first piece P from the queue, we embed it, and again we put the pieces

Spanning Trees in Dense Graphs 403

that are connected to P through bridges in a left-to-right ordering into the end of

the queue. We continue in this fashion until the queue is empty, by always embedding

the first piece from the queue, and putting the pieces that are connected to this piece

through bridges in a left-to-right ordering into the end of the queue.

• We embed the non-bridge vertices of a piece into the pair where the piece is assigned

with a greedy strategy. That is, we always embed into a vertex that has many neighbours

in the remaining non-buffer zone vertices, so we can continue the embedding.

• We handle the bridges as follows. Suppose (u, v) is a bridge between pieces P and P ′
where u ∈ P ′, v ∈ P and u ∈ C(v). Assume that v is embedded into cluster C , and

P ′ is assigned to (G,G′) such that the children of u are assigned to G. Find a D such

that v has many neighbours in D, and (D,G) is an ε-regular pair with high density.

Embed u into a vertex (buffer vertex if the rest of ND(v) is occupied already) in D with

large degree in G. We embed the children of u into non-buffer vertices among these

neighbours and continue the greedy strategy for the embedding of P ′.
• We embed the non-buffer vertices into non-buffer zone vertices, and we embed the B1

buffer vertices into their buffer zones. The B2 buffer vertices (so the middle vertices of

the paths in the first case, and the leaves in the second) remain unembedded at this

point.

• When we run out of empty non-buffer vertices or empty B1 buffer zone vertices in a

cluster, we combine these two sets and continue the embedding. Finally when this set

becomes small as well, we combine it with the B2 buffer zone and finish the embedding

apart from the B2 buffer vertices.

• After an adjusting step, since the number of bridges is small, for the embedding of the

B2 buffer vertices in each pair we can use Lemma 2.3 or Lemma 2.4, respectively, in

the two cases.

The missing details can be found in [6]. Therefore we can assume that neither of these

two cases holds. This implies that T contains mostly leaves; more precisely it contains at

least (1−√α)n leaves.

We distinguish two cases, according to the distribution of the leaves among the levels

Vi = {v : v ∈ T , dist(r, v) = i}.
In the remainder of the proof we will use the following main parameters:

α� γ � ε� d� δ. (4.2)

4.2. The well-distributed case

In this case we assume

|Vi| < γn for all i, (4.3)

that is, the leaves are distributed relatively evenly among the levels. The other case, when

at least one level contains a large portion of the leaves, is discussed in the next section.

We break up the proof into a few steps.

404 J. Komlós, G. N. Sárközy and E. Szemerédi

Step 1: Decomposition of T .

We define

Uj =
⋃

i≡j (mod 1/d)

Vi for 0 6 j < 1/d

(for simplicity we assume that 1/d is an integer). Let us consider Uj with the maximum

number of leaves in it (> d(1−√α)n). The levels in Uj divide T into regions R0, R1, R2, . . . ,

where

R0 = {Vt : 0 6 t 6 j}, and

Ri =

{
Vt :

i− 1

d
+ j + 1 6 t 6

i

d
+ j

}
for i = 1, 2,

Since R0 may be a short region, for simplicity we remove Vj from Uj . Uj still contains at

least dn/2 leaves. We consider the grandparents in T of the leaves in Uj , and we denote

these vertices by r1, r2, . . . , rl (roots) in a top-down, breadth-first order. Let Ti denote the

depth-2 subtree of T with root ri and leaves in Uj . This subforest (denoted by F) will

play a major role in the rest of the proof in the well-distributed case. The leaves in most

of this subforest will be embedded only at the very end to the buffer zones by using a

König–Hall argument. Note that ri may have children in T not in Ti, and also a child of

ri in Ti may have children not in Ti.

Step 2: Decomposition of G.

We partition G into clusters using Lemma 2.2 with ε and d as in (4.2). Note that we will

not use the matching part of Lemma 2.2 but use a covering by stars instead.

Step 3: Construction of the star covering.

We define the following so-called reduced graph Gr: The vertices of Gr are the clusters

Ci, 1 6 i 6 k, in the partition and there is an edge between two clusters if they form an

ε-regular pair in H with density exceeding d. Since, in H ,

δ(H) > δ(G)− (d+ ε)n >

(
1

2
+ δ

)
− (d+ ε)n,

an easy calculation shows that in Gr we have

δ(Gr) >

(
1

2
+
δ

2

)
k. (4.4)

This implies that, for all C1, C2 ∈ Gr , we have

|NGr (C1) ∩NGr (C2)| > δk. (4.5)

This time, for the finishing König–Hall-type argument we need a covering (of most of

the clusters) by a constant number of stars in Gr instead of a covering by independent

edges (matching). We are going to construct a constant number of stars S1, S2, . . . , Ss in

Gr with the following properties.

(1) L(Si) ∩ L(Sj) = ∅ for every 1 6 i < j 6 s (but note that M(Si) ∈ Sj or M(Sj) ∈ Si, or

even M(Si) = M(Sj), is allowed).

Spanning Trees in Dense Graphs 405

(2) For every Si, 1 6 i 6 s we have the following:

|NGr (M(Sj)) ∩ L(Si)| > d2|L(Si)| for every 1 6 j 6 s, j 6= i.

These clusters in L(Si) are called bridge clusters from Si to Sj .
(3) n−∑s

i=1 |LG(Si)| 6 εn, where LG(Si) denotes the set of vertices in G in the leaf clusters

of Si.

We construct these stars in the following way. For the first star S1, take an arbitrary

cluster as M(S1), and L(S1) is the neighbour of M(S1) in Gr , so from (4.4) we have

|L(S1)| >
(

1

2
+
δ

2

)
k.

In addition, select randomly a subset L′(S1) ⊂ L(S1) of size d|L(S1)| (assuming that this is

an integer). By the law of large numbers and (4.5), with high probability, we have

|NGr (C) ∩ L′(S1)| > δ

2
|L′(S1)| = δ

2
d|L(S1)| � d2|L(S1)| (4.6)

for every cluster C , since, from (4.5),

|NGr (C) ∩ L(S1)| > δk.
Fix a subset L′(S1) for which (4.6) is true for every cluster C in Gr .

For S2, if there is a cluster in Gr \ S1 which covers at least half of the clusters in Gr \ S1,

then this cluster is M(S2) and its neighbours in Gr \S1 are L(S2). Otherwise, from (4.4), we

have dGr (S1, Gr \ S1) > 1/2, so there must exist a cluster in S1 which covers at least half of

the clusters in Gr \ S1. In this case, this cluster is M(S2) and its neighbours in Gr \ S1 are

L(S2). In addition, in both cases we add some more clusters to L(S2). We select randomly

a subset L′(S2) of size d|L(S2)| from NGr (M(S2)) \ L′(S1). Note that L′(S2) may contain

clusters from L(S1). Again, by the law of large numbers and (4.5), with high probability,

we have

|NGr (C) ∩ L′(S2)| > δ

2
|L′(S2)| = δ

2
d|L(S2)| � d2|L(S2)| (4.7)

for every cluster C , since, from (4.5),

|NGr (C) ∩ (NGr (M(S2)) \ L′(S1)
) | > δk − |L′(S1)| > 3

4
δk.

Fix a subset L′(S2) for which (4.7) is true for every cluster C in Gr . Remove the clusters

in L′(S2) ∩ L(S1) from L(S1) and add them to L(S2) as well, so now L′(S2) ⊂ L(S2).

We continue in this fashion. Assume that S1, . . . , Si−1 are already defined. To get Si,

M(Si) is a cluster that covers at least half of the clusters in Gr \ ∪i−1
j=1Sj , and L(Si) is the

set of its neighbours in Gr \ ∪i−1
j=1Sj . In addition, we select randomly a subset L′(Si) of size

d|L(Si)| from NGr (M(Si)) \ ∪i−1
j=1L

′(Sj). By the law of large numbers and (4.5), with high

probability, we have

|NGr (C) ∩ L′(Si)| > δ

2
|L′(Si)| = δ

2
d|L(Si)| � d2|L(Si)| (4.8)

for every cluster C , since, from (4.5),

|NGr (C) ∩ (NGr (M(Si)) \ ∪i−1
j=1L

′(Sj)
) | > δk − | ∪i−1

j=1 L
′(Sj)| > 3

4
δk.

406 J. Komlós, G. N. Sárközy and E. Szemerédi

Fix a subset L′(Si) for which (4.8) is true for every cluster C in Gr . Remove the clusters

in L′(Si) ∩ (∪i−1
j=1L(Sj)) from ∪i−1

j=1L(Sj), and add them to L(Si), so now L′(Si) ⊂ L(Si).

We continue in this fashion until n−∑i
j=1 |LG(Sj)| 6 εn. Since every star covers at least

half of the remaining clusters, we have s 6 dlog 1
ε
e. Properties (1) and (3) are satisfied by

the construction. For property (2), observe that during the whole process we removed at

most d|L(Si)| clusters from L(Si) \ L′(Si) when we constructed the stars Sj , i < j 6 s. This

fact, L′(Si) ⊂ L(Si) and (4.8) applied to C = M(Sj) show that property (2) of the star

covering is satisfied as well.

Step 4: Setting buffer vertices aside.

The buffer vertices in T are the leaves in the Tis. The buffer zones (buf(C)) are simply

subsets of every leaf cluster in the stars (so in ∪si=1L(Si)) such that their sizes are as

equal as possible and the total number of vertices in them is the same as the number

of buffer vertices in T . Thus all the buffer zones have size at least d
2
n
k
. We select the

sets buf(C) at random, uniformly from among all subsets of C of the given size. Denote

buf(G) = ∪Cbuf(C), and, in general, for a collection of clusters K let buf(K) denote

= ∪C∈Kbuf(C). This selection guarantees, by the law of large numbers (as in Lemma 2.5),

that these buffers have the following property:

• deg(v, buf(C)) > (d − 2ε)|buf(C)| for all clusters C , and for all v ∈ V such that

deg(v, C) > (d− ε)|C|.
Step 5: Decomposing F into two subforests F1 and F2, assigning the Tis in F1 to stars.

In this step, for technical reasons we decompose F into two subforests F = F1 ∪F2, where

F2 will consist of the last few levels of the Tis. We assign only the Tis in F1 to stars; F2

will be used later (Step 9) for the handling of the various exceptional vertices.

Define s′1 by

s′
1∑

i=1

|L(Ti)| 6 (1− ε1/4)|buf(L(S1))|, but

s′
1
+1∑
i=1

|L(Ti)| > (1− ε1/4)|buf(L(S1))|.

Let s1 be the largest integer for which s1 6 s′1, and rs1 is the last root on a level. Relations

(4.2) and (4.3) imply that

(1− ε1/4)|buf(L(S1))| >
s1∑
i=1

|L(Ti)| > (1− 2ε1/4)|buf(L(S1))|.

Then T1, . . . , Ts1 are assigned to S1, so the children of r1, . . . , rs1 in T1, . . . , Ts1 (and actually

all other non-leaf vertices at this level) are assigned and will be embedded into M(S1),

and the leaves in T1, . . . , Ts1 are assigned and will be embedded into the leaf clusters of

S1. Define s′2 by

s′
2∑

s1+1

|L(Ti)| 6 (1− ε1/4)|buf(L(S2))|, but

s′
2
+1∑

s1+1

|L(Ti)| > (1− ε1/4)|buf(L(S2))|,

and similarly s2 is the largest integer for which s2 6 s′2, and rs2 is the last root on a level.

The trees Ts1+1, . . . , Ts2 are assigned to S2, so the children of rs1+1, . . . , rs2 in these trees

Spanning Trees in Dense Graphs 407

are assigned and will be embedded into M(S2), and the leaves are assigned and will be

embedded into the leaf clusters of S2.

We continue in this fashion until we have assigned Tis to every star. F1 denotes the

subforest of the Tis that are assigned to stars and F2 = F \ F1. Note that there are still

at least ε1/3n leaves in F2, and these leaves will be used to handle the various exceptional

vertices in Step 9.

Before proceeding further, let us point out two important facts here. First, from (4.2),

for any cluster C ,

|T \ L(T)| 6 √αn� ε|C|. (4.9)

Second, from (4.2) and (4.3), for any cluster C ,

|Vi| < γn� ε|C| for all i. (4.10)

Thus the total number of non-leaf vertices in T and the size of one level of T are both

very small compared to the size of a cluster.

Step 6: Assigning most of the non-buffer vertices in T to specific clusters.

In this step, before we start the actual embedding, we assign most of the non-buffer

vertices in T to specific clusters. The only non-buffer vertices in T which will not be

assigned in this step are the children of the roots in F2. The assignment means that later

these vertices will be embedded into the clusters where they were assigned. We emphasize

here that, at this point, we only assign these vertices to clusters: they will be actually

embedded into these clusters only later. We only assign vertices to the leaf clusters in the

stars.

Denote the last region by Rm, where the Tis at the bottom of the region are in F1.

Write R′i = Ri \ V i
d
+j; thus we get R′i by removing the last level in Ri. In each region

R′i , 1 6 i 6 m, we consider the level (denoted by V (Ri)) with the smallest number of leaves.

Clearly, for the number of leaves in ∪mi=1V (Ri) we have

m∑
i=1

|L(V (Ri))| 6 dn. (4.11)

This level V (Ri) breaks up R′i into two parts (one possibly empty): a leaf-light part

(LL(Ri)), which contains fewer leaves, and a leaf-heavy part (LH(Ri)), which contains

more leaves. Thus, if V (Ri) = Vt for some i−1
d

+ j + 1 6 t 6 i
d

+ j − 1, and the upper half

is the lighter part, then

LL(Ri) = ∪t′
{
Vt′ :

i− 1

d
+ j + 1 6 t′ 6 t− 1

}
,

LH(Ri) = ∪t′
{
Vt′ : t+ 1 6 t′ 6

i

d
+ j − 1

}
and

R′i = LL(Ri) ∪ LH(Ri) ∪ V (Ri).

For R0 we just put LL(R0) = R0, and for i > m, LH(Ri) = R′i .
First we assign only the leaves in ∪mi=0LL(Ri) to clusters. This is done with a simple

greedy strategy. As we go top-down in T , we assign the leaves at the next level in

∪mi=0LL(Ri) to the cluster with the smallest number of leaves assigned to it so far. Note

408 J. Komlós, G. N. Sárközy and E. Szemerédi

that when we assigned all the leaves in ∪mi=0LL(Ri) with this procedure, the difference

between the number of assigned leaves in two arbitrary clusters C1, C2 ∈ ∪si=1L(Si) is at

most the size of the level Vi in T with the most leaves, which is � ε|C1| = ε|C2| by

(4.10). We have to make sure that this assignment is realizable; thus we have to assign

the non-leaf vertices in ∪mi=0LL(Ri) carefully. Furthermore, we are also going to assign the

leaves on level V (Ri).

Suppose first that LL(Ri) is the upper half of region Ri, i > 1. Assume further that

the non-leaf vertices on the last level of R′i−1 (i.e., V i−1
d

+j−1) are assigned to cluster G

(if i > 2, and the Tis at the bottom of Ri−1 are assigned to star S , then G = M(S))

and that the leaves on the first level of Ri (i.e., V i−1
d

+j+1) are assigned to cluster C .

The non-leaf vertices on the last level of Ri−1 are assigned to a cluster D, such that

(G,D), (D,C) ∈ E(Gr) ((4.5) implies that D exists). Similarly, if the non-leaf vertices on a

certain level are already assigned to cluster G, and the leaves two levels below are assigned

to cluster C , then the non-leaf vertices on the next level are assigned to cluster D, such

that (G,D), (D,C) ∈ E(Gr). For R0, if the leaves on V1 are assigned to cluster C , then the

root of T is assigned to a cluster D with (D,C) ∈ E(Gr), and for the remaining non-leaf

vertices we follow the same strategy as above for i > 1.

We continue in this fashion for i > 1 until the assignment of the non-leaf vertices two

levels before V (Ri), so on the level Vt−2, if V (Ri) = Vt. The assignment of these non-leaf

vertices requires some special care. We follow the same procedure as for the non-leaf

vertices on the other levels. However, here we do not just take one arbitrary cluster

among the possible > δk clusters (guaranteed by (4.5)), but we take the cluster with the

fewest leaves from ∪mi=1V (Ri) assigned to it so far. Furthermore, we assign the leaves on

level V (Ri) to this cluster. But we do not assign at this point the non-leaf vertices one

level before or on V (Ri). These will be used to connect the embedding of LL(Ri) and

LH(Ri).

The case when LL(Ri), i > 1 is the lower half of Ri is similar, except that we move level

by level upward until V (Ri). In fact, assume that the Tis at the bottom of Ri are assigned

to star S , and the leaves on the last level of LL(Ri) (i.e., V i
d
+j−1) are assigned to cluster C .

The non-leaf vertices on V i
d
+j−2 (thus including the roots ri) are assigned to a cluster D

such that (M(S), D), (D,C) ∈ E(Gr). We continue to move upward in this fashion until the

level after V (Ri), so the level Vt+1. Say the leaves on this level are assigned to cluster C ,

and the non-leaf vertices on this level are assigned to cluster G. Again, for the assignment

of the non-leaf vertices on level V (Ri), we take the cluster from the at least δk clusters in

NGr (C) ∩NGr (G) (using (4.5)) with the fewest leaves assigned to it so far from ∪mi=1V (Ri).

Furthermore, we assign the leaves on level V (Ri) to this cluster. Thus, in this case we

assign all the vertices in LL(Ri) ∪ V (Ri).

We follow the same procedure for all the regions Ri, 1 6 i 6 m. From the above

construction, (4.9) and (4.11), it follows that, when we have finished this part of the

assignment, the difference between the number of assigned vertices in two arbitrary

clusters C1, C2 ∈ ∪si=1L(Si) is at most

(d/δ + ε)|C1| = (d/δ + ε)|C2|. (4.12)

This in turn implies that the number of assigned vertices for every cluster C is at most

Spanning Trees in Dense Graphs 409

(1/2+2d/δ)|C \buf(C)|, using (4.9), (4.11) and the fact that LL(Ri) contained fewer leaves

than LH(Ri).

Next we assign the leaves in ∪iLH(Ri) with the usual greedy procedure. That is, as

we go from top to bottom in T , we assign the leaves at the next level in ∪iLH(Ri) to

the cluster with the smallest number of vertices assigned to it so far. Note that with this

procedure we eliminate the somewhat larger discrepancy of (4.12), and when we assigned

all the leaves in ∪iLH(Ri), the difference between the number of assigned vertices in two

arbitrary clusters C1, C2 ∈ ∪si=1L(Si) is � ε|C1| = ε|C2| again.

We finish Step 6 by assigning the remaining non-leaf vertices (except for the children

of the roots in F2) to clusters. This is done the same way as in the assignment of the

non-leaf vertices in ∪mi=1LL(Ri) above. Furthermore, we assign the non-leaf vertices on the

level before V (Ri) in such a way that the embedding of the upper and lower halves of

Ri can be connected. More precisely, let us assume that the non-leaf vertices two levels

above V (Ri) (so on level Vt−2, if V (Ri) = Vt) are assigned to a cluster C , and the non-leaf

vertices on V (Ri) are assigned to cluster G. Then the non-leaf vertices on the level before

V (Ri) (on level Vt−1) are assigned to a cluster D, such that (C,D), (D,G) ∈ E(Gr) (using

(4.5)).

This finishes the assignment procedure: we have assigned every non-buffer vertex of T

except for the children of the roots in F2. The difference between the number of assigned

vertices in two arbitrary clusters C1, C2 ∈ ∪si=1L(Si) is � ε|C1| = ε|C2|. This fact implies

that, for every cluster C ∈ ∪si=1L(Si), the difference between the number of assigned

non-buffer vertices and the available non-buffer zone vertices in C is � ε|C|.
Now we are in a position to start the actual embedding process. As we move down in

T region by region we execute the following two tasks in a given region.

• We embed the vertices in T \F level by level in the region into non-buffer zone vertices

of the cluster where the vertex is assigned (see Step 7).

• If the Tis at the bottom of the region belong to F1, and they are assigned to star Si,

then with a special procedure (described in Step 8) we first embed the roots ri into their

assigned cluster, then their children into M(Si), and finally we assign the leaves in the

Tis to L(Si). These buffer vertices will be embedded only at the end by a König–Hall

procedure in Step 11. Otherwise, if the Tis belong to F2, then we embed them by another

special procedure (described in Step 9) to handle the various exceptional vertices.

Even though these two tasks are executed together for each region, we separate their

discussion for better understanding.

Step 7: Embedding T \ F .

We embed the vertices in T \ F level by level from top to bottom with a simple greedy

procedure into the non-buffer zone vertices of the clusters where they are assigned.

Namely, we always embed a non-leaf vertex of T into a non-buffer zone vertex v of the

given cluster, such that v has high degree (at least (d− ε)-portion) to the remaining non-

buffer zone vertices of the one or two clusters where the vertices at the next level of T are

assigned. ε-regularity makes this possible, and this guarantees that we can always continue

the embedding. The roots ri and their children in the Tis in F1 are embedded with a

special strategy, described in the next step, but the buffer vertices in F1 are not embedded

410 J. Komlós, G. N. Sárközy and E. Szemerédi

at this point. F2 is embeddded by another special strategy, described in Step 9. When

there are only a few non-buffer zone vertices left (<
√
ε|C|) in a cluster C ∈ ∪si=1L(Si), we

unite the buffer zone with the non-buffer zone and continue embedding in this set.

Step 8: Embedding the roots and their children in F1.

Consider the first S1 and the trees T1, T2, . . . , Ts1 assigned to it. Because of the above

construction, when we are embedding an rj , 1 6 j 6 s1, it can still be embedded into a

large subset (> (d− ε)√ε-portion) of the cluster where it was assigned. Denote this cluster

by Cl(rj). We have (Cl(rj),M(S1)) ∈ E(Gr). We are going to partition the children of these

roots in F into groups G1, G2, . . . depending on the number of their children. We place

those children of the roots in Gi when the number of children is in the interval(
cn

log n
2−i,

cn

log n
21−i

]
.

The number of groups (denoted by g) is at most log n. To each root we assign two kinds

of weights corresponding to the groups. For rj , wi(rj) is the number of Gi children of rj ,

and lwi(rj) (leaf weight) is the number of leaves under these Gi children of rj . Similarly,

for v ∈ Gi, lw(v) is the number of leaves under v, and lw(Gi) =
∑

v∈Gi lw(v).

For each i, 1 6 i 6 g we partition the roots into two classes: we say that a root

rj , 1 6 j 6 s1 is i-heavy if

wi(rj) > c2 log n, (4.13)

where c2 is a sufficiently large constant, and we say it is i-light if (4.13) does not hold. We

denote the set of i-heavy roots by iH , and similarly iL for the i-light roots.

We are going to embed the vertices in Gi in quite large blocks, and the i-light roots can

cause some problems. However, it is enough to restrict our attention to groups Gi with∑
rj∈iL

wi(rj) > c3 log n, (4.14)

where c3 is a sufficiently large constant compared to c2. In fact, let us assume that (4.14)

does not hold for a group Gi. First let us embed arbitrarily the Gi children of the i-light

roots into unoccupied vertices in M(S1). Then we embed the leaves under one such Gi
child of an i-light root into the cluster C ∈ NGr (M(S1)) with the smallest number of

vertices assigned to it so far. The number of exceptional leaves we have to embed in this

way is very small: it is

6
g∑
i=1

c3 log n
cn

2i−1 log n
� ε|C|,

for every cluster C , if c is sufficiently small. Thus, for simplicity, we assume that (4.14)

holds in every group Gi, 1 6 i 6 g.

For the embedding of the Gi children of the i-light roots we will set aside a random

buffer zone buf(Gi) in M(S1). (Note that this buffer zone has nothing to do with the buffer

zones for the leaves in F .) We construct this random set in the following way. First we

remove a small number of exceptional vertices from M(S1) denoted by Exc(M(S1)). These

are vertices with the property that they have few (< (d− ε)-portion) neighbours in many

Spanning Trees in Dense Graphs 411

(>
√
ε-portion) leaf clusters of S1. The number of these vertices is 6

√
ε|M(S1)|. In the

remaining set every vertex has large degree to most of the leaf clusters. This fact will be

important later for the completing König–Hall argument.

We select this set buf(Gi) randomly (and disjointly for different 1 6 i 6 g) from the

remaining non-exceptional vertices with size

(1 +
√
ε)
∑
rj∈iL

wi(rj) (> c3 log n). (4.15)

Note that Lemma 2.5 and (4.2) imply that with high probability (buf(Gi), C) is a
√
ε-

regular pair for every 1 6 i 6 g and cluster C ∈ NGr (M(S1)), and furthermore, if for

a v ∈ C we have deg(v,M(S1)) > (d − ε)|M(S1)| (most vertices are such in C), then

deg(v, buf(Gi)) > (d− 2ε)|buf(Gi)|.
We are going to embed the Gi children of the i-light roots into buf(Gi). These Gi

vertices embedded into buf(Gi) will form the first (and the only light) block Bi,1 for Gi.

The remaining blocks Bi,2, Bi,3, . . . will be heavy blocks defined below.

We start the embedding with r1. Consider those is for which r1 is i-light, denoted

by Light(r1). Similarly Heavy(r1) can be defined. r1 can still be embedded into a large

subset of Cl(r1). From this subset we remove the few exceptional vertices v for which

deg(v,M(S1)) < (d − ε)|M(S1)|. We embed r1 into a random vertex of the remaining set.

For an i ∈ Heavy(r1) we embed the Gi children of r1 into a random subset (with the

given size wi(r1)) of the remaining unoccupied vertices in NM(S1)(r1) \ Exc(M(S1)). At the

same time we assign the leaf children of these vertices to L(S1). For these is this is a

heavy block, so it is Bi,j for some j > 2. The heavy blocks behave the same way as the

light blocks, so, for every block Bi,j , the pair (Bi,j , C) is a
√
ε-regular pair for every cluster

C ∈ NGr (M(S1)).

For i ∈ Light(r1), by the above remark with high probability the (embedded) r1 has

many neighbours in buf(Gi) for every 1 6 i 6 g. The Gi children of r1 are embedded into

these neighbours and we assign the leaf children of these vertices to L(S1).

Next we move to r2 and we follow the same procedure. We update buf(Gi) by removing

the vertices occupied in the previous step. We embed r2 into a random vertex in Cl(r2)

that has many neighbours in M(S1). For i ∈ Heavy(r2) we embed the Gi children of r2
into a random subset of the remaining unoccupied vertices in NM(S1)(r2) \ Exc(M(S1)) of

the appropriate size and we assign the leaf children to L(S1). For i ∈ Light(r2) we embed

the Gi children of r2 into buf(Gi).

We continue with this procedure for all the roots assigned to S1. Lemma 2.5 and (4.15)

imply that we never get stuck, we are able to embed all the Gi children of i-light roots

into buf(Gi). Lemma 2.5 also implies that with high probability we have the following:

for every Bi,j , C ∈ L(S1) and v ∈ C , if

deg(v,M(S1)) > (d− ε)|M(S1)|, (4.16)

then we have

deg(v, Bi,j) > (d− 2ε)|Bi,j |. (4.17)

Note that, apart from 6 ε|C| exceptional vertices, (4.16) holds for every vertex v ∈ C .

We follow the same procedure for all the stars, and the Tis assigned to them. At this

412 J. Komlós, G. N. Sárközy and E. Szemerédi

point the only Tis remaining are in F2. They will be used to handle the various exceptional

vertices in the next step.

Step 9: Embedding F2 and handling the various exceptional vertices.

It is time to take care of the various exceptional vertices, a common task in applications

of the Regularity Lemma. First of all we have the remaining unoccupied vertices in C0

and in the exceptional clusters not covered by the leaves of the stars. Denote their set by

E. We add some more vertices to E from each star S . These are unoccupied vertices v in

the leaf clusters of S such that, for the exceptional blocks Bi,j for which (4.17) does not

hold for v, we have ∑
lw(Bi,j) >

√
ε|LG(S)|. (4.18)

The number of these exceptional vertices is at most
√
ε|C| in every C ∈ L(S). We add

these vertices to E as well. The size of E is still at most 2
√
εn� ε1/3n.

Next we take care of the vertices in E: we embed leaves from the remaining Tis (F2)

into them by a simple greedy strategy. From the construction we know that there are

still at least ε1/3n (much more than |E|) unassigned leaves in F2. Denote the roots in

F2 by r′1, r′2, These roots are embedded into G by the greedy strategy described in

Step 7. Denote the embedded image vertex in G by G(r′i). From δ(G) >
(
1/2 + δ

)
n and

the random choice of the buffer zones, for every e ∈ E, the two vertices G(r′1) and e

have at least δn common unoccupied neighbours in buf(G). Thus there is an unoccupied

neighbour u1 of G(r′1) which has at least δ|E| neighbours in E. Embed one of the children

of r′1 in F2 into u1 and embed the leaves under this child of r′1 in F2 into neighbours of u1

in E. We repeat this procedure for the remaining vertices in E. When |E| becomes small

(6 cn
δ log n

), it might not be possible to embed all the leaves under a child of a root to these

neighbours in E. In this case, let us assume that this child of a root in F2 is embedded into

vertex ui in G. We embed the remaining leaves that cannot be embedded in E into the

remaining buffer vertices of the cluster with the smallest number of embedded vertices,

chosen from those clusters where ui has many neighbours (> d-portion in at least half

the clusters). We handle similarly the remaining leaves in F2, when there are no more

unoccupied vertices left in E.

When we are finished with the procedure, and all the vertices are embedded except for

the F1-buffer leaves, for every cluster C ∈ ∪si=1L(Si) the difference between the number of

vertices that are embedded into C and the non-buffer zone vertices in C is � ε
1
4 |C|.

Step 10: Adjusting the assignment.

Thus at this point there can be a small difference (� ε1/4|Si|) in a star Si between the

number of remaining unoccupied vertices in the leaf clusters of the star and the number

of F1 leaves assigned to it. Therefore we need some adjusting. Consider a star S ′ where we

assigned more F1 leaves than vertices remaining, and a star S ′′ where we assigned fewer

F1 leaves than vertices remaining (there has to be one such star since we are looking for a

spanning subgraph). By property (2) of the star covering, in S ′′ among the leaf clusters we

have many (> d2|L(S ′′)|) clusters which are bridge clusters from S ′′ to S ′, that is, they are

neighbours of M(S ′) in Gr as well. We add one typical vertex from these common clusters

from S ′′ to S ′. Now we are one step closer to the perfect assignment, and by iterating

Spanning Trees in Dense Graphs 413

this process we can achieve it. Furthermore, using ε � d we can guarantee that, during

the whole adjustment procedure, we have removed or added at most ε
1
5 |C| vertices from

every cluster C .

Step 11: Finishing the embedding of the F1-buffer leaves by a König–Hall argument.

We can treat the stars separately. Consider the bipartite graph G(A,B), where A is the set

of the children of the roots in F1 embedded into the middle cluster of the given star (say

S) and B is the set of the remaining unoccupied vertices in the leaf clusters. Let d denote

(da : a ∈ A), where da is the number of leaf children of a (so da = lw(a)). We are looking

for a d-matching from A to B. We need to check the König–Hall criterion:

|N(X)| > dX for all X ⊂ A
holds with probability close to 1 (the choice of A was random). From the construction

A = ∪gi=1Gi, Gi = ∪nij=1Bi,j ,

where ni is the number of blocks in Gi, v ∈ Gi implies

cn

2i log n
< dv 6

cn

2i−1 log n
, (4.19)

and
g∑
i=1

dGi =

g∑
i=1

ni∑
j=1

dBi,j = |B|. (4.20)

Furthermore, from the construction we get that, with high probability, for every Bi,j ,

the pair (Bi,j , B) is ε
1
6 -regular.

We distinguish three cases (the proof is similar to the König–Hall argument in [6]).

Case 1: Xi,j = X ∩ Bi,j < ε
1
6 |Bi,j | for all blocks Bi,j .

Then, if v ∈ X is arbitrary we get

|N(X)| > deg(v) >
d

2
|B| =

g∑
i=1

ni∑
j=1

d

2
dBi,j >

g∑
i=1

ni∑
j=1

dXi,j = dX.

Here we used the fact that the minimum degree in G(A,B) from A to B is at least d
2
|B|,

(4.19), (4.20), and that ε is much smaller than d.

Case 2: There exists a block Bi,j with Xi,j > ε
1
6 |Bi,j | but dX 6 (1− ε 1

6)|B|.
In this case we have

|N(X)| > (1− ε 1
6)|B| > dX. (4.21)

Indeed, this follows from the fact that (Bi,j , B) is a ε
1
6 -regular pair. Thus, if (4.21) were not

true, then with Y = B \N(X) we would have |X| > ε 1
6 |Bi,j |, |Y | > ε 1

6 |B|, but d(X,Y) = 0,

contradicting ε
1
6 -regularity.

Case 3: dX > (1− ε 1
6)|B|.

In this case, with high probability,

|N(X)| = |B| > dX.
In fact, for an arbitrary v ∈ B, with high probability, (4.17) holds for almost all the blocks

414 J. Komlós, G. N. Sárközy and E. Szemerédi

Bi,j; the exceptional blocks (the blocks not satisfying (4.17)) have total d-weight 6 2
√
ε|B|

(the exceptional vertices were removed from B). Therefore, in this case, there must be a

non-exceptional block Bi,j with |Xi,j | > (1 − ε 1
5)|Bi,j |, implying v ∈ N(Xi,j) ⊂ N(X). Since

v was arbitrary,

N(X) = B,

thus finishing Case 3 and the proof of the well-distributed case.

4.3. The concentrated case

In this case we can assume that there is a level Vr with

|Vr| > γn.
We are going to use ideas similar to the well-distributed case; therefore we will sometimes

omit the details.

We are going to divide the proof into three (perhaps overlapping) special cases.

Case 1: There is an r with

|Vr| > γn but |Vr−1| < γ|Vr|. (4.22)

The proof of this case is similar to (but simpler than) the well-distributed case. Consider

the leaves in Vr , their parents and grandparents. In this case these are the Tis, with roots

ri on level Vr−2. The choice of buffer zones is the same. We start the embedding into

non-buffer zone vertices from the top by arbitrarily embedding the root of T . Suppose

that a non-leaf vertex v on a certain level is already embedded. Then, we embed its

non-leaf children in T one by one into vertices with large degree to the cluster with the

fewest vertices embedded into it so far, and then we embed the leaf grandchildren of v into

these neighbours. We move down T in a top-down breadth-first manner until Vr−3, that

is, one level before the roots of the Tis. The handling of the Tis and the construction of

the stars is very similar to the well-distributed case. The only difference is that, since now

we are not in the well-distributed case, a Ti can be large (for example there could be only

one T1). We divide Ti into smaller pieces Ti,j which are disjoint apart from the common

root ri. The only problem could be that a Ti could be assigned to several stars, and then

ri would have to be connected to several stars. Thus we do the following. Take the first T1

from the left. Assume that the father of r1 on level Vr−3 is embedded into cluster C . Take

an arbitrary cluster G ∈ NGr (C) and r1 will be embedded into cluster G. But first we start

the construction of the star covering. It is similar to the well-distributed case, but for S1 we

take M(S1) ∈ NGr (G). We assign pieces T1,j from T1 to S1 as in the well-distributed case.

If we have leftover pieces in T1, then we move on to constructing S2 with M(S2) ∈ NGr (G).

For this purpose we pick M(S2) as the cluster in NGr (G) which covers the most clusters

(> δ-portion) in Gr \ L(S1). Otherwise, if we assigned all the pieces of T1 to S1, then we

move to T2. If the father of r2 is embedded into a cluster C ′, then r2 will be embedded

into a cluster G′ ∈ NGr (C
′) ∩ NGr (M(S1)). Then we start assigning pieces from T2 to S1.

If we have leftover pieces in T2, then we construct S2 with M(S2) ∈ NGr (G
′). We continue

in this fashion. This procedure guarantees that, if ri is embedded into a cluster G′′ and a

piece of Ti is assigned to star Sj , then we have (G′′,M(Sj)) ∈ E(Gr). The leaf children of a

Spanning Trees in Dense Graphs 415

root ri on level Vr−1 are embedded into the neighbour cluster of G′′ in Gr with the fewest

vertices embedded into it so far. By (4.22) the total number of these leaves is very small

(6 γ-portion) compared to the number of buffer vertices; therefore they are not causing

any significant discrepancies among the number of embedded vertices in the clusters. For

the embedding of the part of T below Vr , we follow the same simple greedy strategy as

in the upper half. There are no further difficulties; we can follow the same steps as in the

well-distributed case.

Case 2: r is small, r 6 1
γ2 (for simplicity we assume that 1

γ2 is an integer).

We may assume that |Vr−1| > γ|Vr|; otherwise Case 1 holds. Similarly we may assume

that |Vr−2| > γ|Vr−1|, since otherwise we have

|Vr−1| > γ2n but |Vr−2| < γ|Vr−1|;
the situation is similar to Case 1. Iterating this we get

c
n

log n
> |V1| > γrn > γ

1

γ2 n,

a contradiction if n is sufficiently large.

Case 3: r > 1
γ2 .

Consider the levels between Vr and Vr− 1

γ2
, and let Vs denote the level with the smallest

number of leaves (6 γ2n) in it. Take the non-leaf vertices on Vs−1, and the subtrees of

T below them between levels Vs−1 and Vr (including Vr). These subtrees (denoted by

T ′1, T ′2, . . .) provide a partition of the region between Vs−1 and Vr . If for one of these

subtrees T ′i we have

|T ′i | > γ2n,

then the proof is similar to Case 2. Therefore we may assume that

|T ′i | < γ2n (4.23)

for every subtree.

For the embedding of the part of T above Vs−1, we follow the same greedy strategy as

in Case 1. For the region between Vs−1 and Vr we do the following. First of all, the Tis

again consist of the leaves on level Vr , their parents and their grandparents. We take the

first subtree T ′1 in this region. We embed the leaves in T ′i at one level (except for the leaves

on level Vs) into the cluster with the smallest number of vertices embedded into it so far.

This is done by going upward (with the assignment procedure, and then downward with

the actual embedding) in T ′1 starting with the leaves on level Vr−1 and following the same

procedure as in the well-distributed case. We keep going until Vs; we embed the root of

T ′1 so we can connect the embedding of T ′i and the part of T above Vs. Then the leaves

on level Vs are evenly distributed among the clusters where the embedded root has many

neighbours.

We continue the procedure for the other T ′i s in this fashion. Relation (4.23), and the

fact that on Vs there are 6 γ2n leaves, implies that we again fill up the non-buffer zones

in a balanced way, and there are no further complications in this case, thus completing

the proof of Theorem 1.2.

416 J. Komlós, G. N. Sárközy and E. Szemerédi

Acknowledgement

We are grateful to one of the referees for many valuable comments on an earlier version

of this paper.

References

[1] Alon, N., Duke, R., Lefmann, H., Rödl, V. and Yuster, R. (1994) The algorithmic aspects of

the Regularity Lemma. J. Algorithms 16 80–109.

[2] Bollobás, B. (1978) Extremal Graph Theory, Academic Press, London.

[3] Bollobás, B. and Eldridge, S. E. (1978) Packings of graphs and applications to computational

complexity. J. Combin. Theory Ser. B 25 105–124.

[4] Hajnal, A. and Szemerédi, E. (1970) Proof of a conjecture of Erdős. In Combinatorial Theory

and its Applications, Vol. II (P. Erdős, A. Rényi and V. T. Sós, eds), Colloq. Math. Soc. J. Bolyai

4, North-Holland, Amsterdam, pp. 601–623.

[5] Kohayakawa, Y. (1997) Szemerédi’s Regularity Lemma for sparse graphs. In Foundations of

Computational Mathematics (F. Cucker and M. Schub, eds), Springer.

[6] Komlós, J., Sárközy, G. N. and Szemerédi, E. (1995) Proof of a packing conjecture of Bollobás.

Combin. Probab. Comput. 4 241–255.

[7] Komlós, J., Sárközy, G. N. and Szemerédi, E. (1996) On the square of a Hamiltonian cycle in

dense graphs. Random Struct. Alg. 9 193–211.

[8] Komlós, J., Sárközy, G. N. and Szemerédi, E. (1997) Blow-up Lemma. Combinatorica 17

109–123.

[9] Komlós, J., Sárközy, G. N. and Szemerédi, E. (1998) An algorithmic version of the Blow-up

Lemma. Random Struct. Alg. 12 297–312.

[10] Komlós, J., Sárközy, G. N. and Szemerédi, E. (1998) Proof of the Seymour conjecture for large

graphs. Ann. Combin. 2 43–60.

[11] Komlós, J., Sárközy, G. N. and Szemerédi, E. Proof of the Alon–Yuster conjecture. To

appear.

[12] Lovász, L. (1979) Combinatorial Problems and Exercises, Akadémiai Kiadó, Budapest.

[13] Sauer, N. and Spencer, J. (1978) Edge disjoint placement of graphs. J. Combin. Theory Ser. B

25 295–302.

[14] Simonovits, M. and Sós, V. T. (1991) Szemerédi’s partition and quasirandomness, Random

Struct. Alg. 2 1–10.

[15] Szemerédi, E. (1976) Regular partitions of graphs. Colloques Internationaux C.N.R.S. No 260:

Problèmes Combinatoires et Théorie des Graphes, Orsay, pp. 399–401.

[16] Szemerédi, E. (1975) On a set containing no k elements in arithmetic progression. Acta

Arithmetica XXVII 199–245.

