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1 Introduction

A graphG (or more general relational structure)nemogeneous any isomor-

phism between finite induced subgraphs@®ftan be extended to an automor-
phism of G. The homogeneous graphs can be recognised by the fact that their
collections of finite subgraphs have the amalgamation propertyséisa Theo-

rem). The finite homogeneous graphs were determined by Gardiner [8] and the
countably infinite ones by Lachlan and Woodrow [11]. Other determinations of
homogeneous structures in various classes include posets (Schmerl [15]), tour-
naments (Lachlan [10]), permutations (Cameron [3]), and digraphs (Cherlin [4]).
These structures are important in many parts of mathematics: seékidumd
NesSefil [13, 9] for the connection with Ramsey theory, for example.

In this paper we consider what happens if we replace “isomorphism” in the
definition of homogeneity by “homomorphism”. (A homomorphism of a graph,
for example, is a function which maps vertices to vertices and preserves the
edges.)

There are several different conditions. We say that a gfajplelongs to the
class

e HH, if every homomorphism from a finite subgraph®into G extends to
a homomorphism fron® to G;

e MH, if every monomorphism from a finite subgraph®finto G extends to
a homomorphism fron® to G;

e MM, if every monomorphism from a finite subgraph®finto G extends to
a monomorphism fron® to G.

Clearly both HH and MM are included in the class MH. So we begin with
some structural results for MH graphs. Later we show that it is the class MM in
which an analogue of Fise’s theory can be developed for arbitrary relational
structures.

Proposition 1.1 (a) Any disjoint union of complete graphs all of the same size
is HH, and hence MH. If a disjoint union of complete graphs is MH, then
the complete graphs all have the same size.

(b) If an MH graph is disconnected, or if it is finite, then it is a disjoint union of
complete graphs of the same size.



(c) If an MH graph is connected, then it has diameter at nZoshd every edge
is contained in a triangle. Moreover, if C is a finite maximal clique and v
any vertex, thefC| is greater than the degree of v.

Proof The first part of (a) is clear. Moreover, if an MH graph has two com-
ponentsA andB which are complete, then fa< A andb € B, the mapa— b
extends to a homomorphism which mafpimjectively toB, so|A| < |B|. Similarly

|B| < |A|]. So|A| = |B| by the Cantor—Sclider—Bernstein theorem.

Suppose thaG is MH and has a component which is not complete: equiv-
alently, it has an induced patyy,z. For any two distinct verticea, b, the map
X+— @, z— b extends to a homomorphism, which magde a common neighbour
of a andb. This shows tha6 is connected and has diameter 2 and every edge is
in a triangle. This proves (b) for disconnected graphs, and also the first part of (c).

Let C be a finite clique in an MH graph and suppose there is a verteith
degree at leagC|. Any injective map from/C| neighbours o/ to C extends to
a homomorphism, which must mapto a common neighbour @, soC is not
maximal.

Now suppose thab is finite MH, and let it be a minimal counterexample to
the statement that it is a disjoint union of complete graphs of the same size. Then
G is connected. For any vertex the set of neighbours of is MH, and so by
assumption is a disjoint union of, sdycomplete graphs of size ThenG has a
maximal clique of siz&+ 1, whilev has degrekl. So we havé+ 1 > kI, whence
k > kI, andl = 1. Then the set of neighbourswis a complete graph. Takingto
be a vertex of maximum degree in its component, we see that this component is a
complete graph of size+ 1. O

The classification of finite MM graphs is simpler:
Proposition 1.2 The only finite MM graphs are the complete and null graphs.

Proof Suppose thak is a finite MM graph which is neither complete nor null.
Let the verticesa and b be adjacent, and the verticesandd be non-adjacent.
Then the mag — a, d — b extends to a monomorphism &, which strictly
increases the number of edges, which is clearly impossiblel]

2 Graphs spanned byR

Let R be the countable random graph (the “Rado graph”, [14]). RecallRhst
characterised as a countable graph with the property tht,ahdV are finite
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disjoint sets of vertices, there is a vertepined to all vertices iU and to none
inV. See [2] for more information abo&

Proposition 2.1 (a) A countable graph contains R as a spanning subgraph if
and only if it has the property that any finite set of vertices has a common
neighbour.

(b) Any graph containing R as a spanning subgraph is HH and MM, and hence
MH.

(c) If G is an MH-graph which does not contain R as a spanning subgraph, then
there is a bound on the size of claws (induced starg)kn G.

Proof (a) The property holds iR, and hence certainly in any graph obtained by
adding extra edges.

Conversely, lelG be a countable graph satisfying the property. Construct a
bijection betweerR and G by the back-and-forth method, except that in going
from R to G we don't insist that non-edges are preserved. In more detail: we
define a magf : R— G recursively. At odd-numbered steps, take the first vertex
of Ron whichf is not yet defined, and map it to a common neighbour of the range
of f. At even-numbered stages, take the first vevtagt in the range of, choose
V' € Rsuch that, for alli in the domain off, u~ V if and only if f(u) ~ v.

(b) If the property of (a) holds, then certainly homomorphisms extend: if we
have defined onvy,...,vnh_1, then choosd (v,) to be any vertex adjacent to all
of f(vo),..., f(vn—1). Moreover, iff is one-to-one, then so is the extension.

(c) Suppose thaG is a countable MH graph which contains claws of un-
bounded size. Let be a finite set of vertices, witly | = n. Find a clawKy
in G and map its independent vertices bijectivelyto The remaining vertex is
mapped to a neighbour tf. SoG satisfies the condition of (a). [

Corollary 2.2

(a) There is a countable graph which is homomorphism-homogeneous but is automorphism-
rigid.

(b) There is a countable graph which is homomorphism-homogeneous but its com-

plement is homomorphism rigid.

Proof The graph



e

is automorphism-rigid and for every finite subkkthere is a vertex joined to no
vertex inU. So the complement is also automorphism-rigid and confdias a
spanning subgraph. This proves (a).

To prove (b) it suffices to prove that there exists a countable rigid graph with all
its degrees< 3. The complement the contaiRsas a spanning subgraph. [

Here are two questions which we have not been able to resolve.

Problem 1 Is there a graph which is MH but not HH?
We remark that for more general structures than graphs we prove below that
the classes MH and HH different.

Problem 2 Is there a countable graph which is HH but not a disjoint union of
complete graphs and does not contias a spanning subgraph?

A positive answer to this problem would yield a graph which contains a finite
set of vertices with no common neighbours, and there is a bound on the size of its
claws. One famous class of graphs with bounded claw size consisis gfaphs
L(G) of graphs; these contain no 3-clagy 3. We show that at least in this class
we obtain no new examples.

Proposition 2.3 Let G be a finite or countable graph with the propery théGl.
is MH. Then G is a disjoint union of stars of the same size (and hef@gik a
disjoint union of complete graphs of the same size).

Proof By Propositions 1.1 and 1.2, we can assume @ag infinite and con-
nected with bounded diameter. Sacontains a vertex of infinite degree.

First we show thaG is triangle-free. Suppose théh, b, c} is a triangle in
G, and letp,q,r,s be neighbours of. The mapvp+— ab, vq+— bc, vr — ca of
L(G) extends to a homomorphism bfG), under whichvs must map to an edge
meeting all three edges of the triangle, which is impossible.

Now we show that any neighbour wfhas degree 1. For suppose tlpat a
neighbour ofv which is also adjacent to a vertex(necessarily not adjacent to
V), and letq andr be two further neighbours of The mapvqg+— vq, vr — vp,
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px+— pxextends to a homomorphism, which must nvggdo an edge containing
v and meetingx; this edge cannot bep, and if it isvx then the graph contains a
triangle. So no such vertex can exist.

Thus, the connected component contaimnig an infinite star, and we are
done. (I

More generally, letX (k1) be the class of finite graphs defined as follows,
wherek andl are integers with k | < k: the vertex set is an arbitrary s@f of
k-sets; two vertices are adjacent if and only if they intersect in at lepsints.
We call this the( > I)-intersection graphof M. (So line graphs form the class
%(2,1). More generally, in the cade= 1, we refer to such a graph as tiner-
section graphof the collection ok-sets.)

Now if the k-sets(X, Y1, ...,Y;) form a claw in the( > |)-intersection graph,
then the intersection$sNY; for 1 <i <r all have size at leastand are all distinct;
so certainly there is no*law in such a graph. We would like to prove that no
countable graph of this type can be homogeneous unless it is a disjoint union of
complete graphs. Here is a first step.

Proposition 2.4 For k > 3, let (ﬁ) denote the set of all k-subsets of a countable
set. Then th¢ > | )-intersection graph of ) is not MH.

Proof There always exists(@> |)-intersecting family ok-subsets with the prop-
erty that no furthek-set intersects every set in the family. For example, the set
(E) of all k-subsets of &2k — | )-setY obviously has this property, since a set con-
taining fewer thark points ofY has intersection smaller tharwith some set in

Y
(k)-

Now there is also an infinite star (a setke$ets containing common points).
Now the map taking(z"k_ ') sets of the star bijectively t@} ) cannot be extended
to a further set of the star. [J

A final observation about MM graphs:

Proposition 2.5 Any infinite non-null MM graph contains an infinite complete
subgraph.

Proof LetG be such a graph.
Suppose first tha® is disconnected, and so a union of complete graphs. If
the components are finite (of size> 1, say), take two pointa, b in different



components and map them to two points in the same component; it is clear that no
monomorphism can extend this map. So the components are infinite, as required.
Suppose thaG does not contairk, so that it fails to contain the sta¢;
for somen. SinceG has diameter 2, some vertex has infinite degree, and its
neighbourhood has no null graph of sizeBy Ramsey’s Theorem it contains an
infinite complete graph.
Finally, if G containsR, the resultis clear. [

3 Posets

A homomorphism of posets is a méysuch that, ik <y, thenf(x) < f(y). Now
the definitions of the classes HH, MH and MM of posets are exactly as for graphs.
Here is the start of an attempt to classify the MH posets.

First, the analogue of the fact that graphs contaifras spanning subgraph
have the MM and HH properties also hold here. Uetlenote the generic (uni-
versal and homogeneous) countable posetexensiorof U is a poseP on the
same set such that xf<y y, thenx <py.

Proposition 3.1 (a) A countable poset P is an extension of U if and only if it has
the following property(t): for any two finite sets A and B with-A B, there
is a point z such that A z< B.

(b) Any extension of U has the HH and MM properties.

Proof (a) The argument is similar to that for graphs. Recall thas charac-
terised by the property that, for any finite disjoint sat8,C with A < B and, for
allac A, beB,ceC,we havec £ aandb £ c, there is a pointwith A< z< B
andz andc incomparable for alt € C.

Now construct a bijection frord to P which preserves comparability as fol-
lows. Enumeraté andU. Suppose that has been defined am,...,u, € U.
If nis even, choose the first unused poindf U; let A andB be the subsets of
{u1,...,un} consisting of points less than and greater tkaespectively. Then
A< B,sof(A) < f(B); by (1), there is a point such thatA < z < B, and we can
mapx to z. If nis odd, choose the first unused poyndf P, and choose a point
z € Pincomparable with all ofiy, ... ,u,; then mapztoy.

(b) LetP be an extension d&f, andf a homomorphism between finite subsets
of P. Now we can extend to all of P as follows. Suppose thdthas been defined
on pi,...,pPn. Let A andB be the sets of elements éps,..., p,} which are
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respectively less than and greater tigan;. As before, choosewith f(A) < z<
f(B), and mappn1 to z The extension is one-to-one everywhere except possibly
on the points wheré was initially defined. [

Now we gather a few facts about MH posets. Clearly any antichain is HH and
MM.

Proposition 3.2 Let P be a countable poset which is MH but not an antichain.
(a) Any maximal chain in P is dense and without endpoints.

(b) If P is disconnected then it is a disjoint union of incomparable chains each
isomorphic to the rationals.

(c) If there is a2-element antichain in P which has an upper bound, then any
finite antichain has an upper bound.

Proof (a) By assumption, there exiatandb with a < b. Extending the map
a+— x for any x, we see that there is an element abave(Dually there is an
element belowk.) In particular, there is a 3-element chan< b < c. Now, if
X <y, extending the map— X, c+— Yy, we see that the image bfis an element
withx<z<y.

(b) If P has a component which is not a chain, then it contains a 2-element
antichain with either an upper or a lower bound. By the MH property, every 2-
element antichain has a bound; so there is only one connected component.

(c) As in (b), if some 2-element antichain has an upper bound, then so does
every 2-element antichain. Now, inductively, Bt ...,a, be an antichain. Let
b, be an upper bound @& anda;, 1 fori =1,...,n— 1. Now the set of maximal
elements amonly, ..., by_1 is an antichain of size smaller thanby induction it
has an upper bourg which is also an upper bound fay, ..., a,. O

It follows that all homogeneous posets have the MM property. A bit surpris-
ingly there is another example (which is also not an extension of the generic poset
U, but is more analogous to a claw-free graph). Recall thegeaorderis a poset
in which the elements below any given elememdrm a chain). Tree orders may
have large symmetry groups (see Droste [5]) while not being homogeneous (in the
usual sense). We prove that they may have the MM propertyl lbeta countable
tree order satisfying the following additional properties:

(@) T is dense;



(b) T has neither maximal nor minimal element;

(c) No finite subset of has a proper infimum (i.e. infima and minimal elements
of finite subsets coincide);

(d) T is infinitely branching (i.e. i.e. for every <y there exists an antichain
z;i=12, ..., withx< z andy £ z for everyi=1,2,...).

Extending Cantor’s characterization of countably dense linear orders one can
see thafl is up to an isomorphism uniquely determined by the above properties.
It can be obtained as follows: First we split the set of rational humbers in two
dense sets, sdy,D’. We form an infinite tree of copies &f by adding infinitely
many branching copies @ at any element ob’ and continuing recursively in
this way.

We have the following:

Proposition 3.3 (a) T is not homogeneous (in the usual sense);
(b) T has the MM property.

Proof The reason whyl is not homogeneous in the ordinary sense can be seen
from this picture.

X 'y z

It is clear that no automorphism can interchangeith z and fixy. But there is a
monoomorphism that will do this: simply map the points bebowy z to suitable
points belowa.

To prove (b), it suffices to prove that for amyz A any monomorphisnf :
A — B may be extended to a monomorphigm A’ — B’ whereA' = AU {x}.
This may be seen as an extension of the above example: G&éndenote by,
the set of alz € A such thak < z. LetBx = {f(y);y € A«}. Consider the infimum
a of the setAy U By (it may not belong tdr'). If a> x then we putf’(x) = x. If
a < x then necessarily \ A is non-empty. In this situation we distinguish two
cases:



¢ If there is an elemert of A satisfyinga < z < x, we choose maximal such
z, and the we lef’(x) be the element abovigz) close enough to be distinct
from all of A andB.

e If there is no element oA satisfyinga < z < x we let f’(x) be an element
bellow a which such that’(x) > zfor allz< a,ze AUB. O

4 Homogeneity and amalgamation

The definitions of the classes HH, MH and MM work in the same way for ar-
bitrary relational structures as for graphs or posets. We are going to develop a
characterisation of MM structures in general. As usual,atpeof a structure is
the class of finite structures embeddable in it; anddire embedding propertgr
JEP is as usual” has the JEP if any two members@tan be embedded in some
member ofC.

Themono-amalgamation properfjor short, MAP) of a clasg” of finite rela-
tional structures is the following assertion:

For anyA,B1,By € C, and any mapd; : A — B; (for i = 1,2) such

that f1 is an embedding (an isomorphism to an induced substructure)
and f a monomorphism, there exists= ¢ and monomorphismg; :

B; — Cfori=1,2 such thag; o f; = gzo f> andgy is an embedding.

Note the asymmetry betwe®&j andB!
The mono-extension propertyf a structureM with age C is the following
property:
If B C andAis an induced substructure Bf then every monomor-
phismA — M extends to a monomorphisBr— M.

Now our analogue of Fia®’s Theorem is the following result.

Proposition 4.1 (a) A countable structure is MM if and only if it has the mono-
extension property.

(b) The age of any MM-structure has the mono-amalgamation property.

(c) If a class( of finite relational structures is isomorphism-closed, closed un-
der induced substructures, has only a countable number of isomorphism
classes, and has the JEP and the MAP, then there is a countable MM struc-
ture M whose age is equal 0.
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Proof (a) If M has the mono-extension property, then clearly any monomor-
phism from a finite substructure & can be extended (one point at a time) to
a monomorphism of.

Conversely, suppose thit is an MM structure. LeB be a structure in the
age ofM andA C B: without loss of generalityd C M. Suppose thaf is any
monomorphism fromA into M. Then f extends to a monomorphismof M,
whose restriction t@® is the required monomorphisBi— M.

(b) Suppose tha is an MM structure and le@, B1,By, f1, f2 be as in the
hypothesis of the mono-amalgamation property, WitB+, B, in the age oM. As
in (a), we can assume thBi, B, C M and f; is the identity orA. Now extendf;
to a monomorphisrg of M; let C = B1g, g1 the restriction of this monomorphism
to B;, andgy the identity onBs.

(c) We build the structure in stages; even and odd numbered stages achieve
different parts of the construction. Suppose tiahas been constructed at stage

If i is even, we can use the JEP to find a struchMire; containingM; and any
given structuré € C.

If i is odd, we select a paf{A, B) of structures inC with A C B. Now a given
monomorphismA — M can be extended to a monomorphi8m- M’ for some
M’ D M, by the MAP. Applying this successively for each monomorphism
M;, we obtain the structuril; .1 so that every monomorphisfk— M; extends to
a monomorphisnB — M;j1.

Arranging the stages so that every structureinccurs at some even stage
and every paifA,B) at infinitely many odd stages, we finally build a countable
structure whose age 8 and which has the mono-extension property, and hence
is MM. O

We say that a clasg having the properties of part (c) of the theorem is a
mono-Frass class and that an MM structure with agé is a mono-limitof C.
Unlike the usual form of Fiig’s Theorem, it is not the case that a class satisfying
the mono-amalgamation property has a unique mono-limit (up to isomorphism).
Indeed, there are many examples of graphs contaiRiag spanning subgraph
whose age is the class of all finite graphs.

However, any two such structurtsandM’ must bear a certain resemblance
to each other. For example, there is a monomorphism fkbrio M’ and vice
versa In fact, more is true; we can characterise this equivalence as follows.

Let M andM’ be two structures. We say tHdtandM’ aremono-equivalenif

o Age(M) = Age(M');

11



e every embedding of a finite substructéref M into M” extends to a monomor-
phism fromM to M’, andvice versawith M andM’ reversed).

This turns out to be the relation which replaces isomorphism in our version of
Fraise’s Theorem:

Proposition 4.2 (a) Suppose that M and Mare mono-equivalent structures. If
M is a MM structure, then NMis an MM structure too.

(b) Conversely, if M and Mare MM structures withAge(M) = Age(M’), then
they are mono-equivalent.

Proof (a) Suppose tha#l andM’ are equivalent and that has the MM property.
TakeA B € Age(M’) with A C B, and letf : A— M’ be a monomorphism. By
assumption, we may assume tBat M.

Let A’ be the image of. Since AgéM) = Age(M’), we can find a copy”
of A’ within M; in other words, there is a monomorphispn A — A’ and an
isomorphismg : A” — A’ such thago @= f. SinceM has the MM property, the
monomorphisngpextends to a monomorphispi: M — M. LetB” = ¢*(B). Also,
by assumption, the isomorphisgextends to a monomorphisgh: M — M’. Now
the restriction ofg* o @* to B is @ monomorphisnB — M’ extending the given
monomorphismf. SoM’ has the mono-extension property, and hence it is an
MM structure.

(b) Suppose thal andM’ are MM structures with the same age. lkebe a
finite substructure d andf : A— M’ an embedding. For ary O A, the mono-
extension property iV’ allows us to extend to a monomorphisnB — M’. So
there is a monomorphistd — M’ extendingf. ThusM andM’ are equivalent.
O

The above proof that the MM property fbt implies that ofM’ uses only half
of the definition of equivalence. Let us say thvat< M’ holds if

e Age(M) D Age(M'), and

e any embedding of a finite substructurefointo M’ extends to a monomor-
phism fromM to M’.

This relation between structures defines a partial order on the set of equivalence
classes. (The reverse ordering of ages looks strange, but consider graphs contain-
ing R as spanning subgraph: intuitively, the more extra edges we add, the smaller

12



the age becomes.) Then the proof of Proposition 4.2(a) actually shows tiat, if
is an MM structure antl < M’, then alsdV’ is an MM structure.
We mention one fact about this order for graphs.

Proposition 4.3 Let R be the Rado graph. Then a countable graph G satisfies
R =< G if and only if R is a spanning subgraph of G.

Proof SinceRis universal, the condition AgR) O Age(G) is trivial.

Suppose thaRis a spanning subgraph @f and letf : A— G be an embedding
of a finite subgrapt of Rinto G. Since there is a common neighbourf@f) in
G by Proposition 2.1, it is always possible to extengb a monomorphism on one
extra point.

Conversely, suppose thBt= G, and letU be a finite set of vertices iG. Let
Abe a subgraph d®isomorphic to the subgraph (by means of the isomorphism
f), andza common neighbour & in R. The mapf extends to a monomorphism
from Rto G (by assumption), and the imagezt a common neighbour &f. So
G containsRk as a spanning subgraph, again by Proposition 2.1

On the other hand, it is not true thatM and M’ are MM structures and
Age(M) D Age(M’), thenM < M’. For example, leM be the Rado grapR, and
M’ the disjoint union of two infinite complete graphs. The map taking a non-edge
in M to a non-edge iM’ clearly cannot be extended.

5 Algebraic classes

We say that a clas& of finite structures has the ME-property if the classes of
monomorphisms and embeddings coincide%ar

Proposition 5.1 Let K be a mono-Frés< class of finite structures with the ME-
property. Then any two mono-limits &f are isomorphic.

Examples:
¢ all algebraic classes (containing only function and constant symbols)

e tournaments and directed graphs (see below).
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Commentary Clearly any monomorphism between finite algebras is an embed-
ding. For ifp is anr-ary operation in the algebra arfda monomorphism, then
clearlyp(f(x1),..., f(x)) = f(p(X1,---,%)).

Now, given any loopless directed graph it is possible to define an algebra
on the vertex set dD with a single binary operationby the rules

X-X = X,
{x if there is an arx — v,

and ifx #y, thenx-y = y otherwise.

Any monomorphism of this algebra is a digraph embedding. Note that not all
digraph monomorphisms are algebra monomorphisms! If the digraph is a tourna-
ment then the two types of monomorphisms coincide: see [12].

This example shows that, even in the case of algebras of a given type, we
may have 2° non-isomorphic MM-structures (in this case, the algebras of the
homogeneous digraphs determined by Cherlin [4]).

A more familiar example of this phenomenon occurs with abelian groups. For
any setl1l of prime numbers, the direct product of the countable abelian group of
exponentp for all p € ' is homogeneous.

The above example of tournament algebras (sometimes cplkesitrivial al-
gebrag yield also an example of structures showing MHHH: Consider the
algebra corresponding to the universal homogeneous tournament. This algebra is
obviously an MM structure. However it fails to be an HH structure as every finite
tournament may be extended to a finite tournament whisimgle(i.e. does not
have any non-trivial congruence), see [6, 12].

6 Representing closed monoids

There is a natural topology oXX, for a countable seX, namely the product
topology induced from the discrete topology ¥n Thus the basic open sets are
of the form

{feXX: f(x)=yifori=1,...,n},

wherexi, ..., X, Y1,.--,¥n € X andxy, ..., X, are distinct. It is known that, in
the induced topology on the symmetric group $¥)) a permutation groufs is
closed if and only if it is the automorphism group of a homogeneous relational
structure orX (see [1]). A similar observation holds here:
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Proposition 6.1 (a) A submonoid S of Xis closed in the product topology on
XX if and only if S is the monoiEnd(M) of endomorphisms of a HH rela-
tional structure M on X.

(b) A submonoid S of the monoid of one-to-one maps X is closed in the
product topology if and only if S is the monoid of monomorphisms of a MM
relational structure M on X.

Proof (a) For each, and eachx € X", we take am-ary relationRg defined by
Rx(Y) < (Fs€ (¥ =s(X)).

Let M be the relational structure with relatioRgfor all n-tuplesx (and alln). We
claim thatSacts as endomorphisms g, thatM is HH, and EndM) = S.

For the first point, take € Sandy € X" such thaRg(y) holds; we must show
that Rx(s(y)) holds. Buty = s (X) for somes € S thens(y) = ss$(X), so the
assertion is true.

Next, let f be a homomorphism between finite subsetXp&ay f(x) =V
fori=1...,n. LetXx= (X1,...,%) andy = (y1,...,¥n). Now Sis a monoid
and so contains the identity mapping. Thus, by definitRix) holds. Sincef
is @ homomorphismRk(y) holds. So by definition, there existsc S such that
S(X) =y. Now sis an endomorphism dfl extendingf. SoM is HH.

Finally, to show that EndM) = S, we know already th&8C EndM) and have
to prove the reverse inclusion. We must tdke End M) and show that every
basic neighbourhood d¢f contains an element & so thath is a limit point of S.
SinceSis assumed closed, we conclude tha S. Now eachn-tuplex defines a
basic neighbourhood d¢f consisting of all functiong such thag(X) = h(x). Now
Rx(X) holds; sincéh is a homomorphisnmRg(h(X)) also holds, and by definition of
Rx this means that there exigts Swith h(X) = s(X), as required.

(b) The proof of this is entirely analogous, replacing homomorphisms by
monomorphisms. [

The relational structures constructed in the proof have infinitely relations of
each arity. It would be interesting to recognise the monoids which are the endo-
morphism monoids (or monomorpism monoids) of homogeneous structures with
only finitely many relations of each arity (these would be the analogue of the
closedoligomorphic permutation groups, [1]), or even those with only finitely
many relations altogether.
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