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Abstract

We study a model motivated by the minesweeper game. In this model one
starts with percolation of mines on the sites of the lattice Zd, and then tries to find
an infinite path of mine free sites. At every recovery of a free site, the player is
given some information on the sites adjacent to the current site. We compare the
parameter values for which there exists a strategy such that the process survives to
the critical parameter of ordinary percolation. We then prove improved bounds for
these values for the same process, when the player has some complexity restrictions
in computing his moves. Finally, we discuss some monotonicity issues which arise
naturally for this model.

1 Introduction

1.1 The finite game

The minesweeper is a popular computer game. The game is played on a finite square
grid GN = {1, . . . , N} × {1, . . . , N}. Let M ⊂ GN be the set of mines; an element
v ∈ M is called a mine; an element in v ∈ GN \M is called a free site. The set M is
unknown to the player, and the aim of the game is to find this set M . At every step, the
player is allowed to guess if a certain site v ∈ GN , which currently has unknown status,
is a free site. If v ∈ M (i.e. the site is a mine) then the player loses. Otherwise, the
player is given the number of sites adjacent to this site which are occupied by mines:
|{v′ ∈ GN : d∞(v, v′) = 1, v′ ∈ M}|, and then plays a new move.

We remark that in the original game, when the game begins, the player is also given
the number of mines: |M |. Since we are interested in infinite variants of this game, we
simplify the model and ignore this extra information.

1.2 The infinite game

In this paper we consider an infinite variant of this game. Throughout this paper when
we refer to Zd as a graph, we mean the graph Zd with the l∞ neighboring structure:

(Zd, {(v, u) ∈ Zd × Zd such that d∞(v, u) = 1}).

We recall that site percolation with parameter p on Zd is the random subgraph ω of Zd

which satisfy P[v ∈ ω] = p, independently for all sites v ∈ Zd. For such ω ⊂ Zd and
v ∈ Zd we say that v is open (this is the standard term), or free (this is the term which
corresponds to the mine sweeper game) if v ∈ ω; otherwise, we say that v is closed, or
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v is a mine. We note that the set of mines, Zd \ ω, may be obtained as the set of open
vertices in 1− p percolation.

The set ω is unknown to the player and at every step the player is requested to find
some new site v ∈ Zd which is a free site. If v /∈ ω the player loses. Otherwise, he is
given the number: |{v′ ∈ Zd : d∞(v, v′) = 1 and v′ /∈ ω}| and then plays a new step.

If 0 < p < 1 and the player is requested to find the set of all mines, Zd \ ω, then
he will almost surely die. This follows from the fact that if 0 < p < 1, then a.s. there
are infinitely many sites which have only mine neighbors. A more realistic aim for the
player is to play an infinite sequence of steps. This leads to the following definitions:

Definition 1.1 1. A game-configuration is a triplet (ω, µ, I) where ω is the set
of free sites, µ ⊂ ω is the finite subset of free sites which are known to the player
and I : µ → {0, . . . , 3d − 1} is the function which satisfies

I(v) = |{v′ : d∞(v′, v) = 1 and v′ /∈ ω}|; (1)

i.e. I is the information known to the player.

2. We call S a strategy, if S is a function from all pairs (µ, I) as above to sites in
Zd which satisfies S(µ, I) /∈ µ (i.e. S always picks a new site).

3. The game determined by S, denoted G(S), is a sequence of game configurations

G(S) = (cn)n = ((ω, µn, In))n

which is defined in the following way: ω is chosen according to p-percolation. We
define µn and In recursively. We start by defining µ0 = ∅ and let I0 be the empty
function. Now we continue recursively,

• If S(µn, In) /∈ ω the sequence is determined to be (c0, . . . , cn).

• If S(µn, In) ∈ ω we set µn+1 = µn ∪ {S(µn, In)}, let In+1 satisfy (1) and
continue recursively.

4. For a strategy S define
θS(p) = Pp[|G(S)| = ∞],

where Pp is the Bernoulli measure on Zd for which a site is free with probability
p. Define:

θ(p) = sup
S

θS(p).

Thus, θS(p) is the probability of winning the game playing S, and θ(p) is the
probability of winning the game playing an “optimal” strategy.

5. Finally, we define,
W (d) = {p ∈ [0, 1] : θ(p) > 0}.

W (d) is the set of all probabilities for which one can win the game.

Proposition 1.2 Set
Y = #{n : Sn(µn, In) /∈ ∂µn}

where ∂A is defined as {v ∈ Zd : d∞(v,A) = 1}. Then for all S we have

P[Y ≥ n + 1] ≤ pn.
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Proof: For all v /∈ ∂µn and all In which satisfy (1), P[v ∈ ω|In] = p. 2

Proposition 1.2 implies that a.s. during the game the player only plays inside a finite
number of clusters (connected components of ω). It is therefore natural to compare the
set W (d) to the set of parameters p for which an infinite cluster exists.

Our first result bounds the values of p for which we can win the game. We denote
by pc(d) the critical value for percolation on Zd (with the l∞ neighboring structure).
Thus for p > pc(d), with probability 1 there exists an infinite path of free sites. For
p < pc(d) such a path does not exist a.s. Using the enhancement results by Aizenman
and Grimmett (see [2]) we prove:

Theorem 1.3 For all d ≥ 2 there exists an ε = ε(d) > 0 such that

[1− ε, 1] ⊂ W (d) ⊂ [pc(d) + ε, 1].

Thus, when the density of mines is small, the player may get out of the mine-field.
On the other hand, there is an interval of densities for which there exists an infinite
path which is free of mines, yet the player is doomed to die.

Another natural question is: what are the connections between the complexity of
the strategies used and the sets of winning probabilities? In the following definition we
give a formulation of complexity in this context.

Definition 1.4 Let (ω, µ, I) be a game configuration. We call v ∈ Zd a trivially free
site for the configuration, if v ∈ ω \µ and there exists u ∈ µ which satisfies d∞(v, u) = 1
and I(u) = 0.

We call a strategy T a trivial strategy if the following holds:

1. For a game configuration (ω, µ, I) which has a trivially free site, T (µ, I) is a
trivially free site.

2. For (ω, µ, I) for which there exists no trivially free site, we have T (µ, I) /∈ ∂µ. (In
other words: when there are no trivially free sites, T chooses a site on which it
has no information whatsoever)

As part of Theorem 1.3, we prove:

Proposition 1.5 For all d ≥ 2 there exists an ε̄(d) > 0 such that if T is a trivial
strategy then,

(1− ε̄(d), 1] ⊂ {p : θT (p) > 0} ⊂ [1− ε̄(d), 1].

This result says that even the lowest complexity algorithms suffice for winning for
low mines density. Rephrasing Proposition 1.5 in terms of the original game, we get that
there exists ε̄(d) > 0 such for p ∈ (1− ε̄(d), 1], we may reconstruct an infinite path with
positive probability on the “first click”. On the other hand, we prove that by utilizing
more complex strategies, we may win in higher mines densities:

Theorem 1.6 For all d ≥ 2 there exists an ε(d) > ε̄(d) such that

(1− ε(d), 1] ⊂ W (d).
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The proof of this theorem uses again the method of enhancements. However, some
additional work is needed. In particular, we devise some hand-tailored combinatorial
designs in order to prove some strict inequalities. We believe that there is a hierarchy of
results generalizing Theorem 1.6 by saying that when one uses more information during
the game, the set of winning probabilities strictly increases. See Conjecture 3.3 for the
exact formulation.

Unfortunately, we do not know if the set W (d) is connected. In Section 4 we discuss
some examples which are related to this monotonicity problem.

It seems that the minesweeper game introduces many interesting problems in diverse
fields. Some of these problems are considered in this paper. For different perspectives,
see [1] and [6].

Acknowledgment. I thank Itai Benjamini for interesting discussions. Thanks to
Olle Häggström and the anonymous referee for many helpful remarks.

2 Comparison to Percolation

Proof of Proposition 1.5: Let S be a trivial strategy, and assume that θS(p) > 0.
Call a game configuration c = (ω, µ, I) critical, if there exists no site which is trivially
free for c. If c is critical then since S is trivial, it follows that P[S(µ, I) ∈ ω] = p. Thus
if G(S) = (cn), then the probability that more than t of the cn are critical is bounded
by pt. It follows that given |G(S)| = ∞, there are a.s. only finite number of critical cn.
Let A be the event that the percolation cluster contains an infinite connected subgraph
of vertices v, such that all vertices at l∞ distance 1 from v, are also in the percolation
cluster. From the argument above it follows that θS(p) > 0 implies Pp(A) > 0.

On the other hand, suppose that Pp(A) > 0 and let S be a trivial strategy. It is
then easy to see that θS(p) > 0.

We achieved that θS(p) > 0 if and only if Pp(A) > 0. In other words, writing
W̄ (d) = {p : θS(p) > 0}, we obtain

{p : Pp(A) > 0} = W̄ (d).

Since A is an increasing event there exists an ε0 = ε0(d) ≥ 0 such that

(1− ε0, 1] ⊂ {p : Pp(A) > 0} ⊂ [1− ε0, 1].

In order to conclude we show that ε0 > 0.
Divide Zd into cubes of side length 3 centered at 3Zd. Declare such a cube to be open

if it contains no mines. Now, consider the percolation process on the cubes with the l1
neighborhood structure. This is a Bernoulli percolation with parameter p3d

. Therefore,
there exists an ε > 0 such that this percolation process survives for all p ∈ [1 − ε, 1].
Note that the event A occurs whenever there is an infinite cluster of open cubes (see
Figure 1). It follows that ε0 ≥ ε > 0 as needed. 2

In order to prove that W (d) ⊂ [pc(d)+ ε, 1], we use the method of strict inequalities
which was developed by Aizenman and Grimmett ([2]), after Menshikov ([7]). We follow
some of their notation below.

A boolean function f : {0, 1}Zd → {0, 1} is called local if there exists a finite set τ
such that, whenever ω1 ∩ τ = ω2 ∩ τ , f(ω1) = f(ω2). For a local function f we define
fv(ω) by

fv(ω) =

{
{v} if f(ω − v) = 1,
∅ otherwise.
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Figure 1: Sketch of Proposition 1.5

where ω−v is the translation of ω by −v. Define the diminishment procedure Df which
corresponds to the local function f to be the function which maps the configuration ω
to the configuration ω̃ defined by:

ω̃ = ω \
⋃

v∈Zd

fv(ω).

A diminishment procedure is called essential if there exists a configuration ω which
contains a doubly-infinite path, but ω̃ does not contain such a path. We need the
following theorem in order to prove that W (d) ⊂ [pc(d) + ε, 1].

Theorem[Aizenman,Grimmett]: Consider the following two stage procedure. Per-
form site percolation with parameter p, and on the resulting configuration perform some
essential diminishment D. Then, there exists an ε > 0 such that for all p < pc(d) + ε,
the set of resulting sites does not contain an infinite cluster a.s.

Lemma 2.1 For all d ≥ 2 there exists an ε = ε(d) > 0 such that

W (d) ⊂ [pc(d) + ε, 1].

Proof: Look at the percolation of free sites with density p. Consider the diminish-
ment procedure which sets the site v closed whenever it observes the configuration
σ + v on

∏d
i=1[vi − 5, vi + 5] in which the free sites are exactly {u : u1 = v1, u2 =

v2 . . . , ud−1 = vd−1} (see Figure 2 ; σ is the configuration on [−5, 5]d which has as free
sites: −5ed, . . . , 5ed). This is an essential diminishment. Therefore, there exists an ε > 0
such that whenever p < pc(d) + ε the diminished configuration ω̃ does not contain an
infinite cluster of free sites with probability 1.

We claim that W (d) ⊂ [pc(d)+ ε, 1]. Suppose that p ∈ W (d) and let S be a strategy
with θS(p) > 0. Let G(S) be the game determined by S, and let vn satisfy vn ∈ µn+1\µn.
By Proposition 1.2, a.s. for all but finite number of n’s, vn ∈ ∂µn.

Similarly, suppose that v = vn and the configuration in
∏d

i=1[vi − 5, vi + 5] is σ + v.
Note that

P[vn ∈ ω and vn + e1 /∈ ω|In] = P[vn /∈ ω and vn + e1 ∈ ω|In].

Therefore, there exits δ > 0 such that P[vn ∈ ω|In] ≤ 1− δ. It now follows that a.s. the
sequence vn contains only finitely many elements v such that σ + v is the configuration
of

∏d
i=1[vi − 5, vi + 5].
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Figure 2: The diminishment procedure

Since θS(p) > 0, we see that the diminished percolation survives with positive prob-
ability. Therefore p ≥ pc(d) + ε as needed. 2

Proof of Theorem 1.3: Follows from Lemma 2.1 and Proposition 1.5. 2

3 Simple and Complex Strategies

In this section we prove Theorem 1.6 for d = 2, the proof for general d being similar.
The first step is to translate the problem to one which does not involve strategies, but
only the structure of the percolation cluster.

Definitions 3.1: Call a site v wide free if v is a free site and all sites w with
d∞(v, w) ≤ 1, are free sites. Call a site v almost wide free, if it is a wide free site, or
if it has a single mine neighbor w = (w1, w2), and the configuration of mines and free
sites in [w1 − 6, w1 + 6]× [w2 − 4, w2 + 4] is an exact copy of Figure 3, where the sites
labeled by o are mines and sites which are not labeled, or labeled by V , are free sites
(i.e., the sites in Figure 3 that are labeled by V are not wide free but are almost wide
free). Note that every wide free site, is an almost wide free site.

.
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Figure 3: Definition of almost wide free sites

Given ω, let ωT be defined as follows.

• If there exists a site v such that d∞(0, v) < 5 and v is a mine, set ωT = ∅.

• Otherwise, ωT is the connected component of wide free sites for which 0 ∈ ωT .

We let AT = {ω : |ωT | = ∞}.
Given ω, let ωA be defined in the following way:
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1. If there exists a site v such that d∞(0, v) < 5 and v is a mine, set ωA = ∅.

2. Otherwise, ωA is the connected component of almost wide free sites which contains
0.

We let AA = {ω : |ωA| = ∞}.
The proof of Proposition 1.5 implies that if S is a trivial strategy, then the set

of probabilities for which one can win the game using S, W̄ (d), does not depend on
S, and satisfies W̄ (d) = {p : Pp(AT ) > 0}. In particular, W̄ (d) is an interval. We
will show that W (d) contains an interval which is longer than W̄ (d), by showing that
{p : Pp[AA] > 0} contains such an interval, and the following lemma.

Lemma 3.1
{p : Pp[AA] > 0} ⊂ W (d). (2)

Proof:. Let S be the following strategy.

1. At the first step, try to recover 0.

2. If there exists a trivially free site, then recover it.

3. When a site v is recovered together with all the neighbors of v but one, and it is
given that v has a single mine neighbor, then “mark” this neighbor as a mine.

4. If v has a single mine neighbor, and a neighbor u of v is marked as a mine, recover
all other neighbors of v.

We claim that when AA holds, G(S) is infinite. This implies (2). Assume that AA

holds. Therefore, there exists an infinite self avoiding path of almost wide frees sites:
ϕ = (0 = v0, v1, v2, . . .). We will show by induction that S can recover all these sites
(and some more).

Since 0 is a free site, 0 = v0 is recovered. Suppose that S recovered v0, . . . , vn. If
vn is a wide free site, then vn+1 as a neighbor of vn, is a trivially free site. Therefore S
recovers vn+1.

A more interesting case is when vn is a site as one of the V ’s in Figure 3. Let (x0, y0)
be the location of the mine which is adjacent to vn.

Since ϕ is connected, and by the assumption that all v with d(v, 0) < 5, are free
sites, it follows that there exists k < n, such that vk = (x0−5, y0), or there exists k < n
such that vk = (x0 + 5, y0). Assume without loss of generality that vk = (x0 − 5, y0).

Given vk, S can easily recover all the sites in [x0 − 5, x0 − 1] × [y0 − 1, y0 + 1] (as
trivially free sites). Now it may recover (x0 − 2, y0 − 2) as a trivially free site, and then
similarly all the remaining sites in [x0 − 2, x0 + 2]× [y0 − 3, y0 − 1].

Note that now the site (x0 − 1, y0 − 1) and all its neighbors but one are recovered.
Moreover, (x0−1, y0−1) has a single mine neighbor. We therefore mark (using rule 3 of
S) (x0, y0) as a mine. After marking (x0, y0) as a mine, it is easy to recover (using rule
4) all the neighbors of (x0, y0) and their neighbors. One of these sites must be vn+1. 2

The next step of the proof is to introduce a new parameter s. Consider Bernoulli
percolation with parameter s which is independent of the p percolation of free sites. We
now consider sites which are either

• wide-free, or
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• almost-wide-free with single mine neighbor which is open in the s-percolation.

We call such sites good sites. Given ω, let ω′ be defined as follows:

1. If there exists a site v such that d(0, v) < 5 and v is a mine, set ω′ = ∅.

2. Otherwise, ω′ is the connected component of good sites which contains 0.

Define
A = {ω : |ω′| = ∞}, θ(p, s) = Pp,s[A].

If follows from the definition that θ(p, 0) = Pp[AT ] and θ(p, 1) = Pp[AA].
Next, we approximate θ(p, s) by functions on finite volume spaces. For v = (x, y) ∈

Z2 let
Bv(k) = [x− k, x + k]× [y − k, y + k],

and define:
AN = {ω : ω′ ∩ ∂B0(N) 6= ∅}, θN (p, s) = Pp,s[AN ].

It is clear that for all (p, s),

θ(p, s) = lim
N→∞

θN (p, s).

The core of the proof is the following comparison of the effect of the p and s perco-
lation on the probability of the event AN .

Lemma 3.2 There exists N0 and a continuous positive function g(p, s) on the square
(0, 1)× (0, 1) such that for all N ≥ N0

∂θN (p, s)
∂p

≤ g(p, s)
∂θN (p, s)

∂s
.

Proof of Theorem 1.6: By Theorem 1.3 and Proposition 1.5 it follows that there
exist 0 < q0 < q1 < 1 and 0 < ε̄ < 1 such that

[q1, 1] ⊂ (1− ε̄, 1] ⊂ W̄ (d) ⊂ [1− ε̄, 1] ⊂ [q0, 1],

and
[q1, 1] ⊂ W (d) ⊂ [q0, 1],

where W̄ (d) is the set of winning probabilities using a trivial strategy. Let α > 0 be
such that [q0, q1 + α] ⊂ (0, 1). Let g(p, s) be the continuous function that exists by
Lemma 3.2, and

m = max
[q0,q1+α]×[1/4,3/4]

{g(p, s), 1/α}.

Note that if p ∈ [q0, q1], then [p, p + 1
2m ] ⊂ [q0, q1 + α]. By Lemma 3.2 we obtain for

p ∈ [q0, q1] and N ≥ N0:

θN (p,
3
4
)− θN (p +

1
2m

,
1
4
) =

∫ 1/2

0

dθN

dt
(p +

1
2m

− t

m
,
1
4

+ t)dt

=
∫ 1/2

0
(
∂θN

∂s
− 1

m

∂θN

∂p
)(p +

1
2m

− t

m
,
1
4

+ t)dt

≥ 0.

8



Note that θN (p, s) is a monotone function of s. Therefore when p ∈ [q0, q1] and N ≥ N0:

θN (p, 1) ≥ θN (p,
3
4
) ≥ θN (p +

1
2m

,
1
4
) ≥ θN (p +

1
2m

, 0).

Taking the limit N → ∞ we see that when p ∈ [q0, q1], θ(p, 1) ≥ θ(p + 1
2m , 0). This

implies that (1 − ε, 1] ⊂ {p : Pp[AA] > 0} ⊂ W (d), where ε = ε̄ + 1
2m > ε̄ as needed

(note that the assumption W (d) ⊂ [q0, 1] implies in particular that 1− ε̄− 1/2m ≥ q0).
2

Proof of Lemma 3.2: Let γ be a configuration inside the square B0(N) and v a site.
Let γp+ (γp−) be γ where the site v, and this site only, is updated to be a free site
(a mine). Call a site v p-pivotal for the configuration γ, if γp+ ∈ AN and γp− /∈ AN .
Define a s-pivotal site similarly. By Russo’s formula (see e.g. [5]):

∂θN (p, s)
∂p

≤ Ep,s|{v : v is p-pivotal for AN}|

and
∂θN (p, s)

∂s
= Ep,s|{v : v is s-pivotal for AN}|.

The proof will follow once we will show that there exists a positive continuous function
g(p, s) such that:

Ep,s|{v : v is p-pivotal for AN}| ≤ g(p, s)Ep,s|{v : v is s-pivotal for AN}|. (3)

Let v be p-pivotal for a configuration γ. We will show that it is possible to change the
configuration (of both the p-percolation and the s-percolation) inside the box Bv(20),
in order to obtain that one of the vertices in the box is s-pivotal. This implies (3). We
assume below that Bv(20) ⊂ BN (0) and d(v, 0) ≥ 10. The cases where v /∈ BN−20 or
d(v, 0) < 10 are treated in a similar way.

Since v is p pivotal, it follows that γp− /∈ AN and γp+ ∈ AN . Assume first that we
may either set open all the s percolation values of γp− in Bv(20) in order to obtain a
configuration γp−s+ ∈ AN , or set closed all the s percolation values of γp+ in Bv(20)
in order to obtain a configuration γp+s− /∈ AN . Clearly in either case, by changing a
subset of these s-values we may obtain γ̃ such that for γ̃ there exists a u ∈ Bv(20) which
is s-pivotal for AN . Since γ̃ was obtained from γ by changing the configuration inside
Bv(20), the lemma follows.

If this assumption does not hold, then γp+s− ∈ AN and γp−s+ /∈ AN . Since γp+s− ∈
AN , there exists a self-avoiding path of good sites (in the configuration γp+s−) ϕ =
(0, v1, v2, . . . , vk = v, . . . , vn), such that vn ∈ ∂B0(N).

By the definition of γp+s− it follows that for all i, if d∞(vi, v) ≤ 19, then vi is a wide
free site. Let

i = min{` < k : d∞(v`, v) = 18}, j = max{` > k : d∞(v`, v) = 18}.

Note that all the neighbors of vi and vj are free sites. Also note that it cannot be the
case that vi and vj are neighbors, as this will imply that γp−s+ ∈ AN . We need to
consider several cases - where we analyze in detail the case which is illustrated in Figure
4. Here vi and vj belong to the same face of Bv(18) and both vi and vj are at distance
least 5 from the corners of Bv(20). Since γp−s+ /∈ AN , it follows that d∞(vi, vj) ≥ 4.
We let v′ be the neighbor of vi such that vi and v′ differ in exactly one coordinate, and
d∞(v′, v) = 17. Let v′′ be a neighbor of vj which is defined similarly.

Let γ̃ be obtained from γp+s− in the following way.
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• For all w with d∞(v, w) ≥ 18, γ̃ has the same p and s percolation values as γp+s−.

• For all w with d∞(v, w) ≤ 18, w is closed in the s percolation.

• If d∞(w, v) = 17, then w is a mine unless, d∞(w, v′) ≤ 1, or d∞(w, v′′) ≤ 1, in
which case w is a free site.

• v′ and v′′ are connected by a path of almost wide free sites inside the box B17(v),
in such a way that v is the only mine which is adjacent to the path and it is s-
pivotal for the existence of the path (Instead of giving a long explicit construction,
we refer the reader to Figure 4).

We claim that γ̃ has v as s-pivotal site. Let γ̃s− = γ̃ (so that v is closed in the
s-percolation), and γ̃s+ be γ̃ where the site v, and this site only, is updated as to be
open for the s-percolation.

For γ̃s+, the concatenation of (v0, . . . , v
i, v′), the path of good sites inside B17(v)

connecting v′ to v′′ and (v′′, vj , . . . , vn) is a self avoiding path of good sites connecting
v0 to ∂BN (0). Thus, γ̃s+ ∈ AN .

On the other hand, for γ̃s−, the set of good sites w with d∞(v, w) ≥ 17 is a subset
of the set of good sites with d∞(v, w) ≥ 17 for the configuration γp+s−. Since v is
p-pivotal for γp+s−, it follows that for γ̃ there exists no path of good sites connecting
0 and ∂BN (0) which is disjoint from B17(0). For γ̃−, there is no path of good sites
connecting u and w with d∞(u, v) = d∞(w, v) = 17. Thus, γ̃s− /∈ AN . It follows that v
is s-pivotal for γ̃ as needed.

It is easy to obtain similar constructions when vi and vj do not belong to the same
face, or if either of vi or vj is close to a corner.
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Figure 4: Making v pivotal

We suspect that in some sense, a player who has access to better strategies should
have a strictly larger set of winning probabilities. A range n strategy is a strategy which
decides to recover a site v depending only on the information at distance at most n from
v. Let Wn(d) be the set of probabilities for which one can win the game using range n
strategies. A general conjecture in the same spirit as Theorem 1.6 is:
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Conjecture 3.3 There exists a k such that for all n, there exists an ε = ε(n) > 0 such
that

(Wn(d) + (−ε, ε)) ∩ [0, 1] ⊂ Wn+k(d).

4 Monotonicity and open problems

It may seem reasonable that the more free sites one has, the larger the probability is
for winning the game. There are two natural interpretations of this conjecture.

Interpretation 1: If one can win the game for mines density 1− p for some graph G,
one can also win it for density 1− p for any graph G̃ which has G as a subgraph.

Interpretation 2: If one can win the game for a certain mines density 1 − p, he can
also win it for any other mines density 1 − p̃ for p̃ > p. That is, the set of winning
probabilities is an interval [p, 1] or (p, 1].

We start with a motivation on how adding mines may increase the success probability.
Look at the Figure 5. Note that by looking at the data we are given, we cannot decide
between the 3 configurations on the left of the figure. Therefore given this data, we
cannot even find one free vertex. On the other hand, by adding the 2 mines (on the
right of the figure), the situation is clear and there are 3 surely free vertices.

ddd

ddd

dd

d dd dd d
.

.

1111111 1

11111111

11111111

321 111

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

3 2

Figure 5: Adding mines may help

We now give an example in which our first interpretation of monotonicity does not
hold, while the second one holds.

Example 1: Consider the minesweeper game on the rooted (d + 1)-regular tree Td. It
is clear that we can win the game with positive probability if and only if there exists
with positive probability an infinite sub-tree of vertices which are all free of mines and
in which all the vertices have either no children or d children.

Thus we are dealing with a branching process (see e.g. [3]) in which the probability
that any vertex survives is pd. Therefore there is a positive probability of winning the
game iff

dpd > 1.

11



Therefore, the set of winning probabilities for the d + 1 regular tree, denoted W (d), is
the interval ((1/d)1/d, 1]. Note that {Td}d=3,∞ is an increasing family of graphs, but
{W (d)}d=3,∞ is decreasing and has as intersection the set {1}.

In the second example we give a variant of the game for which the first interpretation
of monotonicity does not hold.

Example 2: This is a variation on the last example. Suppose that instead of the
number of adjacent vertices occupied by mines we are given the following information.
For every vertex we are given one bit of information. This bit is on iff there are no mines
in the left-most l children and there is at least one mine in d− l other children. Again,
this is reduced to a branching process. But here the expected number of children is:

lpl(1− pd−l)

For every value of l, when d is large, the set W (d) is some open interval (p1, p2).
For another example of nonmonotic behavior in percolation-related models we refer

the reader to [4].

We conclude with one open problem and one conjecture.

Conjecture: On Zd the mine sweeper game is monotone in p, i.e., the set of winning
probabilities is an interval [p(d), 1] or (p(d), 1].

Problem: What can be said about the set W (d) for Zd as d →∞ ?
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