Sparse Parity-Check Matrices over GF(q)

Dedicated to the 60th Birthday of Walter Deuber

Hanno Lefmann
Fakultät für Informatik, TU Chemnitz
D-09107 Chemnitz, Germany
lefmann@informatik.tu-chemnitz.de

Abstract

For fixed positive integers k, q, r with q a prime power and large m, we investigate matrices with m rows and a maximum number $N_{q}(m, k, r)$ of columns, such that each column contains at most r nonzero entries from the finite field $G F(q)$ and each k columns are linearly independent over $G F(q)$. For even integers $k \geq 2$ we obtain the lower bounds $N_{q}(m, k, r)=\Omega\left(m^{k r /(2(k-1))}\right)$, and $N_{q}(m, k, r)=\Omega\left(m^{((k-1) r) /(2(k-2))}\right)$ for odd $k \geq 3$. For $k=2^{i}$ we show that $N_{q}(m, k, r)=\Theta\left(m^{k r /(2(k-1))}\right)$ if $\operatorname{gcd}(k-$ $1, r)=k-1$, while for arbitrary even $k \geq 4$ with $\operatorname{gcd}(k-1, r)=1$ we have $N_{q}(m, k, r)=\Omega\left(m^{k r /(2(k-1))} \cdot(\log m)^{1 /(k-1)}\right)$. Matrices, which fulfill these lower bounds, can be found in polynomial time. Moreover, for char $(G F(q))>2$ we obtain $N_{q}(m, 4, r)=\Theta\left(m^{\lceil 4 r / 3\rceil / 2}\right)$, while for char $(G F(q))=2$ we can only show that $N_{q}(m, 4, r)=O\left(m^{\lceil 4 r / 3\rceil / 2}\right)$. Our results extend and complement earlier results from [5,18$]$, where the case $q=2$ was considered.

1 Introduction

For a prime power q, let $G F(q)$ be the finite field with q elements. We consider matrices over $G F(q)$ with k-wise independent columns, i.e. each k columns are linearly independent over $G F(q)$. Moreover, each column contains at most r nonzero entries from $G F(q) \backslash\{0\}$. For such matrices we use the notion of (k, r)-matrices. Given a number m of rows, let $N_{q}(m, k, r)$ denote the maximum number of columns such a matrix can have. Recall that matrices with k-wise independent columns are just parity-check matrices for linear codes with minimum distance at least $k+1$, hence we investigate here the sizes of sparse parity-check matrices over $G F(q)$.
By monotonicity, we have $N_{q}(m, k+1, r) \leq N_{q}(m, k, r)$ for $k=2,3, \ldots$. Throughout this paper, k, r, q are fixed positive integers and m is large.
For $q=2$, i.e. we are working in $G F(2)=\{0,1\}$, it has been shown by a probabilistic argument that $N_{2}(m, 2 k+1, r) \geq 1 / 2 \cdot N_{2}(m, 2 k, r)$, see [18], hence it suffices in this case to consider even independences. Moreover, for $q=2$ and $r=2$ the values of $N_{2}(m, k, 2)$ are asymptotically equal (up to an additive term of $O(m)$ for the number of columns with exactly one entry 1) to the maximum number of edges in a graph on m vertices, which does not contain any cycle of length at most k. The growth of $N_{2}(m, k, 2)$ has been studied a lot in the past, however not that much is known on the exact asymptotic growth rate for arbitrary fixed integers $k \geq 2$. Known are only the values $N_{2}(m, 4,2)=\Theta\left(m^{3 / 2}\right)$,
see $[9,11,12]$, and $N_{2}(m, 6,2)=\Theta\left(m^{4 / 3}\right)$ and $N_{2}(m, 10,2)=\Theta\left(m^{6 / 5}\right)$, see [4, 26]. In general, for fixed integers $k \geq 1$ a simple probabilistic argument yields $N_{2}(m, 2 k, 2)=$ $\Omega\left(m^{1+1 /(2 k-1)}\right)$. By constructions of Margulis [22], and Phillips, Lubotzky and Sarnak [21] this lower bound was improved to $N_{2}(m, 2 k, 2)=\Omega\left(n^{1+2 /(3 k+3)}\right)$, which was further improved by Lazebnik, Ustimenko and Woldar [17] to $N_{2}(m, 2 k, 2)=\Omega\left(m^{1+2 /(3 k-3+\varepsilon)}\right)$ with $\varepsilon \in\{0,1\}$ and $\varepsilon=0$ if and only if k is odd. However, concerning upper bounds we only know that $N_{2}(m, 2 k, 2)=O\left(m^{1+1 / k}\right)$ for fixed integers $k \geq 1$ by the work of Bondy and Simonovits [8].
For $q=2$ and arbitrary fixed integers $r \geq 1$, the following lower and upper bounds on $N_{2}(m, k, r)$ were given by Pudlák, Savický and this author [18].

Theorem 1.1 Let $k \geq 2$ even and $r \geq 1$ be fixed integers. Then for positive integers m,

$$
\begin{equation*}
N_{2}(m, k, r)=\Omega\left(m^{\frac{k r}{2(k-1)}}\right) \tag{1}
\end{equation*}
$$

and for $k=2^{i}$,

$$
\begin{equation*}
N_{2}(m, k, r)=O\left(m^{\lceil k \cdot r /(k-1)\rceil / 2}\right) \tag{2}
\end{equation*}
$$

Thus, for $\operatorname{gcd}(k-1, r)=k-1$ and k a power of 2 , the lower bound (1) and the upper bound (2) match. However, for k even and $\operatorname{gcd}(k-1, r)=1$, the lower bound (1) was improved by Bertram-Kretzberg, Hofmeister and this author [5] to

$$
N_{2}(m, k, r)=\Omega\left(m^{\frac{k r}{2(k-1)}} \cdot(\log m)^{\frac{1}{k-1}}\right)
$$

Here we generalize and extend some of these earlier results on the growth of $N_{2}(m, k, r)$ to the case of arbitrary finite fields $G F(q)$: we infer the lower bounds $N_{q}(m, k, r)=$ $\Omega\left(m^{k r /(2(k-1))}\right)$ for even integers $k \geq 2$, and $N_{q}(m, k, r)=\Omega\left(m^{(k-1) r /(2(k-2))}\right)$ for odd integers $k \geq 3$. For $k=2^{i}$ we show that $N_{q}(m, k, r)=\Theta\left(m^{k r /(2(k-1))}\right)$ for $\operatorname{gcd}(k-1, r)=$ $k-1$, while for every even integer $k \geq 4$ with $\operatorname{gcd}(k-1, r)=1$ we have $N_{q}(m, k, r)=$ $\Omega\left(m^{k r /(2(k-1))} \cdot(\log m)^{1 /(k-1)}\right)$. Also, for $k=4$ and $\operatorname{char}(G F(q))>2$ we prove that $N_{q}(m, 4, r)=\Theta\left(m^{\lceil 4 r / 3\rceil / 2}\right)$, while so far for $q=2^{l}$ we can only show that $N_{q}(m, 4, r)=$ $O\left(m^{\lceil 4 r / 3\rceil / 2}\right)$. The corresponding matrices can be found deterministically in polynomial time. Possible applications for such sparse matrices are that quite often algorithms run fast on such matrices. In Section 5 we discuss some applications.
Related here, but different, are the results from Sipser and Spielman, see [24, 25], where in connection with the PCP-theorem low-density 0,1 -matrices have been investigated, which yield linear-time encodable error-correcting codes, see also [19, 20, 23]. These low-density matrices contain in each row and in each column only a constant number of nonzero entries. Here, however, we do not restrict the number of nonzero entries in each row.

2 Preliminaries

From now on we will assume that in every matrix M under consideration all columns are pairwise distinct, in each column the first nonzero entry is equal to 1 and M does not contain the all zeros column. This is no restriction, since $k \geq 2$ and we only care about
independencies among the columns. Obviously, we have $N_{q}(m, k, 1)=m$ for $k \geq 2$ and $N_{q}(m, 2, r)=\sum_{i=1}^{r}\binom{m}{i} \cdot(q-1)^{i-1}=\Theta\left(m^{r}\right)$, where the last can be seen by taking all column vectors of length m with at most r nonzero vectors, where the first nonzero entry is 1 , and M does not contain the all zeros column. The following lemma will be crucial in our further arguments.

Lemma 2.1 Let $r \geq 1$ be an integer. Let M be an $m \times n$-matrix over $G F(q)$ with at most r nonzero entries in each column and with pairwise distinct columns, where M does not contain the all zeros column.
Then the matrix M contains an $m \times n^{\prime}$-submatrix M^{\prime} with the following properties:
(i) $n^{\prime} \geq n \cdot r!/\left(r^{r} \cdot q^{r}\right)$, and
(ii) there is a partition $\{1, \ldots, m\}=R_{1} \cup \ldots \cup R_{r}$ of the set of row-indices of M^{\prime} and a sequence $\left(e_{1}, e_{2}, \ldots, e_{r}\right)$ of elements from $G F(q)$ such that each column of M^{\prime} contains at most one nonzero entry e_{j} within the rows in $R_{j}, j=1, \ldots, r,\left(e_{j}=0\right.$ means that in each column every entry within the rows of R_{j} is equal to zero, and $e_{j} \neq 0$ means that there is exactly one entry e_{j} within the rows of R_{j} and the other entries within R_{j} are zero), and
(iii) the columns of M^{\prime} are 3-wise independent.

Proof. Uniformly and independently of the others assign at random $1, \ldots, r$ to the rowindices $1, \ldots, m$ of the matrix M. Let $R_{j}, j=1, \ldots, r$, be the random set of row-indices with assignment j. The probability Prob, that a fixed column c in M with $i \leq r$ nonzero entries contains in every row-set R_{j} at most one nonzero entry, can be bounded from below as follows

$$
\text { Prob }=\frac{[r]_{i}}{r^{i}} \geq \frac{r!}{r^{r}}
$$

Thus for such a random partition $\{1, \ldots, m\}=R_{1} \cup \ldots \cup R_{r}$ the expected number of columns in M with at most one nonzero entry in each row-set $R_{j}, j=1, \ldots, r$, is at least $n \cdot r!/ r^{r}$. Take such a subset of columns of M with corresponding partition $\{1, \ldots, m\}=$ $R_{1} \cup \ldots \cup R_{r}$ and call the resulting matrix M^{*}. For each column in the matrix M^{*} record for $j=1, \ldots, r$ as a sequence of length r, the possibly occurring nonzero entries e_{j}, and set $e_{j}=0$ if all entries within R_{j} are zero. Since there are at most $\left(q^{r}-1\right)<q^{r}$ such sequences there are at least $n^{\prime} \geq n \cdot r!/\left(r^{r} \cdot q^{r}\right)$ columns in M^{*} with the same pattern $\left(e_{1}, \ldots, e_{r}\right)$. Take these columns and call the resulting matrix M^{\prime}, thus (i) and (ii) are fulfilled.
Assume that three columns a_{1}, a_{2}, a_{3} of the matrix M^{\prime} are linearly dependent over $G F(q)$. If $e_{j} \neq 0$ for some $j=1, \ldots, r$, then within the rows in R_{j} each column a_{i} contains exactly one entry e_{j}. Since the columns in M and hence in M^{\prime} are pairwise distinct and since a_{1}, a_{2}, a_{3} are linearly dependent, each entry $e_{j} \neq 0, j=1, \ldots, r$, is contained in the same row of a_{1}, a_{2}, a_{3}. But then $a_{1}=a_{2}=a_{3}$, contradicting our assumption, hence the matrix M^{\prime} satisfies (iii).

Lemma 2.1 can be made constructive in polynomial time if one applies one of the known derandomization techniques for the MAXCUT-problem, compare for example [15].

As mentioned in the introduction, we have $N_{2}(m, 2 k+1, r) \geq 1 / 2 \cdot N_{2}(m, 2 k, r)$. While for $q=2$ it was easy to reduce asymptotically the case of odd dependencies to the case of even dependencies, for arbitrary prime powers $q>2$ this does not seem to be the case anymore.
Corollary 2.2 Let $r \geq 1$ and a prime power q be fixed integers. Then, for positive integers m,

$$
N_{q}(m, 3, r)=\Theta\left(m^{r}\right) .
$$

Proof. The upper bound $N_{q}(m, 3, r) \leq N_{q}(m, 2, r)=\Theta\left(m^{r}\right)$ follows by monotonicity. For the lower bound, partition the set $\{1, \ldots, m\}$ of row-indices into subsets R_{1}, \ldots, R_{r} of nearly equal size $\lfloor m / r\rfloor$ or $\lceil m / r\rceil$. Fix any sequence $\left(e_{1}, e_{2}, \ldots, e_{r}\right) \in(G F(q) \backslash\{0\})^{r}$ of nonzero entries. Define an $m \times n$-matrix M over $G F(q)$ without repeated columns by taking all possible columns of length m with exactly one entry e_{j} within the row-set R_{j} for $j=1, \ldots, r$. Then $n \geq(\lfloor m / r\rfloor)^{r}$ and the columns are 3 -wise independent by the proof of Lemma 2.1 (iii).

Corollary 2.3 Let q be a fixed prime power. Then there exists a constant $c>0$ such that for positive integers m,

$$
N_{q}(m, 5,2) \geq c \cdot N_{q}(m, 4,2) .
$$

Proof. Let M be an $m \times n$-matrix, $n=N_{q}(m, 4,2)$, with entries from $G F(q)$, where each column contains at most two nonzero entries and the columns are 4 -wise independent. By Lemma 2.1, the matrix M contains an $m \times n^{\prime}$-submatrix M^{\prime} satisfying assertions (i), (ii) there, hence $n^{\prime} \geq c \cdot n$ for some constant $c>0$. Assume that some columns a_{1}, \ldots, a_{5} from M^{\prime} are linearly dependent over $G F(q)$. Consider the occurrence of the first nonzero entry e_{1} in the columns a_{1}, \ldots, a_{5}. Since the columns a_{1}, \ldots, a_{5} are linearly dependent, either all five entries e_{1} must occur in the same row, or three entries e_{1} occur in the same row and the two others in some other row. The same holds for the possibly next occurring nonzero entry e_{2}. In any case, whether $e_{2}=0$ or $e_{2} \neq 0$, at least two of the columns a_{1}, \ldots, a_{5} are identical, a contradiction, hence $N_{q}(m, 5,2) \geq c \cdot N_{q}(m, 4,2)$.
A more general result than stated in Corollary 2.3 can be found in Corollary 4.4.

3 Upper Bounds

In this section we will show some general upper bounds on the growth rate of $N_{q}(m, k, r)$.
Theorem 3.1 Let $k \geq 4$ with k even, $r \geq 1$ and q a prime power be fixed integers. Then, for some positive constant $c \leq q^{r} \cdot r^{r} / r!$ and for $s=0, \ldots, r-1$ the following holds

$$
\begin{equation*}
N_{q}(m, k, r) \leq 2 c \cdot N_{q}(m, k / 2,2 r-2 s)+c \cdot \sum_{i=1}^{s}\binom{m}{i} \tag{3}
\end{equation*}
$$

and

$$
\begin{align*}
N_{q}(m, k, r) \leq & c \cdot \sqrt{2 \cdot\binom{m}{s} \cdot\binom{r-1}{s} \cdot N_{q}(m, k / 2,2 r-2 s)}+ \\
& +c \cdot\left(\binom{m}{s}+\sum_{i=1}^{s}\binom{m}{i}\right), \tag{4}
\end{align*}
$$

thus $N_{q}(m, k, r)=O\left(m^{s / 2} \cdot N_{q}(m, k / 2,2 r-2 s)^{1 / 2}+m^{s}\right)$ for fixed k, r, q.
The proof is similar, but different, to that by Pudlák, Savický and this author [18], where analogous results for the case $q=2$ were proved.
Proof. Let M be an $m \times n$-matrix, $n=N_{q}(m, k, r)$, where each column of M contains at most r nonzero entries from $G F(q)$ and the columns are k-wise independent. By Lemma 2.1, the matrix M contains an $m \times n^{\prime}$-submatrix M^{\prime} with $n^{\prime} \geq c^{*} \cdot n$ and $c^{*}=r!/\left(r^{r} \cdot q^{r}\right)$ and M^{\prime} satisfies assertion (ii) there.
We begin by proving inequality (3). We collect as long as possible pairs of distinct columns in M^{\prime}, say $c_{1}, c_{2}, \ldots, c_{n_{1}}$ with n_{1} even, such that $c_{2 i-1}$ and $c_{2 i}, i=1,2, \ldots, n_{1} / 2$, have in at least s positions the same nonzero entries. Then for any two distinct of the remaining $n_{2}:=n^{\prime}-n_{1}$ columns, the number of positions with the same nonzero entries is at most $s-1$. By Lemma 2.1 (ii), the positions of the nonzero entries determine also these nonzero entries. Hence, each of these n_{2} columns with at least s nonzero entries is determined by a subset of size s of the set of row-indices with nonzero entries, and the other columns have less than s nonzero entries, thus $n_{2} \leq \sum_{i=1}^{s}\binom{m}{i}$.
From the columns $c_{1}, c_{2}, \ldots, c_{n_{1}}$ we form a new matrix M^{*} of dimension $m \times n_{1} / 2$ with columns $c_{1}-c_{2}, c_{3}-c_{4}, \ldots, c_{n_{1}-1}-c_{n_{1}}$, where $-c_{j}$ is the additive inverse of c_{j} in $(G F(q))^{m}$. These $n_{1} / 2$ columns are pairwise distinct (and not equal to the all zeros column), as otherwise $c_{2 i-1}-c_{2 i}=c_{2 j-1}-c_{2 j}$ for some $i \neq j$ implies dependence of these four columns which contradicts the assumption that the columns of M are k-wise independent with $k \geq 4$. Each column in M^{*} contains at most $2 r-2 s$ nonzero entries and the columns are $k / 2$-wise independent as k is even, hence $n_{1} / 2 \leq N_{q}(m, k / 2,2 r-2 s)$. Summing up, we infer

$$
c^{*} \cdot n \leq n^{\prime}=n_{1}+n_{2} \leq 2 \cdot N_{q}(m, k / 2,2 r-2 s)+\sum_{i=1}^{s}\binom{m}{i}
$$

and inequality (3) follows with $c:=r^{r} \cdot q^{r} / r!$.
Next we will prove inequality (4). We partition the set of columns of M^{\prime} into two parts and put these into two matrices M_{1} and M_{2} of dimensions $m \times n_{1}$ and $m \times n_{2}$, respectively, with $n^{\prime}=n_{1}+n_{2}$. In M_{1} we put those columns in M^{\prime} which have with some other column from M^{\prime} at least s nonzero entries at the same positions. In matrix M_{2} we put the remaining columns, i.e. those, which have with any other column from M^{\prime} less than s nonzero entries at the same positions. Clearly, $n_{2} \leq \sum_{i=1}^{s}\binom{m}{i}$ as above.
Set $[m]:=\{1,2, \ldots, m\}$ and for a column c, let $|c|$ denote the number of nonzero entries in c. Consider the matrix M_{1}. For any s-element subset $S \in[[m]]^{s}$ of row-indices, let $n(S)$ denote the number of columns in M_{1} which have a nonzero entry at each position $s \in S$ and set

$$
\begin{equation*}
L:=\sum_{S \in[[m]]^{s}} n(S)=\sum_{c \in M_{1}}\binom{|c|}{s} \tag{5}
\end{equation*}
$$

Clearly, we have $n_{1} \leq L$ since each column in M_{1} contains at least s nonzero entries. By the Cauchy-Schwartz inequality, we infer

$$
\sum_{S \in[[m]]^{s}}(n(S))^{2} \geq \frac{L^{2}}{\binom{m}{s}}
$$

and with (5) we obtain

$$
\begin{equation*}
\sum_{S \in[m]^{s}}\binom{n(S)}{2} \geq \frac{1}{2} \cdot \frac{L \cdot\left(L-\binom{m}{s}\right)}{\binom{m}{s}} . \tag{6}
\end{equation*}
$$

Consider the matrix M_{1}^{*} obtained from M_{1} by taking all differences $c_{i}-c_{j}, i<j$, of those columns, which share at least at s positions the same nonzero entries. Since in the matrix M the columns are 4 -wise independent over $G F(q)$, the columns in M_{1}^{*} are pairwise distinct. Each column in M_{1}^{*} contains at most $2 r-2 s$ nonzero entries and the columns in M_{1}^{*} are $k / 2$-wise independent, hence the number of columns in M_{1}^{*} is at most $N_{q}(m, k / 2,2 r-2 s)$. In the sum $\sum_{S \in[m]^{s}}\binom{n(S)}{2}$ every pair of distinct columns is counted at most $\binom{r-1}{s}$ times, since two distinct columns have at most $r-1$ common positions with the same nonzero entry, hence

$$
\begin{equation*}
\sum_{S \in[m]]^{s}}\binom{n(S)}{2} \leq\binom{ r-1}{s} \cdot N_{q}(m, k / 2,2 r-2 s) . \tag{7}
\end{equation*}
$$

It follows from (6) and (7) that

$$
\frac{1}{2} \cdot \frac{L \cdot\left(L-\binom{m}{s}\right)}{\binom{m}{s}} \leq\binom{ r-1}{s} \cdot N_{q}(m, k / 2,2 r-2 s),
$$

hence we infer

$$
n_{1} \leq L \leq \sqrt{2 \cdot\binom{m}{s} \cdot\binom{r-1}{s} \cdot N_{q}(m, k / 2,2 r-2 s)}+\binom{m}{s} .
$$

With $n_{1}+n_{2}=n^{\prime} \geq c^{*} \cdot n$ and $n_{2} \leq \sum_{i=1}^{s}\binom{m}{i}$ and $c:=q^{r} \cdot r^{r} / r!$ the upper bound (4) follows.

Next we will give some consequences of Theorem 3.1.
From (3) we infer for fixed integers $k=2^{j}, j \geq 1$, and $r \geq 1$ with $\operatorname{gcd}(k-1, r)=k-1$ that

$$
\begin{equation*}
N_{q}(m, k, r)=O\left(m^{k r /(2(k-1))}\right) . \tag{8}
\end{equation*}
$$

To see this, we use induction on j. For $j=1$, the upper bound (8) holds. Let $k=2^{j}$ and $\operatorname{gcd}(k-1, r)=k-1$. By (3) with $s:=k r /(2(k-1))$ it suffices to show that $\operatorname{gcd}(k / 2-1,2 r-2 s)=k / 2-1$, which holds as $2 r-2 s=(k-2) r /(k-1)$, and that

$$
\frac{k / 2 \cdot(2 r-2 s)}{2(k / 2-1)} \leq \frac{k r}{2(k-1)} \Longleftrightarrow \frac{k r}{2(k-1)} \leq s,
$$

which holds by choice of s.
Without any divisibility conditions, we infer for fixed integers $k=2^{l}$ and $r \geq 1$ that

$$
\begin{equation*}
N_{q}(m, k, r)=O\left(m^{\lceil k r /(2(k-1))\rceil}\right), \tag{9}
\end{equation*}
$$

which implies (8) for $\operatorname{gcd}(k-1, r)=k-1$. Clearly, (9) holds for $l=1$. Using induction on l, it suffices by (3) with $s:=\lceil k r /(2(k-1))\rceil$ to show that

$$
\begin{aligned}
& \left\lceil\frac{k / 2 \cdot(2 r-2 s)}{2(k / 2-1)}\right\rceil \leq\left\lceil\frac{k r}{2(k-1)}\right\rceil \\
\Longleftarrow & \frac{k(r-s)}{k-2} \leq\left\lceil\frac{k r}{2(k-1)}\right\rceil \quad\left(\text { since }\left\lceil\frac{k r}{2(k-1)}\right\rceil\right. \text { is an integer) } \\
\Longleftrightarrow & \frac{k r}{k-2}-\frac{k \cdot\left\lceil\frac{k r}{2(k-1)}\right\rceil}{k-2} \leq\left\lceil\frac{k r}{2(k-1)}\right\rceil \\
\Longleftarrow & \frac{k r}{2(k-1)} \leq\left\lceil\frac{k r}{2(k-1)}\right\rceil,
\end{aligned}
$$

which obviously holds, and hence (9) is shown, compare also [18].
Inequality (4) gives in some cases better estimates than (3), namely:
Corollary 3.1 Let $k=2^{j}, j \geq 1, r \geq 1$ and q a prime power be fixed integers. Then, for positive integers m,

$$
\begin{equation*}
N_{q}(m, k, r)=O\left(m^{\lceil k r /(k-1)\rceil / 2}\right) . \tag{10}
\end{equation*}
$$

Proof. For the proof we use induction on j, compare Corollary 3 in [18].
For $j=1$ we have that $N_{q}(m, 2, r)=\Theta\left(m^{r}\right)$. For $k=2^{j}$, let $s:=\lfloor\lceil k r /(k-1)\rceil / 2\rfloor$. Since $s \leq\lceil k r /(k-1)\rceil / 2$ it suffices by (4) to prove

$$
\frac{1}{2} \cdot\left(s+\frac{1}{2} \cdot\left\lceil\frac{k / 2 \cdot(2 r-2 s)}{k / 2-1}\right\rceil\right) \leq \frac{\lceil k r /(k-1)\rceil}{2}
$$

which is equivalent to

$$
\begin{equation*}
\left\lceil\frac{k(r-s)}{k / 2-1}\right\rceil \leq 2 \cdot(\lceil k r /(k-1)\rceil-s) \tag{11}
\end{equation*}
$$

Since the right hand side of (11) is an integer, it suffices to prove

$$
\begin{align*}
& \frac{k(r-s)}{k / 2-1} \leq 2 \cdot(\lceil k r /(k-1)\rceil-s) \\
\Longleftrightarrow & \lceil k r /(k-1)\rceil-2 s \leq(k-1) \cdot\lceil k r /(k-1)\rceil-k r . \tag{12}
\end{align*}
$$

The right hand side of (12) is at least 0 and its left hand side is at most 1 . If $\lceil k r /(k-1)\rceil$ is even, (12) holds, since its left hand side is equal to 0 . If $\lceil k r /(k-1)\rceil$ is odd, then (12) also holds, since the right hand side is odd, thus at least 1 , hence (10) holds.
The next two lemmas show that asymptotically it suffices to consider the growth rate of $N_{q}(m, k, r)$ for q a prime.

Lemma 3.2 Let $k \geq 2, l \geq 1, r \geq 1$, and a prime p be fixed integers. Then there exists a constant $d>0$ such that for positive integers m,

$$
\begin{equation*}
N_{p^{l}}(m, k, r) \leq d \cdot N_{p}(m, k, r) . \tag{13}
\end{equation*}
$$

Proof. Let M be a (k, r)-matrix over $G F\left(p^{l}\right)$ of dimension $m \times n$, where $n=N_{p^{l}}(m, k, r)$. By Lemma 2.1, the matrix M contains an $m \times n^{\prime}$-submatrix M^{\prime} satisfying (i) - (iii) there, hence $n^{\prime} \geq c \cdot n$ for some constant $c \geq r!/\left(r^{r} \cdot p^{l r}\right)$. We form a new $m \times n^{\prime}$-matrix M^{*} from M^{\prime} by identifying every nonzero entry in M^{\prime} by $1 \in G F(p)$. By Lemma 2.1 (ii), the columns in M^{*} are pairwise distinct and each column contains at most r nonzero entries. If $n^{\prime}>N_{p}(m, k, r)$, then some $j \leq k$ columns in M^{*}, say $a_{1}^{*}, \ldots, a_{j}^{*}$, are linearly dependent over $G F(p)$, but then the corresponding columns $a_{1}^{\prime}, \ldots, a_{j}^{\prime}$ in M^{\prime} are also linearly dependent over $G F\left(p^{l}\right)$, which contradicts the assumption that M^{\prime} is a (k, r)-matrix over $G F\left(p^{l}\right)$, hence (13) follows with $d \leq\left(p^{l r} \cdot r^{r}\right) / r!$.

Lemma 3.3 Let $k \geq 2, r \geq 1$ and p a prime be fixed integers. Then there exists a constant $c>0$ such that for positive integers m,

$$
\begin{equation*}
N_{p^{\prime}}(m, k, r) \geq c \cdot N_{p}(m, k, r) . \tag{14}
\end{equation*}
$$

Proof. Let M be a (k, r)-matrix over $G F(p)$ of dimension $m \times n$, where $n=N_{p}(m, k, r)$. By Lemma 2.1, the matrix M contains an $m \times n^{\prime}$-submatrix M^{\prime} with entries $a_{h, i}^{\prime}$ satisfying (i) - (iii) there, hence $n^{\prime} \geq c \cdot N_{p}(m, k, r)$ for some constant $c \geq r!/\left(r^{r} \cdot p^{l r}\right)$. All nonzero entries in row h have some value $e_{h} \in G F(p) \backslash\{0\}$.
We claim that the columns of M^{\prime} are also linearly independent over $G F\left(p^{l}\right)$. To see this, consider the entries of the matrix M^{\prime} as from $G F\left(p^{l}\right)$. Suppose for contradiction that some $j \leq k$ columns $a_{1}^{\prime}, \ldots, a_{j}^{\prime}$ of M^{\prime} are linearly dependent over $G F\left(p^{l}\right)$, hence for some $\lambda_{i} \in G F\left(p^{l}\right)$ we have $\sum_{i=1}^{j} \lambda_{i} \cdot a_{i}^{\prime}=0$. For row h in $M^{\prime}, h=1, \ldots, m$, let $I_{h}=\left\{i \in\{1, \ldots, j\} \mid a_{h, i}^{\prime} \neq 0\right\}$. For every $h=1, \ldots, m$ with $I_{h} \neq \emptyset$ and for some nonzero element $e_{h} \in G F(p) \backslash\{0\}$ we have

$$
0=\sum_{i \in I_{h}} \lambda_{i} \cdot a_{h, i}^{\prime}=\sum_{i \in I_{h}} \lambda_{i} \cdot e_{h},
$$

hence $\sum_{i \in I_{h}} \lambda_{i}=0$. However, since a_{1}, \ldots, a_{j} are linearly independent over $G F(p)$ we infer in $G F\left(p^{l}\right)$ that $\lambda_{1}=\ldots=\lambda_{j}=0$ and (14) follows.

Corollary 3.4 Let $k \geq 2, r \geq 1$ and a prime p be fixed integers. Then, for positive integers m,

$$
\begin{equation*}
N_{p^{\iota}}(m, k, r)=\Theta\left(N_{p}(m, k, r)\right) . \tag{15}
\end{equation*}
$$

4 Graphs without Short Cycles, the Case $r=2$

Using our previous considerations, in this section we will show some consequences on the growth of $N_{q}(m, k, r)$ for $r=2$, i.e. each column contains at most two nonzero entries.

Corollary 4.1 Let $k \geq 2$ and a prime power q be fixed integers. Then, for some constant $c>0$ and for every positive integer m,

$$
\begin{equation*}
N_{q}(m, k, 2) \leq c \cdot m^{1+2 / 2^{\lfloor\log k\rfloor}} . \tag{16}
\end{equation*}
$$

Proof. We use induction on $\left\lfloor\log _{2} k\right\rfloor$. Inequality (16) holds for $k=2,3$ by Corollary 2.2. Assume it holds for all $k^{\prime}<2^{\lfloor\log k\rfloor}$. Let $k=2^{\lfloor\log k\rfloor}+j, k \geq 4$, with $0 \leq j<2^{\lfloor\log k\rfloor}$. By (4) for $s:=1$ and for even $k \geq 4$ we infer that $N_{q}(m, k, 2) \leq c^{\prime} \cdot m^{1 / 2} \cdot N_{q}(m, k / 2,2)^{1 / 2}+c^{\prime} \cdot m$ for some constant $c^{\prime}>0$ and (16) follows by the induction assumption. For odd $k \geq 5$, we have by monotonicity and by (4) that $N_{q}(m, k, 2) \leq N_{q}(m, k-1,2) \leq c^{\prime} \cdot m^{1 / 2} \cdot N_{q}(m,(k-$ $1) / 2,2)^{1 / 2}+c^{\prime} \cdot m$ and again (16) follows by the induction assumption.

Corollary 4.2 Let q be a fixed prime power. Then, for positive integers m,

$$
\begin{aligned}
& N_{q}(m, 4,2)=\Theta\left(m^{3 / 2}\right) \\
& N_{q}(m, 5,2)=\Theta\left(m^{3 / 2}\right)
\end{aligned}
$$

Proof. The upper bound for $N_{q}(m, 4,2)$ follows from (16). The lower bound can be shown similarly as in [18]. Let s be the largest prime power with $2 \cdot\left(s^{2}-1\right) \leq m$. Partition the set $\left\{1, \ldots, 2 s^{2}-2\right\}$ of row-indices into two sets A and B of equal size $s^{2}-1$. Identify the elements of both A and B with the elements of $(G F(s))^{2} \backslash\{(0,0)\}$, i.e. $A=B=(G F(s))^{2} \backslash\{(0,0)\}$. We define an $m \times n$-matrix M with exactly two nonzero entries in each column by putting in each column always within row-set A at 1 at some position $g \in(G F(s))^{2} \backslash\{(0,0)\}$ and within row-set B some fixed nonzero element $e \in G F(q) \backslash\{0\}$ at some position $h \in(G F(s))^{2} \backslash\{(0,0)\}$ if and only if $<g, h>=1$, where $<,>$ denotes the usual component-wise scalar product. All other entries within the row-sets A and B and the entries in rows $l \notin A \cup B$ are equal to 0 .
By construction no three columns in M are linearly dependent over $G F(q)$. If four distinct columns a_{1}, \ldots, a_{4} would be linearly dependent over $G F(q)$, then for some nonzero row-positions $g_{i}, h_{i} \in(G F(s))^{2} \backslash\{(0,0)\}, i=1,2$, we infer $<g_{1}, h_{1}>=<g_{2}, h_{2}>=<$ $g_{1}, h_{2}>=<g_{2}, h_{1}>=1$. The row-positions $g_{1}, g_{2}, h_{1}, h_{2}$ are pairwise distinct, as otherwise we have two identical columns. Hence $<g_{1}, h_{1}-h_{2}>=0$ and $<g_{2}, h_{1}-h_{2}>=0$, thus g_{1} and g_{2} are collinear, i.e. $g_{1}=\lambda \cdot g_{2}$ for some $\lambda \in G F(s)$. But then $<g_{1}, h_{1}>=$ $\lambda \cdot<g_{2}, h_{1}>=1$ and $<g_{2}, h_{1}>=1$ implies $\lambda=1$, hence $g_{1}=g_{2}$, a contradiction.
The matrix M has $m=\Theta\left(s^{2}\right)$ rows and $n=\Theta\left(s^{3}\right)$ columns and, since the prime powers are sufficiently dense, the lower bound $N_{q}(m, 4,2)=\Omega\left(m^{3 / 2}\right)$ follows.
With Corollary 2.3 and by monotonicity we infer $N_{q}(m, 5,2)=\Theta\left(m^{3 / 2}\right)$.
Indeed, for a proof of Corollary 4.2 we can also identify the set $\{1, \ldots, m\}$ of row-indices of a matrix M with the vertex set of a graph on m vertices, which has n edges and contains no cycles of length at most 4 or 5 , respectively. We construct an $m \times n$-matrix, where the columns in M have exactly two entries 1 and correspond in a natural way to the edges of the graph. Then the result follows also from the known results for graphs. This leads to the following observation:

Corollary 4.3 Let $k \geq 3$ and a prime power q be fixed integers. Then for positive integers m,

$$
\begin{equation*}
N_{q}(m, k, 2) \geq(1-o(1)) \cdot N_{2}(m, k, 2) \tag{17}
\end{equation*}
$$

Proof. The number $N_{2}(m, k, 2)$ is asymptotically equal to the number of edges in a graph on m vertices without any cycle of length at most k.

Let $G=(V, E)$ be a graph on m vertices and with n edges without any cycle of length at most k. We construct an $m \times n$-matrix M with two entries 1 and $e \in G F(q) \backslash\{0\}$ in each column. The row-indices of M correspond to the vertices of the graph and the column-indices correspond to the edges in the graph G and for an edge $\{u, v\} \in E$ with $u<v$ we put the entries 1 and e at row-positions u and v in the column.
Suppose that $j \leq k$ columns of the matrix M are linearly dependent over $G F(q)$, where j is minimal with this property. The $2 j$ nonzero entries in these j columns are contained in at most $2 \cdot\lfloor j / 2\rfloor \leq j$ rows due to the linear dependence. In terms of the graph we have j edges which cover at most j vertices. Among these edges there must be a cycle of length $i, i \leq j \leq k$, but the graph G was supposed to contain no cycles of length at most k.
From (17) and $N_{2}(m, 2 k+1,2) \geq 1 / 2 \cdot N_{2}(m, 2 k, 2)$ we immediately obtain
Corollary 4.4 Let $k \geq 2$ and a prime power q be fixed integers. Then, for positive integers m,

$$
N_{q}(m, 2 k+1,2) \geq(1 / 2-o(1)) \cdot N_{2}(m, 2 k, 2)
$$

Also from (17) we have the following lower bounds from the case of graphs, see $[4,17,26]$:
Corollary 4.5 Let $k \geq 1$ and a prime power q be fixed integers. Then, for positive integers m,

$$
\begin{aligned}
N_{q}(m, 6,2) & =\Omega\left(m^{4 / 3}\right) \\
N_{q}(m, 10,2) & =\Omega\left(m^{6 / 5}\right) \\
N_{q}(m, 2 k, 2) & =\Omega\left(m^{1+2 /(3 k-3+\varepsilon)}\right)
\end{aligned}
$$

with $\varepsilon \in\{0,1\}$ and $\varepsilon=1$ if and only if k is odd.
Moreover, with Lemmas 3.2 and 3.3 we have the following bounds from the case of graphs, see $[4,26]$:

Corollary 4.6 Let $q=2^{l}$ be fixed. Then, for positive integers m,

$$
\begin{aligned}
N_{q}(m, 6,2) & =\Theta\left(m^{4 / 3}\right) \\
N_{q}(m, 10,2) & =\Theta\left(m^{6 / 5}\right)
\end{aligned}
$$

From the results of Bondy and Simonovits [8] for the case of graphs and by Lemma 3.2 we obtain the following, compare also Corollary 4.1:

Corollary 4.7 Let $q=2^{l}$ and $k \geq 1$ be fixed integers. Then, for positive integers m,

$$
N_{q}(m, 2 k, 2)=O\left(m^{1+1 / k}\right)
$$

5 4-wise Independent Columns

Now we consider the case of matrices with 4-wise independent columns over $G F(q)$ and with at most r nonzero entries in each column.

Lemma 5.1 Let $r \geq 1$ and a prime power q be fixed integers, where char $(G F(q))>2$. Let M^{\prime} be an $m \times n$-matrix over $G F(q)$ with exactly r nonzero entries in each column, such that the assertions (ii) and (iii) in Lemma 2.1 are satisfied. Let $F_{1}^{\prime}, \ldots, F_{n}^{\prime}$ be the sets of positions of the nonzero entries in the n columns of M^{\prime}. If for no four sets both $F_{g}^{\prime} \cup F_{h}^{\prime}=F_{i}^{\prime} \cup F_{j}^{\prime}$ and $F_{g}^{\prime} \cap F_{h}^{\prime}=F_{i}^{\prime} \cap F_{j}^{\prime}$ are fulfilled, then the columns of the matrix M^{\prime} are 4-wise independent.

Proof. Suppose for contradiction that four columns a_{1}, \ldots, a_{4} in M^{\prime} are linearly dependent over $G F(q)$. Then, there exist nonzero elements $\lambda_{1}, \ldots, \lambda_{4} \in G F(q) \backslash\{0\}$ such that $\sum_{i=1}^{4} \lambda_{i} \cdot a_{i}=0$. Let $F_{1}^{\prime}, \ldots, F_{4}^{\prime}$ be defined as in the lemma. Let $S:=F_{1}^{\prime} \cap \ldots \cap F_{4}^{\prime}$ and set $F_{i}:=F_{i}^{\prime} \backslash S$ for $i=1, \ldots, 4$. Then the sets F_{1}, \ldots, F_{4} are pairwise distinct.

Fact 5.2 For any $1 \leq i<j<k \leq 4$ it is

$$
F_{i} \cap F_{j} \cap F_{k}=\emptyset
$$

Proof. Consider the $m \times 4$ matrix $M\left(a_{1}, \ldots, a_{4}\right)$. By assumption its columns a_{1}, \ldots, a_{4} are linearly dependent but 3 -wise independent over $G F(q)$.
Suppose first that each row in $M\left(a_{1}, \ldots, a_{4}\right)$ with at least one nonzero entry contains exactly three such entries. There are two distinct sets with nonempty intersection, say $F_{1} \cap F_{2} \neq \emptyset$, and let $C:=F_{1} \cap F_{2}$. Then for some subset $G \subseteq C$ we have $F_{3}=\left(F_{1} \Delta F_{2}\right) \cup G$ and $F_{4}=\left(F_{1} \Delta F_{2}\right) \cup(C \backslash G)$. However, the set $F_{1} \Delta F_{2}$ cannot be contained in any set F_{i} by Lemma 2.1 (ii).
Hence there is some row in $M\left(a_{1}, \ldots, a_{4}\right)$, which contains exactly two nonzero entries, say row $i \in F_{1} \cap F_{2}$, which implies $\lambda_{2}=-\lambda_{1}$. Then every row $j \in F_{1} \cap F_{2}$ contains also exactly two nonzero entries, otherwise, say $j \in F_{3} \cap F_{1} \cap F_{2}$ for $j \neq i$ implies $\lambda_{3}=0$, a contradiction, thus $F_{1} \cap F_{2} \cap F_{i}=\emptyset$ for $i=3,4$. By symmetry assume that $F_{2} \cap F_{3} \cap F_{4}=H \neq \emptyset$. Then $\lambda_{2}+\lambda_{3}+\lambda_{4}=0$. With $\lambda_{2}=-\lambda_{1}$ this implies with char $(G F(q))>2$ that $F_{1} \cap F_{3} \cap F_{4}=\emptyset$. Moreover, we have $H=F_{2} \backslash\left(F_{1} \cap F_{2}\right)$ since $\lambda_{i} \neq 0$ for $i=1, \ldots, 4$. But then the matrix M^{\prime} does not satisfy Lemma 2.1 (ii), a contradiction.

Two of the sets F_{1}, \ldots, F_{4} have nonempty intersection, say $F_{1} \cap F_{2} \neq \emptyset$, hence $\lambda_{2}=-\lambda_{1}$ by Fact 5.2. If $F_{1} \cap F_{3} \neq \emptyset$ and $F_{2} \cap F_{3} \neq \emptyset$, then $\lambda_{3}=-\lambda_{1}$ and $\lambda_{2}=-\lambda_{3}$ by Fact 5.2 , thus $\lambda_{1}=0$ with char $(G F(q))>2$, a contradiction. Hence, $F_{3} \cap\left(F_{1} \backslash F_{2}\right)=\emptyset$ or $F_{4} \cap\left(F_{1} \backslash F_{2}\right)=\emptyset$.
Therefore we have $F_{3} \backslash\left(F_{1} \cup F_{2}\right)=F \neq \emptyset$. Due to the dependence of a_{1}, \ldots, a_{4} we obtain $F_{4} \backslash\left(F_{1} \cup F_{2}\right)=F$ thus $\lambda_{3}=-\lambda_{4}$. But then either $F_{3}=F \cup\left(F_{2} \backslash F_{1}\right)$ and $F_{4}=F \cup\left(F_{1} \backslash F_{2}\right)$ or $F_{3}=F \cup\left(F_{1} \backslash F_{2}\right)$ and $F_{4}=F \cup\left(F_{2} \backslash F_{1}\right)$. In the first case we have $F_{1} \cup F_{3}=F_{2} \cup F_{4}$ and $F_{1} \cap F_{3}=F_{2} \cap F_{4}$ and similarly in the second case, contradicting the assumption.

In [14] Frankl and Füredi proved that there exists a family \mathcal{F} of r-element subsets of an m-element set containing no four sets F_{1}, \ldots, F_{4} with $F_{1} \cup F_{2}=F_{3} \cup F_{4}$ and $F_{1} \cap F_{2}=$ $F_{3} \cap F_{4}$ where $|\mathcal{F}|=\Omega\left(m^{\lceil 4 r / 3\rceil / 2}\right)$. Their construction is based on symmetric polynomials over finite fields: Let $r \equiv 1 \bmod 3$, say $r=3 t+1$. (For other values of $(r \bmod 3)$ the construction is similar.) For given positive integers m let K be any field with $m / 2 \leq$ $|K| \leq m$. For a subset $X=\left\{x_{1}, \ldots, x_{g}\right\} \subseteq K$ and an integer i let

$$
s_{i}(X):=\sum_{I \in[[g]]} \prod_{j \in I} x_{j}
$$

be the i th elementary symmetric polynomial in the variables x_{1}, \ldots, x_{g}, where $s_{i}(X)=0$ for $i<0$ or $i>|X|$. For given integers $h \geq 1$ define an $h \times h$-matrix $M_{h}(X)$ with entries $m_{i, j}=s_{2 i-j}(X)$. Then for suitable elements $c_{2}, c_{4}, \ldots, c_{2 t} \in K$ the family \mathcal{F} of r-element subsets of K is defined as follows:
$X=\left\{x_{1}, \ldots, x_{r}\right\} \in \mathcal{F}$ if $s_{2 i}(X)=c_{2 i}$ for $i=1, \ldots, t$ and $\operatorname{det}\left(M_{h}(S)\right) \neq 0$ for every subset $S \subseteq X$ and $h=1, \ldots,|S|-1$.
This yields a polynomial time (semi-) construction and we conclude:
Corollary 5.3 Let $r \geq 1$ and a prime power q be fixed integers, where char $(G F(q))>2$. Then, for positive integers m,

$$
N_{q}(m, 4, r)=\Theta\left(m^{\lceil 4 r / 3\rceil / 2}\right) .
$$

Proof. The upper bound follows immediately from Corollary 3.1. For the lower bound, let $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ be a maximum family of r-element subsets of $\{1, \ldots, m\}$ with $n=$ $\Theta\left(m^{[4 r / 3\rceil / 2}\right)$, such that for no four sets $F_{i}, F_{j}, F_{k}, F_{l} \in \mathcal{F}$ it is $F_{i} \cup F_{j}=F_{k} \cup F_{l}$ and $F_{i} \cap F_{j}=F_{k} \cap F_{l}$. This family exists by the above mentioned result of Frankl and Füredi. Define an $m \times n$-matrix M with entries 0 and 1 , which has columns c_{1}, \ldots, c_{n}. In column c_{i} there is an entry 1 in position f if and only if $f \in F_{i}, i=1, \ldots, n$. By Lemma 2.1 we obtain an $m \times n^{\prime}$-submatrix M^{\prime} of M with $n^{\prime} \geq c \cdot n$ for some constant $c>0$ such that (ii) (in each row-set R_{1}, \ldots, R_{r} there is exactly one entry 1) and (iii) there are satisfied. By Lemma 5.1, the columns of M^{\prime} are 4 -wise independent and the lower bound follows.

Corollary 5.4 Let $r \geq 1$ and $q=2^{l}$ be fixed integers. Then, for positive integers m,

$$
N_{q}(m, 4, r)=O\left(m^{\lceil 4 r / 3\rceil / 2}\right) .
$$

Proof. The upper bound follows immediately from Corollary 3.1, or alternatively from Lemma 3.2 and Corollary 3 in [18].
Notice, that from Corollary 6.2 , which is stated in the next section, we have the lower bound $N_{q}(m, 4, r)=\Omega\left(m^{2 r / 3}\right)$. To avoid four dependent columns over $G F(q)$, more configurations than mentioned in Lemma 5.1 have to be forbidden in the case char $(G F(q))=2$.

6 Lower Bounds

For proving our lower bounds on $N_{q}(m, k, r)$ we will use hypergraphs. A hypergraph $\mathcal{G}=(V, \mathcal{E})$ has vertex set V and edge set \mathcal{E} with $E \subseteq V$ for every edge $E \in \mathcal{E}$. A hypergraph $\mathcal{G}=(V, \mathcal{E})$ is called l-uniform, if the edge set \mathcal{E} contains only l-element edges, i.e. $\mathcal{E} \subseteq[V]^{l}$. An independent set in a hypergraph $\mathcal{G}=(V, \mathcal{E})$ is a subset $I \subseteq V$ which contains no edges from \mathcal{E}. A 2 -cycle in an l-uniform hypergraph $\mathcal{G}=(V, \mathcal{E})$ is a pair $\left\{E, E^{\prime}\right\}$ of distinct edges $E, E^{\prime} \in \mathcal{E}$ with $\left|E \cap E^{\prime}\right| \geq 2$.
For proving our lower bounds on the dimensions of large (k, r)-matrices over $\operatorname{GF}(q)$, we will reformulate our problem in terms of finding in a suitably defined hypergraph a large independent set.

Theorem 6.1 Let $k \geq 4, r \geq 1$ and a prime power q be fixed integers. Then, for positive integers m,

$$
\begin{equation*}
N_{q}(m, k, r)=\Omega\left(m^{\frac{k r}{2(k-1)}} \cdot(\log m)^{\frac{1}{k-1}}\right) \text { for } k \text { even and } \operatorname{gcd}(k-1, r)=1 \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{q}(m, k, r)=\Omega\left(m^{\frac{(k-1) r}{2(k-2)}} \cdot(\log m)^{\frac{1}{k-2}}\right) \text { for } k \text { odd and } \operatorname{gcd}(k-2, r)=1 \tag{19}
\end{equation*}
$$

As a by-product the proof of Theorem 6.1 yields lower bounds on $N_{q}(m, k, r)$ for arbitrary fixed pairs (k, r), see Corollary 6.2 . The case $q=2$ was considered in [5], hence with Lemma 3.3 inequalities (18) and (19) hold for $q=2^{l}$. However, in the proof of Theorem 6.1 we cannot make use of the fact that it suffices by Lemma 3.3 to consider primes q only. Proof. We partition the set $\{1, \ldots, m\}$ of row-indices into r subsets R_{1}, \ldots, R_{r} of nearly equal size $\lfloor m / r\rfloor$ or $\lceil m / r\rceil$. According to some choice of a sequence $\left(e_{1}, \ldots, e_{r}\right) \in(G F(q) \backslash$ $\{0\})^{r}$ of nonzero elements, let $C_{q}(m, r)$ consist of all column vectors of length m, which contain within each row-set R_{j} exactly one nonzero entry $e_{j} \in G F(q) \backslash\{0\}, j=1, \ldots, r$. Hence $\left|C_{q}(m, r)\right| \geq(\lfloor m / r\rfloor)^{r}$, say $\left|C_{q}(m, r)\right|=c \cdot m^{r}$ for some constant $c>0$. By the proof of Lemma 2.1 (iii) the columns of $C_{q}(m, r)$ are 3 -wise independent.
We form a hypergraph $\mathcal{G}=\left(V, \mathcal{E}_{3} \cup \ldots \cup \mathcal{E}_{k}\right)$ with vertex set $V=C_{q}(m, r)$. An i element subset $\left\{a_{1}, \ldots, a_{i}\right\}$ of $V, i=4, \ldots, k$, is an edge in this hypergraph \mathcal{G}, that is $\left\{a_{1}, \ldots, a_{i}\right\} \in \mathcal{E}_{i}$, if and only if a_{1}, \ldots, a_{i} are linearly dependent but any $h<i$ of these columns are linearly independent over $G F(q)$. Then, an independent set in this hypergraph \mathcal{G} yields a set of k-wise independent column vectors. In the following we will prove a lower bound on the maximum size of an independent set in \mathcal{G}.
First we will bound from above the numbers $\left|\mathcal{E}_{i}\right|, i=4, \ldots, k$, of i-element edges in \mathcal{G}. For a subset E of i column vectors $a_{1}, \ldots, a_{i} \in C_{q}(m, r)$ consider the corresponding $m \times i$ matrix $M(E)$. This matrix $M(E)$ contains exactly $i \cdot r$ nonzero entries. If a_{1}, \ldots, a_{i} are linearly dependent over $G F(q)$, but not any $h<i$ of these, then in each row of $M(E)$ there are either at least two nonzero entries or all entries are zero. Since every column contains within each row-set R_{j} exactly one nonzero entry $e_{j} \in G F(q) \backslash\{0\}$, within each row-set $R_{j}, j=1, \ldots, r$, the i nonzero entries e_{j} of $M(E)$ are contained in at most $\lfloor i / 2\rfloor$ rows. Therefore, in $M(E)$ all the nonzero entries are contained in at most $\lfloor i / 2\rfloor \cdot r$ rows. By construction, the choice of the rows determines also the nonzero entries in these rows. Thus, for some constants $c_{i}>0, i=4, \ldots, k$, the number of i-element edges in the hypergraph \mathcal{G} satisfies

$$
\begin{equation*}
\left|\mathcal{E}_{i}\right| \leq\binom{ m}{\lfloor i / 2\rfloor \cdot r} \cdot\binom{i \cdot\lfloor i / 2\rfloor \cdot r}{i r} \leq c_{i} \cdot m^{\lfloor i / 2\rfloor \cdot r} . \tag{20}
\end{equation*}
$$

For some value $l \geq 3$, which will be fixed later and only depends on the parity of k, we consider for the moment only the l-element edges in \mathcal{G}, i.e. edges in \mathcal{E}_{l}.
We will now take care of the 2 -cycles arising from the edges in \mathcal{E}_{l}. Recall that a 2 -cycle is a pair $\left\{E, E^{\prime}\right\}$ of distinct edges $E, E^{\prime} \in \mathcal{E}_{l}$ with $\left|E \cap E^{\prime}\right| \geq 2$. A 2-cycle $\left\{E, E^{\prime}\right\}$ is called $(2, j)$-cycle if $\left|E \cap E^{\prime}\right|=j$, where $j=2, \ldots, l-1$.
We will apply a result of Ajtai, Komlós, Pintz, Spencer and Szemerédi [1], originally an existence result, see also [10], in the sequel extended and turned into a deterministic polynomial time algorithm in [13]. Here we will use it in its algorithmic version from [6]:

Theorem 6.2 Let $l \geq 3$ be a fixed integer. Let $\mathcal{G}=(V, \mathcal{E})$ be an l-uniform hypergraph on $|V|=N$ vertices and with average degree $t^{l-1}:=l \cdot|\mathcal{E}| /|V|$.
If the hypergraph $\mathcal{G}=(V, \mathcal{E})$ contains no 2-cycles, then one can find for any fixed $\delta>0$ in \mathcal{G} in time $O\left(N \cdot t^{l-1}+N^{3} / t^{3-\delta}\right)$ an independent set of size at least $\Omega\left(N / t \cdot(\log t)^{1 /(l-1)}\right)$. The assertion also holds, if the parameter t^{l-1} is an upper bound on the average degree.

To apply Theorem 6.2 we will show in the following that there are not too many 2cycles arising from \mathcal{E}_{l} and these will be discarded randomly. For a j-element subset $J=$ $\left\{a_{1}, \ldots, a_{j}\right\} \subseteq C_{q}(m, r)$ of column vectors, $j=2, \ldots, l-1$, let $p(J)$ be the number of rows in the corresponding matrix $M(J)$ which contain at least one nonzero entry. Moreover, let $p_{1}(J)$ be the number of rows in $M(J)$ with exactly one nonzero entry.
Let $b(J)$ be the number of $(l-j)$-element subsets $S=\left\{b_{1}, \ldots, b_{l-j}\right\} \subseteq C_{q}(m, r)$ such that $\left\{a_{1}, \ldots, a_{j}, b_{1}, \ldots, b_{l-j}\right\} \in \mathcal{E}_{l}$, that is, the column vectors $a_{1}, \ldots, a_{j}, b_{1}, \ldots, b_{l-j}$ are linearly dependent but any $h<l$ of these are linearly independent over $G F(q)$. If $J \cup S \in \mathcal{E}_{l}$, then for every row in $M(J)$ with exactly one nonzero entry e there must be in the same row of $M(S)$ at least one nonzero entry e and all these nonzero entries are identical. There are at most $(l-j)^{p_{1}(J)}$ possibilities to choose the positions of these matching nonzero entries in $M(S)$.
Let $M(J)$ contain the $p(J)$ nonzero rows $1, \ldots, p(J)$, say. If $M(S)$ contains in row $s>p(J)$ at least one nonzero entry, then there must be in $M(S)$ in this row at least two nonzero entries, since the columns $a_{1} \ldots, a_{j}, b_{1} \ldots, b_{l-j}$ are linearly dependent over $G F(q)$, but not any $h<l$ of these. Therefore, we have at most $\left\lfloor\left((l-j) r-p_{1}(J)\right) / 2\right\rfloor$ rows $s>p(J)$ in $M(S)$ with nonzero entries. To choose these rows there are at most

$$
\binom{m-p(J)}{\left\lfloor\frac{(l-j) r-p_{1}(J)}{2}\right\rfloor}
$$

possibilities. Having fixed these rows, to choose the positions of the at most $((l-j) r-$ $\left.p_{1}(J)\right)$ remaining nonzero entries, we have at most $\left(\left(\left\lfloor\left((l-j) r-p_{1}(J)\right) / 2\right\rfloor+p(J)\right) \cdot(l-\right.$ $j))^{(l-j) r-p_{1}(J)}$ choices, thus for some constant $c_{p}>0$ we obtain

$$
\begin{align*}
b(J) & \leq\left(\left\lfloor\frac{(l-j) r-p_{1}(J)}{2}\right\rfloor\right) \cdot\left(\left(\left\lfloor\frac{(l-j) r-p_{1}(J)}{2}\right\rfloor+p(J)\right) \cdot(l-j)\right)^{(l-j) r-p_{1}(J)} \cdot(l-j)^{p_{1}(J)} \\
& \leq c_{p} \cdot m^{\left\lfloor\frac{(l-j) r-p_{1}(J)}{2}\right\rfloor} . \tag{21}
\end{align*}
$$

Next, we consider $(2, j)$-cycles arising from the l-element edges, i.e. pairs $\left\{E, E^{\prime}\right\}$ of distinct l-element edges from \mathcal{E}_{l} with $\left|E \cap E^{\prime}\right|=j \geq 2$.
For $j=2, \ldots, l-1$ and $u=0, \ldots, j r$, let $s_{2, j}\left(u ; \mathcal{G}_{l}\right)$ be the number of $(2, j)$-cycles $\left\{E, E^{\prime}\right\}$ in $\mathcal{G}_{l}=\left(V, \mathcal{E}_{l}\right)$ with $p_{1}\left(E \cap E^{\prime}\right)=u$ and of course $\left|E \cap E^{\prime}\right|=j$. Clearly, the total number $s_{2, j}\left(\mathcal{G}_{l}\right)$ of $(2, j)$-cycles among the l-element edges satisfies

$$
\begin{equation*}
s_{2, j}\left(\mathcal{G}_{l}\right)=\sum_{u=0}^{j \cdot r} s_{2, j}\left(u ; \mathcal{G}_{l}\right) . \tag{22}
\end{equation*}
$$

Indeed, the summation in (22) only runs up to $\min \{j r,(l-j) r\}$ (but this we cannot use in the following), as for a j-element subset $J \subseteq C_{q}(m, r)$ we have $p_{1}(J) \leq j r$, and if this set J is contained in an l-element edge $E \in \mathcal{E}_{l}$, then $p_{1}(J) \leq(l-j) r$.

The number $p_{j, u}(V)$ of j-element subsets $J \in[V]^{j}$ of column vectors with $p_{1}(J)=u$ can be bounded from above for some constant $c_{j, u}>0$ as follows:

$$
\begin{align*}
p_{j, u}(V) & \leq\binom{ m}{u} \cdot\binom{m-u}{\lfloor(j r-u) / 2\rfloor} \cdot j^{u} \cdot(\lfloor(j r-u) / 2\rfloor \cdot j)^{j r-u} \\
& \leq c_{j, u} \cdot m^{u+\left\lfloor\frac{j r-u}{2}\right\rfloor} \tag{23}
\end{align*}
$$

since the matrix $M(J)$ has u rows with exactly one nonzero entry and the remaining $j r-u$ nonzero entries are contained in rows with at least two nonzero entries.
The number of $(2, j)$-cycles $\left\{E, E^{\prime}\right\}$ in $\mathcal{G}_{l}=\left(V, \mathcal{E}_{l}\right)$ with $E \cap E^{\prime}=J$ is at most $\binom{b(J)}{2}$, thus by (21) and (23) we infer for some constant $C_{1}>0$:

$$
\begin{align*}
s_{2, j}\left(u ; \mathcal{G}_{l}\right) & \leq \sum_{J \in\left[C_{q}(m, r)\right]^{j} ; p_{1}(J)=u}\binom{b(J)}{2} \\
& \leq \frac{c_{p}^{2}}{2} \cdot \sum_{J \in\left[C_{q}(m, r)\right]^{j} ; p_{1}(J)=u} m^{2 \cdot\left\lfloor\frac{(l-j) r-u}{2}\right\rfloor} \\
& =\frac{c_{p}^{2}}{2} \cdot p_{j, u}(V) \cdot m^{2 \cdot\left\lfloor\frac{(l-j) r-u}{2}\right\rfloor} \\
& \leq C_{1} \cdot m^{2 \cdot\left\lfloor\frac{(l-j) r-u}{2}\right\rfloor+u+\left\lfloor\frac{j r-u}{2}\right\rfloor} . \tag{24}
\end{align*}
$$

By (20) the average degree t^{l-1} of the l-uniform hypergraph $\mathcal{G}_{l}=\left(V, \mathcal{E}_{l}\right)$ satisfies

$$
t^{l-1}=\frac{l \cdot\left|\mathcal{E}_{l}\right|}{|V|} \leq \frac{l \cdot c_{l} \cdot m^{\lfloor l / 2\rfloor \cdot r}}{c \cdot m^{r}}
$$

hence for some constant $C_{2}>0$ we have

$$
t \leq t_{0}:=C_{2} \cdot m^{(\lfloor l / 2\rfloor \cdot r-r) /(l-1)}
$$

To apply Theorem 6.2 , we choose a random subset $V^{*} \subseteq V$ by picking vertices at random from V, independently of each other and each with probability $p:=t_{0}^{-1} \cdot m^{\varepsilon}$ for some small constant $\varepsilon>0$ to get a uniform hypergraph without any 2 -cycles. We will estimate the expected values $E(\cdot)$ of certain parameters of the induced random hypergraph $\mathcal{G}^{*}=$ $\left(V^{*}, \mathcal{E}_{3}^{*} \cup \ldots \cup \mathcal{E}_{k}^{*}\right)$ with $\mathcal{E}_{i}^{*}:=\mathcal{E}_{i} \cap\left[V^{*}\right]^{i}, i=4, \ldots, k$.
The expected number $E\left(\left|V^{*}\right|\right)$ of vertices in \mathcal{G}^{*} satisfies for some constant $c^{*}>0$:

$$
\begin{align*}
E\left(\left|V^{*}\right|\right) & =p \cdot\left|C_{q}(m, r)\right|=t_{0}^{-1} \cdot m^{\varepsilon} \cdot c \cdot m^{r} \\
& \geq c^{*} \cdot m^{r-\frac{\lfloor l / 2\rfloor \cdot r-r}{l-1}+\varepsilon} \tag{25}
\end{align*}
$$

By (20) the expected numbers $E\left(\left|\mathcal{E}_{i}^{*}\right|\right)$ of i-element edges, $i=4, \ldots, k$, satisfy for some constants $c_{i}^{*}>0$:

$$
\begin{equation*}
E\left(\left|\mathcal{E}_{i}^{*}\right|\right) \leq p^{i} \cdot c_{i} \cdot m^{\lfloor i / 2\rfloor \cdot r} \leq c_{i}^{*} \cdot m^{\lfloor i / 2\rfloor \cdot r-\frac{\lfloor l / 2\rfloor \cdot r-r}{l-1} \cdot i+i \cdot \varepsilon} \tag{26}
\end{equation*}
$$

Let $p_{j, u}\left(V^{*}\right)$ be the numbers of j-element subsets $J \in\left[V^{*}\right]^{j}$ with $p_{1}(J)=u$ and let $E\left(p_{j, u}\left(V^{*}\right)\right)$ be their expected values. With (23) we infer for $j=2, \ldots, l-1$ and $u=$ $0, \ldots, j \cdot r$ and some constants $c_{j, u}^{*}>0$:

$$
\begin{align*}
E\left(p_{j, u}\left(V^{*}\right)\right) & =p^{j} \cdot p_{j, u}(V) \leq c_{j, u} \cdot p^{j} \cdot m^{u+\left\lfloor\frac{j r-u}{2}\right\rfloor} \\
& \leq c_{j, u}^{*} \cdot m^{u+\left\lfloor\frac{j r-u}{2}\right\rfloor-\frac{\lfloor l / 2\rfloor \cdot r-r}{l-1} \cdot j+j \cdot \varepsilon} \tag{27}
\end{align*}
$$

Let $s_{2, j}\left(u ; \mathcal{G}_{l}^{*}\right)$ denote the numbers of pairs $\left\{E, E^{\prime}\right\} \in\left[\mathcal{E}_{l}^{*}\right]^{2}$ of distinct edges with $p_{1}(E \cap$ $\left.E^{\prime}\right)=u$ and $\left|E \cap E^{\prime}\right|=j$ in the random hypergraph $\mathcal{G}_{l}^{*}=\left(V^{*}, \mathcal{E}_{l}^{*}\right)$. By (24) the expected numbers $E\left(s_{2, j}\left(u ; \mathcal{G}_{l}^{*}\right)\right)$ satisfy for $u=0, \ldots, j r$ and $j=2, \ldots, l-1$ for some constant $C_{1}^{*}>0$:

$$
\begin{align*}
& E\left(s_{2, j}\left(u ; \mathcal{G}_{l}^{*}\right)\right)=p^{2 l-j} \cdot s_{2, j}\left(u ; \mathcal{G}_{l}\right) \leq \\
\leq & C_{1}^{*} \cdot m^{2 \cdot\left\lfloor\frac{(l-j) r-u}{2}\right\rfloor+u+\left\lfloor\frac{j r-u}{2}\right\rfloor-\frac{\lfloor l / 2\rfloor \cdot \cdot-r}{l-1} \cdot(2 l-j)+(2 l-j) \cdot \varepsilon} . \tag{28}
\end{align*}
$$

With (25) - (28) and using Markov's resp. Chebychev's inequality, we know that there exists a subhypergraph $\mathcal{G}^{*}=\left(V^{*}, \mathcal{E}_{3}^{*} \cup \ldots \cup \mathcal{E}_{k}^{*}\right)$ of \mathcal{G} with the following properties

$$
\begin{align*}
\left|V^{*}\right| & \geq c^{*} \cdot m^{r-\frac{\lfloor l / 2\rfloor \cdot r-r}{l-1}+\varepsilon} \tag{29}\\
\left|\mathcal{E}_{i}^{*}\right| & \leq c_{i}^{*} \cdot m^{\lfloor i / 2\rfloor \cdot r-\frac{\lfloor l / 2\rfloor \cdot r-r}{l-1} \cdot i+i \cdot \varepsilon} \tag{30}\\
p_{j, u}\left(V^{*}\right) & \leq c_{j, u}^{*} \cdot m^{u+\left\lfloor\frac{j r-u}{2}\right\rfloor-\frac{\lfloor l / 2\rfloor \cdot r-r}{l-1} \cdot j+j \cdot \varepsilon} \tag{31}\\
s_{2, j}\left(u ; \mathcal{G}_{l}^{*}\right) & \leq C_{1}^{*} \cdot m^{2 \cdot\left\lfloor\frac{(l-j) r-u}{2}\right\rfloor+u+\left\lfloor\frac{j r-u}{2}\right\rfloor-\frac{\lfloor l / 2\rfloor \cdot r-r}{l-1} \cdot(2 l-j)+(2 l-j) \cdot \varepsilon}, \tag{32}
\end{align*}
$$

where we used for simplicity the same notation for the constant factors, although they differ from those above by a constant factor dependent only on k, r, q, but this will not change our asymptotic considerations.
Now we fix the value of l to $l:=k$ if k is even and to $l:=k-1$, if k is odd, hence l is always even.

Lemma 6.1 For $k \geq 4$ and $0<\varepsilon<r /(2(k-1)(k-2))$ it holds:

$$
\begin{equation*}
\left|\mathcal{E}_{i}^{*}\right|=o\left(\left|V^{*}\right|\right) \quad \text { for every } i \neq l \tag{33}
\end{equation*}
$$

Proof. Since l is even, by (29) and (30), we have for $i=4, \ldots, k$

$$
\begin{aligned}
\left|V^{*}\right| & \geq c^{*} \cdot m^{r-\frac{l r / 2-r}{l-1}+\varepsilon} \\
\left|\mathcal{E}_{i}^{*}\right| & \leq c_{i}^{*} \cdot m^{\lfloor i / 2\rfloor \cdot r-\frac{l r / 2-r}{l-1} \cdot i+i \cdot \varepsilon}
\end{aligned}
$$

hence it is $\left|\mathcal{E}_{i}^{*}\right|=o\left(\left|V^{*}\right|\right)$ if

$$
\begin{equation*}
r-\left\lfloor\frac{i}{2}\right\rfloor \cdot r+(i-1) \cdot \frac{(l-2) r}{2(l-1)}-(i-1) \cdot \varepsilon>0 \tag{34}
\end{equation*}
$$

Inequality (34) holds if

$$
\frac{(l-i) r}{2(l-1)}-(i-1) \cdot \varepsilon>0
$$

which is fulfilled for $i=4, \ldots, l-1$ and $\varepsilon<r /(2(l-1)(l-2))$.
For $i>l$, which is only possible for $i=k$ odd and $l=k-1$ inequality (34) is equivalent to

$$
\frac{(k-3) r}{2(k-2)}-(k-1) \cdot \varepsilon>0
$$

which holds for $0<\varepsilon<((k-3) r) /(2(k-1)(k-2))$, hence (33) holds for $0<\varepsilon<$ $r /(2(k-1)(k-2))$.
From Lemma 6.1 we infer:
Corollary 6.2 Let q be a prime power and let $k \geq 4$ and $r \geq 1$ be fixed positive integers. Then, for positive integers m,

$$
\begin{equation*}
N_{q}(m, k, r)=\Omega\left(m^{\frac{k r}{2(k-1)}}\right) \quad \text { if } k \text { is even } \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{q}(m, k, r)=\Omega\left(m^{\frac{(k-1) r}{2(k-2)}}\right) \quad \text { if } k \text { is odd. } \tag{36}
\end{equation*}
$$

Thus, for $k=2^{i}$ and $\operatorname{gcd}(k-1, r)=k-1$ lower (35) and upper bound (10) match (and similarly for $k=2^{i}+1$ and $\left.\operatorname{gcd}(k-2, r)=k-2\right)$, while for even k and $\operatorname{gcd}(k-1, r)=1$ as well as for odd k and $\operatorname{gcd}(k-2, r)=1$ the lower bounds (35) resp. (36) can be improved, see (18) and (19).
Proof. From Lemma 6.1 we know that for all values $i \neq l$ we have $\left|\mathcal{E}_{i}^{*}\right|=o\left(\left|V^{*}\right|\right)$. We remove one vertex from each of the bad edges, i.e. i-element edges with $i \neq l$, and we obtain a subset $V^{* *} \subseteq V^{*}$ with $\left|V^{* *}\right| \geq\left(c^{*}-o(1)\right) \cdot m^{l r /(2(l-1))+\varepsilon} \geq\left(c^{*} / 2\right) \cdot m^{l r /(2(l-1))+\varepsilon}$, where the induced subhypergraph $\mathcal{G}^{* *}$ of \mathcal{G}^{*} is l-uniform with $\left|\left[V^{* *}\right]^{l} \cap \mathcal{E}_{l}^{*}\right| \leq\left|\mathcal{E}_{l}^{*}\right| \leq c_{l}^{*} \cdot m^{l r /(2(l-1))+l \cdot \varepsilon}$, thus $\mathcal{G}^{* *}=\left(V^{* *},\left[V^{* *}\right]^{l} \cap \mathcal{E}_{l}^{*}\right)$.
Again we pick vertices from $V^{* *}$ at random, independently of each other with probability $p:=c_{h} \cdot m^{-\varepsilon}$ for the constant $c_{h}:=\left(c^{*} /\left(4 c_{l}^{*}\right)\right)^{1 /(l-1)}$.
Then for the random subset $V^{* * *} \subseteq V^{* *}$ we obtain for the expected values

$$
E\left(\left|V^{* * *}\right|\right)=p \cdot\left|V^{* *}\right| \geq\left(c_{h} \cdot c^{*} / 2\right) \cdot m^{l r /(2(l-1))},
$$

and

$$
E\left(\left|\left[V^{* * *}\right]^{l} \cap \mathcal{E}_{l}^{*}\right|\right) \leq p^{l} \cdot\left|\mathcal{E}_{l}^{*}\right| \leq c_{h}^{l} \cdot c_{l}^{*} \cdot m^{l r /(2(l-1))} .
$$

Using linearity of expectation, there exists a subset $V^{* * *} \subseteq V^{* *}$ such that

$$
\left|V^{* * *}\right|-\left|\left[V^{* * *}\right]^{l} \cap \mathcal{E}_{l}^{*}\right| \geq c_{h} \cdot\left(c^{*} / 2-c_{l}^{*} \cdot c_{h}^{l-1}\right) \cdot m^{l r /(2(l-1))} \geq\left(c_{h} \cdot c^{*} / 4\right) \cdot m^{l r /(2(l-1))} .
$$

By deleting from $V^{* * *}$ one vertex from every edge in $\left[V^{* * *}\right]^{l} \cap \mathcal{E}_{l}^{*}$ we obtain an independent set I in \mathcal{G} with

$$
|I|=\Omega\left(m^{l r /(2(l-1))}\right),
$$

and the lower bounds (35) and (36) follow by inserting $l:=k$ for k even, and $l:=k-1$ for k odd.

Notice, that we could have derived Corollary 6.2 already from (20), using similar computations as above, by picking right away from the set V vertices at random, independently from each other, each with probability $p:=c_{h}^{\prime} \cdot t_{0}^{-1}$ with $c_{h}^{\prime}=\left(c /\left(4 c_{l}\right)\right)^{1 /(l-1)}$. Hence, matrices satisfying (35) or (36) respectively can be constructed in polynomial time by using the method of conditional probabilities.

Lemma 6.3 For $j=2, \ldots, l-1$ and $\varepsilon>0$ and $u>((l-j) r) /(l-1)+2 \cdot(2 l-j-1) \cdot \varepsilon$ it holds

$$
\begin{equation*}
s_{2, j}\left(u ; \mathcal{G}_{l}^{*}\right)=o\left(\left|V^{*}\right|\right) . \tag{37}
\end{equation*}
$$

Proof. Using (29) and (32) with l even we have $s_{2, j}\left(u ; \mathcal{G}_{l}^{*}\right)=o\left(\left|V^{*}\right|\right)$ for $j=2, \ldots, l-1$ if

$$
\begin{aligned}
& 0>2 \cdot\left\lfloor\frac{(l-j) r-u}{2}\right\rfloor+u+\left\lfloor\frac{j r-u}{2}\right\rfloor \\
& -\frac{(l-2) r}{2(l-1)} \cdot(2 l-j-1)-r+(2 l-j-1) \cdot \varepsilon \\
& \Longleftrightarrow 0>(l-1) \cdot r-2 \cdot\left\lceil\frac{j r+u}{2}\right\rceil+\left\lfloor\frac{j r-u}{2}\right\rfloor+u \\
& -\frac{(l-2) r}{2(l-1)} \cdot(2 l-j-1)+(2 l-j-1) \cdot \varepsilon \\
& \Longleftarrow u / 2>(l-1) \cdot r-\frac{j r}{2}-\frac{(l-2) r}{2(l-1)} \cdot(2 l-j-1)+(2 l-j-1) \cdot \varepsilon \\
& \Longleftrightarrow u>\frac{(l-j) r}{l-1}+2 \cdot(2 l-j-1) \cdot \varepsilon
\end{aligned}
$$

and (37) follows.

Lemma 6.4 For $j=2, \ldots, l-1$ and $\varepsilon>0$ and for $u<((l-j) r) /(l-1)-2 \cdot(j-1) \cdot \varepsilon$ it is

$$
\begin{equation*}
p_{j, u}\left(V^{*}\right)=o\left(\left|V^{*}\right|\right) \tag{38}
\end{equation*}
$$

Proof. With l even we have by (29) and (31) that $p_{j, u}\left(V^{*}\right)=o\left(\left|V^{*}\right|\right)$ if

$$
\begin{aligned}
& u+\left\lfloor\frac{j r-u}{2}\right\rfloor-\frac{(l-2) r}{2(l-1)} \cdot j+j \cdot \varepsilon<r-\frac{(l-2) r}{2(l-1)}+\varepsilon \\
\Longleftrightarrow & u+\left\lfloor\frac{j r-u}{2}\right\rfloor<\frac{(l-2) r}{2(l-1)} \cdot(j-1)+r-(j-1) \cdot \varepsilon \\
\Longleftarrow & u<\frac{(l-j) r}{l-1}-2 \cdot(j-1) \cdot \varepsilon
\end{aligned}
$$

and inequality (38) follows.
Consider the values $((l-j) r) /(l-1)$ for $j=2, \ldots, l-1$. If $\operatorname{gcd}(l-1, r)=1$, these are never integers. Moreover, $((l-j) r) /(l-1)$ is at least $1 /(l-1)$ apart from the next integer. Using Lemmas 6.3 and 6.4 , we choose $\varepsilon>0$ so small such that both $2 \cdot(2 l-j-1) \cdot \varepsilon<1 /(l-1)$
and $2 \cdot(j-1) \cdot \varepsilon<1 /(l-1)$ are fulfilled for $j=2, \ldots, l-1$, say $\varepsilon:=1 /((2 k-2)(2 k-3))$. Then, ' $u>((l-j) r) /(l-1)+2 \cdot(2 l-j-1) \cdot \varepsilon$ or $u<((l-j) r) /(l-1)-2 \cdot(j-1) \cdot \varepsilon$ ' is satisfied for $u=0, \ldots, j r$ and $j=2, \ldots, l-1$. We summarize Lemmas 6.3 and 6.4 as follows:

Corollary 6.5 For $\varepsilon=1 /((2 k-2)(2 k-3))$ and $j=2, \ldots, l-1$ and $u=0, \ldots, j r$ and $\operatorname{gcd}(l-1, r)=1$ it is valid

$$
\min \left\{p_{j, u}\left(V^{*}\right), s_{2, j}\left(u ; \mathcal{G}_{l}^{*}\right)\right\}=o\left(\left|V^{*}\right|\right)
$$

Now, from V^{*} we delete one vertex from each bad edge $E \in \mathcal{E}_{i}^{*}$ for $i \neq l$ and by Lemma 6.1, we obtain a subset $V^{* *} \subseteq V^{*}$ with $\left|V^{* *}\right|=(1-o(1)) \cdot\left|V^{*}\right|$. The resulting induced subhypergraph on the vertex set $V^{* *}$ is l-uniform. Then we proceed for $j=2, \ldots, l-1$ as follows. For $u>((l-j) r) /(l-1)+2 \cdot(2 l-j-1) \cdot \varepsilon$ we delete one vertex from each $(2, j)$-cycle $\left\{E, E^{\prime}\right\}$ with $E, E^{\prime} \in \mathcal{E}_{l}^{*} \cap\left[V^{* *}\right]^{l}$ where $p_{1}\left(E \cap E^{\prime}\right)=u$ and $\left|E \cap E^{\prime}\right|=j$, and for $u<((l-j) r) /(l-1)-2 \cdot(j-1) \cdot \varepsilon$ we remove from $V^{* *}$ one vertex from each j-element subset $J \in\left[V^{* *}\right]^{j}$ with $p_{1}(J)=u$.
We end up with a subset $V^{* * *} \subseteq V^{* *}$, which does not contain any 2-cycles anymore and satisfies $\left|V^{* * *}\right|=(1-o(1)) \cdot\left|V^{*}\right|$ by Corollary 6.5. Hence, we can apply Theorem 6.2 to our l-uniform hypergraph $\mathcal{G}^{* * *}=\left(V^{* * *},\left[V^{* * *}\right]^{l} \cap \mathcal{E}_{l}^{*}\right)$, which has average degree $t^{l-1} \leq l \cdot\left|\mathcal{E}_{l}^{*}\right| /\left|V^{* * *}\right| \leq c_{0} \cdot p^{l-1} \cdot t_{0}^{l-1}$ for some constant $c_{0}>0$, and we obtain in polynomial time an independent set of size at least

$$
\Omega\left(\frac{\left|V^{* * *}\right|}{p \cdot t_{0}} \cdot\left(\log \left(p \cdot t_{0}\right)\right)^{\frac{1}{l-1}}\right)=\Omega\left(m^{\frac{l r}{2(l-1)}} \cdot(\log m)^{\frac{1}{l-1}}\right)
$$

which yields the desired lower bounds (18) and (19) by inserting the appropriate value of l, i.e. $l:=k$ for k even, and $l:=k-1$ for k odd.
Using the method of conditional probabilities in the same fashion as in [5], the running time is essentially dominated by the number $\left|\mathcal{E}_{k}\right|=O\left(m^{\lfloor k / 2\rfloor \cdot r}\right)$ of k-element edges and, by (23), the numbers $p_{j, u}(V)=O\left(m^{(j r+u) / 2}\right)$ of u-element subsets $J \in[V]^{j}$ with $p_{1}(J)=u$ for $u \leq\lfloor(l-j) r /(l-1)\rfloor$ and, by (24), the numbers $s_{2, j}\left(\mathcal{G}_{l}, u\right)=O\left(m^{l r-(j r+u) / 2}\right)$ of pairs of edges $\left\{E, E^{\prime}\right\} \in\left[\mathcal{E}_{l}\right]^{2}$ with $\left|E \cap E^{\prime}\right|=j$ and $p_{1}\left(E \cap E^{\prime}\right)=u$ for $\lceil(l-j) r /(l-1)\rceil \leq$ $u \leq \min \{j r,(l-j) r\}$. The dominating term here is $O\left(m^{l r-(j r+u) / 2}\right)$ for small values of u, r, which is at most $O\left(m^{r(k-3 / 2+1 /(2 k-2))}=O\left(m^{(k-4 / 3) r}\right)\right.$, and this, see Theorem 6.2, we have to compare with the term $N^{3} / t^{3-3 \delta}$ where $N=\Theta\left(m^{\frac{l r}{2(l-1)}+\varepsilon}\right)$ and $t_{0}=$ $\Theta\left(m^{\varepsilon}\right)$ (as otherwise, for $t_{0}=o\left(m^{\varepsilon}\right)$, we can improve (18) and (19)), i.e. $N^{3} / t^{3-3 \delta}=$ $\Theta\left(m^{3 r / 2-\frac{3 l r}{2(l-1)}+3 \delta \varepsilon}\right)$, thus the running time is at most $O\left(m^{(k-4 / 3) r}\right)$.

Remark: All calculations in the proof of Theorem 6.1 remain valid, if we pick in our arguments the columns at random according to a $(2 l-2)$-wise independent distribution, compare [2]. For simulating a $(2 l-2)$-wise independent distribution, it suffices to consider a sample space of size $O\left(m^{r(4 l-4)}\right)$, see [16], hence with these observations we also obtain polynomial running time.

7 Concluding Remarks

Some of the following possible applications have been stated already in [18] for the case $q=2$.

Proposition 7.1 Let A be an $l \times m$-matrix over $G F(q)$ with $k r$-wise independent columns, and let B be a (k, r)-matrix with dimension $m \times n$. Then the matrix-product $A \times B$ has k-wise independent columns.

This observation can be used to extend the length of a linear code, but at the same time we reduce its minimum distance.
Also we can use sparse matrices, which are only approximately k-wise independent (k-wise ε-independent), for the construction of small probability spaces as follows, see also [3].

Definition 7.2 The random variables X_{1}, \ldots, X_{m} over $G F(q)$ are k-wise ε-biased, if for every choice of $\beta_{1}, \ldots, \beta_{m} \in G F(q)$, where at most k are nonzero but not all of them, and for each $c \in G F(q)$ it is

$$
\left|(q-1) \cdot \operatorname{Prob}\left(\sum_{i=1}^{m} \beta_{i} \cdot X_{i}=c\right)-\operatorname{Prob}\left(\sum_{i=1}^{m} \beta_{i} \cdot X_{i} \neq c\right)\right| \leq \varepsilon .
$$

A sample space $S \subseteq(G F(q))^{m}$ is called k-wise ε-biased, if the following holds: if a sequence $\left(x_{1}, \ldots, x_{m}\right)$ is chosen uniformly at random from S according to the uniform distribution, then x_{1}, \ldots, x_{m} as random variables, are k-wise ε-biased.
A sample space $S \subseteq(G F(q))^{m}$ is called (ε, k)-independent (with respect to the uniform distribution in $\left.(G F(q))^{m}\right)$, if for each k positions $1 \leq i_{1}<\ldots<i_{k} \leq n$ and for every sequence $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in(G F(q))^{k}$ and any uniformly at random chosen sequence $X=\left(x_{1}, \ldots, x_{m}\right) \in S$, it is

$$
\left|\operatorname{Prob}\left(\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)=\alpha\right)-1 / q^{k}\right| \leq \varepsilon .
$$

We remark that one can show along the lines in [7] that a k-wise ε-biased sample space $S \subseteq(G F(q))^{m}$ is also $\left(2 \cdot \varepsilon \cdot\left(1-q^{-k}\right) / q, k\right)$-independent.

Proposition 7.3 Let $X=\left(X_{1}, \ldots, X_{m}\right)$ be a $k r$-wise ε-biased random vector over $G F(q)$, and let M be a (k, r)-matrix of dimension $m \times n$. Then the vector $Y=\left(Y_{1}, \ldots, Y_{n}\right)=$ $X \times M$ is k-wise ε-biased over $G F(q)$.

Proposition 7.4 Let $S \subseteq(G F(q))^{m}$ be a $k r$-wise ε-biased sample space, and let M be a (k, r)-matrix of dimension $m \times n$ over $G F(q)$. Then the sample space $T=\{s \times M \mid s \in$ $S\} \subseteq(G F(q))^{n}$ is k-wise ε-biased, thus also $\left(2 \cdot \varepsilon \cdot\left(1-q^{-k}\right) / q, k\right)$-independent.

It would be interesting to find explicite constructions of (k, r)-matrices, the dimensions of which match at least the lower bounds proven in this paper. However, so far this proved to be hard already for the case $q=r=2$ and larger values of k, i.e. $k \geq 12$, compare [17].

References

[1] M. Ajtai, J. Kómlos, J. Pintz, J. Spencer and E. Szemerédi, Extremal uncrowded hypergraphs, Journal of Combinatorial Theory A 32, 1982, 321-335.
[2] N. Alon, L. Babai and A. Itai, A fast and simple randomized parallel algorithm for the maximal independent set problem, Journal of Algorithms 7, 1986, 567-583.
[3] N. Alon, O. Goldreich, J. Håstad and R. Peralta, Simple constructions of almost k-wise independent random variables, Rand. Struct. \& Algorithms 3, 1992, 289-304, and 4, 1993, 119-120.
[4] C. T. Benson, Minimal regular graphs of girth eight and twelve, Canadian Journal of Mathematics 18, 1966, 1091-1094.
[5] C. Bertram-Kretzberg, T. Hofmeister and H. Lefmann, Sparse 0-1-matrices and forbidden hypergraphs, Combinatorics, Probability and Computing 8, 1999, 417-427.
[6] C. Bertram-Kretzberg and H. Lefmann, The algorithmic aspects of uncrowded hypergraphs, SIAM Journal on Computing 29, 1999, 201-230.
[7] C. Bertram-Kretzberg and H. Lefmann, $M O D_{p}$-tests, almost independence and small probability spaces, Random Structures \& Algorithms 16, 2000, 293-313.
[8] A. Bondy and M. Simonovits, Cycles of even length in graphs, Journal of Combinatorial Theory Ser. B 16, 1974, 97-105.
[9] W. G. Brown, On graphs that do not contain a Thomsen graph, Canadian Mathematical Bulletin 9, 1966, 281-289.
[10] R. Duke, H. Lefmann and V. Rödl, On uncrowded hypergraphs, Random Structures \& Algorithms 6, 1995, 209-212.
[11] P. Erdös, On sequences of integers no one of which divides the product of two others and some related problems, Izvestiya Nauchno-Issl. Inst. Mat. i Meh. Tomsk 2, 1938, 74-82; see also Zentralblatt 20, 5.
[12] P. Erdös, A. Rényi and V. T. Sós, On a problem of graph theory, Studia Scientiarum Mathematicarum Hungarica 1, 1966, 213-235.
[13] A. Fundia, Derandomizing Chebychev's inequality to find independent sets in uncrowded hypergraphs, Random Structures \& Algorithms 8, 1996, 131-147.
[14] P. Frankl and Z. Füredi, Union-free families of sets and equations over fields, Journal of Number Theory 23, 1986, 210-218.
[15] T. Hofmeister and H. Lefmann, A combinatorial design approach to MAXCUT, Random Structures \& Algorithms 9, 1996, 163-175.
[16] H. Karloff and Y. Mansour, On construction of k-wise independent random variables, Proc. 26th Ann. ACM Symposium on Theory of Computing (STOC), 1994, 564-573.
[17] F. Lazebnik, V. A. Ustimenko and A. J. Woldar, A new series of dense graphs of high girth, Bulletin (New Series) of the American Mathematical Society 32, 1995, 73-79.
[18] H. Lefmann, P. Pudlák and P. Savický, On sparse parity-check matrices, Designs, Codes and Cryptography 12, 1997, 107-130.
[19] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman and V. Stemann, Practical loss-resilient codes, Proc. 29th Ann. ACM Symposium on Theory of Computing (STOC), 1997, 150-159.
[20] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, Analysis of low-density codes and improved designs using irregular graphs, Proc. 30th Ann. ACM Symposium on Theory of Computing (STOC), 1998, 249-258.
[21] A. Lubotzky, R. Phillips and P. Sarnak, Ramanujan graphs, Combinatorica 8, 1988, 261-277.
[22] G. A. Margulis, Explicit group theoretical construction of combinatorial schemes and their application to the design of expanders and concentrators, J. Probl. Inform. Transmission 24, 1988, 39-46.
[23] T. J. Richardson and R. L. Urbanke, Efficient encoding of low-density parity-check codes, IEEE Trans. Inform. Theory 47, 2001, 638-656.
[24] D. A. Spielman, Linear-time encodable and decodable error-correcting codes, Proc. 27th Ann. ACM Symposium on the Theory of Computing (STOC), 1995, 388-397.
[25] M. Sipser and D. A. Spielman, Expander codes, Proc. 35th Ann. Symposium on Foundations of Computer Science (FOCS), 1994, 566-576.
[26] R. Wenger, Extremal graphs with no C_{4} 's, C_{6} 's or C_{10} 's, Journal of Combinatorial Theory Ser. B 52, 1991, 113-116.

