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Three Sampling Formulas

Alexander V. Gnedin
Utrecht University

Abstract. Sampling formulas describe probability laws of exchangeable combinatorial
structures like partitions and compositions. We give a brief account of two known parametric
families of sampling formulas and add a new family to the list.

1 Introduction. By an integer composition of weight n and length ℓ we shall mean an
ordered collection of positive integer parts λ = (λ1, . . . , λℓ); we write λ ⊢ n for

∑

λj = n. It
will be convenient to also use variables Λk = λk + . . .+ λℓ, k ≤ ℓ, so that λj = Λj − Λj−1.

A composition structure is a nonnegative function q on compositions such that for each
n the values {q(λ) : λ ⊢ n} comprise a probability distribution, say qn, and the qn’s satisfy
the following sampling consistency condition. Imagine an ordered series of randomly many
nonempty boxes filled in randomly with balls, so that the distribution of occupancy numbers
from the left to the right is qn. The condition requires that if some k < n balls are sampled
out uniformly at random then the distribution of the reduced occupancy numbers in nonempty
boxes (in same order) must be exactly qn−k (without loss of generality we can take k = 1).

Ignoring the order of boxes yields Kingman’s partition structure [7] (see [1] and [10] for sys-
tematic development of the theory of partition structures, their relation to exchangeability and
many references). But the relation cannot be uniquely inverted, because for a given partition
structure there are many ways to introduce the order in a consistent fashion.

Gnedin [4] showed that all composition structures can be uniquely represented by a version
of the Kingman’s paintbox construction [7]. Let U be a paintbox – a random open subset of
[0, 1]. With a paintbox we associate an ordered partition of [0, 1] comprised of the intervals
of U and of individual elements of the complement U c, with the order of blocks induced by
the order on reals. Suppose n independent uniform random points are sampled from [0, 1]
independently of U . The sample points group somehow within the partition blocks and we
obtain a random composition by writing the nonzero occupation numbers from the left to the
right. With probability one there is no tie among the sample points and the consistency for
various sample sizes follows from exchangeability in the sample.

From a topological viewpoint, the representation establishes a homeomorphism between the
space of extreme composition structures and the compact space of open subsets of [0, 1] (en-
dowed with a weak topology), and also identifies the generic composition structure with a unique
mixture of extremes. Thus already the set of extremes is intrinsically infinite-dimensional, not
to say about the mixtures. It is therefore a question of interest to find smaller parametric
families which admit a reasonably simple description.

In this note we discuss briefly three such families: one is an ordered modification, due to
Donnelly and Joyce [2], of the ubiquitous Ewens sampling formula (corresponding to (0, θ)-

1

http://arxiv.org/abs/math/0210319v2


partition structure from the Ewens-Pitman two-parametric family [9]); another one, due to
Pitman [8], is an ordered (symmetric) version of the (α, 0)-partition structure, and the third
composition structure is new. Despite the fact that the new composition structure is, in a sense,
constructed from the beta distributions, like the first two, the corresponding partition structure
does not fit in the Ewens-Pitman family. All three belong to a large infinite-dimensional family
of regenerative compositions introduced and characterised in [6] and all three are mixed, i.e.
generated by genuinely random paintboxes.

2 Ordered ESF. In their encyclopaedical exposition of the multivariate Ewens distribution
Ewens and Tavaré presented the ordered version of ESF (see [3], Eqn. 41.6),

e(λ) =
θℓ n!

[θ]n

ℓ
∏

j=1

1

Λj

θ > 0 ,(1)

in connection with a size-biased permutation of the Ewens partition structure (here and forth,
[ ] is the Pochhammer factorial). The special case θ = 1 is well known to combinatorialists
as the distribution of cycle lengths in a uniform random permutation, provided the cycles are
ordered by increasing of their least elements.

Donnelly and Joyce [2] observed that the formula also defines a composition structure, i.e.
that (1) determines a consistent sequence of random partitions taken together with an intrinsic

ordering of classes, based neither on the sizes of classes nor on labeling of ‘balls in boxes’. They
argued that the ordered structure is of some significance for biological applications, and proved
the following paintbox representation of e.

Let Zj be independent random variables with beta density

dω = θ (1− z)θ−1dz .

Let Ue be the open set complementary to the stick-breaking sequence

1−
k
∏

j=1

(1− Zj) k = 1, 2, . . .

taken together with the endpoints of [0, 1]. Then rephrasing Theorem 10 from [2] we have

Theorem 1 The composition structure e can be derived from the paintbox Ue.

The proof of this result given in [2] relied on the twin fact about weak convergence of the
size-biased permutation of ESF. Next is a direct argument which offers some more insight and
exemplifies the approach taken in this paper.

Proof. Introduce the binomial moments

w(n : m) =

(

n

m

)

∫ 1

0
zm(1− z)n−m dω(z)(2)

= θ

(

n

m

)

B(m+ 1, n−m+ θ)
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For I the leftmost interval of U (adjacent to 0) the size of I equals Z1. Denoting ê the
composition structure derived from Ue we aim to show that ê = e.

The argument is based on two facts. Firstly, suppose n uniform points have been sampled
from [0, 1] and I occured to contain m sample points, then conditionally given I the configu-
ration of other n−m points is as if it were a uniform sample from Ic. The second fact is that
given I the set Ue \ I is a scaled distributional copy of Ue, as it is clear from the definition of
the paintbox via stick-breaking.

Composition (λ1, . . . , λℓ) can only appear if the interval J , defined to be the leftmost of the
intervals of Ue discovered by the sample, contains exactly λ1 sample points. The chance that
J coincides with I is w(n : m) and in this case the composition derived from the piece of Ue

to the right from J must be (λ2, . . . , λℓ). Otherwise λ can appear only if I contains no sample
points and all n group within Ue \ J in accord with λ.

Combining these facts we get equation

e(λ1, . . . , λℓ) = w(n : λ1) e(λ2, . . . , λℓ) + w(n : 0) e(λ1, . . . , λℓ)

leading to the recursion

e(λ1, . . . , λℓ) =
w(n : λ1)

1− w(n : 0)
e(λ2 . . . , λℓ).

which is solved as

ê(λ) =
ℓ
∏

j=1

q(Λj : λj)(3)

where

q(n : m) :=
w(n : m)

1− w(n : 0)
(4)

=
θ

n

n!

(n−m)!

[θ]n−m

[θ]n
.

Cancelling common factors we arrive at (1), thus ê = e. ✷

There is a canonical correspondence between composition structures and probability dis-
tributions of exchangeable compositions of an infinite set {1, 2, . . .} (see [4]). In terms of the
paintbox representation the composition derived from U is obtained by sampling infinitely
many uniform points and then assigning objects i and j to distinct classes if the closed interval
spanned on the ith and the jth sample points has a nonempty intersection with U c.

The infinite composition associated with e, call it E , has a simply ordered collection of
blocks, and the law of large numbers says that the asymptotic frequencies of the blocks (in a
growing sample) coincide with the sizes of stick-breaking residuals, from the left to the right.
When we view E from the perspective of restrictions En on finite sets {1, . . . , n}’s, the collection
of blocks stabilises (with probability one) in the sense that for any k no new block appearing
in En′ , for n′ > n , will interlace with the collection of the first k blocks represented in En ,
provided n is sufficiently large (a zero-one law). Compositions with this property were called
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‘representable’ in [2] and the class of such compositions generated by a general stick-breaking
paintbox was characterised in [6].

3 PSF. Pitman’s composition structure is given by Eqn. (30) in [8]:

p(λ) =
n!αℓ

[α]n

ℓ
∏

j=1

[1− α]λj

λj!
0 < α < 1 .(5)

This sampling formula was derived from the following paintbox representation.

Theorem 2 The paintbox Up for p is the union of excursion intervals of the Bessel bridge

of dimension 2− 2α.

Equivalently, the complement U c
p is the set of zeroes of the Bessel bridge on [0, 1]. The case

α = 1/2 corresponds to the Brownian bridge.
In fact, p is a conditional version of another Pitman’s composition structure p′ derived from

the set of zeroes of a Bessel process (which has final meander interval adjacent to the rightpoint
of [0, 1]). Pitman obtained a formula for p′ akin to (5) (see [8], Eqn. (28)) using selfsimilarity
of the Bessel process and distribution of the length of meander interval. The relation between
the structures is that

p(λ) = const(n) p′(λ, 1) λ ⊢ n .

Gnedin and Pitman [6] give a characterisation of p related to the observation that this
composition structure is also of the product form (similar to (3)) with

q(n : m) = −

(

α

m

)(

−α

n−m

)

(

−α

n

)

For ℓ fixed, p is a symmetric function of the parts. This reflects in that Up is symmetric, that
is has component intervals ‘in random order’ (in [1] the open sets with this kind of invariance
are called ‘exchangeable interval partitions’). Summing p(λ) over distinct permutations of parts
yields a function on integer partitions which is the (α, 0)-partition structure from the Ewens-
Pitman family. It follows that p could be obtained from the partition structure by permuting
the parts in uniform random order (this is the general device allowing to derive symmetric
composition structures and symmetric open sets from their unordered relatives [5]).

Blocks of the Pitman’s composition P on {1, 2, . . . , } are ordered like the set of rational
numbers and a such cannot be labeled by integers consistently with their intrinsic order. This
happens each time a composition has infinitely many blocks (almost surely) and is symmetric.
A consequence is that the infinite composition P has no definite first, second, etc or the last
block, in particular the first (hence kth) block in Pn does not stabilise as n grows.

4 A new sampling formula. Here is a new composition structure

g(λ) =
n!

[θ]n

ℓ
∏

j=1

1

λj h θ(Λj)
θ > 0(6)
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where

h θ(n) =
n
∑

k=1

1

θ + k − 1

are the generalised harmonic numbers which coincide with the partial sums of the harmonic
series when θ = 1.

To explain the genesis of the formula consider stick-breaking with the general beta density

dω(z) = const · zα−1(1− z)θ−1 α, θ > 0 .(7)

The resulting paintbox generates a composition structure given by the RHS of (3) with

q(n : m) =

(

n

m

)

[α]m [θ]n−m

[α + θ]n − [θ]n
(8)

where (8) is obtained like (4) from the binomial moments of the beta density (7) (to see this
just follow the lines in the proof of Theorem 1).

For general α and β the induced composition structure cannot be expressed by a simple
product formula, because the denominator has no good factorisation. One notable exception is
the ESF appearing when α = 1. Another exception is the case α = 0 giving rise to g; but this
should be interpreted properly because measure ω becomes infinite.

Theorem 3 When α ↓ 0 the stick-breaking composition structure directed by the beta den-

sity (7) converges to g.

Proof. Expansions in powers of α start with

[α]m = α (m− 1)! + . . . , [α + θ]n − [θ]n = α h θ(n) + . . .

therefore when α approaches 0 we get

q(n : m) =
n!

(n−m)!

[θ]n−m

[θ]n

1

mh θ(n)
.(9)

which yields g as in (3). ✷

Distribution (8) underlying g is especially simple for θ = 1 when it gives a weight propor-
tional to m−1 to each m = 1, . . . , n.

To determine the paintbox representation for g we will extend the classical stick-breaking
procedure by embedding the process into continuous time and allowing infinitely many breaks
within any time interval. Note that defining a composition structure via the RHS of (3), through
the binomial moments of some measure ω and

q(n : m) =
w(n : m)

w(n : 1) + . . .+ w(n : n)

we need not require that the measure ω be finite and do need to only impose the condition

∫ 1

0
z dω(z) < ∞
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to have all binomial moments finite for 1 ≤ m ≤ n < ∞.
In particular, our g appears when we take improper density

dω(z) = z−1(1− z)θ−1 dz(10)

(see [6] for more examples). For this ω consider a planar Poisson process (PPP) in the infinite
strip [0,∞] × [0, 1] with Lebesgue × ω as intensity measure. The PPP has countably many
atoms (τj, ξj) (we adopt the conventional fake labeling of atoms which is not intended to say
that τj or ξj is a definite random variable for particular j), and each location on the abscissa is
a concentration point for the set of atoms. Define a pure-jump process with increasing cadlag
paths

St = 1−
∏

(τj ,ξj):τj≤t

(1− ξj)

where the product is over all PPP atoms to the left from t. For any t the product converges
because z ω(dz) is a finite measure. The process (St) is a geometric subordinator: for t′ > t the
ratio (1− St′)/(1−St) is independent of the partial path on [0, t] and has same distribution as
1− St′−t.

(The reader feeling more comfort with breaking sticks from the right to the left should
translate paintbox formulas using involution z ↔ 1− z and also mirror the sampling formulas.)

Theorem 4 The paintbox Ug representing g is the complement to the closure of the random

set {St : t > 0}, which is the range of the geometric subordinator.

Proof. Fix λ ⊢ n and consider a uniform sample of size n. The composition λ appears when
for some τj the interval [0, Sτj ] contains m sample points grouped in one component interval of
Ug ∩ [0, Sτj ] and the composition on the remaining (n−m) sample points is (λ2, . . . , λℓ). From
the properties of uniform distribution and because PPP is ruled by a product measure follows
that the composition structure induced by Ug is of the product form as in (3) and we only need
to justify the formula (9) for q which is the distribution of the first part of composition of n.

To that end, let π(t) be the probability that some m sample points group in one interval of
Ug ∩ [0, St] and denote ǫ1, . . . , ǫn the increasing order statistics of uniform sample. Considering
a small time interval [0, dt] it is not hard to see that π satisfies the differential equation

π′ = −a π + b , π(0) = 0

with constant coefficients

a = Eω[ǫ1, 1] = w(n : 1) + . . .+ w(n : n) and b = Eω[ǫm, ǫm+1] = w(n : m)

(with 1 in place of ǫm+1 in case m = n) where w(n : m)’s are the binomial moments of (10).
Solving the equation we obtain φ(t) = (b/a)(1 − e−at) → b/a = q(n : m), as t → ∞ whence
q(n : m) = b/a and this is (9). ✷

The infinite composition G associated with g has infinitely many blocks, and the set of blocks
is order isomorhic to the set of rational numbers. Unlike Pitman’s P it is not symmetric, i.e. g
is sensible to permutation of parts λj when ℓ > 1, and the representing paintbox Ug is not an
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‘exchangeable interval partition’. A combinatorialist might find natural to view g as a function
on Young diagrams (Λ1, . . . ,Λℓ) with strictly decreasing parts.

Ignoring the order in G yields a novel partition structure. For no θ belongs this partition
structure to the Ewens-Pitman two-parameter family, which had covered practically all explicit
sampling formulas known to date. The distinction can be seen immediately by comparing the
probability of one-class partition, our g(n) = q(n : n) given by (8) versus the analogous quantity
computed via Eqn. (16) in [9] (the formulas do not match for n > 4 whatever the values of
parameters).

Taking other integer values of α in (7) leads to formulas involving products of stereotypic polyno-
mial factors, e.g. for α = 2 we have

g2(λ) =
n! θℓ (1 + θ)ℓ

[θ]n

ℓ
∏

j=1

λj + 1

Λj + 2θ + 1
.

The resulting infinite compositions have simply ordered blocks and thus are more in line with E .
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