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Abstract

Let G, denote a graph chosen uniformly at random from the set of r-regular
graphs with vertex set {1,2,...,n} where 3 < r < ¢on for some small constant
co. We prove that with probability tending to 1 as n — oo, G, is r-connected
and Hamiltonian.

1 Introduction

The properties of random r-regular graphs have received much attention. For a com-
prehensive discussion of this topic, see the recent survey by Wormald [22] or Chapter
9 of the book, Random Graphs, by Janson, Luczak and Rucinski [12].

A major obstacle in the development of the subject has been a lack of suitable tech-
niques for modelling simple random graphs over the entire range, 0 < r < n — 1, of
possible values of r. The classical method for generating uniformly distributed simple
r-regular graphs, is by rejection sampling using the configuration model of Bollobas
[3]. The configuration model is a probabilistic interpretation of a counting formula
of Bender and Canfield [2]. The method is most easily applied when r is constant or
grows slowly with n, the number of vertices, as n tends to infinity. The formative paper
[3] on this topic considered the case where » = O((logn)'/?). McKay [16] and McKay
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and Wormald [17, 18] subsequently gave alternative approaches which are useful for
r = o(n'/?) or r = Q(n).

We use edge switching techniques extensively in this paper and note that these tech-
niques have been successfully applied in a number of places e.g. [16], [17, 18], [9], [14]
and [13].

Let G, denote a graph chosen uniformly at random from the set G, of simple r-regular
graphs with vertex set V' = {1,2,... ,n}. We consider properties of simple r-regular
graphs for the case where r — oo as n — oo, but 7 = o(n). The properties we
study are vertex r-connectivity and Hamiltonicity. These properties are also studied,
in a recent paper by Krivelevich, Sudakov, Vu and Wormald [13], for the case where
r(n) > y/nlogn. Our paper complements [13] both in both in the range of r studied
and in the techniques applied.

Theorem 1 Assume 3 < r < con for some small positive absolute constant cy. Then
with probability tending to 1 as n — oo,

(a) G, is r-connected.

(b) G, is Hamiltonian.

The results of Theorem 1 are well known for r constant. Result (a) is from Bollobas
[4] and (b) is from Robinson and Wormald [20, 21], Bollobas [5], Fenner and Frieze [8].
For r = o(n'/?) such results could have been proved with the help of the models of [16]
and [17]. In fact this was done, for Hamiltonicity, up to » = o(n'/®), in an unpublished
work by Frieze [9], and for r-connectivity, up to r < n%%? by Luczak [15].

As [13] proves the case where 7 > n'/2logn, this implies G, is r-connected and Hamil-
tonian whp! for all 3 <r <n —4.

2 Generating graphs with a fixed degree sequence.

Let d = (dy,ds, ... ,d,), and let 2D = (dy +ds +--- +d,). Let G4 be the set of simple
graphs G with vertex set V = [n], degree sequence d, and D edges.

Let Q be the set of all (2D)!/(D!2P) partitions of W = [2D] into D 2-element sets.
An element of 2 is a configuration. The constituent 2-element sets of a configuration
F' are referred to as the edges of F.

Let Wy, Ws, ..., W, be the natural ordered partition P4 of W = [2D] into sets of size
|W;| = d;, and where (maxW;) + 1 = min W;,; for i < n.

1A sequence of events &, is said to occur with high probability (whp) if lim,, ,, Pr(&,) = 1.
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Let Qg be €2 with the understanding that the underlying set W is partitioned into Py.
The degree sequence of an element F' of (14 is d. We often write {2 for {23 when the
context is clear. Define ¢p, : W — [n] by ¢(w) =i if w € W;. Let y(F') denote the
multigraph with vertex set [n] and edge multiset Er = {{¢(z),d(v)} : {z,y} € F}.

Definition: Let Q) denote those configurations F' for which «(F) is simple
relative to Pjy.

Remark 1 Note that each member of Gg is the image under 7 of precisely [, d;!
members of {23. Thus sampling F' uniformly from (2} induces the uniform measure on
7(F) and is equivalent to sampling uniformly from Gq.

If d; =7, (1 <i<n)we will say the configuration, F, is r-regular. The probability
|2*|/|€2| that the underlying r-regular multigraph v(F') of such a configuration F' is
simple is exp(—©(r?)). For r = o(n'/?) this follows from [17, 18] and for larger values
of r from Lemma 2 below. This result allows us to prove many results directly via
configurations and then condition the probability estimates for simple graphs.

Lemma 1 Let A = max;cpd;. Suppose that A < n/1000 and that d satisfies
min;ep, d; > A/4. Given a,b € [n], if G is sampled u.a.r. from Gq, then

20

n

Pr({a,b} € E(G)) <

Proof Let
Ql = {G € gd . {a,b} € E(G)} and Qz = Qd \ Ql-

We consider the set X of pairs (G, Ga) € Q1 X {3 such that G is obtained from G; by
deleting disjoint edges {a, b}, {x1,v1}, {x2, y2} and replacing them by {a,z1}, {y1, 2},
{b,z3}. Given Gi, we can choose {z1,y1},{x2,y2} to be any ordered pair of disjoint
edges which are not incident with a, b or their neighbours and such that {y;,y»} is not
an edge of G;. Thus each G; € Q; is in at least (D — (2A%+1))(D — (4A? +2)) pairs.
Each G5 € Qs is in at most 2DA? pairs. The factor of 2 arises because a suitable edge
{y1,y2} of G5 has an orientation relative to the switching back to G;. As D > nA/8
it follows that

[l _ 2DA? _ 204
] = (D—(2A2+1)(D— (4A2+2) = n

O

Lemma 2 Suppose 100 < r < n/1000. Letd; = r, 1 < j < n. If F is chosen
uniformly at random (u.a.r) from Q then for n sufficiently large,

Pr(F e Q) > e %"



Proof Consider the following algorithm from Frieze and Luczak [11]:

Algorithm GENERATE

begin
D :=1rn/2
Fy:=0
Let o = (z1,%2,... ,Z2p_1,Z2p) be an ordering of W
Fori=1to D do
begin
F, U {{z2 1,72 }} (With probability -17) A
F; =

Fio1 U {{zai1, 21}, {25, 22} } — {21,22} (With probability 2-2) B

2i—1

Here {21, 22} is chosen u.a.r from F; ; and z; is chosen u.a.r from {21, 22 }.
end
Output F := Fp
end

We first prove that GENERATE produces a u.a.r member of {) whatever the ordering
o = (z1,xs,... ,x2p) of W. We then describe an ordering o from which we can prove
the lemma.

Let W = (1,22, ... ,22) and let Q; be the set of configurations of W@, We show
inductively that F; is a random member of €2;. This clearly true for ¢ = 1 and so
assume that for some ¢ > 2 we have that F;_; is chosen u.a.r from 2;_;.

Now consider a bipartite graph H with vertex bipartition (£2; 1, (2;) and an edge (F, F")
whenever F' = F U {x9; 1,29} or F' = (F \ {a,b}) U {{a,z2 1},{b, z2;}} for some
{a,b} € F. Each F € Q; ; has degree 2i — 1 in H and each F' € Q; has degree 1. Our
algorithm chooses F' uniformly from 2; ; (induction) and then uniformly chooses an
H-edge leaving F. This implies uniformity in 2;.

Label the configuration points in set W}, of the partition, as {(k—1)r+j: 1 <j <r}.
For the ordering o of W, we specify that z; is always chosen as one of the remaining
points for which ¢(x;) occurs as little as possible in the sequence (¢(z1),... ,¢(z;i1))-
To be specific, when i = (j — 1)n+k, (1 <k <mn, 1 <j <r), define z; to be the
point in W}, with label (k — 1)r + j.

Let Qf = {F € Q; : y(F) is simple}. Let A; = [2i/n] denote the maximum degree in
v(F;). Let the edge {o(z2: 1), d(z2:)} = {a,b} and let {p(z1), p(22)} = {c,d}. We will
prove that

2t1<n

2 ) 1
1— (2(10_%" — 2A2_+12A1> n < 2t <rn. (1)

1
Pr(F,cQ | Fiiy € Q) > {(



If i <n/2 then F; induces a matching. If i > n/2 and if at the ith step of GENERATE,
{a, b} already exists in Case A or is equal to {c,d} in Case B then F; will not be simple.
The probability the edge {a, b} exists, in the corresponding simple random graph, is at
most %Ai, by Lemma 1. Thus the probability the edge exists (Case A) or exists and
is selected (Case B) is at most

n

204 (1 L2=2 1 60A;
2i—1 2i—1i—1) (2i—1)n’

Assume now that the ith step is type B and {a, b} # {c, d}.

When {a,b} N {c,d} # 0, a loop may be created. This happens with probability at
most 2A;/(i — 1).

When one of a,b is adjacent to c or d, a parallel edge may be created. This happens
with probability at most 2A2/(i — 1).

All cases have been covered and the result follows from iterating (1) for ¢ < rn/2. O

Remark 2 In Lemma 7 we need to run algorithm GENERATE starting with a config-
uration Fy on [2D'] and and restricting our random choice of {21, 22} to F'\ Fy. The
output is then Fy plus a random configuration on W = [2D' + 1,2D' + 2D)].

At this point we describe a simpler algorithm CONSTRUCT for obtaining a u.a.r con-
figuration.

Algorithm CONSTRUCT
begin
Fy:=0; Ry := W :=[2D]
Fori:=1to D do
begin
Choose u; € R;_1 arbitrarily
Choose v; uniformly at random from R; ;1 \ {w;}
Fi:=F_ 1 U{{u,vi}}; R = Ri 1\ {ui, v}
end
Output F := Fp.
end

Remark 3 Neither of the algorithms generating Fp use any information about the
partition P4 associated with the configuration. After iteration ¢, F; is a u.a.r element
of ;. We can, if we wish, complete a certain number I of iterations using CONSTRUCT
and then switch to GENERATE. Instead of initializing the ordering o used in algorithm
GENERATE with W we initialize o with R, the remaining unmatched points.



3 r-Connectivity

We now prove Theorem 1(a). Since the result is already known for r constant, we can
assume that 10% < r < ¢on, where ¢y is sufficiently small.

For a simple graph G with edge set E, the disjoint neighbour set, N(S), of a set of
vertices S is defined as N(S) = {w ¢ S : Jv € Ss.t. {v,w} € E}. When S is a

singleton {v} we use the notation N (v).

Lemma 3 Let Q; C G, be the event that for all vertices v,w € V of G,:

(a) If r = o(n) then |[N(v) N N(w)| <10 + o(r).
(b) Iflog’n < r <mn then |[N(v) N N(w)| < r?/n + 5v/rlogn.

Then Pr(Q;) = O(1/n?).

Proof Throughout this proof, we fix a vertex v and the set S = N(v), of vertices
which are the (disjoint) neighbours of v. Let w be a fixed vertex of V' — v.

Let F(S) = {G : G = G, —v, N(v) = S} be the set of graphs G with vertex set
V — v formed by deleting v from those r-regular graphs, G,, for which N(v) = S. Thus
|S| = 7, and the vertices in S have degree r — 1 in G.

The vertex w partitions F into sets F(k) = {G : |[N(w) N S| =k} where 0 < k < r if
we¢gSand 0<k<r—1lifwels.

For sets R,T CV —v let N(R,T) = N(R,T; S,w) be the set of graphs in F with
Nw)NS =R and Nw)—S =T. If |R| < |S — w|, choose z € (S —w) \ R and
a € T. We consider a bipartite graph B with left vertex set N'(R,T') and right vertex
set N(R+z,T — a).

If G € N(R,T) and {w,a}, {z,b} are edges of G we make a switching G : (wa,zb) —
(wz,ab) in which edges {w,a}, {z,b} are replaced by {w,z},{a,b} provided the re-
sulting graph G’ is simple. These switchings define the edges of B, and d;(G) (resp.
dr(G")) is the number of edges incident with G (resp. G') in B.

Let v(a,z; G) = |N(a) N N(z)| be the number of common neighbours of @ and z in G.
Let §(a,z;G) =1 if a € N(z).

Considering the possibilities for b when the switching G : (wa, zb) — (wz, ab) gives a
simple G’ we have

dr(G) = |N(z)| — v(a,z;G) — 0(a, z; G)



for G' is simple iff b # a and b ¢ N(a). Here |[N(z)| =r — 1 as € S. The switching
leaves 0(a,z; G') = §(a, x; G) and v(a, z; G') = v(a,z; G) as ({a} UN(a)) N N(z) is the
same set in both graphs.

Considering the switching G’ : (wx, ab) — (wa, xb) giving G we have
dR(Gl) = |N(a’)| - V(a’ T, Gl) - (5(0” Ly GI)
We note that |[N(a)]=rasa &S.

The graph B consists of components within which ¢, v (and hence dy, dg) are invariant.
Consider a component with bipartition size (N, Ng). We now prove that N; > Ng.
In any component with edges we have dgr = d, + 1 so that Ng = N.d.,/(d, +1). The
case (N, Ng) = (0,1) of isolated vertices in the right bipartition, cannot occur. For,
in G,
v(a,z;G") + 0(a,z;G") < |N(z) —w| =r — 2
and so
dr(G') = |N(a)|—v—140 > 2.
Thus
NR,T)| = N(R+2,T - a).

Given S and w, the size of N (R, T; S,w) is invariant for all R, T, |R| = k by a simple
symmetry argument.

Let IN(R,T; S,w)| = n(k). Thus n(k) is a non-increasing function of k. Let f(k) =
|F (k)| be the number of graphs in F with |[N(w)NS|=k. If w ¢ S then for all £k > 0,

fk) = (;) ("%, )n(k). Similarly, if w € S then forall k > 0, f(k) = (",") ("7;- ;;) (k).
Suppose G is chosen u.a.r. from F(S) and let Z(G) = |R|. Then Pr(Z = k) =

f(k)/|F|. Writing N =n —2,p =1 — lyeg,

vt -0- Q) ()

Let X be a hypergeometric random variable with Pr(X )
Pr(Z = k)/Pr(X = k) decreases with k. It follows that Pr(Z
any k.

VAL
=
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=

The hypergeometric random variable X has mean p = p?/N. The proportional error
in bounding Pr(X = j) above by Pr(Y = j), where Y is the binomial random variable
B(p,p/N), is at most exp(p?/(N — p)) (see [7] p57). Thus provided r = o(/n), using
the following bound (2) on Binomial tails (see [1]),

Pr(Y > Bu) < (%)ﬂu (2)



we see that

e

Pr(X > fp) <2 (B>ﬁu-

If r <log®nlet k = ap+ 10, a = 1/loglogn, then

Pr(X > ap+10) < 2 < T 166’) o= 2)> = o(n™%).

For log’n < r < nlet k = p?/(n — 2) 4 4y/plogn. We can apply Azuma’s inequality
to the 0,1 sequence of observations of the sampling process of X, with ¢; = 1 to infer
that

Pr(X > p?/(n —2) +44/rlogn) = o(n™*).

Note that if » > log?n and r = o(n) then the bound in (b) implies that in (a). O

Lemma 4 Let Q, be the event that no set of vertices U CV of G, 1 < |U| < n/70,
induces more than r|U|/12 edges. Then Pr(Qy) =1 — O(1/n?).

Proof Let 5 =1/12 and § = 1/70. Let |U| = w.

Note first that in a simple r-regular graph a set of size u induces at most (;‘) edges

and, provided u < 20,
<;> < Bru.

Let £ = {F € Q" : No vertex set U, 28r < |U| < 6n induces more than Sr|U| edges }.
It suffices to prove that Pr(€) = O(n™?).

In Q2 the number of edges X falling inside a set U is dominated by a binomial random
variable Y ~ B(ur,u/(n — u)) in which each configuration point of U independently
selects a pairing on the assumption that all configuration points of U are available, and
that ru configuration points of V' \ U are unavailable. Now, EY = ru?/(n — u) and

Pro(Y > pru) = Pr(Y > (B(n—u)/u)EY)

< (ﬁ)/”’“ by (2)

340\ P
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Asr > 105 Br/2>> 1 and so by Lemma 2

on Bru on Bru
— 34u 2 ne\v [ 34u
P < 2r2 n < 2r (_)
r(é’)_e Z(u)(n) = Z U n
u=20r u=20r
on Bru/2 B2r?
34 68
< e Z (_u) < 2¢% <ﬂ> < 2exp {27'2 — B%*r?log ﬁ}
n n 6r
u=20r
= O(n_z),
provided r < con, ¢ sufficiently small. O

Proof of Theorem 1(a). Assume the events Q;, Qs described in Lemmas 3,4. If G,
is not r-connected then there is a separator X of size x <r—1. Let G, — X = A+ B
and |[A| =a < |B|=b.

Case 1: 2<a <r/2.
Let u,v € A be arbitrary. If = o(n) then as Q; occurs,
|IN(u) UN(v)| > 2r — |[N(u) N N(v)| > 2r —o(r) — 10 (3)
However
INw)UN(v)| <|JAUuX|<a+r—1<3r/2 (4)
which contradicts (3).

If cn < r < n/4 for some c > 0, we see that because Q; occurs we have |N(u)UN (v)| >
(1 —o(1))7r/4, which contradicts (4).

Case 2: /2 < a < n/80.
As |[AUX| <a+r—1and AU X contains at least ar/2 edges we see that because Qs
occurs
ar _r
2
2 712

Case 3: n/80 < a < [n/2].
If configuration F' is chosen randomly from (2 then the existence of a separator of size
z < r — 1, where the smaller component has size a > n/80, has probability at most

£ 5000y
a x n '
a=n/80 z=0

Thus from Lemma 2 the probability of this event in G, is at most

[n/2]
e2r2 Z 4nefa(nf(a+r))r/2n < efrn/500 _ 0(1)

a=n/80

(a+7—1)and so a < r/5.

for r < ¢on, cp sufficiently small. O



4 Hamilton cycles

We prove Theorem 1(b) on the assumption that 107 < r < ¢cgn.

Definition: Let G denote the subset of G, consisting of those graphs G with the
following properties:

C1: All sets of vertices U of size at most n/70 induce at most r|U|/12 edges.

C2: The graph G is connected.
Lemma 4 and Theorem 1(a) imply that
Lemma 5 |G| = (1 — o(1))|G,|

Given a subset R of the edges of G, let dg(v) be the number of edges of R which are
incident with the vertex v of G.

Definition: Let P be some fized longest path of G. A set of edges R C E(G) is
deletable from G, (R € Del(Q@)), if

D1: R avoids P.

D2: Forallv eV, § <dg(v) < 3.

Lemma 6 Let G € G, and let R be a random subset of the edges of G where each edge
of G is placed into R independently with probability 1/3. then

Pr(R is deletable | G) > e ™

Proof
2\ 17! 2\"

For (D2) we condition on (D1). We use the symmetric version of the Lovasz Local
Lemma (see for example Alon and Spencer [1]) to show that

Pr(D2| D1) > e /2.

Let A, be the event {dg(v) ¢ [%,%]}, then Pr(4, | D1) < e7"/1% and the depen-
dency graph has degree at most r. For large » we can apply the lemma to show that
conditional on Dy,

Pr (ﬂ A, | D1> > (1 —2e77/100) > g7n/2,

veV
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The size of the set R of deleted edges is binomial B(rn/2,1/3) and thus whp|R| = (1+
0(1))rn/6. For the purposes of Lemma 7 below, we condition on |R| € [(.16)rn, (.17)rn].
We note that there exists some § > 1077 such that

Pr(|R| & [(.16)rn, (.17)rn]) < e™0™. (5)

Definition: A set of edges S is addable to a simple graph H, (S € Add(H)), if

Al: H+ S € gG,.

A2: No longest path of H is closed to a cycle by S.

Let

= {G € G} : G is not Hamiltonian } (6)
{(G,R): G € N, R € Del(G)}

= {H:H=G-R, (G,R)eé&, |R| €[(.16)rn,(.17)rn]}
{(G,S):GegG,G-—Se¥, SeAdd(G - 9)}.

N e m
Il

Remark 4 We note that £ C F: Let (G, R) € £ so that G — R € ¥, and let P be any
longest path of G avoided by R. By (C2), G is connected, so P cannot be contained
in any cycle, as this would imply either that G was Hamiltonian, or that P was not a

longest path. Thus R is addable for G — R and (G, R) € F.

Lemma 7 Let H € ¥. Let S(H) ={S: H+ S € G.}. Let S be chosen u.a.r from
S(H). There exists a constant § > 10~7 such that

Pr(S € Add(H)) < e ™.

Proof

Given yo let P,, = yoy1...yn be a longest path starting at yp in H. A Pdsa rotation
P,, — Py, [19, 6] gives the path P, , = Yoy1...¥i¥nYn—1...¥i+1 formed from P, by

adding the edge y,y; and erasing the edge y;y; 1.

Let END(a) be any set of endpoint vertices formed by Pésa rotations with a fixed, of
a longest path aPb in H. We prove that |[END(a)| > n/210.

The Pésa condition for the rotation endpoint set U of a longest path P requires that
IN(U)| < 2|U|, where N(U) is the disjoint neighbour set of U. Let u = |U| and let
v=|UUN(U)|. Thus u > v/3. The condition (D2) guarantees that U U N(U) induces
at least ru/4 > rv/12 edges in H. Thus (C1) implies v > n/70 and u > n/210.

11



Let the degree sequence of R be d = (dj, ..., d,) and that of H be (r—dy,...,r—d,). We
choose a replacement set of edges S of size D = |R| = (d; + dy + - - - + d,,) /2 uniformly
among all edge sets with degree sequence d such that H + S € G,. If we generate a
random configuration F' on d, then conditional on H + «y(F’) being simple, v(F) = S
is a uw.a.r element of S(H).

The probability that H+y(F) is simple.

We generate u.a.r. a configuration F' from the set L, size |L| = 2D, of configuration
points corresponding to the degree sequence d, of R. We show that

Pr(H + ~(F) is simple) > n~2e™%". (7)

We generate the first rn/12 random pairings using CONSTRUCT and the rest of F
using GENERATE (see Remarks 2, 3). Our reason for this approach is as follows. The
ordering o = (x1,Z3,...,23p) of L in GENERATE is deterministic. At step ¢ = 1, the
algorithm GENERATE defaults to Choice A. We cannot ignore the possibility that H
already contains the edge {¢(z1), ¢(x2)}. Similarly, if at step ¢ + 1, GENERATE uses
Choice B, then as the edges of H are fixed, we cannot argue that the existing edges of
F; avoid neighbours of ¢(x;), #(z3) in H until i > r2.

Assuming that the w; are chosen randomly for each of the first rn/12 iterations, we
claim that the probability that CONSTRUCT inserts a loop or parallel edge is at most

/24 71%/2
(.15)rn
Indeed, when CONSTRUCT starts there are 2D € [(.32)rn, (.34)rn] configuration points

to be paired. At the last iteration of CONSTRUCT there are 2D —rn/6 > (.15)rn points
remaining. Each vertex occurs at most 7/2 times in the sequence (by D2).

< dr/n.

CONSTRUCT picks a point u; and then a random point v;. Given u; there are < r/2
choices which make a loop. In the worst case d(u;) = r — 1 in H + y(F;_;) and each
neighbour is missing /2 points. This leads to at most /2 + 7?/2 bad choices out of
at least (.15)rn choices for v;.

Let S7 be the subgraph of S produced by CONSTRUCT. It follows that
Pr(H + S, is simple ) > ¢ .

We now continue with GENERATE for the remaining D — rn/12 edges to be inserted.
The subgraph H remains fixed, and GENERATE is initialized with configuration F,, 1o
of Sy on {uy,ug, ..., U6 }. For steps i =rn/1241,..., D we run GENERATE with the
minimum degree ordering o of L — {u1, Uy, ..., Urn/6} similar to the ordering described
in the proof of Lemma 2. Observe that

1 25
Pr(H + (F;) is simple | H 4+ y(F;_1) is simple) > (1 ~ 5 1) <1 — _r) :
i— n

12



The probability that the algorithm makes a Type B choice at step 7 is 1 — TIA Given a
Type B choice, the probability that a loop or multiple edge is formed is at most 25r/n
for reasons that we now explain. To create a loop we much choose ¢(z;) = ¢(z2:1¢—2),
for t = 1 or 2 and there are at most 2r choices of {z1, 22} that will lead to this. To
create a parallel edge ¢(z;) must be a neighbour of ¢(x2;,¢ o), for t = 1 or 2 and
there are at most 2r® choices of {21, 25} that will lead to this. These choices are made
randomly from a set of edges of F; of size at least rn/12.

Now Hiim/lzﬂ (1 — T1_1) > n~2. The number of edges inserted by GENERATE is at
most (.087)rn and (1 — %)('087)7‘” > 3 and so (7) follows.

The probability that y(F) is addable for H.

Let o be an end vertex of longest path P in H. Now let Y = {(a,b) : a €
END(z),b € END(a)}. Then S € Add(H) implies 7(F)NY = (. For otherwise the
edge ab would close some longest path of H to a cycle.

We will use CONSTRUCT to generate a configuration F' with the required degree se-
quence (dy, ... ,d,).

Since |END(zp)| > n/210, the sum of the values d, over vertices v € END(xg) is
at least 575. Thus, we can choose u; so that ¢(u;) € END(zo) for each of the first
v = rn/1680 steps. For j < v, writing a for ¢(u;), let Y; be the set of remaining
configuration points y such that ¢(y) € END(a). Then |Y;| > %35 —2j. As F

4210
contains at most rn/2 configuration points,

Pr(y(F)NY =0) < [] (1 _ ::}L)

j=1
(1 4y
< exp (—Z (20 —n>>
i=1
_ 6—517’n

where §; ~ 1/(1680 x 840).
Thus

2

Pr(S € Add(H)) < e 9™ x n2e*
and the lemma follows.

O

We can now complete the proof of Theorem 1(b). Suppose G is chosen u.a.r. from
G and then R is chosen by selecting edges independently with probability 1/3. From
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Lemma 6, we see that

Pr(£) = > Y Pr(G,R))
GeN ReDel(G)
> e "Pr(N).
From the definitions (6), inequality (5) and Lemma 7 it follows that

Pr(F)

IN

Pr(|R| ¢ [(.16)rn, (.17)rn))
+ Y. Y Pr((H+S,5)|G-R=H)Pr(G-R=H)

HeV ScAdd(H)

< Y PG - R= H)+ e
Hev
< 26767%.

Now, by Remark 4, £ C F and so Pr(£) < Pr(F), thus

Pr(N) < 2e" ™ = o(1)
and the theorem follows from Lemma 5. O
Remark 5 We note that by following Frieze [10] we can, at the expense of complicating

the proof, prove the existence of a polynomial time algorithm for finding a Hamilton
cycle.

Acknowledgement: We wish to thank an anonymous referee for several very care-
ful and thorough reviews, which contributed greatly to the clarity of exposition and
accuracy of the paper.
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