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Abstract

For fixed positive integers k, q, r with q a prime power and large m, we investigate
matrices with m rows and a maximum number Nq(m, k, r) of columns, such that each
column contains at most r nonzero entries from the finite field GF (q) and each k
columns are linearly independent over GF (q). For even integers k ≥ 2 we obtain the
lower bounds Nq(m, k, r) = Ω(mkr/(2(k−1))), and Nq(m, k, r) = Ω(m((k−1)r)/(2(k−2)))
for odd k ≥ 3. For k = 2i we show that Nq(m, k, r) = Θ(mkr/(2(k−1))) if gcd(k −
1, r) = k − 1, while for arbitrary even k ≥ 4 with gcd(k − 1, r) = 1 we have
Nq(m, k, r) = Ω(mkr/(2(k−1)) · (logm)1/(k−1)). Matrices, which fulfill these lower
bounds, can be found in polynomial time. Moreover, for char (GF (q)) > 2 we ob-
tain Nq(m, 4, r) = Θ(md4r/3e/2), while for char (GF (q)) = 2 we can only show that
Nq(m, 4, r) = O(md4r/3e/2). Our results extend and complement earlier results from
[5, 18], where the case q = 2 was considered.

1 Introduction

For a prime power q, let GF (q) be the finite field with q elements. We consider matrices
over GF (q) with k-wise independent columns, i.e. each k columns are linearly independent
over GF (q). Moreover, each column contains at most r nonzero entries from GF (q) \ {0}.
For such matrices we use the notion of (k, r)-matrices. Given a number m of rows, let
Nq(m, k, r) denote the maximum number of columns such a matrix can have. Recall
that matrices with k-wise independent columns are just parity-check matrices for linear
codes with minimum distance at least k + 1, hence we investigate here the sizes of sparse
parity-check matrices over GF (q).
By monotonicity, we have Nq(m, k + 1, r) ≤ Nq(m, k, r) for k = 2, 3, . . .. Throughout this
paper, k, r, q are fixed positive integers and m is large.
For q = 2, i.e. we are working in GF (2) = {0, 1}, it has been shown by a probabilistic
argument that N2(m, 2k + 1, r) ≥ 1/2 ·N2(m, 2k, r), see [18], hence it suffices in this case
to consider even independences. Moreover, for q = 2 and r = 2 the values of N2(m, k, 2)
are asymptotically equal (up to an additive term of O(m) for the number of columns with
exactly one entry 1) to the maximum number of edges in a graph on m vertices, which
does not contain any cycle of length at most k. The growth of N2(m, k, 2) has been studied
a lot in the past, however not that much is known on the exact asymptotic growth rate
for arbitrary fixed integers k ≥ 2. Known are only the values N2(m, 4, 2) = Θ(m3/2),
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see [9, 11, 12], and N2(m, 6, 2) = Θ(m4/3) and N2(m, 10, 2) = Θ(m6/5), see [4, 26]. In
general, for fixed integers k ≥ 1 a simple probabilistic argument yields N2(m, 2k, 2) =
Ω(m1+1/(2k−1)). By constructions of Margulis [22], and Phillips, Lubotzky and Sarnak
[21] this lower bound was improved to N2(m, 2k, 2) = Ω(n1+2/(3k+3)), which was further
improved by Lazebnik, Ustimenko and Woldar [17] to N2(m, 2k, 2) = Ω(m1+2/(3k−3+ε))
with ε ∈ {0, 1} and ε = 0 if and only if k is odd. However, concerning upper bounds we
only know that N2(m, 2k, 2) = O(m1+1/k) for fixed integers k ≥ 1 by the work of Bondy
and Simonovits [8].
For q = 2 and arbitrary fixed integers r ≥ 1, the following lower and upper bounds on
N2(m, k, r) were given by Pudlák, Savický and this author [18].

Theorem 1.1 Let k ≥ 2 even and r ≥ 1 be fixed integers. Then for positive integers m,

N2(m, k, r) = Ω

(
m

kr
2(k−1)

)
(1)

and for k = 2i,

N2(m, k, r) = O
(
mdk·r/(k−1)e/2

)
. (2)

Thus, for gcd(k − 1, r) = k − 1 and k a power of 2, the lower bound (1) and the upper
bound (2) match. However, for k even and gcd(k − 1, r) = 1, the lower bound (1) was
improved by Bertram-Kretzberg, Hofmeister and this author [5] to

N2(m, k, r) = Ω

(
m

kr
2(k−1) · (logm)

1
k−1

)
.

Here we generalize and extend some of these earlier results on the growth of N2(m, k, r)
to the case of arbitrary finite fields GF (q): we infer the lower bounds Nq(m, k, r) =
Ω(mkr/(2(k−1))) for even integers k ≥ 2, and Nq(m, k, r) = Ω(m(k−1)r/(2(k−2))) for odd
integers k ≥ 3. For k = 2i we show that Nq(m, k, r) = Θ(mkr/(2(k−1))) for gcd(k − 1, r) =
k − 1, while for every even integer k ≥ 4 with gcd(k − 1, r) = 1 we have Nq(m, k, r) =
Ω(mkr/(2(k−1)) · (logm)1/(k−1)). Also, for k = 4 and char (GF (q)) > 2 we prove that
Nq(m, 4, r) = Θ(md4r/3e/2), while so far for q = 2l we can only show that Nq(m, 4, r) =
O(md4r/3e/2). The corresponding matrices can be found deterministically in polynomial
time. Possible applications for such sparse matrices are that quite often algorithms run
fast on such matrices. In Section 5 we discuss some applications.
Related here, but different, are the results from Sipser and Spielman, see [24, 25], where in
connection with the PCP-theorem low-density 0, 1-matrices have been investigated, which
yield linear-time encodable error-correcting codes, see also [19, 20, 23]. These low-density
matrices contain in each row and in each column only a constant number of nonzero
entries. Here, however, we do not restrict the number of nonzero entries in each row.

2 Preliminaries

From now on we will assume that in every matrix M under consideration all columns are
pairwise distinct, in each column the first nonzero entry is equal to 1 and M does not
contain the all zeros column. This is no restriction, since k ≥ 2 and we only care about
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independencies among the columns. Obviously, we have Nq(m, k, 1) = m for k ≥ 2 and
Nq(m, 2, r) =

∑r
i=1

(m
i

)
· (q − 1)i−1 = Θ(mr), where the last can be seen by taking all

column vectors of length m with at most r nonzero vectors, where the first nonzero entry
is 1, and M does not contain the all zeros column. The following lemma will be crucial in
our further arguments.

Lemma 2.1 Let r ≥ 1 be an integer. Let M be an m×n-matrix over GF (q) with at most
r nonzero entries in each column and with pairwise distinct columns, where M does not
contain the all zeros column.
Then the matrix M contains an m× n′-submatrix M ′ with the following properties:

(i) n′ ≥ n · r!/(rr · qr), and

(ii) there is a partition {1, . . . ,m} = R1 ∪ . . . ∪ Rr of the set of row-indices of M ′ and
a sequence (e1, e2, . . . , er) of elements from GF (q) such that each column of M ′

contains at most one nonzero entry ej within the rows in Rj, j = 1, . . . , r, (ej = 0
means that in each column every entry within the rows of Rj is equal to zero, and
ej 6= 0 means that there is exactly one entry ej within the rows of Rj and the other
entries within Rj are zero), and

(iii) the columns of M ′ are 3-wise independent.

Proof. Uniformly and independently of the others assign at random 1, . . . , r to the row-
indices 1, . . . ,m of the matrix M . Let Rj , j = 1, . . . , r, be the random set of row-indices
with assignment j. The probability Prob, that a fixed column c in M with i ≤ r nonzero
entries contains in every row-set Rj at most one nonzero entry, can be bounded from below
as follows

Prob =
[r]i
ri
≥ r!

rr
.

Thus for such a random partition {1, . . . ,m} = R1 ∪ . . . ∪ Rr the expected number of
columns in M with at most one nonzero entry in each row-set Rj , j = 1, . . . , r, is at least
n · r!/rr. Take such a subset of columns of M with corresponding partition {1, . . . ,m} =
R1 ∪ . . .∪Rr and call the resulting matrix M∗. For each column in the matrix M∗ record
for j = 1, . . . , r as a sequence of length r, the possibly occurring nonzero entries ej , and
set ej = 0 if all entries within Rj are zero. Since there are at most (qr − 1) < qr such
sequences there are at least n′ ≥ n · r!/(rr · qr) columns in M∗ with the same pattern
(e1, . . . , er). Take these columns and call the resulting matrix M ′, thus (i) and (ii) are
fulfilled.
Assume that three columns a1, a2, a3 of the matrix M ′ are linearly dependent over GF (q).
If ej 6= 0 for some j = 1, . . . , r, then within the rows in Rj each column ai contains exactly
one entry ej . Since the columns in M and hence in M ′ are pairwise distinct and since
a1, a2, a3 are linearly dependent, each entry ej 6= 0, j = 1, . . . , r, is contained in the same
row of a1, a2, a3. But then a1 = a2 = a3, contradicting our assumption, hence the matrix
M ′ satisfies (iii). ut

Lemma 2.1 can be made constructive in polynomial time if one applies one of the known
derandomization techniques for the MAXCUT-problem, compare for example [15].
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As mentioned in the introduction, we have N2(m, 2k + 1, r) ≥ 1/2 · N2(m, 2k, r). While
for q = 2 it was easy to reduce asymptotically the case of odd dependencies to the case
of even dependencies, for arbitrary prime powers q > 2 this does not seem to be the case
anymore.

Corollary 2.2 Let r ≥ 1 and a prime power q be fixed integers. Then, for positive integers
m,

Nq(m, 3, r) = Θ(mr) .

Proof. The upper bound Nq(m, 3, r) ≤ Nq(m, 2, r) = Θ(mr) follows by monotonicity.
For the lower bound, partition the set {1, . . . ,m} of row-indices into subsets R1, . . . , Rr
of nearly equal size bm/rc or dm/re. Fix any sequence (e1, e2, . . . , er) ∈ (GF (q) \ {0})r
of nonzero entries. Define an m × n-matrix M over GF (q) without repeated columns by
taking all possible columns of length m with exactly one entry ej within the row-set Rj
for j = 1, . . . , r. Then n ≥ (bm/rc)r and the columns are 3-wise independent by the proof
of Lemma 2.1 (iii). ut

Corollary 2.3 Let q be a fixed prime power. Then there exists a constant c > 0 such that
for positive integers m,

Nq(m, 5, 2) ≥ c ·Nq(m, 4, 2) .

Proof. Let M be an m× n-matrix, n = Nq(m, 4, 2), with entries from GF (q), where each
column contains at most two nonzero entries and the columns are 4-wise independent. By
Lemma 2.1, the matrix M contains an m× n′-submatrix M ′ satisfying assertions (i), (ii)
there, hence n′ ≥ c · n for some constant c > 0. Assume that some columns a1, . . . , a5
from M ′ are linearly dependent over GF (q). Consider the occurrence of the first nonzero
entry e1 in the columns a1, . . . , a5. Since the columns a1, . . . , a5 are linearly dependent,
either all five entries e1 must occur in the same row, or three entries e1 occur in the same
row and the two others in some other row. The same holds for the possibly next occurring
nonzero entry e2. In any case, whether e2 = 0 or e2 6= 0, at least two of the columns
a1, . . . , a5 are identical, a contradiction, hence Nq(m, 5, 2) ≥ c ·Nq(m, 4, 2). ut

A more general result than stated in Corollary 2.3 can be found in Corollary 4.4.

3 Upper Bounds

In this section we will show some general upper bounds on the growth rate of Nq(m, k, r).

Theorem 3.1 Let k ≥ 4 with k even, r ≥ 1 and q a prime power be fixed integers. Then,
for some positive constant c ≤ qr · rr/r! and for s = 0, . . . , r − 1 the following holds

Nq(m, k, r) ≤ 2c ·Nq(m, k/2, 2r − 2s) + c ·
s∑
i=1

(
m

i

)
(3)

and

Nq(m, k, r) ≤ c ·

√√√√2 ·
(
m

s

)
·
(
r − 1

s

)
·Nq(m, k/2, 2r − 2s) +

+c ·
((

m

s

)
+

s∑
i=1

(
m

i

))
, (4)
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thus Nq(m, k, r) = O(ms/2 ·Nq(m, k/2, 2r − 2s)1/2 +ms) for fixed k, r, q.

The proof is similar, but different, to that by Pudlák, Savický and this author [18], where
analogous results for the case q = 2 were proved.
Proof. Let M be an m× n-matrix, n = Nq(m, k, r), where each column of M contains at
most r nonzero entries from GF (q) and the columns are k-wise independent. By Lemma
2.1, the matrix M contains an m× n′-submatrix M ′ with n′ ≥ c∗ · n and c∗ = r!/(rr · qr)
and M ′ satisfies assertion (ii) there.
We begin by proving inequality (3). We collect as long as possible pairs of distinct columns
in M ′, say c1, c2, . . . , cn1 with n1 even, such that c2i−1 and c2i, i = 1, 2, . . . , n1/2, have in
at least s positions the same nonzero entries. Then for any two distinct of the remaining
n2 := n′ − n1 columns, the number of positions with the same nonzero entries is at most
s−1. By Lemma 2.1 (ii), the positions of the nonzero entries determine also these nonzero
entries. Hence, each of these n2 columns with at least s nonzero entries is determined by
a subset of size s of the set of row-indices with nonzero entries, and the other columns
have less than s nonzero entries, thus n2 ≤

∑s
i=1

(m
i

)
.

From the columns c1, c2, . . . , cn1 we form a new matrix M∗ of dimension m × n1/2 with
columns c1−c2, c3−c4, . . . , cn1−1−cn1 , where −cj is the additive inverse of cj in (GF (q))m.
These n1/2 columns are pairwise distinct (and not equal to the all zeros column), as
otherwise c2i−1−c2i = c2j−1−c2j for some i 6= j implies dependence of these four columns
which contradicts the assumption that the columns of M are k-wise independent with
k ≥ 4. Each column in M∗ contains at most 2r − 2s nonzero entries and the columns are
k/2-wise independent as k is even, hence n1/2 ≤ Nq(m, k/2, 2r − 2s). Summing up, we
infer

c∗ · n ≤ n′ = n1 + n2 ≤ 2 ·Nq(m, k/2, 2r − 2s) +
s∑
i=1

(
m

i

)
and inequality (3) follows with c := rr · qr/r!.
Next we will prove inequality (4). We partition the set of columns of M ′ into two parts and
put these into two matrices M1 and M2 of dimensions m × n1 and m × n2, respectively,
with n′ = n1 + n2. In M1 we put those columns in M ′ which have with some other
column from M ′ at least s nonzero entries at the same positions. In matrix M2 we put
the remaining columns, i.e. those, which have with any other column from M ′ less than s
nonzero entries at the same positions. Clearly, n2 ≤

∑s
i=1

(m
i

)
as above.

Set [m] := {1, 2, . . . ,m} and for a column c, let |c| denote the number of nonzero entries
in c. Consider the matrix M1. For any s-element subset S ∈ [[m]]s of row-indices, let n(S)
denote the number of columns in M1 which have a nonzero entry at each position s ∈ S
and set

L :=
∑

S∈[[m]]s

n(S) =
∑
c∈M1

(
|c|
s

)
. (5)

Clearly, we have n1 ≤ L since each column in M1 contains at least s nonzero entries. By
the Cauchy-Schwartz inequality, we infer

∑
S∈[[m]]s

(n(S))2 ≥ L2(m
s

) ,
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and with (5) we obtain

∑
S∈[[m]]s

(
n(S)

2

)
≥ 1

2
·
L ·
(
L−

(m
s

))(m
s

) . (6)

Consider the matrix M∗1 obtained from M1 by taking all differences ci − cj , i < j, of
those columns, which share at least at s positions the same nonzero entries. Since in
the matrix M the columns are 4-wise independent over GF (q), the columns in M∗1 are
pairwise distinct. Each column in M∗1 contains at most 2r − 2s nonzero entries and the
columns in M∗1 are k/2-wise independent, hence the number of columns in M∗1 is at most

Nq(m, k/2, 2r − 2s). In the sum
∑
S∈[[m]]s

(n(S)
2

)
every pair of distinct columns is counted

at most
(r−1
s

)
times, since two distinct columns have at most r−1 common positions with

the same nonzero entry, hence

∑
S∈[[m]]s

(
n(S)

2

)
≤
(
r − 1

s

)
·Nq(m, k/2, 2r − 2s) . (7)

It follows from (6) and (7) that

1

2
·
L ·
(
L−

(m
s

))(m
s

) ≤
(
r − 1

s

)
·Nq(m, k/2, 2r − 2s) ,

hence we infer

n1 ≤ L ≤

√√√√2 ·
(
m

s

)
·
(
r − 1

s

)
·Nq(m, k/2, 2r − 2s) +

(
m

s

)
.

With n1 + n2 = n′ ≥ c∗ · n and n2 ≤
∑s
i=1

(m
i

)
and c := qr · rr/r! the upper bound (4)

follows. ut

Next we will give some consequences of Theorem 3.1.
From (3) we infer for fixed integers k = 2j , j ≥ 1, and r ≥ 1 with gcd(k − 1, r) = k − 1
that

Nq(m, k, r) = O
(
mkr/(2(k−1))

)
. (8)

To see this, we use induction on j. For j = 1, the upper bound (8) holds. Let k = 2j

and gcd(k − 1, r) = k − 1. By (3) with s := kr/(2(k − 1)) it suffices to show that
gcd(k/2− 1, 2r − 2s) = k/2− 1, which holds as 2r − 2s = (k − 2)r/(k − 1), and that

k/2 · (2r − 2s)

2(k/2− 1)
≤ kr

2(k − 1)
⇐⇒ kr

2(k − 1)
≤ s ,

which holds by choice of s.
Without any divisibility conditions, we infer for fixed integers k = 2l and r ≥ 1 that

Nq(m, k, r) = O
(
mdkr/(2(k−1))e

)
, (9)
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which implies (8) for gcd(k − 1, r) = k − 1. Clearly, (9) holds for l = 1. Using induction
on l, it suffices by (3) with s := dkr/(2(k − 1))e to show that⌈

k/2 · (2r − 2s)

2(k/2− 1)

⌉
≤
⌈

kr

2(k − 1)

⌉
⇐=

k(r − s)
k − 2

≤
⌈

kr

2(k − 1)

⌉
(since

⌈
kr

2(k−1)

⌉
is an integer)

⇐⇒ kr

k − 2
−
k ·
⌈

kr
2(k−1)

⌉
k − 2

≤
⌈

kr

2(k − 1)

⌉
⇐=

kr

2(k − 1)
≤
⌈

kr

2(k − 1)

⌉
,

which obviously holds, and hence (9) is shown, compare also [18].
Inequality (4) gives in some cases better estimates than (3), namely:

Corollary 3.1 Let k = 2j, j ≥ 1, r ≥ 1 and q a prime power be fixed integers. Then, for
positive integers m,

Nq(m, k, r) = O
(
mdkr/(k−1)e/2

)
. (10)

Proof. For the proof we use induction on j, compare Corollary 3 in [18].
For j = 1 we have that Nq(m, 2, r) = Θ(mr). For k = 2j , let s := bdkr/(k − 1)e /2c. Since
s ≤ dkr/(k − 1)e/2 it suffices by (4) to prove

1

2
·
(
s+

1

2
·
⌈
k/2 · (2r − 2s)

k/2− 1

⌉)
≤ dkr/(k − 1)e

2
,

which is equivalent to ⌈
k(r − s)
k/2− 1

⌉
≤ 2 · (dkr/(k − 1)e − s) . (11)

Since the right hand side of (11) is an integer, it suffices to prove

k(r − s)
k/2− 1

≤ 2 · (dkr/(k − 1)e − s)

⇐⇒ dkr/(k − 1)e − 2s ≤ (k − 1) · dkr/(k − 1)e − kr . (12)

The right hand side of (12) is at least 0 and its left hand side is at most 1. If dkr/(k− 1)e
is even, (12) holds, since its left hand side is equal to 0. If dkr/(k − 1)e is odd, then (12)
also holds, since the right hand side is odd, thus at least 1, hence (10) holds. ut

The next two lemmas show that asymptotically it suffices to consider the growth rate of
Nq(m, k, r) for q a prime.

Lemma 3.2 Let k ≥ 2, l ≥ 1, r ≥ 1, and a prime p be fixed integers. Then there exists a
constant d > 0 such that for positive integers m,

Npl(m, k, r) ≤ d ·Np(m, k, r) . (13)
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Proof. Let M be a (k, r)-matrix over GF (pl) of dimension m× n, where n = Npl(m, k, r).
By Lemma 2.1, the matrix M contains an m×n′-submatrix M ′ satisfying (i) – (iii) there,
hence n′ ≥ c · n for some constant c ≥ r!/(rr · plr). We form a new m × n′-matrix M∗

from M ′ by identifying every nonzero entry in M ′ by 1 ∈ GF (p). By Lemma 2.1 (ii), the
columns in M∗ are pairwise distinct and each column contains at most r nonzero entries.
If n′ > Np(m, k, r), then some j ≤ k columns in M∗, say a∗1, . . . , a

∗
j , are linearly depen-

dent over GF (p), but then the corresponding columns a′1, . . . , a
′
j in M ′ are also linearly

dependent over GF (pl), which contradicts the assumption that M ′ is a (k, r)-matrix over
GF (pl), hence (13) follows with d ≤ (plr · rr)/r!. ut

Lemma 3.3 Let k ≥ 2, r ≥ 1 and p a prime be fixed integers. Then there exists a constant
c > 0 such that for positive integers m,

Npl(m, k, r) ≥ c ·Np(m, k, r) . (14)

Proof. Let M be a (k, r)-matrix over GF (p) of dimension m× n, where n = Np(m, k, r).
By Lemma 2.1, the matrix M contains an m×n′-submatrix M ′ with entries a′h,i satisfying

(i) – (iii) there, hence n′ ≥ c ·Np(m, k, r) for some constant c ≥ r!/(rr · plr). All nonzero
entries in row h have some value eh ∈ GF (p) \ {0}.
We claim that the columns of M ′ are also linearly independent over GF (pl). To see
this, consider the entries of the matrix M ′ as from GF (pl). Suppose for contradiction
that some j ≤ k columns a′1, . . . , a

′
j of M ′ are linearly dependent over GF (pl), hence

for some λi ∈ GF (pl) we have
∑j
i=1 λi · a′i = 0. For row h in M ′, h = 1, . . . ,m, let

Ih = {i ∈ {1, . . . , j} | a′h,i 6= 0}. For every h = 1, . . . ,m with Ih 6= ∅ and for some nonzero
element eh ∈ GF (p) \ {0} we have

0 =
∑
i∈Ih

λi · a′h,i =
∑
i∈Ih

λi · eh ,

hence
∑
i∈Ih λi = 0. However, since a1, . . . , aj are linearly independent over GF (p) we

infer in GF (pl) that λ1 = . . . = λj = 0 and (14) follows. ut

Corollary 3.4 Let k ≥ 2, r ≥ 1 and a prime p be fixed integers. Then, for positive
integers m,

Npl(m, k, r) = Θ(Np(m, k, r)) . (15)

4 Graphs without Short Cycles, the Case r = 2

Using our previous considerations, in this section we will show some consequences on the
growth of Nq(m, k, r) for r = 2, i.e. each column contains at most two nonzero entries.

Corollary 4.1 Let k ≥ 2 and a prime power q be fixed integers. Then, for some constant
c > 0 and for every positive integer m,

Nq(m, k, 2) ≤ c ·m1+2/2blog kc
. (16)
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Proof. We use induction on blog2 kc. Inequality (16) holds for k = 2, 3 by Corollary 2.2.
Assume it holds for all k′ < 2blog kc. Let k = 2blog kc+j, k ≥ 4, with 0 ≤ j < 2blog kc. By (4)
for s := 1 and for even k ≥ 4 we infer that Nq(m, k, 2) ≤ c′ ·m1/2 ·Nq(m, k/2, 2)1/2 + c′ ·m
for some constant c′ > 0 and (16) follows by the induction assumption. For odd k ≥ 5, we
have by monotonicity and by (4) that Nq(m, k, 2) ≤ Nq(m, k−1, 2) ≤ c′ ·m1/2 ·Nq(m, (k−
1)/2, 2)1/2 + c′ ·m and again (16) follows by the induction assumption. ut

Corollary 4.2 Let q be a fixed prime power. Then, for positive integers m,

Nq(m, 4, 2) = Θ(m3/2)

Nq(m, 5, 2) = Θ(m3/2) .

Proof. The upper bound for Nq(m, 4, 2) follows from (16). The lower bound can be
shown similarly as in [18]. Let s be the largest prime power with 2 · (s2 − 1) ≤ m.
Partition the set {1, . . . , 2s2 − 2} of row-indices into two sets A and B of equal size
s2 − 1. Identify the elements of both A and B with the elements of (GF (s))2 \ {(0, 0)},
i.e. A = B = (GF (s))2 \ {(0, 0)}. We define an m × n-matrix M with exactly two
nonzero entries in each column by putting in each column always within row-set A a 1 at
some position g ∈ (GF (s))2 \ {(0, 0)} and within row-set B some fixed nonzero element
e ∈ GF (q) \ {0} at some position h ∈ (GF (s))2 \ {(0, 0)} if and only if < g, h >= 1,
where <,> denotes the usual component-wise scalar product. All other entries within the
row-sets A and B and the entries in rows l 6∈ A ∪B are equal to 0.
By construction no three columns in M are linearly dependent over GF (q). If four dis-
tinct columns a1, . . . , a4 would be linearly dependent over GF (q), then for some nonzero
row-positions gi, hi ∈ (GF (s))2 \ {(0, 0)}, i = 1, 2, we infer < g1, h1 >=< g2, h2 >=<
g1, h2 >=< g2, h1 >= 1. The row-positions g1, g2, h1, h2 are pairwise distinct, as other-
wise we have two identical columns. Hence < g1, h1 − h2 >= 0 and < g2, h1 − h2 >= 0,
thus g1 and g2 are collinear, i.e. g1 = λ · g2 for some λ ∈ GF (s). But then < g1, h1 >=
λ· < g2, h1 >= 1 and < g2, h1 >= 1 implies λ = 1, hence g1 = g2, a contradiction.
The matrix M has m = Θ(s2) rows and n = Θ(s3) columns and, since the prime powers
are sufficiently dense, the lower bound Nq(m, 4, 2) = Ω(m3/2) follows.
With Corollary 2.3 and by monotonicity we infer Nq(m, 5, 2) = Θ(m3/2). ut

Indeed, for a proof of Corollary 4.2 we can also identify the set {1, . . . ,m} of row-indices of
a matrix M with the vertex set of a graph on m vertices, which has n edges and contains
no cycles of length at most 4 or 5, respectively. We construct an m×n-matrix, where the
columns in M have exactly two entries 1 and correspond in a natural way to the edges of
the graph. Then the result follows also from the known results for graphs. This leads to
the following observation:

Corollary 4.3 Let k ≥ 3 and a prime power q be fixed integers. Then for positive integers
m,

Nq(m, k, 2) ≥ (1− o(1)) ·N2(m, k, 2) . (17)

Proof. The number N2(m, k, 2) is asymptotically equal to the number of edges in a graph
on m vertices without any cycle of length at most k.
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Let G = (V,E) be a graph on m vertices and with n edges without any cycle of length
at most k. We construct an m × n-matrix M with two entries 1 and e ∈ GF (q) \ {0}
in each column. The row-indices of M correspond to the vertices of the graph and the
column-indices correspond to the edges in the graph G and for an edge {u, v} ∈ E with
u < v we put the entries 1 and e at row-positions u and v in the column.
Suppose that j ≤ k columns of the matrix M are linearly dependent over GF (q), where j
is minimal with this property. The 2j nonzero entries in these j columns are contained in
at most 2 · bj/2c ≤ j rows due to the linear dependence. In terms of the graph we have j
edges which cover at most j vertices. Among these edges there must be a cycle of length
i, i ≤ j ≤ k, but the graph G was supposed to contain no cycles of length at most k. ut

From (17) and N2(m, 2k + 1, 2) ≥ 1/2 ·N2(m, 2k, 2) we immediately obtain

Corollary 4.4 Let k ≥ 2 and a prime power q be fixed integers. Then, for positive integers
m,

Nq(m, 2k + 1, 2) ≥ (1/2− o(1)) ·N2(m, 2k, 2) .

Also from (17) we have the following lower bounds from the case of graphs, see [4, 17, 26]:

Corollary 4.5 Let k ≥ 1 and a prime power q be fixed integers. Then, for positive integers
m,

Nq(m, 6, 2) = Ω(m4/3)

Nq(m, 10, 2) = Ω(m6/5)

Nq(m, 2k, 2) = Ω(m1+2/(3k−3+ε))

with ε ∈ {0, 1} and ε = 1 if and only if k is odd.

Moreover, with Lemmas 3.2 and 3.3 we have the following bounds from the case of graphs,
see [4, 26]:

Corollary 4.6 Let q = 2l be fixed. Then, for positive integers m,

Nq(m, 6, 2) = Θ(m4/3)

Nq(m, 10, 2) = Θ(m6/5) .

From the results of Bondy and Simonovits [8] for the case of graphs and by Lemma 3.2
we obtain the following, compare also Corollary 4.1:

Corollary 4.7 Let q = 2l and k ≥ 1 be fixed integers. Then, for positive integers m,

Nq(m, 2k, 2) = O(m1+1/k) .

5 4-wise Independent Columns

Now we consider the case of matrices with 4-wise independent columns over GF (q) and
with at most r nonzero entries in each column.
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Lemma 5.1 Let r ≥ 1 and a prime power q be fixed integers, where char (GF (q)) > 2.
Let M ′ be an m × n-matrix over GF (q) with exactly r nonzero entries in each column,
such that the assertions (ii) and (iii) in Lemma 2.1 are satisfied. Let F ′1, . . . , F

′
n be the

sets of positions of the nonzero entries in the n columns of M ′. If for no four sets both
F ′g ∪ F ′h = F ′i ∪ F ′j and F ′g ∩ F ′h = F ′i ∩ F ′j are fulfilled, then the columns of the matrix M ′

are 4-wise independent.

Proof. Suppose for contradiction that four columns a1, . . . , a4 in M ′ are linearly dependent
over GF (q). Then, there exist nonzero elements λ1, . . . , λ4 ∈ GF (q) \ {0} such that∑4
i=1 λi · ai = 0. Let F ′1, . . . , F

′
4 be defined as in the lemma. Let S := F ′1 ∩ . . .∩F ′4 and set

Fi := F ′i \ S for i = 1, . . . , 4. Then the sets F1, . . . , F4 are pairwise distinct.

Fact 5.2 For any 1 ≤ i < j < k ≤ 4 it is

Fi ∩ Fj ∩ Fk = ∅ .

Proof. Consider the m × 4 matrix M(a1, . . . , a4). By assumption its columns a1, . . . , a4
are linearly dependent but 3-wise independent over GF (q).
Suppose first that each row in M(a1, . . . , a4) with at least one nonzero entry contains
exactly three such entries. There are two distinct sets with nonempty intersection, say
F1∩F2 6= ∅, and let C := F1∩F2. Then for some subset G ⊆ C we have F3 = (F1∆F2)∪G
and F4 = (F1∆F2) ∪ (C \G). However, the set F1∆F2 cannot be contained in any set Fi
by Lemma 2.1 (ii).
Hence there is some row in M(a1, . . . , a4), which contains exactly two nonzero entries, say
row i ∈ F1∩F2, which implies λ2 = −λ1. Then every row j ∈ F1∩F2 contains also exactly
two nonzero entries, otherwise, say j ∈ F3∩F1∩F2 for j 6= i implies λ3 = 0, a contradiction,
thus F1 ∩F2 ∩Fi = ∅ for i = 3, 4. By symmetry assume that F2 ∩F3 ∩F4 = H 6= ∅. Then
λ2+λ3+λ4 = 0. With λ2 = −λ1 this implies with char (GF (q)) > 2 that F1∩F3∩F4 = ∅.
Moreover, we have H = F2 \ (F1 ∩ F2) since λi 6= 0 for i = 1, . . . , 4. But then the matrix
M ′ does not satisfy Lemma 2.1 (ii), a contradiction. ut

Two of the sets F1, . . . , F4 have nonempty intersection, say F1 ∩ F2 6= ∅, hence λ2 = −λ1
by Fact 5.2. If F1 ∩ F3 6= ∅ and F2 ∩ F3 6= ∅, then λ3 = −λ1 and λ2 = −λ3 by Fact
5.2, thus λ1 = 0 with char (GF (q)) > 2, a contradiction. Hence, F3 ∩ (F1 \ F2) = ∅ or
F4 ∩ (F1 \ F2) = ∅.
Therefore we have F3 \ (F1 ∪F2) = F 6= ∅. Due to the dependence of a1, . . . , a4 we obtain
F4\(F1∪F2) = F thus λ3 = −λ4. But then either F3 = F ∪(F2\F1) and F4 = F ∪(F1\F2)
or F3 = F ∪ (F1 \ F2) and F4 = F ∪ (F2 \ F1). In the first case we have F1 ∪ F3 = F2 ∪ F4

and F1 ∩F3 = F2 ∩F4 and similarly in the second case, contradicting the assumption. ut

In [14] Frankl and Füredi proved that there exists a family F of r-element subsets of an
m-element set containing no four sets F1, . . . , F4 with F1 ∪ F2 = F3 ∪ F4 and F1 ∩ F2 =
F3 ∩ F4 where |F| = Ω(md4r/3e/2). Their construction is based on symmetric polynomials
over finite fields: Let r ≡ 1 mod 3, say r = 3t + 1. (For other values of (r mod 3) the
construction is similar.) For given positive integers m let K be any field with m/2 ≤
|K| ≤ m. For a subset X = {x1, . . . , xg} ⊆ K and an integer i let

si(X) :=
∑

I∈[[g]]i

∏
j∈I

xj
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be the ith elementary symmetric polynomial in the variables x1, . . . , xg, where si(X) = 0
for i < 0 or i > |X|. For given integers h ≥ 1 define an h× h-matrix Mh(X) with entries
mi,j = s2i−j(X). Then for suitable elements c2, c4, . . . , c2t ∈ K the family F of r-element
subsets of K is defined as follows:
X = {x1, . . . , xr} ∈ F if s2i(X) = c2i for i = 1, . . . , t and det(Mh(S)) 6= 0 for every subset
S ⊆ X and h = 1, . . . , |S| − 1.
This yields a polynomial time (semi-) construction and we conclude:

Corollary 5.3 Let r ≥ 1 and a prime power q be fixed integers, where char (GF (q)) > 2.
Then, for positive integers m,

Nq(m, 4, r) = Θ
(
md4r/3e/2

)
.

Proof. The upper bound follows immediately from Corollary 3.1. For the lower bound,
let F = {F1, . . . , Fn} be a maximum family of r-element subsets of {1, . . . ,m} with n =
Θ(md4r/3e/2), such that for no four sets Fi, Fj , Fk, Fl ∈ F it is Fi ∪ Fj = Fk ∪ Fl and
Fi ∩Fj = Fk ∩Fl. This family exists by the above mentioned result of Frankl and Füredi.
Define an m× n-matrix M with entries 0 and 1, which has columns c1, . . . , cn. In column
ci there is an entry 1 in position f if and only if f ∈ Fi, i = 1, . . . , n. By Lemma 2.1 we
obtain an m×n′-submatrix M ′ of M with n′ ≥ c ·n for some constant c > 0 such that (ii)
(in each row-set R1, . . . , Rr there is exactly one entry 1) and (iii) there are satisfied. By
Lemma 5.1, the columns of M ′ are 4-wise independent and the lower bound follows. ut

Corollary 5.4 Let r ≥ 1 and q = 2l be fixed integers. Then, for positive integers m,

Nq(m, 4, r) = O
(
md4r/3e/2

)
.

Proof. The upper bound follows immediately from Corollary 3.1, or alternatively from
Lemma 3.2 and Corollary 3 in [18]. ut

Notice, that from Corollary 6.2, which is stated in the next section, we have the lower
bound Nq(m, 4, r) = Ω(m2r/3). To avoid four dependent columns over GF (q), more config-
urations than mentioned in Lemma 5.1 have to be forbidden in the case char (GF (q)) = 2.

6 Lower Bounds

For proving our lower bounds on Nq(m, k, r) we will use hypergraphs. A hypergraph
G = (V, E) has vertex set V and edge set E with E ⊆ V for every edge E ∈ E . A
hypergraph G = (V, E) is called l-uniform, if the edge set E contains only l-element edges,
i.e. E ⊆ [V ]l. An independent set in a hypergraph G = (V, E) is a subset I ⊆ V which
contains no edges from E . A 2-cycle in an l-uniform hypergraph G = (V, E) is a pair
{E,E′} of distinct edges E,E′ ∈ E with |E ∩ E′| ≥ 2.
For proving our lower bounds on the dimensions of large (k, r)-matrices over GF (q), we
will reformulate our problem in terms of finding in a suitably defined hypergraph a large
independent set.
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Theorem 6.1 Let k ≥ 4, r ≥ 1 and a prime power q be fixed integers. Then, for positive
integers m,

Nq(m, k, r) = Ω

(
m

kr
2(k−1) · (logm)

1
k−1

)
for k even and gcd(k − 1, r) = 1 (18)

and

Nq(m, k, r) = Ω

(
m

(k−1)r
2(k−2) · (logm)

1
k−2

)
for k odd and gcd(k − 2, r) = 1. (19)

As a by-product the proof of Theorem 6.1 yields lower bounds on Nq(m, k, r) for arbitrary
fixed pairs (k, r), see Corollary 6.2. The case q = 2 was considered in [5], hence with
Lemma 3.3 inequalities (18) and (19) hold for q = 2l. However, in the proof of Theorem
6.1 we cannot make use of the fact that it suffices by Lemma 3.3 to consider primes q only.
Proof. We partition the set {1, . . . ,m} of row-indices into r subsets R1, . . . , Rr of nearly
equal size bm/rc or dm/re. According to some choice of a sequence (e1, . . . , er) ∈ (GF (q)\
{0})r of nonzero elements, let Cq(m, r) consist of all column vectors of length m, which
contain within each row-set Rj exactly one nonzero entry ej ∈ GF (q) \ {0}, j = 1, . . . , r.
Hence |Cq(m, r)| ≥ (bm/rc)r, say |Cq(m, r)| = c · mr for some constant c > 0. By the
proof of Lemma 2.1 (iii) the columns of Cq(m, r) are 3-wise independent.
We form a hypergraph G = (V, E3 ∪ . . . ∪ Ek) with vertex set V = Cq(m, r). An i-
element subset {a1, . . . , ai} of V , i = 4, . . . , k, is an edge in this hypergraph G, that is
{a1, . . . , ai} ∈ Ei, if and only if a1, . . . , ai are linearly dependent but any h < i of these
columns are linearly independent overGF (q). Then, an independent set in this hypergraph
G yields a set of k-wise independent column vectors. In the following we will prove a lower
bound on the maximum size of an independent set in G.
First we will bound from above the numbers |Ei|, i = 4, . . . , k, of i-element edges in G. For
a subset E of i column vectors a1, . . . , ai ∈ Cq(m, r) consider the corresponding m × i-
matrix M(E). This matrix M(E) contains exactly i · r nonzero entries. If a1, . . . , ai are
linearly dependent over GF (q), but not any h < i of these, then in each row of M(E)
there are either at least two nonzero entries or all entries are zero. Since every column
contains within each row-set Rj exactly one nonzero entry ej ∈ GF (q) \ {0}, within each
row-set Rj , j = 1, . . . , r, the i nonzero entries ej of M(E) are contained in at most bi/2c
rows. Therefore, in M(E) all the nonzero entries are contained in at most bi/2c · r rows.
By construction, the choice of the rows determines also the nonzero entries in these rows.
Thus, for some constants ci > 0, i = 4, . . . , k, the number of i-element edges in the
hypergraph G satisfies

|Ei| ≤
(

m

bi/2c · r

)
·
(
i · bi/2c · r

ir

)
≤ ci ·mbi/2c·r . (20)

For some value l ≥ 3, which will be fixed later and only depends on the parity of k, we
consider for the moment only the l-element edges in G, i.e. edges in El.
We will now take care of the 2-cycles arising from the edges in El. Recall that a 2-cycle is
a pair {E,E′} of distinct edges E,E′ ∈ El with |E ∩ E′| ≥ 2. A 2-cycle {E,E′} is called
(2, j)-cycle if |E ∩ E′| = j, where j = 2, . . . , l − 1.
We will apply a result of Ajtai, Komlós, Pintz, Spencer and Szemerédi [1], originally
an existence result, see also [10], in the sequel extended and turned into a deterministic
polynomial time algorithm in [13]. Here we will use it in its algorithmic version from [6]:
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Theorem 6.2 Let l ≥ 3 be a fixed integer. Let G = (V, E) be an l-uniform hypergraph on
|V | = N vertices and with average degree tl−1 := l · |E|/|V |.
If the hypergraph G = (V, E) contains no 2-cycles, then one can find for any fixed δ > 0 in
G in time O(N · tl−1 +N3/t3−δ) an independent set of size at least Ω(N/t · (log t)1/(l−1)).
The assertion also holds, if the parameter tl−1 is an upper bound on the average degree.

To apply Theorem 6.2 we will show in the following that there are not too many 2-
cycles arising from El and these will be discarded randomly. For a j-element subset J =
{a1, . . . , aj} ⊆ Cq(m, r) of column vectors, j = 2, . . . , l−1, let p(J) be the number of rows
in the corresponding matrix M(J) which contain at least one nonzero entry. Moreover,
let p1(J) be the number of rows in M(J) with exactly one nonzero entry.
Let b(J) be the number of (l− j)-element subsets S = {b1, . . . , bl−j} ⊆ Cq(m, r) such that
{a1, . . . , aj , b1, . . . , bl−j} ∈ El, that is, the column vectors a1, . . . , aj , b1, . . . , bl−j are linearly
dependent but any h < l of these are linearly independent over GF (q). If J ∪S ∈ El, then
for every row in M(J) with exactly one nonzero entry e there must be in the same row of
M(S) at least one nonzero entry e and all these nonzero entries are identical. There are
at most (l − j)p1(J) possibilities to choose the positions of these matching nonzero entries
in M(S).
Let M(J) contain the p(J) nonzero rows 1, . . . , p(J), say. If M(S) contains in row s > p(J)
at least one nonzero entry, then there must be in M(S) in this row at least two nonzero
entries, since the columns a1 . . . , aj , b1 . . . , bl−j are linearly dependent over GF (q), but not
any h < l of these. Therefore, we have at most b((l − j)r − p1(J))/2c rows s > p(J) in
M(S) with nonzero entries. To choose these rows there are at most(

m− p(J)⌊
(l−j)r−p1(J)

2

⌋)

possibilities. Having fixed these rows, to choose the positions of the at most ((l − j)r −
p1(J)) remaining nonzero entries, we have at most ((b((l − j)r − p1(J))/2c + p(J)) · (l −
j))(l−j)r−p1(J) choices, thus for some constant cp > 0 we obtain

b(J) ≤
(

m⌊
(l−j)r−p1(J)

2

⌋) · ((b(l − j)r − p1(J)

2
c+ p(J)) · (l − j))(l−j)r−p1(J) · (l − j)p1(J)

≤ cp ·mb
(l−j)r−p1(J)

2
c . (21)

Next, we consider (2, j)-cycles arising from the l-element edges, i.e. pairs {E,E′} of distinct
l-element edges from El with |E ∩ E′| = j ≥ 2.
For j = 2, . . . , l− 1 and u = 0, . . . , jr, let s2,j(u;Gl) be the number of (2, j)-cycles {E,E′}
in Gl = (V, El) with p1(E ∩ E′) = u and of course |E ∩ E′| = j. Clearly, the total number
s2,j(Gl) of (2, j)-cycles among the l-element edges satisfies

s2,j(Gl) =
j·r∑
u=0

s2,j(u;Gl) . (22)

Indeed, the summation in (22) only runs up to min {jr, (l − j)r} (but this we cannot use
in the following), as for a j-element subset J ⊆ Cq(m, r) we have p1(J) ≤ jr, and if this
set J is contained in an l-element edge E ∈ El, then p1(J) ≤ (l − j)r.
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The number pj,u(V ) of j-element subsets J ∈ [V ]j of column vectors with p1(J) = u can
be bounded from above for some constant cj,u > 0 as follows:

pj,u(V ) ≤
(
m

u

)
·
(

m− u
b(jr − u)/2c

)
· ju · (b(jr − u)/2c · j)jr−u

≤ cj,u ·mu+b jr−u
2
c , (23)

since the matrix M(J) has u rows with exactly one nonzero entry and the remaining jr−u
nonzero entries are contained in rows with at least two nonzero entries.
The number of (2, j)-cycles {E,E′} in Gl = (V, El) with E ∩E′ = J is at most

(b(J)
2

)
, thus

by (21) and (23) we infer for some constant C1 > 0:

s2,j(u;Gl) ≤
∑

J∈[Cq(m,r)]j ; p1(J)=u

(
b(J)

2

)

≤
c2p
2
·

∑
J∈[Cq(m,r)]j ; p1(J)=u

m2·b (l−j)r−u
2

c

=
c2p
2
· pj,u(V ) ·m2·b (l−j)r−u

2
c

≤ C1 ·m2·b (l−j)r−u
2

c+u+b jr−u
2
c . (24)

By (20) the average degree tl−1 of the l-uniform hypergraph Gl = (V, El) satisfies

tl−1 =
l · |El|
|V |

≤ l · cl ·mbl/2c·r

c ·mr
,

hence for some constant C2 > 0 we have

t ≤ t0 := C2 ·m(bl/2c·r−r)/(l−1) .

To apply Theorem 6.2, we choose a random subset V ∗ ⊆ V by picking vertices at random
from V , independently of each other and each with probability p := t−10 · mε for some
small constant ε > 0 to get a uniform hypergraph without any 2-cycles. We will estimate
the expected values E(·) of certain parameters of the induced random hypergraph G∗ =
(V ∗, E∗3 ∪ . . . ∪ E∗k ) with E∗i := Ei ∩ [V ∗]i, i = 4, . . . , k.
The expected number E(|V ∗|) of vertices in G∗ satisfies for some constant c∗ > 0:

E(|V ∗|) = p · |Cq(m, r)| = t−10 ·m
ε · c ·mr

≥ c∗ ·mr− bl/2c·r−r
l−1

+ε . (25)

By (20) the expected numbers E(|E∗i |) of i-element edges, i = 4, . . . , k, satisfy for some
constants c∗i > 0:

E(|E∗i |) ≤ pi · ci ·mbi/2c·r ≤ c∗i ·m
bi/2c·r− bl/2c·r−r

l−1
·i+i·ε . (26)
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Let pj,u(V ∗) be the numbers of j-element subsets J ∈ [V ∗]j with p1(J) = u and let
E(pj,u(V ∗)) be their expected values. With (23) we infer for j = 2, . . . , l − 1 and u =
0, . . . , j · r and some constants c∗j,u > 0:

E(pj,u(V ∗)) = pj · pj,u(V ) ≤ cj,u · pj ·mu+b jr−u
2
c

≤ c∗j,u ·m
u+b jr−u

2
c− bl/2c·r−r

l−1
·j+j·ε . (27)

Let s2,j(u;G∗l ) denote the numbers of pairs {E,E′} ∈ [E∗l ]2 of distinct edges with p1(E ∩
E′) = u and |E ∩E′| = j in the random hypergraph G∗l = (V ∗, E∗l ). By (24) the expected
numbers E(s2,j(u;G∗l )) satisfy for u = 0, . . . , jr and j = 2, . . . , l − 1 for some constant
C∗1 > 0:

E(s2,j(u;G∗l )) = p2l−j · s2,j(u;Gl) ≤

≤ C∗1 ·m
2·b (l−j)r−u

2
c+u+b jr−u

2
c− bl/2c·r−r

l−1
·(2l−j)+(2l−j)·ε. (28)

With (25) – (28) and using Markov’s resp. Chebychev’s inequality, we know that there
exists a subhypergraph G∗ = (V ∗, E∗3 ∪ . . . ∪ E∗k ) of G with the following properties

|V ∗| ≥ c∗ ·mr− bl/2c·r−r
l−1

+ε (29)

|E∗i | ≤ c∗i ·m
bi/2c·r− bl/2c·r−r

l−1
·i+i·ε (30)

pj,u(V ∗) ≤ c∗j,u ·m
u+b jr−u

2
c− bl/2c·r−r

l−1
·j+j·ε (31)

s2,j(u;G∗l ) ≤ C∗1 ·m
2·b (l−j)r−u

2
c+u+b jr−u

2
c− bl/2c·r−r

l−1
·(2l−j)+(2l−j)·ε , (32)

where we used for simplicity the same notation for the constant factors, although they
differ from those above by a constant factor dependent only on k, r, q, but this will not
change our asymptotic considerations.
Now we fix the value of l to l := k if k is even and to l := k − 1, if k is odd, hence l is
always even.

Lemma 6.1 For k ≥ 4 and 0 < ε < r/(2(k − 1)(k − 2)) it holds:

|E∗i | = o(|V ∗|) for every i 6= l. (33)

Proof. Since l is even, by (29) and (30), we have for i = 4, . . . , k

|V ∗| ≥ c∗ ·mr− lr/2−r
l−1

+ε

|E∗i | ≤ c∗i ·m
bi/2c·r− lr/2−r

l−1
·i+i·ε ,

hence it is |E∗i | = o(|V ∗|) if

r −
⌊
i

2

⌋
· r + (i− 1) · (l − 2)r

2(l − 1)
− (i− 1) · ε > 0 . (34)

Inequality (34) holds if
(l − i)r
2(l − 1)

− (i− 1) · ε > 0
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which is fulfilled for i = 4, . . . , l − 1 and ε < r/(2(l − 1)(l − 2)).
For i > l, which is only possible for i = k odd and l = k − 1 inequality (34) is equivalent
to

(k − 3)r

2(k − 2)
− (k − 1) · ε > 0 ,

which holds for 0 < ε < ((k − 3)r)/(2(k − 1)(k − 2)), hence (33) holds for 0 < ε <
r/(2(k − 1)(k − 2)). ut

From Lemma 6.1 we infer:

Corollary 6.2 Let q be a prime power and let k ≥ 4 and r ≥ 1 be fixed positive integers.
Then, for positive integers m,

Nq(m, k, r) = Ω

(
m

kr
2(k−1)

)
if k is even (35)

and

Nq(m, k, r) = Ω

(
m

(k−1)r
2(k−2)

)
if k is odd. (36)

Thus, for k = 2i and gcd(k − 1, r) = k − 1 lower (35) and upper bound (10) match (and
similarly for k = 2i+1 and gcd(k−2, r) = k−2), while for even k and gcd(k−1, r) = 1 as
well as for odd k and gcd(k − 2, r) = 1 the lower bounds (35) resp. (36) can be improved,
see (18) and (19).
Proof. From Lemma 6.1 we know that for all values i 6= l we have |E∗i | = o(|V ∗|). We
remove one vertex from each of the bad edges, i.e. i-element edges with i 6= l, and we obtain
a subset V ∗∗ ⊆ V ∗ with |V ∗∗| ≥ (c∗−o(1))·mlr/(2(l−1))+ε ≥ (c∗/2)·mlr/(2(l−1))+ε, where the
induced subhypergraph G∗∗ of G∗ is l-uniform with |[V ∗∗]l∩E∗l | ≤ |E∗l | ≤ c∗l ·mlr/(2(l−1))+l·ε,
thus G∗∗ = (V ∗∗, [V ∗∗]l ∩ E∗l ).
Again we pick vertices from V ∗∗ at random, independently of each other with probability
p := ch ·m−ε for the constant ch := (c∗/(4c∗l ))

1/(l−1).
Then for the random subset V ∗∗∗ ⊆ V ∗∗ we obtain for the expected values

E(|V ∗∗∗|) = p · |V ∗∗| ≥ (ch · c∗/2) ·mlr/(2(l−1)) ,

and
E(|[V ∗∗∗]l ∩ E∗l |) ≤ pl · |E∗l | ≤ clh · c∗l ·mlr/(2(l−1)) .

Using linearity of expectation, there exists a subset V ∗∗∗ ⊆ V ∗∗ such that

|V ∗∗∗| − |[V ∗∗∗]l ∩ E∗l | ≥ ch · (c∗/2− c∗l · cl−1h ) ·mlr/(2(l−1)) ≥ (ch · c∗/4) ·mlr/(2(l−1)) .

By deleting from V ∗∗∗ one vertex from every edge in [V ∗∗∗]l∩E∗l we obtain an independent
set I in G with

|I| = Ω
(
mlr/(2(l−1))

)
,

and the lower bounds (35) and (36) follow by inserting l := k for k even, and l := k − 1
for k odd. ut
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Notice, that we could have derived Corollary 6.2 already from (20), using similar compu-
tations as above, by picking right away from the set V vertices at random, independently
from each other, each with probability p := c′h · t

−1
0 with c′h = (c/(4cl))

1/(l−1). Hence,
matrices satisfying (35) or (36) respectively can be constructed in polynomial time by
using the method of conditional probabilities.

Lemma 6.3 For j = 2, . . . , l− 1 and ε > 0 and u > ((l− j)r)/(l− 1) + 2 · (2l− j − 1) · ε
it holds

s2,j(u;G∗l ) = o(|V ∗|) . (37)

Proof. Using (29) and (32) with l even we have s2,j(u;G∗l ) = o(|V ∗|) for j = 2, . . . , l− 1 if

0 > 2 ·
⌊

(l − j)r − u
2

⌋
+ u+

⌊
jr − u

2

⌋
− (l − 2)r

2(l − 1)
· (2l − j − 1)− r + (2l − j − 1) · ε

⇐⇒ 0 > (l − 1) · r − 2 ·
⌈
jr + u

2

⌉
+

⌊
jr − u

2

⌋
+ u

− (l − 2)r

2(l − 1)
· (2l − j − 1) + (2l − j − 1) · ε

⇐= u/2 > (l − 1) · r − jr

2
− (l − 2)r

2(l − 1)
· (2l − j − 1) + (2l − j − 1) · ε

⇐⇒ u >
(l − j)r
l − 1

+ 2 · (2l − j − 1) · ε

and (37) follows. ut

Lemma 6.4 For j = 2, . . . , l − 1 and ε > 0 and for u < ((l − j)r)/(l − 1)− 2 · (j − 1) · ε
it is

pj,u(V ∗) = o(|V ∗|) . (38)

Proof. With l even we have by (29) and (31) that pj,u(V ∗) = o(|V ∗|) if

u+

⌊
jr − u

2

⌋
− (l − 2)r

2(l − 1)
· j + j · ε < r − (l − 2)r

2(l − 1)
+ ε

⇐⇒ u+

⌊
jr − u

2

⌋
<

(l − 2)r

2(l − 1)
· (j − 1) + r − (j − 1) · ε

⇐= u <
(l − j)r
l − 1

− 2 · (j − 1) · ε

and inequality (38) follows. ut

Consider the values ((l−j)r)/(l−1) for j = 2, . . . , l−1. If gcd(l−1, r) = 1, these are never
integers. Moreover, ((l−j)r)/(l−1) is at least 1/(l−1) apart from the next integer. Using
Lemmas 6.3 and 6.4, we choose ε > 0 so small such that both 2 · (2l− j− 1) · ε < 1/(l− 1)
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and 2 · (j − 1) · ε < 1/(l− 1) are fulfilled for j = 2, . . . , l− 1, say ε := 1/((2k− 2)(2k− 3)).
Then, ‘u > ((l − j)r)/(l − 1) + 2 · (2l − j − 1) · ε or u < ((l − j)r)/(l − 1)− 2 · (j − 1) · ε’
is satisfied for u = 0, . . . , jr and j = 2, . . . , l − 1. We summarize Lemmas 6.3 and 6.4 as
follows:

Corollary 6.5 For ε = 1/((2k − 2)(2k − 3)) and j = 2, . . . , l − 1 and u = 0, . . . , jr and
gcd(l − 1, r) = 1 it is valid

min {pj,u(V ∗), s2,j(u;G∗l )} = o(|V ∗|) .

Now, from V ∗ we delete one vertex from each bad edge E ∈ E∗i for i 6= l and by Lemma
6.1, we obtain a subset V ∗∗ ⊆ V ∗ with |V ∗∗| = (1 − o(1)) · |V ∗|. The resulting induced
subhypergraph on the vertex set V ∗∗ is l-uniform. Then we proceed for j = 2, . . . , l − 1
as follows. For u > ((l − j)r)/(l − 1) + 2 · (2l − j − 1) · ε we delete one vertex from each
(2, j)-cycle {E,E′} with E,E′ ∈ E∗l ∩ [V ∗∗]l where p1(E ∩ E′) = u and |E ∩ E′| = j, and
for u < ((l− j)r)/(l−1)−2 · (j−1) ·ε we remove from V ∗∗ one vertex from each j-element
subset J ∈ [V ∗∗]j with p1(J) = u.
We end up with a subset V ∗∗∗ ⊆ V ∗∗, which does not contain any 2-cycles anymore
and satisfies |V ∗∗∗| = (1 − o(1)) · |V ∗| by Corollary 6.5. Hence, we can apply Theorem
6.2 to our l-uniform hypergraph G∗∗∗ = (V ∗∗∗, [V ∗∗∗]l ∩ E∗l ), which has average degree
tl−1 ≤ l · |E∗l |/|V ∗∗∗| ≤ c0 ·pl−1 · t

l−1
0 for some constant c0 > 0, and we obtain in polynomial

time an independent set of size at least

Ω

( |V ∗∗∗|
p · t0

· (log(p · t0))
1

l−1

)
= Ω

(
m

lr
2(l−1) · (logm)

1
l−1

)
,

which yields the desired lower bounds (18) and (19) by inserting the appropriate value of
l, i.e. l := k for k even, and l := k − 1 for k odd.
Using the method of conditional probabilities in the same fashion as in [5], the running
time is essentially dominated by the number |Ek| = O(mbk/2c·r) of k-element edges and, by
(23), the numbers pj,u(V ) = O(m(jr+u)/2) of u-element subsets J ∈ [V ]j with p1(J) = u
for u ≤ b(l − j)r/(l − 1)c and, by (24), the numbers s2,j(Gl, u) = O(mlr−(jr+u)/2) of pairs
of edges {E,E′} ∈ [El]2 with |E ∩ E′| = j and p1(E ∩ E′) = u for d(l − j)r/(l − 1)e ≤
u ≤ min {jr, (l − j)r}. The dominating term here is O(mlr−(jr+u)/2) for small values
of u, r, which is at most O(mr(k−3/2+1/(2k−2)) = O(m(k−4/3)r), and this, see Theorem

6.2, we have to compare with the term N3/t3−3δ where N = Θ(m
lr

2(l−1)
+ε

) and t0 =
Θ(mε) (as otherwise, for t0 = o(mε), we can improve (18) and (19)), i.e. N3/t3−3δ =

Θ(m
3r/2− 3lr

2(l−1)
+3δε

), thus the running time is at most O(m(k−4/3)r). ut

Remark: All calculations in the proof of Theorem 6.1 remain valid, if we pick in our
arguments the columns at random according to a (2l − 2)-wise independent distribution,
compare [2]. For simulating a (2l−2)-wise independent distribution, it suffices to consider
a sample space of size O(mr(4l−4)), see [16], hence with these observations we also obtain
polynomial running time.

7 Concluding Remarks

Some of the following possible applications have been stated already in [18] for the case
q = 2.
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Proposition 7.1 Let A be an l×m-matrix over GF (q) with kr-wise independent columns,
and let B be a (k, r)-matrix with dimension m × n. Then the matrix-product A × B has
k-wise independent columns.

This observation can be used to extend the length of a linear code, but at the same time
we reduce its minimum distance.
Also we can use sparse matrices, which are only approximately k-wise independent (k-wise
ε-independent), for the construction of small probability spaces as follows, see also [3].

Definition 7.2 The random variables X1, . . . , Xm over GF (q) are k-wise ε-biased, if for
every choice of β1, . . . , βm ∈ GF (q), where at most k are nonzero but not all of them, and
for each c ∈ GF (q) it is∣∣∣∣∣(q − 1) · Prob

(
m∑
i=1

βi ·Xi = c

)
− Prob

(
m∑
i=1

βi ·Xi 6= c

)∣∣∣∣∣ ≤ ε .
A sample space S ⊆ (GF (q))m is called k-wise ε-biased, if the following holds: if a sequence
(x1, . . . , xm) is chosen uniformly at random from S according to the uniform distribution,
then x1, . . . , xm as random variables, are k-wise ε-biased.
A sample space S ⊆ (GF (q))m is called (ε, k)-independent (with respect to the uniform
distribution in (GF (q))m), if for each k positions 1 ≤ i1 < . . . < ik ≤ n and for every
sequence α = (α1, . . . , αk) ∈ (GF (q))k and any uniformly at random chosen sequence
X = (x1, . . . , xm) ∈ S, it is∣∣∣Prob ((xi1 , . . . , xik) = α)− 1/qk

∣∣∣ ≤ ε .
We remark that one can show along the lines in [7] that a k-wise ε-biased sample space
S ⊆ (GF (q))m is also (2 · ε · (1− q−k)/q, k)-independent.

Proposition 7.3 Let X = (X1, . . . , Xm) be a kr-wise ε-biased random vector over GF (q),
and let M be a (k, r)-matrix of dimension m × n. Then the vector Y = (Y1, . . . , Yn) =
X ×M is k-wise ε-biased over GF (q).

Proposition 7.4 Let S ⊆ (GF (q))m be a kr-wise ε-biased sample space, and let M be a
(k, r)-matrix of dimension m × n over GF (q). Then the sample space T = {s ×M | s ∈
S} ⊆ (GF (q))n is k-wise ε-biased, thus also (2 · ε · (1− q−k)/q, k)-independent.

It would be interesting to find explicite constructions of (k, r)-matrices, the dimensions of
which match at least the lower bounds proven in this paper. However, so far this proved
to be hard already for the case q = r = 2 and larger values of k, i.e. k ≥ 12, compare [17].
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