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The largest eigenvalue of sparse random graphs

Michael Krivelevich ∗ Benny Sudakov †

Abstract

We prove that for all values of the edge probability p(n) the largest eigenvalue of a random

graph G(n, p) satisfies almost surely: λ1(G) = (1 + o(1)) max{
√

∆, np}, where ∆ is a maximal

degree of G, and the o(1) term tends to zero as max{
√

∆, np} tends to infinity.

1 Introduction

Let G = (V,E) be a graph with vertex set V (G) = {1, . . . , n}. The adjacency matrix of G, denoted by

A = A(G), is an n-by-n 0, 1-matrix whose entry Aij is one if (i, j) ∈ E(G), and is zero otherwise. It is

immediate that A(G) is a real symmetric matrix. We thus denote by λ1 ≥ λ2 ≥ . . . λn the eigenvalues

of A which are usually called also the eigenvalues of the graph G itself. A family {λ1, . . . , λn} is called

the spectrum of G.

Spectral techniques play an increasingly important role in modern Graph Theory. A serious effort

has been invested in establishing connections between spectral characteristics of a graph and its other

parameters. An interested reader can consult monographs [5], [4] for a detailed account of known

results. The ability to compute graph eigenvalues efficiently (both from theoretical and practical

points of view), combined with results from spectral graph theory, has provided a basis for quite a

few graph algorithms. A survey of applications of spectral techniques in Algorithmic Graph Theory

by Alon can be found in [1].

In this paper we study eigenvalues of random graphs. A random graph G(n, p) is a discrete

probability space composed of all labeled graphs on vertices {1, . . . , n}, where each edge (i, j), 1 ≤
i < j ≤ n, appears randomly and independently with probability p = p(n). Sometimes with some

abuse of notation we will refer to a random graph G(n, p) as a graph on n vertices generated according

to the distribution G(n, p) described above. Usually asymptotic properties of random graphs are of
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interest. We say that a graph property A holds almost surely, or a.s. for brevity, in G(n, p) if the

probability that G(n, p) has A tends to one as the number of vertices n tends to infinity. Necessary

background information on random graphs can be found at [3], [7]. It is important to observe that

the adjacency matrix of a random graph G(n, p) can be viewed as a random symmetric matrix, whose

diagonal entries are zeroes and whose entries above the diagonal are i.i.d. random variables, each

taking value 1 with probability p and value 0 with probability 1 − p. This allows to bridge between

random graphs and extensively developed theory of random real symmetric matrices and their spectra

(see, e.g. [13]).

The subject of this paper is asymptotic behavior of the largest eigenvalue λ1(G(n, p)) of random

graphs. (Notice that due to the Perron-Frobenius Theorem, for every graph G on n vertices, λ1(G) ≥
|λi(G)| for all i = 2, . . . , n. Thus λ1(G) is equal to the spectral norm or the spectral radius of A(G).

It is easy to observe that for every graph G = (V,E) its largest eigenvalue λ1(G) is always squeezed

between the average degree of G, d̄ =
∑

v∈V dG(v)/|V | and its maximal degree ∆(G) = maxv∈V dG(v).

As for all p(n) ≫ log n the last two quantities are both asymptotically equal to np, it follows that

in this range of edge probabilities a.s. λ1(G(n, p)) = (1 + o(1))np. In fact, much more is known for

large enough values of p(n), Füredi and Komlós proved in [6] that for a constant p, λ1(G(n, p)) has

asymptotically a normal distribution with expectation (n − 1)p + (1 − p) and variance 2p(1 − p).

In contrast, not much appears to be known for the case of sparse random graphs, i.e. when

p(n) = O(log n). Khorunzhy and Vengerovsky [10] and Khorunzhy [9] consider mainly the case

p(n) = 1/n and show that in this case the spectral norm of A(G(n, p)) a.s. tends to infinity with n.

Moreover, it is stated in [10] that the mathematical expectation of the number of eigenvalues that go

to infinity is of order Θ(n).

Here we are to find the asymptotic value of the largest eigenvalue of sparse random graphs. To

grasp better the result, observe that if ∆ denotes a maximal degree of a graph G, then G contains a

star S∆ and therefore λ1(G) ≥ λ1(S∆) =
√

∆. Also, as mentioned above λ1(G) is at least as large as

an average degree of G. As for all values of p(n) ≫ 1/n2, a.s. |E(G(n, p))| = (1 + o(1))(n2p/2), we

get that a.s. λ1(G(n, p)) ≥ (1 + o(1))np. Combining the above lower bounds together, we get that a.s.

λ1(G(n, p)) ≥ (1 + o(1)) max{
√

∆, np}. As it turns out this lower bound can be matched by an upper

bound of the same asymptotic value, as given by the following theorem:

Theorem 1.1 Let G = G(n, p) be a random graph and let ∆ be a maximum degree of G. Then almost

surely the largest eigenvalue of the adjacency matrix of G satisfies

λ1(G) = (1 + o(1)) max
{
√

∆, np
}

,

where o(1) tends to zero as max{
√

∆, np} tends to infinity.

As the asymptotic value of the maximal degree of G(n, p) is known for all values of p(n) (see

Lemma 2.1 below), the above theorem enables to estimate the asymptotic value of λ1(G(n, p)) for all

relevant values of p. In particular, for the case p = c/n we get:
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Corollary 1.2 For any constant c > 0, a.s. λ1(G(n, c/n)) = (1 + o(1))
√

lnn
ln ln n .

The rest of the paper is organized as follows. In the next section we gather necessary technical

information about random graphs, used later in the proof of the main result. The main theorem,

Theorem 1.1, is proven in Section 3. Section 4, the last section of the paper, is devoted to concluding

remarks and discussion of related open problems.

Throughout the paper we will omit systematically floor and ceiling signs for the sake of clarity of

presentation. All logarithms are natural. We will frequently use the inequality
(

a
b

)

≤
(

ea
b

)b
.

2 Some properties of sparse random graphs

In this section we show some properties of sparse random graphs which we will use later to prove

Theorem 1.1. First we need the following definition. Let G(n, p) be a random graph. Denote

∆p = max
{

k : n

(

n − 1

k

)

pk(1 − p)n−k ≥ 1
}

.

In words, ∆p is the maximal k for which the expectation of the number of vertices of degree k in

G(n, p) is still at least one.

Lemma 2.1 Let G = G(n, p) be a random graph. Then

(i) The maximum degree of G almost surely satisfies ∆(G) = (1 + o(1))∆p.

(ii) If np → 0 then almost surely G is a forest.

(iii) If p ≤ e−(log log n)2/n, then almost surely all connected components of G are of size at most

(1 + o(1))∆p.

(iv) If p ≤ log1/2 n/n, then almost surely every vertex of G is contained in at most one cycle of length

≤ 4.

Proof. Parts (i) and (ii) are well known and can be found, e.g., in the monograph of Bollobás

[3]. To show (iii) it is enough to bound from above the expectation of the number Y of trees on

t = (1 + 1/ log log n)∆p + 1 vertices, contained in G(n, p) as subgraphs. Obviously this expectation is

equal to

EY =

(

n

t

)

tt−2pt−1 ≤ nt

t!
tt−2pt−1 ≤ nt

(t/e)t
tt−2pt−1 =

en

t2
(

enp
)t−1

=
e

t2

(

n
(

enp
)∆p
)

(

enp
)t−1−∆p .

On the other hand, by the definition of ∆p, we have that n
(

enp
)∆p = O(∆p

∆p+1) and ∆p = o(log n).

Therefore, using that p ≤ e−(log log n)2/n and t > ∆p, we conclude

EY ≤ O
( e

t2
∆p

∆p+1
(

enp
)∆p/ log log n

)

≤ O

(

( e∆p

log n

)∆p
)

= o(1).
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Now (iii) follows from Markov’s inequality. Finally, the expected number of pairs of intersecting cycles

of length s, t ≤ 4 in the graph G is obviously at most O(nsnt−1ps+t) ≤ O(log4 n/n) = o(1). This, by

Markov’s inequality, implies (iv). 2

Next we show that the set of vertices of relatively high degree in G(n, p) spans a graph with small

maximum degree and with no cycles. More precisely, the following stronger statement is true.

Lemma 2.2 Let p ≥ e−(log log n)2/n and let X be the set of vertices of random graph G = G(n, p) with

degree larger than np(1 + 1/ log log n) + ∆
1/3
p . Then

(i) Almost surely every cycle of G of length k intersects X in less than k/2 vertices.

(ii) Almost surely every vertex in G has less than ∆
7/8
p neighbors in X.

Proof. First we consider the case when e−(log log n)2/n ≤ p ≤ log1/4 n/n. In this case, by definition,

∆p = Ω(log n/(log log n)2) and np ≤ log1/4 n. To prove the lemma we first estimate the probability

that all the vertices of a fixed set T of size |T | = t have degrees at least log1/3 n/ log log n < ∆
1/3
p . It

is easy to see that for such a set T , either there are at least (log1/3 n/ log log n)t/3 edges in the cut

(T, V (G) − T ), or the set T spans at least (log1/3 n/ log log n)t/3 edges of G. Since the number of

edges in the cut (T, V (G) − T ) is a binomially distributed random variable with parameters t(n − t)

and p, we can bound the probability of the first event by

(

t(n − t)
log1/3 n

3 log log n t

)

p
log1/3 n
3 log log n

t ≤
(

3e(n − t)p log log n

log1/3 n

)
log1/3 n
3 log log n

t

≤
(

3e log1/4 n log log n

log1/3 n

)
log1/3 n
3 log log n

t

≤ e−Ω(t log1/3 n).

Also, the number of edges spanned by T is a binomially distributed random variable with parameters

t(t − 1)/2 and p. We can thus bound the probability of the second event similarly by

( t(t−1)
2

log1/3 n
3 log log n t

)

p
log1/3 n
3 log log n

t ≤
(

3e(t − 1)p log log n

2 log1/3 n

)
log1/3 n
3 log log n

t

≤
(

3e log1/4 n log log n

2 log1/3 n

)
log1/3 n
3 log log n

t

≤ e−Ω(t log1/3 n).

Therefore, the probability that all the vertices in the given set of size t have degree at least ∆
1/3
p is at

most e−Ω(t log1/3 n). Essentially repeating the above argument shows that conditioning on the presence

of any specific set of at most 2t edges in G leaves the latter probability still at most e−Ω(t log1/3 n).

Using this bound we can easily estimate the probability that there exists a cycle of length k with

at least k/2 vertices inside the set X. Clearly this probability is at most

∑

k≥3

nkpk

(

k

⌈k/2⌉

)

e−Ω((k/2) log1/3 n) ≤
∑

k≥3

(

2npe−Ω(log1/3 n)
)k

≤
∑

k≥3

(

2(log1/4 n)e−Ω(log1/3 n)
)k

= o(1).
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(First choose k vertices of a cycle and fix their order, then require that the k edges of the cycle are

present in G(n, p), then choose a set T of the cycle vertices of cardinality |T | = t = ⌈k/2⌉, and then

require all vertices of T to belong to X, conditioning on the presence of the cycle edges in G(n, p).)

This implies claim (i) of the lemma. Similarly, the probability that there exists a vertex with at least

∆
7/8
p neighbors in X is at most

n

(

n

∆
7/8
p

)

p∆
7/8
p e−Ω(∆

7/8
p log1/3 n) ≤ n

(

npe−Ω(log1/3 n)
)∆

7/8
p ≤ n

(

(log1/4 n)e−Ω(log1/3 n)
)Ω
(

( log n

(log log n)2
)7/8
)

≤ ne−Ω(log13/12 n) = o(1).

This completes the proof of the lemma for e−(log log n)2/n ≤ p ≤ log1/4 n/n.

Next we consider the case when p ≥ log1/4 n/n. We again start by estimating the probability

that that all the vertices of a fixed set T of size t ≤ n/2 have degree at least np(1 + 1/ log log n).

Similarly as before, for such a set T , there are at least t(n − t)p + tnp/(3 log log n) edges in the cut

(T, V (G)−T ), or the set T spans at least t(t−1)p/2+tnp/(3 log log n) edges. By the standard estimates

for Binomial distributions (see, e.g., [2], Appendix A) it follows that the probability of the first event

is at most e−Ω(tnp/(log log n)2). The same estimates can be used to show that if n/(6 log log n) ≤ t ≤ n/2

then the probability of the second event is also bounded by e−Ω(tnp/(log log n)2). On the other hand, if

t ≤ n/(6 log log n), then this probability can be bounded directly by

( t(t−1)
2

tnp
3 log log n

)

p
tnp

3 log log n ≤
(

3e(t − 1)p log log n

2np

)
tnp

3 log log n

≤
(e

4

)
tnp

3 log log n ≤ e−Ω(tnp/(log log n)2).

Therefore, the probability that all degrees of vertices in the given set of size t are at least np(1 +

1/ log log n) is at most e−Ω(tnp/(log log n)2). Again, conditioning on the presence of any specific set of at

most 2t edges does not change the order of the exponent in the above estimate.

Using this bound together with the fact that np ≥ log1/4 n we can estimate probability that there

exists a cycle of length k with at least k/2 vertices inside set X. Clearly this probability is at most

∑

k≥3

nkpk

(

k

⌈k/2⌉

)

e−Ω((k/2)np/(log log n)2) ≤
∑

k≥3

(

2npe−Ω(np/(log log n)2)
)k

≤
∑

k≥3

e
−Ω
(

k log1/4 n

(log log n)2

)

= o(1).

This implies claim (i). Similarly, the probability that there exists a vertex with at least ∆
7/8
p neighbors

in X is at most

n

(

n

∆
7/8
p

)

p∆
7/8
p e−Ω(∆

7/8
p np/(log log n)2) ≤ n

(

npe−Ω(np/(log log n)2)
)∆

7/8
p ≤ ne

−Ω
(

log1/4 n

(log log n)2
( log n

(log log n)2
)7/8
)

≤ ne−Ω(log17/16 n) = o(1).

This implies claim (ii) and completes the proof of the lemma. 2

Finally we need one additional lemma.
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Lemma 2.3 Let G = G(n, p) be a random graph with e−(log log n)2/n ≤ p ≤ log1/2 n/n. Then a.s. G

contains no vertex which has at least ∆
1/3
p other vertices of G with degree ≥ ∆

3/4
p within distance at

most two.

Proof. Let v be a vertex of G(n, p) and let ui, i = 1, . . . , ∆
1/3
p be the vertices with degree at least ∆

3/4
p

which are within distance at most two from v. Let T be the set of vertices of the smallest connected

subgraph of G which contain v together with all the vertices ui. Since the shortest path form v to ui

may contain only one vertex distinct from v and ui, then it is easy to see that the size of T satisfies

∆
1/3
p + 1 ≤ |T | = t ≤ 2∆

1/3
p + 1. In addition each ui has at least ∆

3/4
p − t ≥ 1

2∆
3/4
p neighbors outside

set T . Therefore there are at least 1
2∆

3/4
p · ∆

1/3
p = 1

2∆
13/12
p edges of G between T and V (G) − T .

Since the number of edges in the cut (T, V (G) − T ) is a binomially distributed random variable with

parameters t(n − t) and p we can bound the probability of this event for a fixed set T of size |T | = t

by
(

t(n − t)
1
2∆

13/12
p

)

p
1
2
∆

13/12
p ≤

(

2et(n − t)p

∆
13/12
p

)
1
2
∆

13/12
p

≤
(

5e log1/2 n

∆
3/4
p

)
1
2
∆

13/12
p

≤ e− log25/24 n.

Here we used that for p ≥ e−(log log n)2/n, by definition, ∆p ≥ Ω(log n/(log log n)2) and the facts that

np ≤ log1/2 n and t ≤ 2∆
1/3
p + 1.

As we explained in the previous paragraph, the probability that there exists a vertex that violates

the assertion of the lemma is bounded by the probability that there exists a connected subgraph on

|T | = t ≤ 2∆
1/3
p +1 vertices such that the number of edges in the cut (T, V (G)−T ) is at least 1

2∆
13/12
p .

Using that for p ≤ log1/2 n/n, by definition, ∆p = o(log n), we can bound this probability by

∑

t≤2∆
1/3
p +1

(

n

t

)

tt−2pt−1e− log25/24 n ≤
∑

t≤2∆
1/3
p +1

en

t2
(

enp
)t−1

e− log25/24 n ≤ 3∆1/3
p n

(

enp
)2∆

1/3
p e− log25/24 n

≤ n log1/3 n
(

e log1/2 n
)log1/3 n

e− log25/24 n = o(1).

This completes the proof. 2

3 The proof of main result

In this section we prove Theorem 1.1. We start by stating some simple properties of the largest

eigenvalue of a graph, that we will need later.

Proposition 3.1 Let G be a graph on n vertices and m edges and with maximum degree ∆. Let λ1(G)

be the largest eigenvalue of the adjacency matrix of G. Then is has the following properties.

(i) max
(√

∆, 2m
n

)

≤ λ1(G) ≤ ∆.

(ii) If E(G) = ∪iE(Gi) then λ1(G) ≤ ∑

i λ1(Gi). If in addition graphs Gi are vertex disjoint, then

λ1(G) = maxi λ1(Gi).
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(iii) If G is a forest then λ1(G) ≤ min
(

2
√

∆ − 1,
√

n − 1
)

. In particular if G is a star on ∆ + 1

vertices then λ1(G) =
√

∆.

(iv) If G is a bipartite graph such that degrees on both sides of bipartition are bounded by ∆1 and ∆2

respectively, then λ1(G) ≤
√

∆1∆2.

Proof. Most of these easy statements can be found in Chapter 11 of the book of Lovász [12]. Here

we sketch the proof of few remaining ones for the sake of completeness.

(iii) Let A be the adjacency matrix of G and let λ1, λ2, . . . , λn be its eigenvalues. Since G is a forest

on n vertices it is easy to see that the trace of A2 satisfies

tr(A2) =
∑

i

λ2
i =

∑

v

dv ≤ 2(n − 1).

On the other hand λ1 = −λn because G is bipartite. Therefore we can conclude that 2λ2
1 ≤ 2(n − 1)

and hence λ1 ≤
√

n − 1. For the proof of the rest of the statement (iii) see, e.g., [12].

(iv) Let A be the adjacency matrix of G. Then by definition it is easy to see that A2 is the adjacency

matrix of a multigraph with maximum degree ∆1∆2. Therefore by (i) we have that λ1(A2) = λ2
1(G) ≤

∆1∆2 and hence λ1 ≤
√

∆1∆2. 2

Having finished all the necessary preparations, we are now ready to complete the proof of our main

theorem.

Proof of Theorem 1.1. We start with the easy case when the random graph is very sparse. If

p ≤ e−(log log n)2/n, then by Lemma 2.1 a.s. G = G(n, p) is a disjoint union of trees of size at most (1+

o(1))∆p. Therefore by claims (ii) and (iii) of Proposition 3.1 we have that λ1(G) ≤ (1+o(1))
√

∆p. On

the other hand, By Lemma 2.1 the maximum degree of G is almost surely at least (1+o(1))∆p and thus

claim (i) of Proposition 3.1 implies that λ1(G) ≥ (1+o(1))
√

∆p. Since the value of the edge probability

satisfies np = o(1) < ∆p, we obtain that λ1(G) = (1 + o(1))
√

∆p = (1 + o(1)) max
(
√

∆(G), np
)

.

Another relatively simple case is when p ≥ log1/2 n/n. Then by definition it is easy to check that

∆p = o
(

(np)2
)

and hence it is enough to prove that λ1(G) = (1+o(1)) max
(√

∆p, np
)

= (1+o(1))np.

To get a lower bound on the largest eigenvalue note that the standard Chernoff estimates for the

binomial distributions (see, e.g., [2] , Appendix A) imply that the number of edges in G(n, p) is a.s.

(1 + o(1))n2p/2. Therefore by claim (i) of Proposition 3.1, the largest eigenvalue of G(n, p) is almost

surely at least (1 + o(1))n2p/n = (1 + o(1))np.

To get an upper bound, denote by X the set of vertices of random graph G = G(n, p) with

degree larger than np(1 + 1/ log log n) + ∆
1/3
p . Let G1 be a subgraph of G induced by the set X,

let G2 be a subgraph of G induced by the set V (G) − X and finally let G3 be a bipartite subgraph

of G containing all the edges between X and V (G) − X. By definition G = ∪iGi and thus by

claim (ii) of Proposition 3.1 we obtain that λ1(G) ≤
∑3

i=1 λ1(Gi). Since the maximum degree of

graph G2 is np(1 + 1/ log log n) + ∆
1/3
p = (1 + o(1))np, then by claim (i) of Proposition 3.1 it follows

that λ1(G2) ≤ (1 + o(1))np. Also note that by our construction, any cycle in the graphs G1 or G3

7



should have at least half of its vertices in the set X. Therefore from Lemma 2.2 we get that almost

surely G1 and G3 contains no cycles. In addition, by Lemma 2.1, the maximum degree of these

two forests is bounded by (1 + o(1))∆p. Then using claim (iii) of Proposition 3.1 we obtain that

λ1(Gi) ≤ (2 + o(1))
√

∆p, i = 1, 3. This implies that

λ1(G) ≤ λ1(G1) + λ1(G2) + λ1(G3) ≤ (1 + o(1))np + (4 + o(1))
√

∆p = (1 + o(1))np.

Finally we treat the remaining case when e−(log log n)2/n ≤ p ≤ log1/2 n/n. Similarly as before we

have that a.s. the maximum degree of G = G(n, p) is (1 + o(1))∆p and the total number of edges in

G is (1 + o(1))n2p/2. Therefore claim (i) of Proposition 3.1 implies that

λ1(G) ≥ (1 + o(1)) max
(√

∆p, n
2p/n

)

= (1 + o(1)) max
(
√

∆(G), np
)

.

To handle the upper bound on λ1 we again use a partition of G into smaller subgraphs, whose largest

eigenvalue is easier to estimate.

Denote by X1 the set of vertices of G with degree at least ∆
3/4
p and by X2 the set of vertices with

degrees larger than np(1+1/ log log n)+∆
1/3
p but less than ∆

3/4
p . Let X = X1∪X2 and let Y1 contains

all vertices of V (G) − X with at least one neighbor in X1. Finally let Y2 be the set V (G) − X ∪ Y1.

Note that by definition there are no edges between X1 and Y2.

We consider the following subgraphs of G. Let G1 be the subgraph of G induced by the set X.

Then by Lemma 2.2, G1 contains no cycles and has maximum degree at most ∆
7/8
p . Therefore by

claim (iii) of Proposition 3.1 we get that λ1(G1) ≤ 2

√

∆
7/8
p = o

(√

∆p

)

.

Our second graph G2 consists of all edges between X2 and V (G) − X. Note that by definition,

any cycle in G2 has exactly half of its vertices in X2 ⊂ X. Thus by Lemma 2.2, almost surely G2

is a forest. In addition, the maximum degree in G2 is bounded by the maximal possible degree of

a vertex from the set V (G) − X1, which is ∆
3/4
p . Using claim (iii) of Proposition 3.1 we get that

λ1(G2) ≤ 2

√

∆
3/4
p = o

(√

∆p

)

.

Next consider the graph G3, induced by the set of vertices Y1. Let v ∈ V (G)−X be a vertex with

at least ∆
1/3
p + 1 neighbors in Y1. Since by definition every neighbor of v in Y1 is also a neighbor of

some vertex in X1 we obtain that there are at least ∆
1/3
p + 1 paths of length two from v to the set

X1. On the other hand, by Lemma 2.1, v almost surely is contained in at most one cycle of length 4.

This implies that all but at most one of the endpoints of these paths in X1 are different. Therefore

vertex v has at least ∆
1/3
p distinct vertices of X1 with in distance two. Now from Lemma 2.3 it follows

that a.s. there is no vertex with this property. Hence every vertex v ∈ V (G) − X has almost surely

at most ∆
1/3
p neighbors in Y1. In particular the maximum degree of G3 is bounded by ∆

1/3
p , which

implies that λ1(G3) ≤ ∆
1/3
p = o

(√

∆p

)

.

Let G4 be the bipartite subgraph consisting of all the edges of G between Y1 and Y2. By definition,

the degree of every vertex in Y1 is at most np(1+1/ log log n)+∆
1/3
p and we already proved in the pre-

vious paragraph that the degree of every vertex from Y2 in this graph is at most ∆
1/3
p . Therefore, using
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claim (iv) of Proposition 3.1 together with the facts that np ≤ log1/2 n and ∆p = Ω
(

log n/(log log n)2
)

we obtain

λ1(G4) ≤
√

∆
1/3
p

(

np(1 + 1/ log log n) + ∆
1/3
p

)

≤ ∆1/3
p + (1 + o(1))∆1/6

p
√

np = o
(
√

∆p

)

.

Finally we define G5 to be the subgraph of G induced by the set Y2, and G6 to be a bipartite graph

containing all the edges of G between X1 and Y1. Since there are no edges crossing from X1 to Y2 it

is easy to check that E(G) =
⋃6

i=1 E(Gi). Also since the graphs G5 and G6 are vertex disjoint, then

by claim (ii) of Proposition 3.1 we obtain that λ1(G5 ∪ G6) = max
(

λ1(G5), λ1(G6)
)

and

λ1(G) ≤ λ1(G1) + . . . + λ1(G4) + λ1(G5 ∪ G6) = max
(

λ1(G5), λ1(G6)
)

+ o
(
√

∆p

)

.

By definition, the maximum degree of G5 is bounded by (1 + o(1))np + ∆
1/3
p , which implies that

λ1(G5) ≤ (1 + o(1))np + ∆
1/3
p . Hence to finish the proof it remains to bound λ1(G6).

Consider the graph G6. Let T be the set of vertices from Y1 with degrees greater than one in G6

and let u ∈ X1 be a vertex with at least ∆
1/3
p + 1 neighbors in T . By definition, every neighbor of u in

T has also an additional neighbor in X1, which is distinct from u. Therefore we obtain that there are

at least ∆
1/3
p + 1 simple paths of length two from u to the set X1. On the other hand, by Lemma 2.1,

u almost surely is contained in at most one cycle of length 4. This implies that all but at most one of

the endpoints of these paths in X1 are different. Therefore vertex u has at least ∆
1/3
p distinct vertices

of X1 within distance two. Now from Lemma 2.3 it follows that a.s. there is no vertex with this

property. In addition it follows that every vertex from Y1 has degree at most ∆
1/3
p in G6. Let H be

the subgraph of G6 containing all the edges from X1 to T . Then by the above discussion its maximum

degree is bounded by ∆
1/3
p and therefore λ1(H) ≤ ∆

1/3
p . On the other hand, since the degree of every

vertex in Y1 − T in G6 is at most one and the graph is bipartite, we obtain that G6 −H is a union of

vertex disjoint stars. The size of each star is at most the maximum degree of G. Then by claims (ii)

and (iii) of Proposition 3.1 we get that

λ1(G6) ≤ λ1(H) + λ1(G6 − H) ≤ ∆1/3
p + (1 + o(1))

√

∆p.

This implies the desired upper bound on λ1(G), since

λ1(G) ≤ max
(

λ1(G5), λ1(G6)
)

+ o
(

√

∆p

)

= max
(

(1 + o(1))np + ∆1/3
p , (1 + o(1))

√

∆p + ∆1/3
p

)

= (1 + o(1)) max
(

√

∆p, np
)

= (1 + o(1)) max
(

√

∆(G), np
)

,

and completes the proof of the theorem. 2

4 Concluding remarks

In this paper we have found the asymptotic value of the largest eigenvalue of a random graph G(n, p),

or the spectral radius of the corresponding random real symmetric matrix.
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It would be quite interesting to obtain more accurate estimates on the error term in the asymptotic

estimate for λ1(G(n, p)), given by Theorem 1.1. Notice that due to the recent concentration result of

the first author and Vu [11], the standard deviation of λ1(G(n, p)) can be asymptotically bounded by

an absolute constant, and this random variable is sharply concentrated. Our proof methods do not

allow us to locate the expectation of λ1 with such degree of precision. Neither we are able to obtain

a limit distribution of λ1, as has been done by Füredi and Komlós [6] for the case of a constant edge

probability p. This is another attractive open question.

One can also try to determine when the largest eigenvalue of a random graph has multiplicity

one and then to understand a typical structure of the first eigenvector of G(n, p). While for the case

p ≫ log n/n, where the graph G(n, p) becomes a.s. almost regular, the first eigenvector will be a.s.

almost collinear to the all-1 vector, the picture becomes more complicated for smaller values of p(n).

Notice that for p(n) ≪ log n/n the graph G(n, p) is a.s. disconnected, and therefore the support of

the first eigenvector will be at most as large as the size of its largest connected component.

Consider the case p = c/n, for a constant c > 0. Performing direct calculations similar to those

of Section 2 of the present paper, one can show that in this case G(n, p) contains almost surely an

unbounded collection of vertices of degree ∆(G)(1 − o(1)) at distance at least three from each other.

Considering then the subgraph of G spanned by those vertices and their neighbors shows that a.s.

G(n, p) has an unbounded number of eigenvalues λi = (1 − o(1))λ1.

Another observation for the case p = c/n is that according to Corollary 1.2 the first eigenvalue of

G(n, c/n) remains asymptotically the same for all values of the constant c > 0 and appears thus to be

quite insensitive to the growth of c > 0. This stays in a sharp contrast with many other properties of

random graphs such as the appearance of the giant component (all components of G(n, c/n) are a.s.

at most logarithmic in size for c < 1, while for c > 1 G(n, p) contains a.s. one component of a linear

size and the rest are O(log n)) or planarity (G(n, c/n) is a.s. planar for c < 1 and a.s. non-planar for

c > 1).

Another related problem is to investigate the spectrum of the Laplacian of a random graph G(n, p).

For a graph G, the Laplacian L = L(G) is defined as L = D − A, where A is the adjacency matrix

of G and D is the diagonal matrix whose diagonal entries are degrees of corresponding vertices. For

any graph G, the Laplacian L(G) is easily seen to be a real symmetric matrix with non-negative

eigenvalues, the smallest of them being zero. One may study the so-called spectral gap (the smallest

positive eigenvalue of the Laplacian) of random graphs G(n, p) for various values of p(n).

The methods of this paper can be possibly applied to the study of the spectrum of dilute random

matrices. A dilute random matrix A is defined by

Ai,j = ai,jbi,j, 1 ≤ i ≤ j ≤ n

Aj,i = Ai,j , 1 ≤ i < j ≤ n.

where ai,j are jointly independent random variables with zero mean and variance 1, and bi,j are also

jointly independent and independent from {ai,j}, where bi,j = 1 with probability p = p(n) and bi,j = 0
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with probability 1 − p. In other words, the dilute random matrix is obtained by replacing each entry

of a matrix from the so-called Wigner ensemble by zero independently with probability q = 1− p. As

such, it unifies the notions of the Wigner random matrices and random graphs. Khorunzhy proved in

[8] that the spectral norm of the dilute random matrix is asymptotically equal to 2
√

np in the case

p(n) ≫ log n/n (under some additional technical assumptions) and it asymptotically much larger than
√

np for p(n) ≪ log n. It would be quite interesting to determine the asymptotic behavior of the

spectral radius of the dilute random matrix for the case of small values of p(n).
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