

 Jan van den Heuvel
Algorithmic aspects of a chip-firing game

Article (Published version)
(Refereed)

Original citation:
van den Heuvel, Jan (2001) Algorithmic aspects of a chip-firing game. Combinatorics, probability
& computing, 10 (6). pp. 505-529. ISSN 0963-5483
DOI:10.1017/S0963548301004886

© 2001 Cambridge University Press

This version available at: http://eprints.lse.ac.uk/18470/
Available in LSE Research Online: August 2012

LSE has developed LSE Research Online so that users may access research output of the
School. Copyright © and Moral Rights for the papers on this site are retained by the individual
authors and/or other copyright owners. Users may download and/or print one copy of any
article(s) in LSE Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities
or any commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE
Research Online website.

http://www2.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=j.van-den-heuvel@lse.ac.uk
http://www2.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=j.van-den-heuvel@lse.ac.uk
http://journals.cambridge.org/action/displayJournal?jid=CPC
http://journals.cambridge.org/action/displayJournal?jid=CPC
http://dx.doi.org/10.1017/S0963548301004886
http://www.cambridge.org/
http://eprints.lse.ac.uk/18470/

Combinatorics, Probability and Computing (2001) 10, 505–529. c© 2001 Cambridge University Press

DOI: 10.1017/S0963548301004886 Printed in the United Kingdom

Algorithmic Aspects

of a Chip-Firing Game

J A N V A N D E N H E U V E L

Centre for Discrete and Applicable Mathematics, Department of Mathematics,

London School of Economics, Houghton Street, London WC2A 2AE, UK

(e-mail: jan@maths.lse.ac.uk)

Received 19 August 1999; revised 9 May 2001

Algorithmic aspects of a chip-firing game on a graph introduced by Biggs are studied. This

variant of the chip-firing game, called the dollar game, has the properties that every starting

configuration leads to a so-called critical configuration. The set of critical configurations

has many interesting properties. In this paper it is proved that the number of steps needed

to reach a critical configuration is polynomial in the number of edges of the graph and the

number of chips in the starting configuration, but not necessarily in the size of the input.

An alternative algorithm is also described and analysed.

1. Introduction

In the classical chip-firing game on a finite undirected graph G (see [9] and references

therein) it is assumed that, at the beginning of the game, a pile of chips is placed on each

vertex of G. A step in the game consists of choosing a vertex v which has at least as many

chips as its degree, and moving one chip from v to each of its neighbours. Such a step is

called firing vertex v. The game terminates if each vertex has fewer chips than its degree.

In this paper we study a variant of the classical chip-firing game above. In this variant

there is one special vertex, say q, which is always able to fire, independently of its number

of chips. Biggs [4, 5] calls this variant the dollar game, and refers to q as the government.

In fact, the game we consider is a variant of this game, but because the differences are

small we will call our variant the dollar game as well.

Before we continue, we need some definitions and will then give a formal definition of

our version of the dollar game. A good source for the basic terminology and notation

in graph theory is [11]. Throughout this paper we will assume as given a graph G =

(V (G), E(G)), which is finite, undirected and connected. We also assume that there is one

special vertex in G, called q. We shall denote the number of vertices of G by n and the

number of edges by m. The edge-connectivity of G will be denoted by λ.

We will allow G to have multiple edges, but no loops. (Note that this means that

506 J. van den Heuvel

formally E(G) is a multiset. We will still talk about an edge e ∈ E(G).) For two vertices

u, v, e(u, v) denotes the number of edges joining u and v; this number is also called the

multiplicity of an edge between u and v. The degree dG(v) of a vertex v is the number of

edges incident with v, where multiple edges are counted with their multiplicities. The set

of neighbours of a vertex v is denoted by NG(v).

An instance of the dollar game on the graph G starts with a number of chips on each

vertex v 6= q, where we allow the number of chips to be negative. One move in the game

consists of one of the following two steps.

(C1) Choose a vertex v 6= q which has more than dG(v) chips, remove dG(v) chips from

that vertex, and add e(u, v) chips to each vertex u ∈ NG(v)\{q}. Such a step is called

firing vertex v.

(C2) If there is no vertex v 6= q that has more than dG(v) chips, then add e(u, q) chips to

each vertex u ∈ NG(q). This step is called firing q or firing the government.

The number of chips on a vertex v 6= q at a certain moment will be denoted by s(v). A

configuration s of the dollar game is the (n− 1)-vector of all numbers of chips at a certain

moment in the game. If s(v) > dG(v) for some v 6= q, then we say that v is ready in s;

if s(v) < dG(v) for all v 6= q, then q is ready. Given a configuration s, a finite sequence

v1, v2, . . . , vk of vertices is legal for s if v1 is ready in s, v2 is ready in the configuration

obtained from s after firing v1, etc. If v1, . . . , vk is a legal sequence for s, then by applying

the sequence we will mean the process of firing the vertices of the sequence in consecutive

order, starting with the configuration s.

A configuration s is said to be stable if s(v) < dG(v) for all v 6= q; it is called recurrent if

there is a non-empty legal sequence for s which leads to the same configuration. Further,

a configuration is critical if it is both stable and recurrent.

Although our version of the dollar game differs from that in [4] in that we allow a

negative number of chips, most of the theory developed in [4] holds without any changes.

In particular, the following results, which are the main inspiration for the results in this

paper, are still valid.

Theorem 1.1 (Biggs [4]). Let s be a configuration of the dollar game on a connected

graph G. Then there exists a unique critical configuration c which can be reached by a legal

sequence of firings starting from s.

Denote the set of critical configurations of G by K , the set of spanning trees of G byT,

and the number of spanning trees by κ.

Theorem 1.2 (Biggs [4]). Let G be a connected graph. Then the number of elements in K

is equal to κ, the number of spanning trees of G.

For each configuration s, let γ(s) ∈ K be the unique critical configuration determined by

the previous theorem. For two critical configurations c1, c2 ∈ K , define the operation ‘•’
by c1 • c2 = γ(c1 + c2) (where ‘+’ is the normal vector addition).

Algorithmic Aspects of a Chip-Firing Game 507

Theorem 1.3 (Biggs [4]). Let G be a connected graph. Then the set K with the operation •
is an abelian group.

It is possible to say much more about the relations between the set of critical configur-

ations and other properties of the graph G: see, for instance, [4, 5, 6, 19]. In that sense it

seems a natural question to ask about algorithmic aspects of these results. In particular

the following questions seem to be of interest.

(Q1) Given a configuration s, how long does it take to compute γ(s)?

(Q2) Given two critical configurations c1, c2, how long does it take to compute c1 • c2?

(Q3) Does there exist a bijection from K and T that is efficiently computable?

Question (Q3) is essentially answered in the affirmative in [7]. An alternative description

will be given in the sequel paper [17], the description in which makes it easier to determine

the following result. As units of complexity we will use a chip movement, which is the

operation of moving one chip from one vertex to a neighbour, and a firing, which is the

operation of firing one vertex. Notice that firing a vertex v involves dG(v) chip movements.

Theorem 1.4 (Biggs and Winkler [7]). For a connected graph G, there exist a bijection

f : K → T, such that, for any critical configuration c ∈ K , determining f(c) involves O(n)

firings, or O(m) chip movements.

Answers to questions (Q1) and (Q2) will follow from results in Section 7, where the

following results are obtained. Define the norm ‖ · ‖ of a configuration s by

‖s‖ =
∑

v∈V (G)\{q}
|s(v)|.

Theorem 1.5. For a connected graph G and a configuration s on G, the critical configur-

ation γ(s) can be determined in O(n2 (‖s‖ + m) λ−1) firings, involving O(nm (‖s‖ + m) λ−1)

chip movements.

Theorem 1.6. For a connected graph G and two critical configurations c1, c2 on G, the sum

c1 • c2 can be determined in O(n2 mλ−1) firings, involving O(nm2 λ−1) chip movements.

Note that the bounds on the number of chip movements in Theorems 1.5 and 1.6 are

polynomial in n and m, but not necessarily in the size of the input (see below). In particular,

if ‖s‖ is large, then the number of movements in Theorem 1.5 will be large as well. This is

why a different kind of procedure is described and analysed in Section 8. This procedure

will not only involve chip movements, but also certain elementary arithmetic calculations

(addition, multiplication) of rational numbers with numerator and denominator of the

order max{κ, maxv∈V (G)\{q} |s(v)|}.

Theorem 1.7. For a connected graph G and a configuration s on G, the critical configur-

ation γ(s) can be determined in a procedure involving O(n2) arithmetic operations and

O(n2 mλ−1) firings, involving O(nm2 λ−1) chip movements.

508 J. van den Heuvel

In order to decide if the previous results give algorithms that are polynomial in the size

of the input, we have to tell what we mean by the size of the input. We follow the more or

less standard convention (see, e.g., [16]) and define it as the length of a binary encoding

of an instance of the problem. Encoding a nonnegative integer x takes dlog2(x+ 1)e bits,

whereas encoding an integer z takes dlog2(|z| + 1)e + 1 bits (one extra bit for the sign).

Since an instance of the chip-firing problem involves a graph G with possible multiple

edges and an initial configuration s, we need the following number of bits:

s(G, s) =
∑

u,v∈V (G), u 6=v
dlog2(e(u, v) + 1)e+

∑
v∈V (G)\{q}

dlog2(|s(v)|+ 1)e+ n− 1.

Notice that both m and ‖s‖ can be non-polynomial in s(G, s). Hence Theorems 1.4 to 1.7

do not give polynomially bounded procedures. In the case of Theorem 1.7 we can make

some more precise conclusions. The number of spanning trees of a graph G is certainly at

most κ 6
∏

u,v∈V (G) e(u, v), so log2 κ 6
∑

u,v∈V (G) log2 e(u, v). Hence the size of the rationals

used in the arithmetic operations from Theorem 1.7 are of the same order as the size

of the input. Since performing an elementary arithmetic operation involves a number of

steps polynomial in the size of the input, we obtain that the total number of operations

for the arithmetic operations in Theorem 1.7 is bounded by a polynomial in the size of

the input. This means that the number of operations according to Theorem 1.7 is not

polynomial in the size of the input if and only if m is not polynomially bounded by the

input.

In particular, we obtain that, if G is a simple graph (hence m 6 1
2
n2), then Theorems 1.4,

1.6 and 1.7 give a polynomial bound on the number of operations. We do not know how

to bound the number of firings or the number of chip movements by an upper bound

that does not involve the number of edges m of the graph. So we cannot guarantee that

an algorithm to find critical configurations will stop after a number of steps polynomial

in the input if the graph has edges of very high multiplicity.

Similar results to those above have been found by others. Complexity results for the

classical chip-firing game can be found in [9, 18, 22]. These results can be used to

estimate the complexity of obtaining a stable configuration, and compare favourably with

Corollary 7.4(a). Results on the complexity of chip-firing games on directed graphs appear

in [8, 15]. It appears that on directed graphs, and even in mixed graphs in which all edges

except one are undirected, it can take an exponential number of firings before a stable

configuration is obtained.

The dollar game is equivalent to what is known in theoretical physics as sandpile

models: see, e.g., [13, 14]. A more general set-up is studied in so-called avalanche models,

leading to the concept of self-organized criticality [1, 2].

There have been some results obtained from a physical point of view that are related

to the work in this paper. A result in [21] means that the sum c1 • c2 of two critical

configurations on a connected simple graph can be found using O(n4) firings. Note that

for a simple graph on n vertices and m edges we have m = O(n2), so Theorem 1.6 is better

for large edge-connectivity λ.

In [20] sandpile models on d-dimensional lattices are discussed. These models are equiv-

alent to dollar games on graphs consisting of finite box-shaped parts of a d-dimensional

Algorithmic Aspects of a Chip-Firing Game 509

square cubic lattice, with one extra vertex (which plays the role of the government q)

connected to all boundary vertices of the lattice part. It is shown in [20] that, in the case

d = 1 and n vertices (which is the same as the dollar game on a cycle Cn+1), the stable

configuration resulting from a given starting configuration can be found in O(n log(n))

steps, more rapidly than by just performing the chip-firing procedure. The same paper

also contains results indicating that it is unlikely that a faster algorithm exists for d > 3,

but the case d = 2 remains an interesting open problem.

The remainder of this paper is organized as follows. In Section 2 we describe the basic

theory of our chip-firing game, mostly repeating results from the literature. In Section 3

we look at some of the basic properties of critical configurations, in order to have a

good start for the analysis of the procedure to find critical configurations. This analysis

is continued in Section 4, where certain aspects about the dynamics of the dollar game

are studied.

In order to be able to obtain quantitative results on the dynamics of the dollar game,

we will compare the dollar game with some kind of ‘continuous’ version of the game.

This continuous game seems easier to analyse: the analysis can be found in Sections 5

and 6. In Section 7 we will show that the dynamical behaviour of the dollar game and

the continuous version are related, so that we can give quantitative results for the dollar

game. These results will make it possible to obtain proofs for Theorems 1.5 and 1.6.

In the final section we take a different look at the problem to find a corresponding

stable configuration for a given starting configuration. Our point of view in Section 8 will

be quite different from that in the previous section. We look at the problem in a more

algebraic sense, and discuss what that means in terms of algorithms.

In particular, our extension of the dollar game to allow negative values of chips in a

configuration is only essential in the final section. Everything up to Section 8 applies if

we limit ourselves to nonnegative chip numbers only.

2. Basic theory of chip-firing

We use the notation and definitions from the previous section. We will show the develop-

ment of the basic theory of the dollar game, similar to the theory in [4]. We include some

proofs for completeness, and because many of the arguments are used in later sections.

The following three lemmas are straightforward, and their proofs are omitted.

Lemma 2.1. Let σ = v1, . . . , vk be a legal sequence for the configuration s. Suppose also

that the vertex u is ready in s and that u does not appear in the sequence σ. Then the

sequence u, v1, . . . , vk is also legal for s.

Lemma 2.2. Let v1, . . . , vk−1, vk, vk+1, . . . , v` be a legal sequence for the configuration s.

Suppose also that the vertex vk is ready in s and that vk does not appear in the sequence

v1, . . . , vk−1. Then the sequence vk, v1, . . . , vk−1, vk+1, . . . , v` is also legal for s.

Lemma 2.3. Let σ = v1, . . . , vk be a legal sequence for the configuration s and suppose

510 J. van den Heuvel

that q does not appear in the sequence σ. Let s′ be a configuration such that s′(v) > s(v) for

all v ∈ V (G) \ {q}. Then σ is also a legal sequence for s′.

Let s be a configuration and suppose σ = v1, . . . , vk is a finite sequence of vertices which

is legal for s. Then for v ∈ V (G) we denote the number of occurrences of the vertex v in σ

by xσ(v). Combining all values of xσ gives the n-vector xσ , the representative vector of σ.

The representative vector of a legal sequence σ gives a convenient way to describe the

relation between the starting configuration s and the configuration s′ obtained after σ has

been applied. More precisely, for all v ∈ V (G) \ {q}, we have

s′(v) = s(v)− xσ(v) dG(v) +
∑

u∈NG(v)

xσ(u) e(u, v). (2.1)

The formula above is obvious since, whenever v itself is fired, it loses dG(v) chips, and

whenever another vertex u is fired, v gains e(u, v) chips.

The following result is proved in [4] using more involved counting arguments.

Lemma 2.4 (Biggs [4]). Let σ = v1, . . . , vk and σ′ = v′1, . . . , v ′̀ both be legal sequences for

the configuration s. Then there exists a sequence τ = u1, . . . , uj which is also legal for s and

such that its representative vector xτ satisfies, for all v ∈ V (G),

xτ(v) = max { xσ(v), xσ′(v) }.
Moreover, τ can be chosen such that its initial part is identical to σ.

Proof. We use induction on k + `. If k = 0 or ` = 0, we are done by setting τ = σ′ or

τ = σ, respectively.

If v1 = v′1, then we are done by applying the induction hypothesis on the configuration

obtained after applying v1 on s, and the sequences σ = v2, . . . , vk and σ′ = v′2, . . . , v ′̀ .
So we can assume v1 6= v′1. In particular, we know that v1 is ready in s. If v1 does not

occur in σ′, then by Lemma 2.1 the sequence v1, v
′
1, . . . , v

′̀ is also legal for s. Now apply

the induction hypothesis on the configuration obtained after applying v1 on s, and the

sequences σ = v2, . . . , vk and σ′ = v′1, . . . , v ′̀ .
So we are left with the case that v1 6= v′1 and v1 occurs somewhere in σ′. Let i be the

minimal index such that v′i = v1. Because v1 is ready in s, it follows from Lemma 2.1 that

the sequence v′i , v′1, . . . , v′i−1, v
′
i+1, . . . , v

′̀ is legal for s. So now we can apply the induction

hypothesis on the configuration obtained after applying v1 on s, and the sequences

σ = v2, . . . , vk and σ′ = v′1, . . . , v′i−1, v
′
i+1, . . . , v

′̀ .

Using Lemma 2.4, we can immediately prove the so-called ‘confluency property’ of the

dollar game, which is part (a) of the following theorem. The other parts describe some

special cases that are important in Section 4.

Theorem 2.5 (Biggs [4]). Let G be a connected graph and let σ = v1, . . . , vk and σ′ =

v′1, . . . , v ′̀ both be legal sequences for the configuration s0 on G. Suppose that applying these

sequences leads to configurations s1 and s′1, respectively.

Algorithmic Aspects of a Chip-Firing Game 511

(a) There exists a configuration s2 which can be obtained from both s1 and s′1 by applying

legal sequences.

(b) If no vertex appears more than once in both σ and σ′, then the configuration s2 in (a)

can be obtained without firing a vertex more than once.

(c) If both σ and σ′ do not contain q, and no vertex in V (G)\{q} appears more than once

in both σ and σ′, then the configuration s2 in (a) can be obtained without firing q and

such that no vertex in V (G) \ {q} is fired more than once.

Proof. From Lemma 2.4 it follows that we can find a legal sequence τ for s0, such that

xτ(v) = max{xσ(v), xσ′ (v)} for all v ∈ V (G), and such that the initial part of τ is identical

to σ. Let τ be the subsequence of τ that appears after the part that is identical to σ. Then τ

is a legal sequence for s1. Of course, we can also find a legal sequence τ′ for s0, such that

xτ′(v) = max{xσ(v), xσ′ (v)} for all v ∈ V (G), and such that the initial part of τ′ is identical

to σ′. Let τ′ be the subsequence of τ′ that appears after the part that is identical to σ′.
Then τ′ is a legal sequence for s′1. So we obtain (a) if we can prove that the configurations

obtained from applying τ to s1 and from applying τ′ to s′1 are the same. But this follows

from applying equation (2.1) to xτ and xτ′ and observing that, for all v ∈ V (G), we have

xτ(v) = max{xσ(v), xσ′ (v)} = xτ′(v).

Part (b) follows by observing that, if xσ(v) 6 1 and xσ′ (v) 6 1, then xτ(v) 6 1. And for

part (c) we only need the extra observation that, if xσ(q) = xσ′(q) = 0, then xτ(q) = 0.

3. Algorithmic properties of critical configurations

Recall that a critical configuration of a connected graph G is a configuration s on G

that is both stable (i.e., s(v) < dG(v) for all v ∈ V (G) \ {q}) and recurrent (i.e., there

exists a non-empty legal sequence for s which leads back to s after applying it). Most of

the following results occur in [4], sometimes only implicitly and sometimes with a more

algebraic proof than the ones given here.

Lemma 3.1 (Biggs [4]). Let s be a stable configuration and suppose σ = v1, . . . , vk is a

legal sequence for s in which q appears only once. Then every vertex of G appears at most

once in σ.

Proof. Note that, since s is stable, q must appear as the first vertex in σ. Suppose some

vertices appear more than once in σ and let v be the first vertex that appears for the second

time. Let vi be this second appearance of v in σ. Then vi must be ready after v1, . . . , vi−1

has been applied to s. Since vi appears once in v1, . . . , vi−1 and every other vertex appears

at most once, we find that the number of chips on vi after applying v1, . . . , vi−1 is at most

s(vi)− dG(vi) +
∑

u∈NG(vi)

e(u, vi) 6 s(vi)− dG(vi) + dG(vi) = s(vi).

But since s(vi) < dG(vi), this contradicts that vi is ready after v1, . . . , vi−1 has been applied.

512 J. van den Heuvel

Corollary 3.2. Let s be a stable configuration and suppose σ = v1, . . . , vk is a legal sequence

for s. Then every vertex appears in σ at most as often as q does.

Proof. Partition σ into parts that start with q and where q does not appear later in the

part. By applying Lemma 3.1 to each part, we are done.

Corollary 3.3 (Biggs [4]). Let s be a stable configuration and suppose σ = v1, . . . , vk is a

legal sequence for s such that after applying σ we return to the configuration s. Then every

vertex of G (including q) appears the same number of times in σ.

Proof. This can be proved using equation (2.1) and some linear algebra, as is done in [4].

The following proof is more intuitive and in line with our general approach. Suppose the

result is false. Let v be a vertex that appears a minimal number of times in σ and that is

adjacent to a vertex v′ that appears more often in σ than v itself. (Since G is connected,

such a vertex must exist if not all vertices appear equally often in σ.) By Corollary 3.2 it

follows that v 6= q. Suppose v appears p times in σ. Then, when applying σ, v loses p dG(v)

chips. On the other hand, v gains at least p e(u, v) chips from each vertex u ∈ NG(v) and in

fact at least (p+ 1) e(v, v′) chips from v′. This means that, after applying σ, v has at least

s(v)− p dG(v) +
∑

u∈NG(v)

p e(u, v) + e(v, v′) = s(v) + e(v, v′) > s(v)

chips, contradicting the fact that the configuration s reappears after σ has been applied.

Theorem 3.4 (Biggs [4]). Let G be a connected graph, s a critical configuration on G, and

σ = v1, . . . , vk a legal sequence for s such that σ contains the vertex q exactly once, and

such that, after applying σ to s, a stable configuration is obtained. Then k = n, every vertex

appears exactly once in σ, and the resulting stable configuration is equal to s.

Proof. Let σ be any legal sequence for s, which contains q exactly once (since s is

stable, q must appear as the first vertex in σ), and such that a stable configuration s′ is

returned after applying σ. Since s is a critical configuration, there exists a legal sequence

σ′ = v′1, . . . , v ′̀ for s, and such that, after applying σ′, the configuration s is returned. Note

that every vertex appears the same number of times in σ′, and hence every vertex appears

at least once in σ′; but every vertex appears at most once in σ. This means that, for all

v ∈ V (G),

max { xσ(v), xσ′ (v) } = xσ′ (v).

So, if we form the sequence τ according to Lemma 2.4, then every vertex appears in τ the

same number of times as the vertex does in σ′. Hence every vertex appears equally often

in τ, and applying τ will result in the configuration s again. Also, we can choose τ such

that its initial segment is equal to σ. Let τ′ be the part of τ after the initial part σ. Then τ′
is a legal sequence for s′, the stable configuration resulting from applying σ on s. So now

we have a sequence τ in which each vertex appears equally often: the initial part of τ is

Algorithmic Aspects of a Chip-Firing Game 513

equal to σ, and each vertex appears at most once; for the remaining part τ′, each vertex

appears at most as often as q does, because of Corollary 3.2. This is only possible if each

vertex appears exactly once in σ. But this also means that k = n and s′ = s, thus proving

the theorem.

Corollary 3.5. Let c be a critical configuration. Then 0 6 c(v) 6 dG(v) − 1 for all v ∈
V (G) \ {q}.

Proof. The fact that c(v) 6 dG(v) − 1 follows directly from the definition of a critical

configuration as a special stable configuration. For the lower bound on c(v), define the

legal sequence σ as in Theorem 3.4. Since every vertex u ∈ V (G) \ {v} appears once in σ,

v receives ∑
u∈V (G)\{v}

e(u, v) = dG(v)

chips when applying σ. On the other hand, since v is fired as well, there must be a moment

when v holds at least dG(v) chips. This is only possible if at the start v held at least 0

chips.

Notice that Theorem 3.4 means that it is fairly easy to recognize a critical configuration:

once a stable configuration s is obtained, store it in memory. Then start a sequence of

legal chip firings, starting with firing q, until another stable configuration s′ is obtained.

Because of Lemma 3.1 this happens after all vertices are fired at most once, hence after

at most n firings, so after at most
∑

v∈V (G)dG(v) = 2m chip movements. If s′ = s, then we

have found a critical configuration; otherwise forget s and repeat the procedure with s′.
Of course, crucial to the practical success of the approach above is some knowledge about

the number of times the procedure above needs to be repeated. An upper bound for this

number will be determined in the following sections.

We finish this section by showing that there exists an even more efficient way to

recognize a critical configuration: we do not have to remember a candidate configuration,

but only have to remember whether or not every vertex has yet been fired.

Theorem 3.6. Let G be a connected graph and s a configuration on G. Let σ = v1, . . . , vk
be a legal sequence for s chosen such that:

(i) applying σ to s results in a stable configuration s′;
(ii) every vertex appears at least once in σ.

Then s′ is a critical configuration.

If, moreover, σ has been chosen such that, additionally,

(iii) no subsequence v1, . . . , v` with ` < k has properties (i) and (ii),

then, if q appears in σ, the stable configuration, that appears just before the last time q is

fired when applying σ, is equal to s′. This is in fact the first time a critical configuration is

obtained.

514 J. van den Heuvel

Proof. We use induction on k. Suppose first that v1 appears more than once in σ. Then

we can apply the induction hypothesis on the configuration obtained after v1 has been

fired and the sequence σ′ = v2, . . . , vk .

So we can assume that v1 appears only once in σ. If every vertex appears only once

in σ, then the configuration s′ is the same as the original configuration s. Since s′ is a

stable configuration, so is s. This means that s is a critical configuration, which proves the

result.

So assume that some vertex appears more than once in σ. Choose vi such that there

exists an j > i with vj = vi and such that j is minimal with that property. First suppose

that vi = q. Let s be the configuration obtained from s by adding e(v, q) to s(v) for every

v ∈ NG(q). (This is the configuration obtained from s by firing q if that had been legal.)

Then the sequence σ = v1, . . . , vi−1, vi+1, . . . , vk , in which each vertex appears at least once,

is legal for s. Applying the induction hypothesis to s and σ proves the result.

Hence we can assume vi 6= q. By the choice of vi, every vertex appears at most once in

the sequence τ = v1, . . . , vi−1, vi, vi+1, . . . , vj−1, and when τ has been applied to s, vi is ready

again. But since vi loses dG(vi) chips and gains at most∑
u∈NG(vi)

e(u, vi) = dG(vi)

chips, vi must have been ready when we started applying τ. Let s′ be the configuration

obtained from s by firing vertex vi. Then the sequence σ = v1, . . . , vi−1, vi+1, . . . , vk , in which

each vertex appears at least once, is legal for s′. Now apply the induction hypothesis to s′
and σ to obtain the result.

The following result, which follows directly by combining Theorems 3.4 and 3.6, is a

crucial observation for later sections.

Corollary 3.7. Let s be a configuration. Suppose that, after applying a legal sequence for s

in which each vertex, except possibly q, appears at least once, a stable configuration s′ is

obtained. Then s′ is a critical configuration.

Corollary 3.8. Let c be a critical configuration. Let s be a configuration with s(v) > c(v)

for all v ∈ V (G) \ {q}. Then the first stable configuration that appears after applying a

(possibly empty) legal sequence to s is a critical configuration.

Proof. Let c and s be the configurations obtained from c and s, respectively, by

adding e(v, q) to c(v) and s(v) for every v ∈ NG(q). (These are the configurations obtained

by firing q if that had been legal.) Then there exists a legal sequence σ = v1, . . . , vn−1 for c

containing every vertex in V (G) \ {q}. Since s(v) > c(v) for all v ∈ V (G) \ {q}, σ is also

legal for s by Lemma 2.3. Now construct a legal sequence σ for s starting with σ, not

containing q, and resulting in a stable configuration s′. Since σ contains each vertex in

V (G) \ {q} at least once, s′ is a critical configuration. But after having applied σ on s, we

have the original configuration s. Applying the part of σ after σ to s hence leads to the

first stable configuration s′, being a critical configuration.

Algorithmic Aspects of a Chip-Firing Game 515

Corollary 3.9. Let c1, c2 be two critical configurations and set s = c1 + c2 (vector addi-

tion). Then the first stable configuration that appears after applying a (possibly empty) legal

sequence to s is a critical configuration, and hence is equal to c1 • c2.

Proof. This follows directly from Corollary 3.8 upon noting that c2(v) > 0 by Corol-

lary 3.5, and hence s(v) > c1(v), for all v ∈ V (G) \ {q}.

4. Dynamics of the dollar game

In order to obtain an answer to the question, ‘How long does it take before a stable or

critical configuration is reached?’, we are going to look at the dollar game as some kind

of dynamic process. In order to do this, we need to define a unit of time.

Let s be a configuration in the dollar game. A cycle for s is a sequence σ such that:

(S1) if s is not a stable configuration, then σ = v1, . . . , vk is a legal sequence for s such

that σ does not contain q, every other vertex appears at most once in σ, and k is as

large as possible under these conditions;

(S2) if s is a stable configuration, then σ = q, v1, . . . , vk is a legal sequence for s such that

every vertex (including q) appears at most once in σ, and k is as large as possible

under these conditions.

Note that a cycle is not uniquely determined by s. But the following lemma, which is a

direct consequence of Theorem 2.5, shows that some properties of a cycle are completely

determined.

Lemma 4.1. Let s be a configuration and let σ1, σ2 be two cycles of s. Then a vertex

appears the same number of times in σ1 as in σ2.

In particular, it follows that the configuration s′ obtained after applying a cycle to s is

independent of the exact choice of the cycle, but is completely determined by s.

Let s be a starting configuration in the dollar game. We call s the configuration at

time 0 of the game, denoting s = s0. If the configuration st at time t is defined, then

the configuration at time (t + 1) is defined as the configuration obtained by applying

one cycle to st. Because of Lemma 4.1 this means that, for every t ∈ {0, 1, 2, 3, . . . }, the

configuration st at time t is uniquely defined.

We complete this short section by giving some properties of the configurations st.

Lemma 4.2. Let st be the configuration of the dollar game at time t, defined on a graph G

with n vertices and m edges.

(a) The configuration st+1 can be obtained from st by firing every vertex at most once.

(b) Configuration st+1 can be obtained from st in at most n firings.

(c) Configuration st+1 can be obtained from st in at most 2m chip movements.

Proof. Statements (a) and (b) follow directly from the definition of a cycle for st in (S1)

or (S2). For (c), observe that firing a vertex v ∈ V (G) involves dG(v) chip movements. Hence

firing every vertex at most once involves at most
∑

v∈V (G)dG(v) = 2m chip movements.

516 J. van den Heuvel

Lemma 4.3. Let s0 be the starting configuration of a dollar game on a graph G. Then, for

any v ∈ V (G) \ {q} and t ∈ {0, 1, 2, . . . }, we have:

(a) if st(v) < 0, then st(v) 6 st′ (v) 6 dG(v)− 1 for all t′ > t;
(b) if 0 6 st(v) 6 dG(v)− 1, then 0 6 st′ (v) 6 dG(v)− 1 for all t′ > t;
(c) if st(v) > dG(v), then 0 6 st′ (v) 6 st(v) for all t′ > t.

Proof. Let v ∈ V (G) \ {q} and t ∈ {0, 1, 2, . . . }, and let σ be a cycle for st. Since every

vertex u ∈ V (G) \ {v} appears at most once in σ, v receives at most∑
u∈V (G)\{v}

e(u, v) = dG(v)

chips when applying the cycle to st. On the other hand, v itself is only fired if s(v) > dG(v)

for a certain configuration, and then v loses dG(v) chips during the cycle.

If st(v) < 0, then v is not fired in the cycle σ, and hence st(v) 6 st+1(v) 6 st(v) + dG(v) <

dG(v). If st(v) > dG(v), then v is certainly fired in the cycle, which gives 0 6 st(v)− dG(v) 6
st+1(v) 6 st(v). And if 0 6 st(v) 6 dG(v) − 1, and v is not fired in the cycle σ, then

0 6 st(v) 6 st+1(v) < dG(v). Finally, if 0 6 st(v) 6 dG(v)− 1, and while applying the cycle σ

we obtain a configuration s with s(v) > dG(v), then v will be fired in the cycle and hence

0 6 st+1(v) 6 st(v) + dG(v)− dG(v) = st(v) 6 dG(v)− 1.

The result follows by setting t′ = t+ i and applying induction on i.

5. Basic theory of the oil game

Our main tool in analysing the discrete dollar game will be a continuous version of the

game. In order to develop intuition for what is happening in this game, one can consider

it as an oil game, in which quantities of oil instead of chips are transported from one

vertex of the graph to another.

As in the dollar game we will assume that we are given a finite, undirected, connected

graph G and one special vertex q ∈ V (G). At a certain time we assume that each

vertex v ∈ V (G) \ {q} contains a quantity r(v) of oil, which can be negative. An (n − 1)-

vertex r of all oil quantities is called a configuration of the oil game. The flow of oil out

of a vertex v is indicated by ϕ(v), where ϕ(v) is always nonnegative. We interpret ϕ(v)

as the amount of oil per unit of time that is pumped away from v through each of the

edges incident with v. The value of ϕ(v), given a configuration r, will be determined by

the following set of rules.

(O1a) If v ∈ V (G) \ {q} with r(v) < 0, then no oil will be pumped away from v; hence

ϕ(v) = 0.

(O1b) If v ∈ V (G) \ {q} with r(v) > 0, then a flow of one unit of oil per unit of time per

edge will be pumped away from v; hence ϕ(v) = 1.

(O1c) If v ∈ V (G) \ {q} with r(v) = 0, then all input of oil that v receives from its

neighbours will be pumped away from v as well, evenly distributed over all edges

incident with v.

(O2a) If v = q and there exists a vertex u ∈ V (G) \ {q} with r(u) > 0, then q will output

no oil; hence ϕ(q) = 0.

Algorithmic Aspects of a Chip-Firing Game 517

(O2b) If v = q and r(u) 6 0 for all u ∈ V (G) \ {q}, then one unit of oil per unit of time

per edge will be pumped away from q; hence ϕ(q) = 1.

Another way to describe the oil game is by saying that the oil flow in a game with

configuration r is determined by the solutions ϕ(v), v ∈ V (G), of the following collection

of equations:

ϕ(v) =

0, if r(v) < 0,

1

dG(v)

∑
u∈NG(v)

e(u, v)ϕ(u), if r(v) = 0,

1, if r(v) > 0,

for all v ∈ V (G) \ {q}; (5.1)

ϕ(q) =

{
0, if there exists a u ∈ V (G) \ {q} with r(u) > 0,

1, if for all u ∈ V (G) \ {q} we have r(u) 6 0.
(5.2)

We say that a vertex v ∈ V (G) \ {q} is passive if r(v) < 0, saturated if r(v) = 0, and

active if r(v) > 0. The vertex q is active if no other vertex is active, and passive otherwise.

For a certain configuration r, let Va
r be the set of active vertices and Vp

r the set of passive

vertices.

Looking at the equations for ϕ in (5.1) and (5.2), it appears that we can interpret ϕ

as an electrical flow in a certain electrical network, as described below. See, e.g., [10,

Chapters II and IX] for definitions and the theory of electrical networks needed.

Proposition 5.1. The oil flow ϕ(v), v ∈ V (G), in a connected graph G with configuration r

is equal to the potential solution of the electrical network on the vertices of G in which

the conductance between two vertices u, v is e(u, v), the vertices in Vp
r have potential 0, the

vertices in Va
r have potential 1, and the vertices in V (G) \ (Va

r ∪ Vp
r) satisfy Kirchhoff ’s

currency law, that is,

dG(v)ϕ(v) =
∑

u∈NG(v)

e(u, v)ϕ(u), for v ∈ V (G) \ (Va
r ∪ Vp

r).

Note in particular that the theory of electrical networks guarantees a unique solution

to the potential problem on a connected graph. So we get that the oil flow ϕ is uniquely

determined by equations (5.1) and (5.2).

Lemma 5.2. For a configuration r, we have that 0 6 ϕ(v) 6 1 for all v ∈ V (G).

Proof. Suppose that there exists a configuration r for which ϕ(v) > 1 for some v ∈ V (G).

Choose v such that ϕ(v) is maximum. Because of equation (5.2), this means that v 6= q.

According to (5.1) we find that r(v) = 0 and

ϕ(v) =
1

dG(v)

∑
u∈NG(v)

e(u, v)ϕ(u).

Since ϕ(u) 6 ϕ(v) for all u ∈ V (G), this gives

dG(v)ϕ(v) =
∑

u∈NG(v)

e(u, v)ϕ(u) 6
∑

u∈NG(v)

e(u, v)ϕ(v) = dG(v)ϕ(v).

518 J. van den Heuvel

So we must have equality; in particular it must hold that ϕ(u) = ϕ(v) for all u ∈ NG(v).

Continuing the same reasoning for the neighbours of v, and using that G is connected, we

obtain that ϕ(u) = ϕ(v) > 1 for all u ∈ V (G). This contradicts the fact that ϕ(q) ∈ {0, 1}.
A similar argument gives a contradiction if ϕ(v) < 0 for some v ∈ V (G).

6. Dynamics of the oil game

The picture of the oil game sketched in the previous section is that of a static game. We

will now add a dynamical element, interpreting the oil flows ϕ as quantities of oil that

are added or removed from the amounts of oil r(v) at a vertex v. In order to emphasize

this dynamical behaviour we index the variables with the time t: rt and ϕt. The values

of ϕt, given rt, are determined by equations (5.1) and (5.2). The dynamics of rt will be

determined by the equation

d

dt
rt(v) = −dG(v)ϕt(v) +

∑
u∈NG(v)

e(u, v)ϕt(u), for all v ∈ V (G) \ {q}. (6.1)

We usually assume that the game starts at time t = 0 with a configuration r0.

Lemma 6.1. For any v ∈ V (G) \ {q} and t > 0 we have:

(a) if rt(v) < 0, then rt(v) 6 rt′ (v) 6 0 for all t′ > t;
(b) if rt(v) = 0, then rt(v) = rt′ (v) = 0 for all t′ > t;
(c) if rt(v) > 0, then 0 6 rt′ (v) 6 rt(v) for all t′ > t.

Proof. If rt(v) = 0, then equations (5.1) and (6.1) give that d
dt
rt(v) = 0; hence rt′ (v) =

rt(v) = 0 for all t′ > t.
If rt(v) < 0, then ϕt(v) = 0 by equation (5.1). From Lemma 5.2 we learn that ϕt(u) > 0

for all u ∈ V (G) Using equation (6.1) this means that

d

dt
rt(v) = −dG(v) · 0 +

∑
u∈NG(v)

e(u, v)ϕt(u) > 0,

and hence rt′ (v) > rt(v) for t′ > t as long as rt′ (v) < 0. But once rt′ (v) = 0, we get that

rt′′ (v) = rt′ (v) = 0 for t′′ > t′.
If rt(v) > 0, then we can do a similar reasoning using that ϕt(v) = 1 and ϕt(u) 6 1 for

all u ∈ V (G), hence

d

dt
rt(v) = −dG(v) · 1 +

∑
u∈NG(v)

e(u, v)ϕt(u) 6 0.

An active configuration of the oil game is a configuration r in which r(v) > 0 for some

v ∈ V (G) \ {q}; otherwise the configuration is called inactive. Note that the vertex q is

passive in an active configuration and active in an inactive configuration. A recurrent

configuration of the oil game is a configuration such that the total inflow and outflow is

the same for each vertex. In particular, if rt is a recurrent configuration, then d
dt
rt = 0

by equation (6.1) and hence rt′ = rt for all t′ > t. So a recurrent configuration of the oil

game can be considered as some kind of ‘critical configuration’ of the oil game.

Algorithmic Aspects of a Chip-Firing Game 519

The following are the two crucial results concerning recurrent configurations of the oil

game. Recall that ‖r‖ =
∑

v∈V (G)\{q}|r(v)|. Define

‖r‖+ =
∑

v∈V (G)\{q}, r(v)>0

r(v) =
∑

v∈Va
r \{q}

r(v),

‖r‖− =
∑

v∈V (G)\{q}, r(v)<0

|r(v)| = ∑
v∈Vp

r \{q}
−r(v).

Theorem 6.2. For a connected graph G, the only recurrent configuration of the oil game is

the configuration r0 = 0. For the oil game in the recurrent configuration r0, we have that

ϕ(v) = 1.

Theorem 6.3. Let G be a connected graph on n vertices and with edge-connectivity λ, and

let r0 be a starting configuration of the oil game on G.

(a) If r0 is active, then, for any t > 3 n ‖r0‖+/(λ+ 1), rt is a passive configuration.

(b) If r0 is passive, then, for any t > 3 n ‖r0‖−/(λ+ 1), rt = r0.

(c) For any t > 3 n ‖r0‖/(λ+ 1) we have that rt = r0.

Theorem 6.3 will follow from results later in this section.

Proof of Theorem 6.2. It is obvious that r0 is a recurrent configuration with ϕ(v) = 1 for

all v ∈ V (G).

Let rt be a configuration in which some vertices in V (G) \ {q} are active; hence

ϕt(v) = 1 for some v ∈ V (G) \ {q}. Since G is connected and ϕt(q) = 0, there must be

vertices v ∈ V (G)\ {q} and u ∈ NG(v), such that ϕt(v) = 1 and ϕt(u) < 1. Then d
dt
rt(v) < 0,

and hence r cannot be a recurrent configuration.

If rt is a configuration in which q is active, hence ϕt(q) = 1, but not all vertices are

saturated, then we can find vertices v ∈ V (G) \ {q} and u ∈ NG(v), such that ϕt(v) = 0

and ϕt(u) > 0. Then d
dt
rt(v) > 0, and again we must conclude that r is not a recurrent

configuration.

Another way to phrase Theorem 6.2 is to say that a configuration is not recurrent as

long as there are passive vertices. It also follows from the proof of the theorem that, in a

non-recurrent configuration, there is a net oil flow from the active to the passive vertices.

It is the amount of this net flow which will be the crucial parameter that determines how

long it takes before we reach the recurrent configuration r0.

Given a configuration r 6= r0 on G, the graph G∗ is obtained from G by contracting

all vertices of Va
r into one vertex a∗ and similarly all vertices of Vp

r into one vertex p∗,
removing loops but not multiple edges. If r is inactive (hence q ∈ Va

r), then we set q∗ = a∗
and r∗(p∗) =

∑
v∈Vp

r
r(v); similarly, if r is active (hence q ∈ Vp

r), then we set q∗ = p∗ and

r∗(a∗) =
∑

v∈Va
r
r(v). For vertices v ∈ V (G) \ (Va

r ∪ Vp
r) we set r∗(v) = r(v).

The following lemma can be proved using the theory of electrical networks, using

Proposition 5.1. For completeness we give a more intuitive proof.

520 J. van den Heuvel

Lemma 6.4. For a non-recurrent configuration r, the net flow in G from the active to the

passive vertices is the same as the net flow in G∗, with configuration r∗, from the unique

active vertex in G∗ to the unique passive vertex in G∗.

Proof. If there exists an edge in G between two passive vertices, then no flow occurs

along this edge. Similarly, for an edge between two active vertices, we have that a flow of

size 1 goes in both directions; hence no net flow goes through such an edge. So we can

remove any of this type of edge without changing the flow pattern in the remainder of

the graph. Thus we can assume that there are no edges in G between vertices in Va
r and

between vertices in Vp
r . Next suppose that r is active. If we identify two vertices from Va

r

forming one new vertex, adapting r in the appropriate way, then again we see that this

does not change the flow pattern, since the flow out of the new vertex is the same as the

total flow out of the two original vertices. A similar observation applies when different

vertices from Vp
r are identified. Continuing with this identification process, we eventually

obtain the graph G∗ with configuration r∗ in which the same flow pattern appears as

it did in G with configuration r. In particular, the total net flow from the active to the

passive vertices is the same before and after the contraction.

Given a graph G with non-recurrent configuration r, let ϕ∗ be the flow in the graph G∗
with configuration r∗. The following is a translation of Lemma 6.4, using equation (6.1).

Corollary 6.5. For a non-recurrent configuration rt on G at time t, we have the following

properties.

(a) It holds that ϕ∗t (a∗) = 1. Moreover, if rt is active (hence q /∈ Va
r and a∗ 6= q∗), then

d

dt
r∗t (a∗) = −dG∗(a∗) +

∑
u∈NG∗ (a∗)

e(u, a∗)ϕ∗t (u)

=
∑
v∈Va

rt

[
− dG(v) +

∑
u∈NG(v)

e(u, v)ϕ(v)

]
=
∑
v∈Va

rt

d

dt
rt(v).

(b) It holds that ϕ∗t (p∗) = 0. Moreover, if rt is inactive (hence q /∈ Vp
r and p∗ 6= q∗), then

d

dt
r∗t (p∗) =

∑
u∈NG∗ (p∗)

e(u, p∗)ϕ∗t (u) =
∑
v∈Vp

rt

[∑
u∈NG(v)

e(u, v)ϕ(v)

]
=
∑
v∈Vp

rt

d

dt
rt(v).

The main advantage of Lemma 6.4 and Corollary 6.5 is that an instance of the oil

problem, with possibly many active and/or passive vertices, is translated into an instance

with only one active and one passive vertex. This will prove a major advantage once we

return to the relationship between oil flows and electrical networks.

For the graph G∗ define Reff(a∗, p∗) as the effective resistance between a∗ and p∗, i.e.,

the resistance between a∗ and p∗ in the electrical network given by the graph G∗ if all

edges are assumed to be resistors with resistance one. Here we assume that multiple edges

appear as multiple resistors. Another way to obtain the same is by replacing an edge

Algorithmic Aspects of a Chip-Firing Game 521

with multiplicity e by one resistor with resistance 1/e. Define the effective conductance

Ceff(a∗, p∗) as 1/Reff(a∗, p∗).

Theorem 6.6. Let rt be a non-recurrent configuration on a connected graph G at time t.

(a) If rt is active, then
∑
v∈Va

rt

d
dt
rt(v) = −Ceff(a∗, p∗).

(b) If rt is inactive, then
∑
v∈Vp

rt

d
dt
rt(v) = Ceff(a∗, p∗).

Proof. We only prove the case that rt is active, the other case being similar. The flow ϕ∗t
is the solution of the potential problem on the network represented by the graph G∗ in

which every edge has unit resistance, where we set ϕ∗t (a∗) = 1, ϕ∗t (p∗) = 0, and where we

require that Kirchhoff’s currency law holds for all other vertices. This means that the

electrical flow from a∗ to a neighbouring vertex u ∈ NG∗(a
∗) through the e(u, a∗) edges

connecting u and a∗ is equal to e(u, a∗) · (ϕ∗t (a∗) − ϕ∗t (u)). (Recall that every edge has

resistance one.) So the total electrical flow away from a∗ is equal to∑
u∈NG∗ (a∗)

e(u, a∗) · (ϕ∗t (a∗)− ϕ∗t (u)) =
∑

u∈NG∗ (a∗)
e(u, a∗) · 1− ∑

u∈NG∗ (a∗)
e(u, a∗)ϕ∗t (u)

= dG∗(a
∗)− ∑

u∈NG∗ (a∗)
e(u, a∗)ϕ∗t (u).

This flow is equal to the flow from a∗ to p∗, hence equal to Ceff(a∗, p∗), and the result

follows from Corollary 6.5(a).

In order to use Theorem 6.6 we want to have a lower bound for Ceff(a∗, p∗). Several of

these lower bounds exist in the literature. However, many of them involve the degrees of

the graph under consideration. Since we are working with the graph G∗, which can have

degrees that are quite different from G, we need to do a little translation to get a lower

bound depending on G only. The following is implicit in the proof of [12, Theorem 6].

Lemma 6.7 (Coppersmith, Feige and Shearer [12]). For any pair of vertices s and t in a

connected graph H , the effective conductance between s and t satisfies

Ceff(s, t) >

[
3
∑

v∈V (H)

1

dH (v) + 1

]−1

.

Corollary 6.8. Let rt be a non-recurrent configuration on the graph G with n vertices

and edge-connectivity λ, and let G∗ be as defined above Lemma 6.4. Then the effective

conductance between a∗ and p∗ in G∗ satisfies Ceff(a∗, p∗) > λ+1
3 n

.

Proof. Let G∗ have n∗ vertices and edge-connectivity λ∗. Since dG∗(v) > λ∗ for all

v ∈ V (G∗), we find from Lemma 6.7 that Ceff(a∗, p∗) > λ∗+1
3 n∗ . Since contraction does not

reduce the edge-connectivity, we have λ∗ > λ. Since trivially n∗ 6 n, the result follows.

522 J. van den Heuvel

We now can give the proof of Theorem 6.3.

Proof of Theorem 6.3. Let rt be an active configuration on G. From Theorem 6.6 and

Corollary 6.8 it follows that ∑
v∈Va

rt

d

dt
rt(v) < −λ+ 1

3 n
.

Note that this bound is independent of the set of vertices Va
r , although this set will change

over time. In particular we find that∑
v∈Va

rt

rt(v) <
∑
v∈Va

r0

r0(v)− t · λ+ 1

3 n
= ‖r0‖+ − t · λ+ 1

3 n
.

Since for an active configuration r we must have
∑

v∈Va
r
r(v) > 0, it is impossible that the

configuration is still active for t > 3 n ‖r0‖+/(λ+ 1), thus proving part (a).

The proof of (b) is similar.

So let r0 be any configuration. Let tp be the moment in time in which the configuration

turns passive, where it is possible that tp = 0. From (b) we see that, for any t >
tp + 3 n ‖rtp‖−/(λ+ 1), rt is the recurrent configuration. Hence, if t > 3 n ‖r0‖+/(λ+ 1) +

3 n ‖rtp‖−/(λ+ 1), then rt = r0. From Lemma 6.1 we obtain ‖rtp‖− 6 ‖r0‖−, which gives

‖r0‖ = ‖r0‖+ + ‖r0‖− > ‖r0‖+ + ‖rtp‖−. So, if t > 3 n ‖r0‖/(λ+ 1), then rt = r0, which

completes the proof of Theorem 6.3.

7. From a configuration in the dollar game to a critical configuration

Theorem 6.3 gives upper bounds on the time it takes before an initial configuration in

the oil game reaches the recurrent state. In this section we obtain similar results for the

dollar game. The main tools will be results that show connections between instances of

the dollar game on a graph and certain instances of the oil game on the same graph.

Applying Theorem 6.3 then makes it possible to give upper bounds on the time it takes

before an initial configuration in the dollar game reaches its critical state. (Here ‘time’

is used in the sense of Section 4.) Once we have these results, we can finally obtain the

results announced in the Introduction.

We begin with some additional notation. For a starting configuration r0 of the oil game

on a graph G, a vertex v ∈ V (G), and any real number t > 0, define ϕt(v) and rt as in

Section 6. Also define Φt(v) =
∫ t

0
ϕx(v) dx. Because of Lemma 5.2, 0 6 Φt(v) 6 t.

For a starting configuration s0 of the dollar game on G, a vertex v ∈ V (G), and any

integer t > 0, define st as in Section 4. For t > 1 define ψt(v) as the number of times that

vertex v has been fired when going from configuration st−1 to st (hence ψt(v) ∈ {0, 1}),
and define Ψt(v) =

∑t
z=1ψz(v). Set ψ0(v) = Ψ0(v) = 0. We again obtain 0 6 Ψt(v) 6 t for

all t > 0.

We can interpret Φt(v) as the total amount of oil that has flowed away from vertex v

through any edge incident with v during the time from 0 to t. Similarly, Ψt(v) is the total

number of chips that have moved away from v along each edge incident with v between

Algorithmic Aspects of a Chip-Firing Game 523

time 0 and time t. From the rules for the dollar game and the oil game, for all integers

t > 0, we get

st(v) = s0(v)− dG(v) Ψt(v) +
∑

u∈NG(v)

e(u, v) Ψt(u),

rt(v) = r0(v)− dG(v) Φt(v) +
∑

u∈NG(v)

e(u, v) Φt(u),

which gives

st(v)−rt(v)
= s0(v)− r0(v)− dG(v) (Ψt(v)− Φt(v)) +

∑
u∈NG(v)

e(u, v) (Ψt(u)− Φt(u)).
(7.1)

The next two lemmas form the key results connecting the dollar game and the oil game.

Lemma 7.1. Let s0 be a starting configuration for the dollar game on the graph G, and

suppose that s0 is stable. Define the starting configuration r0 for the oil game on G by

r0(v) = s0(v)− dG(v) + 1 for v ∈ V (G) \ {q}. Then, for all v ∈ V (G) and integers t > 0, we

have Φt(v) 6 Ψt(v).

Proof. Suppose the result is false, so that Φt(v) > Ψt(v) for some v ∈ V (G) and t > 0.

Choose v ∈ V (G) such that Ψt(v) − Φt(v) < 0 is minimal. It follows from Lemma 4.3(a),

(b), that for every integer z > 0 the configuration sz is stable, and hence ψz(q) = 1. This

gives Ψt(q) = t. By Lemma 5.2 we have that Φt(q) 6 t. This means that v cannot be equal

to q.

Since s0 is a stable configuration, we have s0(v) 6 dG(v) − 1; hence r0(v) 6 0 and in

fact rx(v) 6 0 for all x > 0 by Lemma 6.1(a), (b). If rt(v) < 0, then by Lemma 6.1(a) also

rx(v) < 0 for all real numbers x with 0 6 x 6 t. But then ϕx(v) = 0 for all 0 6 x 6 t and

hence Φt(v) = 0, contradicting that Φt(v) > Ψt(v) > 0. We conclude that rt(v) = 0.

Since v was chosen such that Ψt(u) − Φt(u) > Ψt(v) − Φt(v) for all u ∈ V (G), we get

from equation (7.1) that

st(v)− rt(v) > s0(v)− r0(v) +

(∑
u∈NG(v)

e(u, v)− dG(v)

)
(Ψt(v)− Φt(v))

= s0(v)− r0(v).

Because rt(v) = 0 and s0(v)− r0(v) = dG(v)− 1, this means st(v) > dG(v)− 1. On the other

hand, by Lemma 4.3(a), (b) we have that st(v) 6 dG(v)− 1. Hence we must have equality

in every inequality used so far. In particular we find that Ψt(u)−Φt(u) = Ψt(v)−Φt(v) < 0

for all u ∈ NG(v). Using that G is connected, we can continue the reasoning to conclude

that Ψt(u) − Φt(u) < 0 for all u ∈ V (G). But this contradicts the observation in the first

paragraph of this proof that Ψt(q)− Φt(q) > 0.

Lemma 7.2. Let s0 be a starting configuration for the dollar game on the graph G, and

suppose that s0 is not stable. Define the starting configuration r0 for the oil game on G by

r0(v) = s0(v) for v ∈ V (G) \ {q}.

524 J. van den Heuvel

(a) For all integers t > 0 such that st is not stable, we have that Ψt(v) 6 Φt(v) for all

v ∈ V (G).

(b) For all integers t > 0 such that st is not stable, if st(v) > dG(v) for a v ∈ V (G) \ {q},
then st(v) 6 rt(v).

Proof. Suppose that (a) is false, so that Ψt(v) > Φt(v) for some t > 0 and v ∈ V (G)

while st is still not stable. Choose v ∈ V (G) such that Ψt(v) − Φt(v) > 0 is maximal. It

follows from Lemma 4.3(c) that sz is not stable, and so ψz(q) = 0, for every z ∈ {0, 1, . . . , t}.
This gives that Ψt(q) = 0 6 Φt(q), and hence v 6= q.

Since Ψt(v) > Φt(v) > 0, we must have that ψz(v) = 1 for some z ∈ {1, 2, . . . , t} and

hence sz−1(v) > 0. By Lemma 4.3(b), (c) this means that st(v) > 0 as well. Also, because of

Φt(v) < Ψt(v) 6 t, we must have that ϕx(v) = 0 for some real number x, with 0 6 x 6 t

and hence rx(v) 6 0. By Lemma 6.1(a), (b) this means rt(v) 6 0 as well.

Now recall that v was chosen such that Ψt(u)− Φt(u) 6 Ψt(v)− Φt(v) for all u ∈ V (G).

Using this in equation (7.1) gives st(v)− rt(v) 6 s0(v)− r0(v) = 0, and so st(v) 6 rt(v) 6 0.

But since st(v) > 0, we must have equality in every inequality used so far. In particular we

find that Ψt(u) − Φt(u) = Ψt(v) − Φt(v) > 0 for all u ∈ NG(v). Using that G is connected,

we can continue the reasoning to conclude that Ψt(u) − Φt(u) > 0 for all u ∈ V (G). But

this contradicts the observation in the first paragraph of this proof that Ψt(q)−Φt(q) 6 0.

This completes the proof of part (a).

For part (b), let t > 0 be an integer such that st is not stable and suppose v ∈ V (G)\{q}
with st(v) > dG(v). Because of Lemma 4.3(a), (b) this gives that sz(v) > dG(v) for all

z ∈ {0, 1, . . . , t}. Hence ψz(v) = 1 for all z ∈ {1, 2, . . . , t} and so Ψt(v) = t > Φt(v).

Using part (a), this means Ψt(v) = Φt(v). Combining this with the knowledge from (a)

that Ψt(u) − Φt(u) 6 0 for all u ∈ V (G), we get from equation (7.1) that st(v) − rt(v) 6
s0(v)− r0(v) = 0, which proves part (b).

We are now ready to prove the most important theorem in this paper.

Theorem 7.3. Let s0 be a starting configuration of the dollar game on the graph G with n

vertices, m edges, and edge-connectivity λ.

(a) Then, for any integer t > 3 n ‖s0‖+/(λ+ 1), st is a stable configuration.

(b) And, for any integer t > 3 n (‖s0‖+ 2m)/(λ+ 1) + 1, st is a critical configuration.

Proof. Define the starting configuration r0 of the oil game on G as in Lemma 7.2 and let

t > 3 n ‖s0‖+/(λ+ 1) be an integer. Since ‖s0‖+ = ‖r0‖+, Theorem 6.3(a) gives that rt is a

passive configuration of the oil game. Hence rt(v) 6 0 for all v ∈ V (G) \ {q}. Following

Lemma 7.2(b), this means that st is stable, or st(v) 6 dG(v) − 1 or st(v) 6 rt(v) 6 0 for

all v ∈ V (G) \ {q}. All possibilities lead to the conclusion that st is stable, thus proving

part (a).

Let ts > 0 be the smallest integer such that sts is stable. Define the configuration r0 for

the oil game by setting r0(v) = sts (v)−dG(v)+1 for all v ∈ V (G)\{q}. From Theorem 6.3(b)

it follows that if t′ > 3 n ‖r0‖−/(λ+ 1), then rt′ = r0. The second statement in Theorem 6.2

states that, once we reach the recurrent configuration of the oil game, we have a constant

Algorithmic Aspects of a Chip-Firing Game 525

oil flow ϕ(v) = 1 through each edge. In particular, for all t′ > 3 n ‖r0‖−/(λ+ 1), we have

that Φt′ (v) > 0 for all v ∈ V (G). Because of Lemma 7.1, this means that Ψt′′ (v) > 0 for all

v ∈ V (G) and all integers t′′ > ts + 3 n ‖r0‖−/(λ+ 1). But if Ψt′′ (v) > 0 for every v ∈ V (G),

then every vertex must have fired at least once. Because of Corollary 3.7, we can conclude

that st′′ is a critical configuration. From part (a) we know

ts 6
⌈

3 n ‖s0‖+

λ+ 1

⌉
<

3 n ‖s0‖+

λ+ 1
+ 1.

We also know that, if s0(v) < 0, then s0(v) 6 sts (v) 6 dG(v)− 1, hence s0(v)− dG(v) + 1 6
r0(v) 6 0; and if s0(v) > 0, then sts (v) > 0, hence −dG(v) + 1 6 r0(v). We find

‖r0‖− 6 ‖s0‖− +
∑

v∈V (G)\{q}
dG(v) < ‖s0‖− + 2m.

Combining everything, this gives that, for all integers t with

t >
3 n ‖s0‖+

λ+ 1
+ 1 +

3 n (‖s0‖− + 2m)

λ+ 1
=

3 n (‖s0‖+ 2m)

λ+ 1
+ 1,

st is a critical configuration.

Corollary 7.4. Let s0 be a starting configuration of the dollar game on the graph G with n

vertices and edge-connectivity λ.

(a) If s0 is not stable, then, after at most 3 n2 ‖s0‖+/(λ+ 1) firings, involving at most

6 nm ‖s0‖+/(λ+ 1) chip movements, a stable configuration is obtained.

(b) And, after at most 3 n2 (‖s0‖+ 2m)/(λ+ 1) + n firings, involving at most 6 nm (‖s0‖+

2m)/(λ+ 1) + 2m chip movements, a critical configuration is obtained.

Proof. This follows directly by combining Theorem 7.3 with Lemma 4.2(b) and (c).

We can now prove most of the theorems in Section 1. Theorem 1.5 follows directly

from Corollary 7.4(b).

Proof of Theorem 1.6. Using Corollary 3.5, the vector sum c1 + c2 of two critical

configurations c1, c2 satisfies 0 6 (c1 + c2)(v) 6 2 dG(v)−2 for all v ∈ V (G)\ {q}. This gives

‖c1 + c2‖ < 2
∑

v∈V (G)\{q}
dG(v) 6 4m.

From Corollary 7.4(a) we see that this means that, after at most O(n2 mλ−1) firings,

involving at most O(nm2 λ−1) chip movements, a stable configuration is obtained. By

Corollary 3.9 this stable configuration is in fact equal to c1 • c2.

8. Another way to obtain a critical configuration

In this section we show how, starting with any configuration s0 of the dollar game on

a graph G, we can find a stable configuration s such that γ(s) = γ(s0) and ‖s‖ 6 2m.

526 J. van den Heuvel

Following Corollary 7.4(b), we see that we need at most 12 n2 m/(λ+ 1)+n firings, involving

at most 24 nm2/(λ+ 1) + 2m chip movements, to find γ(s) for such an s. The crucial fact

is that this configuration s can be found very rapidly, provided we allow ourselves to

perform arithmetic operations involving rationals with numerator and denominator of

the order max{maxv∈V (G)\{q} |s(v)|, κ}.
The approach in this section is based on a more algebraic way to look at configurations

of the dollar game. Let the Laplacian matrix Q of G be the n× n matrix with

Q(u, v) =

{−e(u, v), if u 6= v,

dG(u), if u = v,
for all u, v ∈ V (G).

Let Qq denote the matrix obtained from Q by deleting the row and column corresponding

to the vertex q, and let Q+
q denote the matrix obtained from Q by only deleting the row

corresponding to q. It is well known (see, e.g., [3]) that the determinant of Qq is equal to

the tree number κ. For a vertex v ∈ V (G), let cq(v) be the column of Q+
q corresponding

to v, which is the same column in Qq for v 6= q. It is easy to show that

cq(q) = − ∑
v∈V (G)\{q}

cq(v). (8.1)

The following lemma follows directly by comparing the definition of firing a vertex

with the definition of Q. Also recall the definition of a legal sequence and a representative

vector from the first two sections.

Lemma 8.1.

(a) For any vertex v ∈ V (G), firing vertex v when we are in a configuration s results in

the configuration s− cq(v).
(b) Let s be a configuration, σ = v1, . . . , vk a finite sequence of vertices which is legal for s,

and xσ the representative vector of σ. Suppose that after applying σ to s we obtain the

configuration s′. Then

s′ = s− Q+
q xσ = s+

∑
v∈V (G)\{q}

(xσ(q)− xσ(v)) cq(v). (8.2)

Let Zn−1 be the (n − 1)-dimensional vector-space over the integers, with coefficients

indexed by elements of V (G) \ {q}. And let Cz be the subspace of Zn−1 spanned by all

integer linear combinations of the columns of Qq . It can be shown that if G is a connected

graph, then the matrix Qq is nonsingular and hence Cz has dimension n − 1. Since Zn−1

with normal vector addition has the structure of an abelian group, and Cz is a subgroup

of this group, we also have that the quotient Zn−1/Cz is an abelian group. Since Cz is of

full dimension, this quotient group is finite. It is called the Picard group in [4, 5].

As normal, for an a ∈ Zn−1 the coset of a in Zn−1/Cz will be denoted by [a]. It follows

from Lemma 8.1(b) that, if s is a configuration with legal sequence σ, and s′ is the

configuration obtained after σ has been applied, then [s′] = [s]. This gives that, for any

s ∈ Zn−1, [s] = [γ(s)].

Algorithmic Aspects of a Chip-Firing Game 527

The following result, which immediately gives Theorem 1.2, is proved in [4, 5]. Note

that the observation in the previous paragraph establishes the surjectivity of ξ.

Theorem 8.2 (Biggs [4, 5]). The function ξ : K −→ Zn−1/Cz defined by ξ(c) = [c] is a

bijection.

It follows from Theorem 8.2 and the definition of Cz as the subspace formed by integer

linear combinations of the columns of Qq that, for any configuration s and z ∈ Zn−1, if

we set s′ = s+ Qq z, then γ(s′) = γ(s).

For a real number a, let bac be the floor of a, that is, the largest integer smaller than or

equal to a; and for a vector a, let bac be the integral vector obtained by taking the floor

of every coefficient of a. For a configuration of the dollar game s on a graph G define

s = s− Qq bQ−1
q sc.

Since bQ−1
q sc ∈ Zn−1, we have that γ(s) = γ(s).

Lemma 8.3. For any configuration s we have that −dG(v) + 1 6 s(v) 6 dG(v) − 1 for all

v ∈ V (G) \ {q}.

Proof. First set t = Q−1
q s − bQ−1

q sc, hence 0 6 t(v) < 1 for all v ∈ V (G) \ {q}. We find

that

s = s− Qq bQ−1
q sc = Qq(Q

−1
q s− bQ−1

q sc) = Qq t.

It follows that, for all v ∈ V (G) \ {q},
s(v) = (Qq t)(v) = t(v) dG(v)− ∑

u∈NG(v)\{q}
t(u) e(u, v).

Since 0 6 t(u) < 1 for all u ∈ V (G) \ {q}, we also have that

0 6 t(v) dG(v) < dG(v) and 0 6
∑

u∈NG(v)\{q}
t(u) e(u, v) < dG(v).

This gives that −dG(v) < s(v) < dG(v) for all v ∈ V (G) \ {q}. The result follows from the

fact that s is an integral vector.

We are now ready to give the proof of Theorem 1.7.

Proof of Theorem 1.6. Let s be any configuration of the dollar game on the graph G. Set

t = Q−1
q s− bQ−1

q sc, hence s = Qq t. We also have γ(s) = γ(s).

In order to determine t, we first calculate Q−1
q s. This is the product of an (n−1)× (n−1)

matrix with an (n − 1)-vector, which involves O(n2) operations. The entries of Q−1
q

are rational numbers with numerator and denominator of the order det(Qq). Since, as

mentioned before, det(Qq) = κ, the number of spanning trees of G, we find that to

determine Q−1
q s we need to do O(n2) arithmetic operations involving rational numbers

with numerator and denominator of the order max{κ, maxv∈V (G)\{q} |s(v)|}.

528 J. van den Heuvel

Once Q−1
q s is calculated, t = Q−1

q s−bQ−1
q sc can be found in O(n) arithmetic operations.

And then to determine s = Qq t takes O(n2) operations, although this time, because of

Lemma 8.3, we are working with integers of order maxv∈V (G)\{q} dG(v). So in total we see

that s can be found using O(n2) arithmetic operations.

Once s has been found, we start the normal chip-firing operations to find γ(s). By

Lemma 8.3 we have that

‖s‖ =
∑

v∈V (G)\{q}
|s(v)| < ∑

v∈V (G)

dG(v) = 2m.

Because of Corollary 7.4(b) we find that γ(s) will be reached after O(n2 mλ−1) firings,

involving at most O(nm2 λ−1) chip movements. This completes the proof of the theorem.

Remark. The procedure described in the proof above assumes that the inverse matrix Q−1
q

has been determined before we start the calculations. The reason for this assumption is

that the same matrix Q−1
q is used every time γ(s) must be found for a configuration s;

hence it seems reasonable to determine and store Q−1
q when γ(s) is needed for many initial

configurations s.

If we cannot assume that the inverse matrix Q−1
q is known beforehand, then we can find

Q−1
q s by solving the system of linear equations Qq x = s. Using straightforward Gaussian

elimination, this will involve O(n3) arithmetic operations (in fact it is possible to do it

more rapidly), instead of the O(n2) mentioned in Theorem 1.7.

References

[1] Bak, P. (1996) How Nature Works: The Science of Self-Organised Criticality, Springer.

[2] Bak, P., Tang, C. and Weisenfeld, K. (1988) Self-organised criticality. Phys. Rev. A 38 364–374.

[3] Biggs, N. (1993) Algebraic Graph Theory, 2nd edn, Cambridge University Press.

[4] Biggs, N. L. (1999) Chip firing and the critical group of a graph. J. Alg. Combin. 9 25–45.

[5] Biggs, N. (1997) Algebraic potential theory on graphs. Bull. London Math. Soc. 29 641–682.

[6] Biggs, N. (1999) The Tutte polynomial as a growth function. J. Alg. Combin. 10 115–133.

[7] Biggs, N. and Winkler, P. (1997) Chip-firing and the chromatic polynomial. Preprint, London

School of Economics.

[8] Björner, A. and Lovász, L. (1992) Chip-firing games on directed graphs. J. Alg. Combin. 1

305–328.

[9] Björner, A., Lovász, L. and Schor, P. W. (1991) Chip-firing games on graphs. Europ. J. Combin.

12 283–291.

[10] Bollobás, B. (1998) Modern Graph Theory, Springer.

[11] Bondy, J. A. and Murty, U. S. R. (1976) Graph Theory with Applications, Macmillan and

Elsevier.

[12] Coppersmith, D., Feige, U. and Shearer, J. (1996) Random walks on regular and irregular

graphs. SIAM J. Discrete Math. 9 301–308.

[13] Dhar, D. (1990) Self-organised critical state of sandpile automation models. Phys. Rev. Lett.

64 1613–1616.

[14] Dhar, D., Ruelle, P., Sen, S. and Verma, D. (1995) Algebraic aspects of abelian sandpile models.

J. Phys. A 28 805–831.

[15] Eriksson, K. (1991) No polynomial bound for the chip firing game on directed graphs. Proc.

Amer. Math. Soc. 112 1203–1205.

Algorithmic Aspects of a Chip-Firing Game 529

[16] Grötschel, M., Lovász, L. and Schrijver, A. (1993) Geometric Algorithms and Combinatorial

Optimization, 2nd corr. edn, Springer.

[17] van den Heuvel, J. Random generation of spanning trees involving chip-firing. In preparation.

[18] Lovász, L. and Winkler, P. (1995) Mixing of random walks and other diffusions on a graph. In

Surveys in Combinatorics, 1995 (P. Rowlinson, ed.), Cambridge University Press, pp. 119–154.

[19] Merino Lopez, C. (1997) Chip-firing and the Tutte polynomial. Ann. Combin. 1 253–259.

[20] Moore, C. and Nilsson, M. (1999) The computational complexity of sandpiles. J. Statist. Phys.

96 205–224.

[21] Rossin, D. (1999) On the complexity of addition in the sandpile group of a graph. Preprint.

[22] Tardos, G. (1988) Polynomial bound for a chip firing game on graphs. SIAM J. Discrete Math.

1 397–398.

	Algorithmic aspects of a chip-firing game(cover)
	Algorithmic aspects of a chip-firing game (Published)

