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Malostransḱe Nám. 25, 11800 Praha, Czech Republic

nesetril@kam.mff.cuni.cz

Abstract

We study relational structures (especially graphs and posets) which sat-
isfy the analogue of homogeneity but for homomorphisms rather than iso-
morphisms. The picture is rather different. Our main results are partial
characterisations of countable graphs and posets with this property; an ana-
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1 Introduction

A graphG (or more general relational structure) ishomogeneousif any isomor-
phism between finite induced subgraphs ofG can be extended to an automor-
phism ofG. The homogeneous graphs can be recognised by the fact that their
collections of finite subgraphs have the amalgamation property (Fraı̈sśe’s Theo-
rem). The finite homogeneous graphs were determined by Gardiner [8] and the
countably infinite ones by Lachlan and Woodrow [11]. Other determinations of
homogeneous structures in various classes include posets (Schmerl [15]), tour-
naments (Lachlan [10]), permutations (Cameron [3]), and digraphs (Cherlin [4]).
These structures are important in many parts of mathematics: see Hubička and
Něseťril [13, 9] for the connection with Ramsey theory, for example.

In this paper we consider what happens if we replace “isomorphism” in the
definition of homogeneity by “homomorphism”. (A homomorphism of a graph,
for example, is a function which maps vertices to vertices and preserves the
edges.)

There are several different conditions. We say that a graphG belongs to the
class

• HH, if every homomorphism from a finite subgraph ofG into G extends to
a homomorphism fromG to G;

• MH, if every monomorphism from a finite subgraph ofG into G extends to
a homomorphism fromG to G;

• MM, if every monomorphism from a finite subgraph ofG into G extends to
a monomorphism fromG to G.

Clearly both HH and MM are included in the class MH. So we begin with
some structural results for MH graphs. Later we show that it is the class MM in
which an analogue of Fraı̈sśe’s theory can be developed for arbitrary relational
structures.

Proposition 1.1 (a) Any disjoint union of complete graphs all of the same size
is HH, and hence MH. If a disjoint union of complete graphs is MH, then
the complete graphs all have the same size.

(b) If an MH graph is disconnected, or if it is finite, then it is a disjoint union of
complete graphs of the same size.
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(c) If an MH graph is connected, then it has diameter at most2 and every edge
is contained in a triangle. Moreover, if C is a finite maximal clique and v
any vertex, then|C| is greater than the degree of v.

Proof The first part of (a) is clear. Moreover, if an MH graph has two com-
ponentsA andB which are complete, then fora ∈ A andb ∈ B, the mapa 7→ b
extends to a homomorphism which mapsA injectively toB, so|A| ≤ |B|. Similarly
|B| ≤ |A|. So|A|= |B| by the Cantor–Schröder–Bernstein theorem.

Suppose thatG is MH and has a component which is not complete: equiv-
alently, it has an induced pathx,y,z. For any two distinct verticesa,b, the map
x 7→ a, z 7→ b extends to a homomorphism, which mapsz to a common neighbour
of a andb. This shows thatG is connected and has diameter 2 and every edge is
in a triangle. This proves (b) for disconnected graphs, and also the first part of (c).

Let C be a finite clique in an MH graph and suppose there is a vertexv with
degree at least|C|. Any injective map from|C| neighbours ofv to C extends to
a homomorphism, which must mapv to a common neighbour ofC, soC is not
maximal.

Now suppose thatG is finite MH, and let it be a minimal counterexample to
the statement that it is a disjoint union of complete graphs of the same size. Then
G is connected. For any vertexv, the set of neighbours ofv is MH, and so by
assumption is a disjoint union of, say,l complete graphs of sizek. ThenG has a
maximal clique of sizek+1, whilev has degreekl. So we havek+1> kl, whence
k≥ kl, andl = 1. Then the set of neighbours ofv is a complete graph. Takingv to
be a vertex of maximum degree in its component, we see that this component is a
complete graph of sizek+1. �

The classification of finite MM graphs is simpler:

Proposition 1.2 The only finite MM graphs are the complete and null graphs.

Proof Suppose thatG is a finite MM graph which is neither complete nor null.
Let the verticesa andb be adjacent, and the verticesc andd be non-adjacent.
Then the mapc 7→ a, d 7→ b extends to a monomorphism ofG, which strictly
increases the number of edges, which is clearly impossible.�

2 Graphs spanned byR

Let R be the countable random graph (the “Rado graph”, [14]). Recall thatR is
characterised as a countable graph with the property that, ifU andV are finite
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disjoint sets of vertices, there is a vertexz joined to all vertices inU and to none
in V. See [2] for more information aboutR.

Proposition 2.1 (a) A countable graph contains R as a spanning subgraph if
and only if it has the property that any finite set of vertices has a common
neighbour.

(b) Any graph containing R as a spanning subgraph is HH and MM, and hence
MH.

(c) If G is an MH-graph which does not contain R as a spanning subgraph, then
there is a bound on the size of claws (induced stars K1,n) in G.

Proof (a) The property holds inR, and hence certainly in any graph obtained by
adding extra edges.

Conversely, letG be a countable graph satisfying the property. Construct a
bijection betweenR andG by the back-and-forth method, except that in going
from R to G we don’t insist that non-edges are preserved. In more detail: we
define a mapf : R→ G recursively. At odd-numbered steps, take the first vertex
of Ron which f is not yet defined, and map it to a common neighbour of the range
of f . At even-numbered stages, take the first vertexv not in the range off , choose
v′ ∈ Rsuch that, for allu in the domain off , u∼ v′ if and only if f (u)∼ v.

(b) If the property of (a) holds, then certainly homomorphisms extend: if we
have definedf on v0, . . . ,vn−1, then choosef (vn) to be any vertex adjacent to all
of f (v0), . . . , f (vn−1). Moreover, if f is one-to-one, then so is the extension.

(c) Suppose thatG is a countable MH graph which contains claws of un-
bounded size. LetU be a finite set of vertices, with|U | = n. Find a clawK1,n

in G and map its independent vertices bijectively toU . The remaining vertex is
mapped to a neighbour ofU . SoG satisfies the condition of (a). �

Corollary 2.2

(a) There is a countable graph which is homomorphism-homogeneous but is automorphism-
rigid.

(b) There is a countable graph which is homomorphism-homogeneous but its com-
plement is homomorphism rigid.

Proof The graph
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is automorphism-rigid and for every finite subsetU there is a vertex joined to no
vertex inU . So the complement is also automorphism-rigid and containsR as a
spanning subgraph. This proves (a).

To prove (b) it suffices to prove that there exists a countable rigid graph with all
its degrees≤ 3. The complement the containsRas a spanning subgraph. �

Here are two questions which we have not been able to resolve.

Problem 1 Is there a graph which is MH but not HH?
We remark that for more general structures than graphs we prove below that

the classes MH and HH different.

Problem 2 Is there a countable graph which is HH but not a disjoint union of
complete graphs and does not containRas a spanning subgraph?

A positive answer to this problem would yield a graph which contains a finite
set of vertices with no common neighbours, and there is a bound on the size of its
claws. One famous class of graphs with bounded claw size consists ofline graphs
L(G) of graphs; these contain no 3-clawK1,3. We show that at least in this class
we obtain no new examples.

Proposition 2.3 Let G be a finite or countable graph with the propery that L(G)
is MH. Then G is a disjoint union of stars of the same size (and hence L(G) is a
disjoint union of complete graphs of the same size).

Proof By Propositions 1.1 and 1.2, we can assume thatG is infinite and con-
nected with bounded diameter. SoG contains a vertexv of infinite degree.

First we show thatG is triangle-free. Suppose that{a,b,c} is a triangle in
G, and letp,q, r,s be neighbours ofv. The mapvp 7→ ab, vq 7→ bc, vr 7→ ca of
L(G) extends to a homomorphism ofL(G), under whichvsmust map to an edge
meeting all three edges of the triangle, which is impossible.

Now we show that any neighbour ofv has degree 1. For suppose thatp is a
neighbour ofv which is also adjacent to a vertexx (necessarily not adjacent to
v), and letq andr be two further neighbours ofv. The mapvq 7→ vq, vr 7→ vp,
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px 7→ px extends to a homomorphism, which must mapvp to an edge containing
v and meetingpx; this edge cannot bevp, and if it isvx then the graph contains a
triangle. So no such vertex can exist.

Thus, the connected component containingv is an infinite star, and we are
done. �

More generally, letK (k, l) be the class of finite graphs defined as follows,
wherek andl are integers with 1< l < k: the vertex set is an arbitrary setM of
k-sets; two vertices are adjacent if and only if they intersect in at leastl points.
We call this the( ≥ l)-intersection graphof M . (So line graphs form the class
K (2,1). More generally, in the casel = 1, we refer to such a graph as theinter-
section graphof the collection ofk-sets.)

Now if the k-sets(X,Y1, . . . ,Yr) form a claw in the( ≥ l)-intersection graph,
then the intersectionsX∩Yi for 1≤ i ≤ r all have size at leastl and are all distinct;
so certainly there is no 2k-claw in such a graph. We would like to prove that no
countable graph of this type can be homogeneous unless it is a disjoint union of
complete graphs. Here is a first step.

Proposition 2.4 For k≥ 3, let
(X

k

)
denote the set of all k-subsets of a countable

set. Then the(≥ l)-intersection graph of
(X

k

)
is not MH.

Proof There always exists a(≥ l)-intersecting family ofk-subsets with the prop-
erty that no furtherk-set intersects every set in the family. For example, the set(Y

k

)
of all k-subsets of a(2k− l)-setY obviously has this property, since a set con-

taining fewer thank points ofY has intersection smaller thanl with some set in(Y
k

)
.
Now there is also an infinite star (a set ofk-sets containingl common points).

Now the map taking
(2k−l

k

)
sets of the star bijectively to

(Y
k

)
cannot be extended

to a further set of the star. �

A final observation about MM graphs:

Proposition 2.5 Any infinite non-null MM graph contains an infinite complete
subgraph.

Proof Let G be such a graph.
Suppose first thatG is disconnected, and so a union of complete graphs. If

the components are finite (of sizen> 1, say), take two pointsa,b in different
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components and map them to two points in the same component; it is clear that no
monomorphism can extend this map. So the components are infinite, as required.

Suppose thatG does not containR, so that it fails to contain the starK1,n

for somen. SinceG has diameter 2, some vertex has infinite degree, and its
neighbourhood has no null graph of sizen. By Ramsey’s Theorem it contains an
infinite complete graph.

Finally, if G containsR, the result is clear. �

3 Posets

A homomorphism of posets is a mapf such that, ifx< y, then f (x)< f (y). Now
the definitions of the classes HH, MH and MM of posets are exactly as for graphs.
Here is the start of an attempt to classify the MH posets.

First, the analogue of the fact that graphs containingR as spanning subgraph
have the MM and HH properties also hold here. LetU denote the generic (uni-
versal and homogeneous) countable poset. Anextensionof U is a posetP on the
same set such that, ifx≤U y, thenx≤P y.

Proposition 3.1 (a) A countable poset P is an extension of U if and only if it has
the following property(†): for any two finite sets A and B with A< B, there
is a point z such that A< z< B.

(b) Any extension of U has the HH and MM properties.

Proof (a) The argument is similar to that for graphs. Recall thatU is charac-
terised by the property that, for any finite disjoint setsA,B,C with A< B and, for
all a∈ A, b∈ B, c∈C, we havec 6< a andb 6< c, there is a pointzwith A< z< B
andz andc incomparable for allc∈C.

Now construct a bijection fromU to P which preserves comparability as fol-
lows. EnumerateP andU . Suppose thatf has been defined onu1, . . . ,un ∈U .
If n is even, choose the first unused pointx of U ; let A andB be the subsets of
{u1, . . . ,un} consisting of points less than and greater thanx respectively. Then
A< B, so f (A)< f (B); by (†), there is a pointz such thatA< z< B, and we can
mapx to z. If n is odd, choose the first unused pointy of P, and choose a point
z∈ P incomparable with all ofu1, . . . ,un; then mapz to y.

(b) LetP be an extension ofU , and f a homomorphism between finite subsets
of P. Now we can extendf to all of P as follows. Suppose thatf has been defined
on p1, . . . , pn. Let A and B be the sets of elements of{p1, . . . , pn} which are
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respectively less than and greater thanpn+1. As before, choosezwith f (A)< z<
f (B), and mappn+1 to z. The extension is one-to-one everywhere except possibly
on the points wheref was initially defined. �

Now we gather a few facts about MH posets. Clearly any antichain is HH and
MM.

Proposition 3.2 Let P be a countable poset which is MH but not an antichain.

(a) Any maximal chain in P is dense and without endpoints.

(b) If P is disconnected then it is a disjoint union of incomparable chains each
isomorphic to the rationals.

(c) If there is a2-element antichain in P which has an upper bound, then any
finite antichain has an upper bound.

Proof (a) By assumption, there exista andb with a< b. Extending the map
a 7→ x for any x, we see that there is an element abovex. (Dually there is an
element belowx.) In particular, there is a 3-element chaina< b< c. Now, if
x< y, extending the mapa 7→ x, c 7→ y, we see that the image ofb is an elementz
with x< z< y.

(b) If P has a component which is not a chain, then it contains a 2-element
antichain with either an upper or a lower bound. By the MH property, every 2-
element antichain has a bound; so there is only one connected component.

(c) As in (b), if some 2-element antichain has an upper bound, then so does
every 2-element antichain. Now, inductively, leta1, . . . ,an be an antichain. Let
b1 be an upper bound ofai andai+1 for i = 1, . . . ,n−1. Now the set of maximal
elements amongb1, . . . ,bn−1 is an antichain of size smaller thann; by induction it
has an upper boundc, which is also an upper bound fora1, . . . ,an. �

It follows that all homogeneous posets have the MM property. A bit surpris-
ingly there is another example (which is also not an extension of the generic poset
U , but is more analogous to a claw-free graph). Recall that atree orderis a poset
in which the elements below any given elementx form a chain). Tree orders may
have large symmetry groups (see Droste [5]) while not being homogeneous (in the
usual sense). We prove that they may have the MM property. LetT be a countable
tree order satisfying the following additional properties:

(a)T is dense;
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(b) T has neither maximal nor minimal element;

(c) No finite subset ofT has a proper infimum (i.e. infima and minimal elements
of finite subsets coincide);

(d) T is infinitely branching (i.e. i.e. for everyx< y there exists an antichain
zi ; i = 1,2, . . . , with x< zi andy 6≤ zi for everyi = 1,2, . . .).

Extending Cantor’s characterization of countably dense linear orders one can
see thatT is up to an isomorphism uniquely determined by the above properties.
It can be obtained as follows: First we split the set of rational numbers in two
dense sets, sayD,D′. We form an infinite tree of copies ofD by adding infinitely
many branching copies ofD at any element ofD′ and continuing recursively in
this way.

We have the following:

Proposition 3.3 (a) T is not homogeneous (in the usual sense);

(b) T has the MM property.

Proof The reason whyT is not homogeneous in the ordinary sense can be seen
from this picture.

u u u
A
A
A
A
A
A

�
�
�

�
�
�
�
�
�u

x y z

a

It is clear that no automorphism can interchangex with z and fixy. But there is a
monoomorphism that will do this: simply map the points belowx,y,z to suitable
points belowa.

To prove (b), it suffices to prove that for anyx 6∈ A any monomorphismf :
A−→ B may be extended to a monomorphismf ′ : A′ −→ B′ whereA′ = A∪{x}.
This may be seen as an extension of the above example: Givenx 6∈A denote byAx

the set of allz∈ A such thatx≤ z. Let Bx = { f (y);y∈ Ax}. Consider the infimum
a of the setAx∪Bx (it may not belong toT). If a≥ x then we putf ′(x) = x. If
a< x then necessarilyBx \Ax is non-empty. In this situation we distinguish two
cases:
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• If there is an elementz of A satisfyinga< z< x, we choose maximal such
z, and the we letf ′(x) be the element abovef (z) close enough to be distinct
from all of A andB.

• If there is no element ofA satisfyinga< z< x we let f ′(x) be an element
bellowa which such thatf ′(x)> z for all z< a,z∈ A∪B. �

4 Homogeneity and amalgamation

The definitions of the classes HH, MH and MM work in the same way for ar-
bitrary relational structures as for graphs or posets. We are going to develop a
characterisation of MM structures in general. As usual, theageof a structure is
the class of finite structures embeddable in it; and thejoint embedding propertyor
JEP is as usual:C has the JEP if any two members ofC can be embedded in some
member ofC .

Themono-amalgamation property(for short, MAP) of a classC of finite rela-
tional structures is the following assertion:

For anyA,B1,B2 ∈ C , and any mapsfi : A→ Bi (for i = 1,2) such
that f1 is an embedding (an isomorphism to an induced substructure)
and f2 a monomorphism, there existsC∈ C and monomorphismsgi :
Bi→C for i = 1,2 such thatg1◦ f1 = g2◦ f2 andg2 is an embedding.

Note the asymmetry betweenB1 andB2!
The mono-extension propertyof a structureM with ageC is the following

property:

If B∈ C andA is an induced substructure ofB, then every monomor-
phismA→M extends to a monomorphismB→M.

Now our analogue of Fraı̈sśe’s Theorem is the following result.

Proposition 4.1 (a) A countable structure is MM if and only if it has the mono-
extension property.

(b) The age of any MM-structure has the mono-amalgamation property.

(c) If a classC of finite relational structures is isomorphism-closed, closed un-
der induced substructures, has only a countable number of isomorphism
classes, and has the JEP and the MAP, then there is a countable MM struc-
ture M whose age is equal toC .
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Proof (a) If M has the mono-extension property, then clearly any monomor-
phism from a finite substructure ofM can be extended (one point at a time) to
a monomorphism ofM.

Conversely, suppose thatM is an MM structure. LetB be a structure in the
age ofM andA⊆ B: without loss of generality,B⊆ M. Suppose thatf is any
monomorphism fromA into M. Then f extends to a monomorphismg of M,
whose restriction toB is the required monomorphismB→M.

(b) Suppose thatM is an MM structure and letA,B1,B2, f1, f2 be as in the
hypothesis of the mono-amalgamation property, withA,B1,B2 in the age ofM. As
in (a), we can assume thatB1,B2⊆M and f1 is the identity onA. Now extendf1
to a monomorphismg of M; letC = B1g, g1 the restriction of this monomorphism
to B1, andg2 the identity onB2.

(c) We build the structure in stages; even and odd numbered stages achieve
different parts of the construction. Suppose thatMi has been constructed at stagei.

If i is even, we can use the JEP to find a structureMi+1 containingMi and any
given structureA∈ C .

If i is odd, we select a pair(A,B) of structures inC with A⊆ B. Now a given
monomorphismA→ M can be extended to a monomorphismB→ M′ for some
M′ ⊇ M, by the MAP. Applying this successively for each monomorphismA→
Mi , we obtain the structureMi+1 so that every monomorphismA→Mi extends to
a monomorphismB→Mi+1.

Arranging the stages so that every structure inC occurs at some even stage
and every pair(A,B) at infinitely many odd stages, we finally build a countable
structure whose age isC and which has the mono-extension property, and hence
is MM. �

We say that a classC having the properties of part (c) of the theorem is a
mono-Fräısśe class, and that an MM structure with ageC is a mono-limitof C .
Unlike the usual form of Fräısśe’s Theorem, it is not the case that a class satisfying
the mono-amalgamation property has a unique mono-limit (up to isomorphism).
Indeed, there are many examples of graphs containingR as spanning subgraph
whose age is the class of all finite graphs.

However, any two such structuresM andM′ must bear a certain resemblance
to each other. For example, there is a monomorphism fromM to M′ and vice
versa. In fact, more is true; we can characterise this equivalence as follows.

Let M andM′ be two structures. We say thatM andM′ aremono-equivalentif

• Age(M) = Age(M′);
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• every embedding of a finite substructureAof M intoM′ extends to a monomor-
phism fromM to M′, andvice versa(with M andM′ reversed).

This turns out to be the relation which replaces isomorphism in our version of
Fräısśe’s Theorem:

Proposition 4.2 (a) Suppose that M and M′ are mono-equivalent structures. If
M is a MM structure, then M′ is an MM structure too.

(b) Conversely, if M and M′ are MM structures withAge(M) = Age(M′), then
they are mono-equivalent.

Proof (a) Suppose thatM andM′ are equivalent and thatM has the MM property.
TakeA,B ∈ Age(M′) with A⊆ B, and let f : A→ M′ be a monomorphism. By
assumption, we may assume thatB⊆M.

Let A′ be the image off . Since Age(M) = Age(M′), we can find a copyA′′

of A′ within M; in other words, there is a monomorphismφ : A→ A′′ and an
isomorphismg : A′′→ A′ such thatg◦φ = f . SinceM has the MM property, the
monomorphismφ extends to a monomorphismφ∗ : M→M. LetB′′= φ∗(B). Also,
by assumption, the isomorphismg extends to a monomorphismg∗ : M→M′. Now
the restriction ofg∗ ◦ φ∗ to B is a monomorphismB→ M′ extending the given
monomorphismf . So M′ has the mono-extension property, and hence it is an
MM structure.

(b) Suppose thatM andM′ are MM structures with the same age. LetA be a
finite substructure ofM and f : A→M′ an embedding. For anyB⊇ A, the mono-
extension property inM′ allows us to extendf to a monomorphismB→M′. So
there is a monomorphismM→ M′ extendingf . ThusM andM′ are equivalent.
�

The above proof that the MM property forM implies that ofM′ uses only half
of the definition of equivalence. Let us say thatM �M′ holds if

• Age(M)⊇ Age(M′), and

• any embedding of a finite substructure ofA into M′ extends to a monomor-
phism fromM to M′.

This relation between structures defines a partial order on the set of equivalence
classes. (The reverse ordering of ages looks strange, but consider graphs contain-
ing R as spanning subgraph: intuitively, the more extra edges we add, the smaller
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the age becomes.) Then the proof of Proposition 4.2(a) actually shows that, ifM
is an MM structure andM �M′, then alsoM′ is an MM structure.

We mention one fact about this order for graphs.

Proposition 4.3 Let R be the Rado graph. Then a countable graph G satisfies
R�G if and only if R is a spanning subgraph of G.

Proof SinceR is universal, the condition Age(R)⊇ Age(G) is trivial.
Suppose thatR is a spanning subgraph ofG, and letf : A→Gbe an embedding

of a finite subgraphA of R into G. Since there is a common neighbour off (A) in
G by Proposition 2.1, it is always possible to extendf to a monomorphism on one
extra point.

Conversely, suppose thatR�G, and letU be a finite set of vertices inG. Let
A be a subgraph ofR isomorphic to the subgraphU (by means of the isomorphism
f ), andza common neighbour ofA in R. The mapf extends to a monomorphism
from R to G (by assumption), and the image ofz is a common neighbour ofU . So
G containsRas a spanning subgraph, again by Proposition 2.1.�

On the other hand, it is not true that ifM and M′ are MM structures and
Age(M)⊇ Age(M′), thenM �M′. For example, letM be the Rado graphR, and
M′ the disjoint union of two infinite complete graphs. The map taking a non-edge
in M to a non-edge inM′ clearly cannot be extended.

5 Algebraic classes

We say that a classK of finite structures has the ME-property if the classes of
monomorphisms and embeddings coincide forK .

Proposition 5.1 Let K be a mono-Fräısśe class of finite structures with the ME-
property. Then any two mono-limits ofK are isomorphic.

Examples:

• all algebraic classes (containing only function and constant symbols)

• tournaments and directed graphs (see below).
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Commentary Clearly any monomorphism between finite algebras is an embed-
ding. For if ρ is anr-ary operation in the algebra andf a monomorphism, then
clearlyρ( f (x1), . . . , f (xr)) = f (ρ(x1, . . . ,xr)).

Now, given any loopless directed graphD, it is possible to define an algebra
on the vertex set ofD with a single binary operation· by the rules

x ·x = x,

and ifx 6= y, thenx ·y =
{

x if there is an arcx→ y,
y otherwise.

Any monomorphism of this algebra is a digraph embedding. Note that not all
digraph monomorphisms are algebra monomorphisms! If the digraph is a tourna-
ment then the two types of monomorphisms coincide: see [12].

This example shows that, even in the case of algebras of a given type, we
may have 2ℵ0 non-isomorphic MM-structures (in this case, the algebras of the
homogeneous digraphs determined by Cherlin [4]).

A more familiar example of this phenomenon occurs with abelian groups. For
any setΠ of prime numbers, the direct product of the countable abelian group of
exponentp for all p∈Π is homogeneous.

The above example of tournament algebras (sometimes calledquasitrivial al-
gebras) yield also an example of structures showing MH6= HH: Consider the
algebra corresponding to the universal homogeneous tournament. This algebra is
obviously an MM structure. However it fails to be an HH structure as every finite
tournament may be extended to a finite tournament which issimple(i.e. does not
have any non-trivial congruence), see [6, 12].

6 Representing closed monoids

There is a natural topology onXX, for a countable setX, namely the product
topology induced from the discrete topology onX. Thus the basic open sets are
of the form

{ f ∈ XX : f (xi) = yi for i = 1, . . . ,n},

wherex1, . . . ,xn,y1, . . . ,yn ∈ X and x1, . . . ,xn are distinct. It is known that, in
the induced topology on the symmetric group Sym(X), a permutation groupG is
closed if and only if it is the automorphism group of a homogeneous relational
structure onX (see [1]). A similar observation holds here:
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Proposition 6.1 (a) A submonoid S of XX is closed in the product topology on
XX if and only if S is the monoidEnd(M) of endomorphisms of a HH rela-
tional structure M on X.

(b) A submonoid S of the monoid of one-to-one maps X→ X is closed in the
product topology if and only if S is the monoid of monomorphisms of a MM
relational structure M on X.

Proof (a) For eachn, and eachx∈ Xn, we take ann-ary relationRx defined by

Rx(y)⇔ (∃s∈ S)(y = s(x)).

Let M be the relational structure with relationsRx for all n-tuplesx (and alln). We
claim thatSacts as endomorphisms ofM, thatM is HH, and End(M) = S.

For the first point, takes∈ Sandy∈ Xn such thatRx(y) holds; we must show
that Rx(s(y)) holds. Buty = s′(x) for somes′ ∈ S; then s(y) = ss′(x), so the
assertion is true.

Next, let f be a homomorphism between finite subsets ofX, say f (xi) = yi

for i = 1, . . . ,n. Let x = (x1, . . . ,xn) and y = (y1, . . . ,yn). Now S is a monoid
and so contains the identity mapping. Thus, by definition,Rx(x) holds. Sincef
is a homomorphism,Rx(y) holds. So by definition, there existss∈ S such that
s(x) = y. Now s is an endomorphism ofM extendingf . SoM is HH.

Finally, to show that End(M) = S, we know already thatS⊆End(M) and have
to prove the reverse inclusion. We must takeh ∈ End(M) and show that every
basic neighbourhood ofh contains an element ofS, so thath is a limit point ofS.
SinceS is assumed closed, we conclude thath∈ S. Now eachn-tuplex defines a
basic neighbourhood ofh, consisting of all functionsg such thatg(x) = h(x). Now
Rx(x) holds; sinceh is a homomorphism,Rx(h(x)) also holds, and by definition of
Rx this means that there existss∈ Swith h(x) = s(x), as required.

(b) The proof of this is entirely analogous, replacing homomorphisms by
monomorphisms. �

The relational structures constructed in the proof have infinitely relations of
each arity. It would be interesting to recognise the monoids which are the endo-
morphism monoids (or monomorpism monoids) of homogeneous structures with
only finitely many relations of each arity (these would be the analogue of the
closedoligomorphicpermutation groups, [1]), or even those with only finitely
many relations altogether.
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[9] J. Hubǐcka and J. Něseťril, Finite presentation of homogeneous graphs,
posets and Ramsey classes, preprint.

[10] A. H. Lachlan, Countable homogeneous tournaments,Trans. Amer. Math.
Soc 284(1984), 431-461.

[11] A. H. Lachlan and R. E. Woodrow, Countable ultrahomogeneous undirected
graphs,Trans. Amer. Math. Soc.262(1980), 51–94.
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