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Abstract

Let Gr denote a graph chosen uniformly at random from the set of r-regular

graphs with vertex set f1; 2; : : : ; ng where 3 � r � c0n for some small constant

c0. We prove that with probability tending to 1 as n ! 1, Gr is r-connected

and Hamiltonian.

1 Introduction

The properties of random r-regular graphs have received much attention. For a com-
prehensive discussion of this topic, see the recent survey by Wormald [22] or Chapter
9 of the book, Random Graphs, by Janson,  Luczak and Ruci�nski [12].

A major obstacle in the development of the subject has been a lack of suitable tech-
niques for modelling simple random graphs over the entire range, 0 � r � n � 1, of
possible values of r. The classical method for generating uniformly distributed simple
r-regular graphs, is by rejection sampling using the con�guration model of Bollob�as
[3]. The con�guration model is a probabilistic interpretation of a counting formula
of Bender and Can�eld [2]. The method is most easily applied when r is constant or
grows slowly with n, the number of vertices, as n tends to in�nity. The formative paper
[3] on this topic considered the case where r = O((log n)1=2). McKay [16] and McKay
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and Wormald [17, 18] subsequently gave alternative approaches which are useful for
r = o(n1=2) or r = 
(n).

We use edge switching techniques extensively in this paper and note that these tech-
niques have been successfully applied in a number of places e.g. [16], [17, 18], [9], [14]
and [13].

Let Gr denote a graph chosen uniformly at random from the set Gr of simple r-regular
graphs with vertex set V = f1; 2; : : : ; ng. We consider properties of simple r-regular
graphs for the case where r ! 1 as n ! 1, but r = o(n). The properties we
study are vertex r-connectivity and Hamiltonicity. These properties are also studied,
in a recent paper by Krivelevich, Sudakov, Vu and Wormald [13], for the case where
r(n) � p

n log n. Our paper complements [13] both in both in the range of r studied
and in the techniques applied.

Theorem 1 Assume 3 � r � c0n for some small positive absolute constant c0. Then
with probability tending to 1 as n!1,

(a) Gr is r-connected.

(b) Gr is Hamiltonian.

The results of Theorem 1 are well known for r constant. Result (a) is from Bollob�as
[4] and (b) is from Robinson and Wormald [20, 21], Bollob�as [5], Fenner and Frieze [8].
For r = o(n1=2) such results could have been proved with the help of the models of [16]
and [17]. In fact this was done, for Hamiltonicity, up to r = o(n1=5), in an unpublished
work by Frieze [9], and for r-connectivity, up to r � n:002 by  Luczak [15].

As [13] proves the case where r � n1=2 log n, this implies Gr is r-connected and Hamil-
tonian whp1 for all 3 � r � n� 4.

2 Generating graphs with a �xed degree sequence.

Let d = (d1; d2; : : : ; dn), and let 2D = (d1 + d2 + � � �+ dn). Let Gd be the set of simple
graphs G with vertex set V = [n], degree sequence d, and D edges.

Let 
 be the set of all (2D)!=(D!2D) partitions of W = [2D] into D 2-element sets.
An element of 
 is a con�guration. The constituent 2-element sets of a con�guration
F are referred to as the edges of F .

Let W1;W2; :::;Wn be the natural ordered partition Pd of W = [2D] into sets of size
jWij = di, and where (maxWi) + 1 = minWi+1 for i < n.

1A sequence of events En is said to occur with high probability (whp) if limn!1Pr(En) = 1.
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Let 
d be 
 with the understanding that the underlying set W is partitioned into Pd.
The degree sequence of an element F of 
d is d. We often write 
 for 
d when the
context is clear. De�ne �Pd : W ! [n] by �(w) = i if w 2 Wi. Let 
(F ) denote the
multigraph with vertex set [n] and edge multiset EF = ff�(x); �(y)g : fx; yg 2 Fg.
De�nition: Let 
�

d
denote those con�gurations F for which 
(F ) is simple

relative to Pd.

Remark 1 Note that each member of Gd is the image under 
 of precisely
Qn

i=1 di!
members of 
�

d
. Thus sampling F uniformly from 
�

d
induces the uniform measure on


(F ) and is equivalent to sampling uniformly from Gd.

If di = r; (1 � i � n) we will say the con�guration, F , is r-regular. The probability
j
�j=j
j that the underlying r-regular multigraph 
(F ) of such a con�guration F is
simple is exp(��(r2)). For r = o(n1=2) this follows from [17, 18] and for larger values
of r from Lemma 2 below. This result allows us to prove many results directly via
con�gurations and then condition the probability estimates for simple graphs.

Lemma 1 Let � = maxi2[n] di. Suppose that � � n=1000 and that d satis�es
mini2[n] di � �=4. Given a; b 2 [n], if G is sampled u.a.r. from Gd, then

Pr(fa; bg 2 E(G)) � 20�

n
:

Proof Let


1 = fG 2 Gd : fa; bg 2 E(G)g and 
2 = Gd n 
1:

We consider the set X of pairs (G1; G2) 2 
1�
2 such that G2 is obtained from G1 by
deleting disjoint edges fa; bg; fx1; y1g; fx2; y2g and replacing them by fa; x1g; fy1; y2g,
fb; x2g. Given G1, we can choose fx1; y1g; fx2; y2g to be any ordered pair of disjoint
edges which are not incident with a; b or their neighbours and such that fy1; y2g is not
an edge of G1. Thus each G1 2 
1 is in at least (D� (2�2 + 1))(D� (4�2 + 2)) pairs.
Each G2 2 
2 is in at most 2D�2 pairs. The factor of 2 arises because a suitable edge
fy1; y2g of G2 has an orientation relative to the switching back to G1. As D � n�=8
it follows that

j
1j
j
2j �

2D�2

(D � (2�2 + 1))(D � (4�2 + 2))
� 20�

n
:

2

Lemma 2 Suppose 100 � r � n=1000. Let dj = r; 1 � j � n. If F is chosen
uniformly at random (u.a.r) from 
 then for n suÆciently large,

Pr(F 2 
�) � e�2r
2

:
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Proof Consider the following algorithm from Frieze and  Luczak [11]:

Algorithm generate

begin
D := rn=2
F0 := ;
Let � = (x1; x2; : : : ; x2D�1; x2D) be an ordering of W
For i = 1 to D do
begin

Fi :=

8<
:

Fi�1 [ ffx2i�1; x2igg
�
With probability 1

2i�1

�
A

Fi�1 [ ffx2i�1; z1g; fx2i; z2gg � fz1; z2g
�
With probability 2i�2

2i�1

�
B

Here fz1; z2g is chosen u.a.r from Fi�1 and z1 is chosen u.a.r from fz1; z2g.
end
Output F := FD

end

We �rst prove that generate produces a u.a.r member of 
 whatever the ordering
� = (x1; x2; : : : ; x2D) of W . We then describe an ordering � from which we can prove
the lemma.

Let W (i) = (x1; x2; : : : ; x2i) and let 
i be the set of con�gurations of W (i). We show
inductively that Fi is a random member of 
i. This clearly true for i = 1 and so
assume that for some i � 2 we have that Fi�1 is chosen u.a.r from 
i�1.

Now consider a bipartite graph H with vertex bipartition (
i�1;
i) and an edge (F; F 0)
whenever F 0 = F [ fx2i�1; x2ig or F 0 = (F n fa; bg) [ ffa; x2i�1g; fb; x2igg for some
fa; bg 2 F . Each F 2 
i�1 has degree 2i� 1 in H and each F 0 2 
i has degree 1. Our
algorithm chooses F uniformly from 
i�1 (induction) and then uniformly chooses an
H-edge leaving F . This implies uniformity in 
i.

Label the con�guration points in set Wk of the partition, as f(k�1)r+ j : 1 � j � rg.
For the ordering � of W , we specify that xi is always chosen as one of the remaining
points for which �(xi) occurs as little as possible in the sequence (�(x1); : : : ; �(xi�1)).
To be speci�c, when i = (j � 1)n + k; (1 � k � n; 1 � j � r), de�ne xi to be the
point in Wk with label (k � 1)r + j.

Let 
�
i = fF 2 
i : 
(F ) is simpleg. Let �i = d2i=ne denote the maximum degree in


(Fi). Let the edge f�(x2i�1); �(x2i)g = fa; bg and let f�(z1); �(z2)g = fc; dg. We will
prove that

Pr(Fi 2 
�
i j Fi�1 2 
�

i�1) �
(

1 2i � n�
1� 60�i

(2i�1)n � 2�2
i
+2�i

i�1

�
n < 2i � rn:

(1)
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If i � n=2 then Fi induces a matching. If i > n=2 and if at the ith step of generate,
fa; bg already exists in Case A or is equal to fc; dg in Case B then Fi will not be simple.
The probability the edge fa; bg exists, in the corresponding simple random graph, is at
most 20�i

n
, by Lemma 1. Thus the probability the edge exists (Case A) or exists and

is selected (Case B) is at most

20�i

n

�
1

2i� 1
+

2i� 2

2i� 1

1

i� 1

�
=

60�i

(2i� 1)n
:

Assume now that the ith step is type B and fa; bg 6= fc; dg.
When fa; bg \ fc; dg 6= ;, a loop may be created. This happens with probability at
most 2�i=(i� 1).

When one of a; b is adjacent to c or d, a parallel edge may be created. This happens
with probability at most 2�2

i =(i� 1).

All cases have been covered and the result follows from iterating (1) for i � rn=2. 2

Remark 2 In Lemma 7 we need to run algorithm generate starting with a con�g-
uration F0 on [2D0] and and restricting our random choice of fz1; z2g to F n F0. The
output is then F0 plus a random con�guration on W = [2D0 + 1; 2D0 + 2D].

At this point we describe a simpler algorithm construct for obtaining a u.a.r con-
�guration.

Algorithm construct

begin
F0 := ;; R0 := W := [2D]
For i = 1 to D do
begin

Choose ui 2 Ri�1 arbitrarily
Choose vi uniformly at random from Ri�1 n fuig
Fi := Fi�1 [ ffui; vigg; Ri := Ri�1 n fui; vig

end
Output F := FD.

end

Remark 3 Neither of the algorithms generating FD use any information about the
partition Pd associated with the con�guration. After iteration i, Fi is a u.a.r element
of 
i. We can, if we wish, complete a certain number I of iterations using construct
and then switch to generate. Instead of initializing the ordering � used in algorithm
generate with W we initialize � with RI , the remaining unmatched points.
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3 r-Connectivity

We now prove Theorem 1(a). Since the result is already known for r constant, we can
assume that 106 � r � c0n, where c0 is suÆciently small.

For a simple graph G with edge set E, the disjoint neighbour set, N(S), of a set of
vertices S is de�ned as N(S) = fw =2 S : 9v 2 S s.t. fv; wg 2 Eg. When S is a
singleton fvg we use the notation N(v).

Lemma 3 Let Q1 � Gr be the event that for all vertices v; w 2 V of Gr:

(a) If r = o(n) then jN(v) \N(w)j � 10 + o(r).

(b) If log2 n � r � n then jN(v) \N(w)j � r2=n + 5
p
r log n.

Then Pr(Q1) = O(1=n2).

Proof Throughout this proof, we �x a vertex v and the set S = N(v), of vertices
which are the (disjoint) neighbours of v. Let w be a �xed vertex of V � v.

Let F(S) = fG : G = Gr � v; N(v) = Sg be the set of graphs G with vertex set
V �v formed by deleting v from those r-regular graphs, Gr, for which N(v) = S. Thus
jSj = r, and the vertices in S have degree r � 1 in G.

The vertex w partitions F into sets F(k) = fG : jN(w) \ Sj = kg where 0 � k � r if
w 62 S and 0 � k � r � 1 if w 2 S.

For sets R; T � V � v let N (R; T ) = N (R; T ; S;w) be the set of graphs in F with
N(w) \ S = R and N(w) � S = T . If jRj < jS � wj, choose x 2 (S � w) n R and
a 2 T . We consider a bipartite graph B with left vertex set N (R; T ) and right vertex
set N (R + x; T � a).

If G 2 N (R; T ) and fw; ag; fx; bg are edges of G we make a switching G : (wa; xb) !
(wx; ab) in which edges fw; ag; fx; bg are replaced by fw; xg; fa; bg provided the re-
sulting graph G0 is simple. These switchings de�ne the edges of B, and dL(G) (resp.
dR(G0)) is the number of edges incident with G (resp. G0) in B.

Let �(a; x;G) = jN(a)\N(x)j be the number of common neighbours of a and x in G.
Let Æ(a; x;G) = 1 if a 2 N(x).

Considering the possibilities for b when the switching G : (wa; xb) ! (wx; ab) gives a
simple G0 we have

dL(G) = jN(x)j � �(a; x;G)� Æ(a; x;G)
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for G0 is simple i� b 6= a and b 62 N(a). Here jN(x)j = r � 1 as x 2 S. The switching
leaves Æ(a; x;G0) = Æ(a; x;G) and �(a; x;G0) = �(a; x;G) as (fag[N(a))\N(x) is the
same set in both graphs.

Considering the switching G0 : (wx; ab) ! (wa; xb) giving G we have

dR(G0) = jN(a)j � �(a; x;G0)� Æ(a; x;G0):

We note that jN(a)j = r as a 62 S.

The graph B consists of components within which Æ; � (and hence dL; dR) are invariant.
Consider a component with bipartition size (NL; NR). We now prove that NL � NR.
In any component with edges we have dR = dL + 1 so that NR = NLdL=(dL + 1). The
case (NL; NR) = (0; 1) of isolated vertices in the right bipartition, cannot occur. For,
in G0,

�(a; x;G0) + Æ(a; x;G0) � jN(x)� wj = r � 2

and so

dR(G0) = jN(a)j � � � Æ � 2:

Thus

jN (R; T )j � jN (R + x; T � a)j:
Given S and w, the size of N (R; T ; S;w) is invariant for all R; T; jRj = k by a simple
symmetry argument.

Let jN (R; T ; S;w)j = �(k). Thus �(k) is a non-increasing function of k. Let f(k) =
jF(k)j be the number of graphs in F with jN(w)\Sj = k. If w 62 S then for all k � 0,
f(k) =

�
r
k

��
n�2�r
r�k

�
�(k). Similarly, if w 2 S then for all k � 0, f(k) =

�
r�1
k

��
n�1�r
r�1�k

�
�(k).

Suppose G is chosen u.a.r. from F(S) and let Z(G) = jRj. Then Pr(Z = k) =
f(k)=jFj. Writing N = n� 2; � = r � 1w2S,

Pr(Z = k) =

�
�

k

��
N � �

�� k

�
�(k)

jFj :

Let X be a hypergeometric random variable with Pr(X = k) =
�
�
k

��
N��
��k

�
=
�
N
�

�
. Then

Pr(Z = k)=Pr(X = k) decreases with k. It follows that Pr(Z � k) � Pr(X � k) for
any k.

The hypergeometric random variable X has mean � = �2=N . The proportional error
in bounding Pr(X = j) above by Pr(Y = j), where Y is the binomial random variable
B(�; �=N), is at most exp(�2=(N � �)) (see [7] p57). Thus provided r = o(

p
n), using

the following bound (2) on Binomial tails (see [1]),

Pr(Y � ��) �
�
e

�

���

(2)
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we see that

Pr(X � ��) � 2

�
e

�

���

:

If r � log2 n let k = �� + 10; � = 1= log log n, then

Pr(X � �� + 10) � 2

�
e�2

(�� + 10)(n� 2)

���+10

= o(n�4):

For log2 n � r � n let k = �2=(n � 2) + 4
p
� log n. We can apply Azuma's inequality

to the 0; 1 sequence of observations of the sampling process of X, with ci = 1 to infer
that

Pr(X � �2=(n� 2) + 4
p
r log n) = o(n�4):

Note that if r � log2 n and r = o(n) then the bound in (b) implies that in (a). 2

Lemma 4 Let Q2 be the event that no set of vertices U � V of Gr, 1 � jU j � n=70,
induces more than rjU j=12 edges. Then Pr(Q2) = 1�O(1=n2).

Proof Let � = 1=12 and � = 1=70. Let jU j = u.

Note �rst that in a simple r-regular graph a set of size u induces at most
�
u
2

�
edges

and, provided u � 2�r, �
u

2

�
� �ru:

Let E = fF 2 
� : No vertex set U; 2�r � jU j � �n induces more than �rjU j edges g.
It suÆces to prove that Pr(E) = O(n�2).

In 
 the number of edges X falling inside a set U is dominated by a binomial random
variable Y � B(ur; u=(n � u)) in which each con�guration point of U independently
selects a pairing on the assumption that all con�guration points of U are available, and
that ru con�guration points of V n U are unavailable. Now, EY = ru2=(n� u) and

Pr
(Y � �ru) = Pr(Y � (�(n� u)=u)EY )

�
�

ue

�(n� u)

��ru

by (2)

�
�

34u

n

��ru

:
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As r � 106, �r=2 � 1 and so by Lemma 2

Pr
�E� � e2r

2

�nX
u=2�r

�
n

u

��
34u

n

��ru

� e2r
2

�nX
u=2�r

�ne
u

�u�34u

n

��ru

� e2r
2

�nX
u=2�r

�
34u

n

��ru=2

� 2e2r
2

�
68�r

n

��2r2

� 2 exp
n

2r2 � �2r2 log
n

6r

o
= O(n�2);

provided r � c0n; c0 suÆciently small. 2

Proof of Theorem 1(a). Assume the events Q1;Q2 described in Lemmas 3,4. If Gr

is not r-connected then there is a separator X of size x � r� 1. Let Gr �X = A+B
and jAj = a � jBj = b.

Case 1: 2 � a � r=2.
Let u; v 2 A be arbitrary. If r = o(n) then as Q1 occurs,

jN(u) [N(v)j � 2r � jN(u) \N(v)j � 2r � o(r)� 10 (3)

However

jN(u) [N(v)j � jA [Xj � a + r � 1 < 3r=2 (4)

which contradicts (3).

If cn � r � n=4 for some c > 0, we see that because Q1 occurs we have jN(u)[N(v)j �
(1� o(1))7r=4, which contradicts (4).

Case 2: r=2 � a � n=80.
As jA[Xj � a+ r� 1 and A[X contains at least ar=2 edges we see that because Q2

occurs
ar

2
� r

12
(a + r � 1) and so a < r=5:

Case 3: n=80 � a � dn=2e.
If con�guration F is chosen randomly from 
 then the existence of a separator of size
x � r � 1, where the smaller component has size a � n=80, has probability at most

dn=2eX
a=n=80

r�1X
x=0

�
n

a

��
n� a

x

��
1� b

n

�ar=2

:

Thus from Lemma 2 the probability of this event in Gr is at most

e2r
2

dn=2eX
a=n=80

4ne�a(n�(a+r))r=2n � e�rn=500 = o(1)

for r � c0n; c0 suÆciently small. 2
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4 Hamilton cycles

We prove Theorem 1(b) on the assumption that 107 � r � c0n.

De�nition: Let G�
r denote the subset of Gr consisting of those graphs G with the

following properties:

C1: All sets of vertices U of size at most n=70 induce at most rjU j=12 edges.

C2: The graph G is connected.

Lemma 4 and Theorem 1(a) imply that

Lemma 5 jG�
r j = (1� o(1))jGrj.

Given a subset R of the edges of G, let dR(v) be the number of edges of R which are
incident with the vertex v of G.

De�nition: Let P be some �xed longest path of G. A set of edges R � E(G) is
deletable from G, (R 2 Del(G)), if

D1: R avoids P .

D2: For all v 2 V , r
4
� dR(v) � r

2
.

Lemma 6 Let G 2 Gr and let R be a random subset of the edges of G where each edge
of G is placed into R independently with probability 1/3. then

Pr(R is deletable j G) � e�n

Proof

Pr(D1 j G) =

�
2

3

�jP j

�
�

2

3

�n

� e�n=2:

For (D2) we condition on (D1). We use the symmetric version of the Lov�asz Local
Lemma (see for example Alon and Spencer [1]) to show that

Pr(D2 j D1) � e�n=2:

Let Av be the event fdR(v) =2 [ r
4
; r
2
]g, then Pr(Av j D1) � e�r=100 and the depen-

dency graph has degree at most r. For large r we can apply the lemma to show that
conditional on D1,

Pr

 \
v2V

Av j D1

!
� (1� 2e�r=100)n � e�n=2:
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2

The size of the set R of deleted edges is binomial B(rn=2; 1=3) and thus whpjRj = (1+
o(1))rn=6. For the purposes of Lemma 7 below, we condition on jRj 2 [(:16)rn; (:17)rn].
We note that there exists some Æ > 10�7 such that

Pr (jRj 62 [(:16)rn; (:17)rn]) � e�Ærn: (5)

De�nition: A set of edges S is addable to a simple graph H, (S 2 Add(H)), if

A1: H + S 2 Gr.
A2: No longest path of H is closed to a cycle by S.

Let

N = fG 2 G�
r : G is not Hamiltonian g (6)

E = f(G;R) : G 2 N ; R 2 Del(G)g
	 = fH : H = G� R; (G;R) 2 E ; jRj 2 [(:16)rn; (:17)rn]g
F = f(G;S) : G 2 Gr; G� S 2 	; S 2 Add(G� S)g:

Remark 4 We note that E � F : Let (G;R) 2 E so that G�R 2 	, and let P be any
longest path of G avoided by R. By (C2), G is connected, so P cannot be contained
in any cycle, as this would imply either that G was Hamiltonian, or that P was not a
longest path. Thus R is addable for G�R and (G;R) 2 F .

Lemma 7 Let H 2 	. Let S(H) = fS : H + S 2 Grg. Let S be chosen u.a.r from
S(H). There exists a constant Æ > 10�7 such that

Pr(S 2 Add(H)) � e�Ærn:

Proof

Given y0 let Pyh = y0y1:::yh be a longest path starting at y0 in H. A P�osa rotation
Pyh ! Pyi+1 , [19, 6] gives the path Pyi+1 = y0y1:::yiyhyh�1:::yi+1 formed from Pyh by
adding the edge yhyi and erasing the edge yiyi+1.

Let END(a) be any set of endpoint vertices formed by P�osa rotations with a �xed, of
a longest path aPb in H. We prove that jEND(a)j � n=210.

The P�osa condition for the rotation endpoint set U of a longest path P requires that
jN(U)j < 2jU j, where N(U) is the disjoint neighbour set of U . Let u = jU j and let
� = jU [N(U)j. Thus u > �=3. The condition (D2) guarantees that U [N(U) induces
at least ru=4 > r�=12 edges in H. Thus (C1) implies � > n=70 and u > n=210.
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Let the degree sequence of R be d = (d1; :::; dn) and that of H be (r�d1; :::; r�dn). We
choose a replacement set of edges S of size D = jRj = (d1 + d2 + � � �+ dn)=2 uniformly
among all edge sets with degree sequence d such that H + S 2 Gr. If we generate a
random con�guration F on d, then conditional on H + 
(F ) being simple, 
(F ) = S
is a u.a.r element of S(H).

The probability that H+
(F ) is simple.

We generate u.a.r. a con�guration F from the set L, size jLj = 2D, of con�guration
points corresponding to the degree sequence d, of R. We show that

Pr(H + 
(F ) is simple) � n�2e�4r
2

: (7)

We generate the �rst rn=12 random pairings using construct and the rest of F
using generate (see Remarks 2, 3). Our reason for this approach is as follows. The
ordering � = (x1; x2; :::; x2D) of L in generate is deterministic. At step i = 1, the
algorithm generate defaults to Choice A. We cannot ignore the possibility that H
already contains the edge f�(x1); �(x2)g. Similarly, if at step i + 1, generate uses
Choice B, then as the edges of H are �xed, we cannot argue that the existing edges of
Fi avoid neighbours of �(x1); �(x2) in H until i� r2.

Assuming that the ui are chosen randomly for each of the �rst rn=12 iterations, we
claim that the probability that construct inserts a loop or parallel edge is at most

r=2 + r2=2

(:15)rn
� 4r=n:

Indeed, when construct starts there are 2D 2 [(:32)rn; (:34)rn] con�guration points
to be paired. At the last iteration of construct there are 2D�rn=6 � (:15)rn points
remaining. Each vertex occurs at most r=2 times in the sequence (by D2).

construct picks a point ui and then a random point vi. Given ui there are � r=2
choices which make a loop. In the worst case d(ui) = r � 1 in H + 
(Fi�1) and each
neighbour is missing r=2 points. This leads to at most r=2 + r2=2 bad choices out of
at least (:15)rn choices for vi.

Let S1 be the subgraph of S produced by construct. It follows that

Pr(H + S1 is simple ) � e�r
2

:

We now continue with generate for the remaining D � rn=12 edges to be inserted.
The subgraph H remains �xed, and generate is initialized with con�guration Frn=12
of S1 on fu1; u2; :::; urn=6g. For steps i = rn=12 + 1; : : : ; D we run generate with the
minimum degree ordering � of L� fu1; u2; :::; urn=6g similar to the ordering described
in the proof of Lemma 2. Observe that

Pr(H + 
(Fi) is simple j H + 
(Fi�1) is simple) �
�

1� 1

2i� 1

��
1� 25r

n

�
:
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The probability that the algorithm makes a Type B choice at step i is 1� 1
2i�1 . Given a

Type B choice, the probability that a loop or multiple edge is formed is at most 25r=n
for reasons that we now explain. To create a loop we much choose �(zt) = �(x2i+t�2),
for t = 1 or 2 and there are at most 2r choices of fz1; z2g that will lead to this. To
create a parallel edge �(zt) must be a neighbour of �(x2i+t�2), for t = 1 or 2 and
there are at most 2r2 choices of fz1; z2g that will lead to this. These choices are made
randomly from a set of edges of Fi of size at least rn=12.

Now
QD

i=rn=12+1

�
1� 1

2i�1

� � n�2. The number of edges inserted by generate is at

most (:087)rn and
�
1� 25r

n

�(:087)rn � e�3r
2

and so (7) follows.

The probability that 
(F ) is addable for H.

Let x0 be an end vertex of longest path P in H. Now let Y = f(a; b) : a 2
END(x0); b 2 END(a)g. Then S 2 Add(H) implies 
(F ) \ Y = ;. For otherwise the
edge ab would close some longest path of H to a cycle.

We will use construct to generate a con�guration F with the required degree se-
quence (d1; : : : ; dn).

Since jEND(x0)j � n=210, the sum of the values dv over vertices v 2 END(x0) is
at least r

4
n
210

. Thus, we can choose uj so that �(uj) 2 END(x0) for each of the �rst
� = rn=1680 steps. For j � �, writing a for �(uj), let Yj be the set of remaining
con�guration points y such that �(y) 2 END(a). Then jYj j � r

4
n
210

� 2j. As F
contains at most rn=2 con�guration points,

Pr(
(F ) \ Y = ;) �
�Y

j=1

�
1� jYj j

rn=2

�

� exp

 
�

�X
j=1

�
1

420
� 4j

rn

�!

= e�Æ1rn

where Æ1 � 1=(1680� 840).

Thus
Pr(S 2 Add(H)) � e�Æ1rn � n2e4r

2

and the lemma follows.

2

We can now complete the proof of Theorem 1(b). Suppose G is chosen u.a.r. from
G�
r and then R is chosen by selecting edges independently with probability 1=3. From

13



Lemma 6, we see that

Pr(E) =
X
G2N

X
R2Del(G)

Pr((G;R))

� e�nPr(N ):

From the de�nitions (6), inequality (5) and Lemma 7 it follows that

Pr(F) � Pr(jRj =2 [(:16)rn; (:17)rn])

+
X
H2	

X
S2Add(H)

Pr((H + S; S) j G�R = H)Pr(G�R = H)

�
X
H2	

e�ÆrnPr(G�R = H) + e�Ærn

� 2e�Ærn:

Now, by Remark 4, E � F and so Pr(E) � Pr(F), thus

Pr(N ) � 2en�Ærn = o(1)

and the theorem follows from Lemma 5. 2

Remark 5 We note that by following Frieze [10] we can, at the expense of complicating
the proof, prove the existence of a polynomial time algorithm for �nding a Hamilton
cycle.

Acknowledgement: We wish to thank an anonymous referee for several very care-
ful and thorough reviews, which contributed greatly to the clarity of exposition and
accuracy of the paper.
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