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Abstract

We derive the distribution of the number of links and the average weight for the shortest path

tree (SPT) rooted at an arbitrary node to m uniformly chosen nodes in the complete graph of size
N with i.i.d. exponential link weights. We rely on the fact that the full shortest path tree to all
destinations (i.e., m = N − 1) is a uniform recursive tree to derive a recursion for the generating
function of the number of links of the SPT, and solve this recursion exactly.
The explicit form of the generating function allows us to compute the expectation and variance

of the size of the subtree for all m. We also obtain exact expressions for the average weight of the
subtree.

1 Introduction

In a graph with weighted links, the shortest path between two nodes is the path for which the sum of

the link weights is minimal. The shortest path tree (SPT) rooted at an arbitrary node to m uniformly

chosen nodes is the union of the shortest paths from that node to all m different nodes in the graph.

In this article, the SPT in the complete graph with exponential link weights is analyzed. We denote

by HN (m) the number of links in the SPT rooted at an arbitrary node to m other uniformly chosen

nodes; HN (m) also equals the size (or the number of nodes) of that subtree minus 1 node. We denote

by WN(m) the weight of the SPT rooted at an arbitrary node to m other uniformly chosen nodes,

i.e. WN (m) is the sum of all the link weights of the subtree spanned by the root and the m uniform

nodes.

Our interest was triggered by the hopcount problem [25] in the Internet: “What is the distribution

of the number of hops (or traversed routers) between two arbitrary nodes in the Internet?”. As initial

model, we concentrated on the class of random graphs Gp(N) [2] with uniformly or exponentially

distributed link weights where p is the probability that there is a link between two arbitrary nodes

and this probability is independent of the existence of a link between any other node pair. We denote

this class of graphs by RGU. In [13, 25], we have rephrased the shortest path problem between two

arbitrary nodes in the complete graph (p = 1) with exponential link weights to a Markov discovery
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process which starts the path searching process at the source and which is a continuous time Markov

chain with N states. Each state n represents the n already discovered nodes (including the source

node). If at some stage in the Markov discovery process n nodes are discovered, then the next node

is reached with rate λn,n+1 = n (N − n), which is the transition rate in the continuous time Markov

chain. Since the discovering of nodes at each stage only increases n, the Markov discovery process is

a pure birth process with birth rate n (N − n). We call τn the inter-attachement time between the

inclusion of the n-th and (n+1)-th node to the SPT for n = 1, . . . ,N−1. The inter-attachement time τn
is exponentially distributed with parameter n(N −n) as follows from the theory of Markov processes.

By the memoryless property of the exponential distribution, the new node is added uniformly to an

already discovered node. Hence, the resulting SPT to all nodes, i.e. m = N − 1, is exactly a uniform
recursive tree (URT). A URT of size N is a random tree rooted at some source node and where at

each stage a new node is attached uniformly to one of the existing nodes until the total number of

nodes is equal to N .

It is known [19] that the hopcount of the shortest path between two arbitrary nodes in a complete

graph with exponential link weights is equal to the depth D1,N from the source or root to an arbitrary

node in a URT of size N . In [13], we have extended this result asymptotically for large N to Gp(N)

for p = pN < 1: the law of the hopcount of the shortest path in Gp(N) with exponentially distributed

link weights is close (as N →∞) to the law of D1,N . This law for RGU has been proved in [13] under
the condition1 that NpN/(logN)

3 → ∞. In other words, for large N , our generalization shows that
the hopcount of the shortest path in the class RGU is, to first order, independent of p = pN > (logN)3

N .

In this section, we will first review results on the shortest path and then proceed with the extension

to the SPT rooted at an arbitrary node to m uniform nodes.

1.1 The shortest path

For a URT, the hopcount HN = HN(1), which is defined as the number of links of the shortest path

from one arbitrary node to another arbitrary node, can be exactly determined (see e.g., [19] and [25]).

The generating function of the number of hops in the URT from the root to a uniform node (different

from the root) equals

ϕHN
(z) = E

£
zHN

¤
=

N

N − 1

µ
Γ(z +N)

N !Γ(z + 1)
− 1

N

¶
, (1)

from which the average hopcount

E [HN ] =
N

N − 1

NX
n=2

1

n
,

is immediate. The average weight of the longest shortest path (LSP), i.e. the largest weight along

the shortest paths between the root and any other node, in the complete graph with N nodes and

with i.i.d. exponential link weights with mean 1 was first determined by Janson [12] and in [14] for

the RGU with the condition on p = pN that NpN/(logN)
3 →∞ for N →∞ as

E [WLSP] =
2

N

N−1X
n=1

1

n
=
2

N
logN +O

¡
N−1¢ .

1Computer simulations confirm the limit law even when NpN →∞ at a slower rate and we believe that the law holds

for any p > pc ∼ logN
N where pc is the disconnectivity threshold in Gp (N) .
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By the memoryless property of the exponential distribution, the laws of the birth process and of

the URT are independent [13]. The generating function of the weight of a shortest path to a uniform

destination, defined as ϕWN (1)(t) = E
£
e−tWN (1)

¤
, follows as

ϕWN (1) (t) =
N−1X
k=1

E
£
e−tWk

¤
P [endnode is k-th attached node in URT]

=
1

N − 1

N−1X
k=1

kY
n=1

n(N − n)

t+ n(N − n)
, (2)

where Wk denotes the weight of the path to the kth attached node and Wk =
Pk

n=1 τn. As mentioned

above, the inter-attachment time τn is an exponential random variable with parameter n(N − n) and

τn is independent from τk for all k 6= n. The average length, obtained from (2), is equal to

E [WN(1)] =
1

N − 1

N−1X
n=1

1

n
, (3)

which is about half the maximum weight of the shortest path which is equal to E [WLSP] =
2
N

PN−1
n=1

1
n .

Previous to Janson’s work [12] in 1999, the average weight E [WN (1)] had been studied around 1985

by various authors (e.g. [8, 16]). Only asymptotic bounds for large N such as c1
logN
N ≤ E [WN(1)] ≤

c2
logN
N for positive real numbers c1 and c2 which appears in [16] had then been published. In the

past decade, URTs have received considerable attention [23], but the problem of finding the size of

the subtree spanned by the root and m uniform nodes was still open.

1.2 The shortest path tree (SPT)

The SPT rooted at an arbitrary node to m uniformly chosen nodes in the complete graph with

exponential link weights seems a reasonable model for the multicast structure of the Internet (see

e.g. [26],[11]). While unicast is a one-to-one communication, multicast is a one (or many)-to-many

communication mode where a single message destined for m different receivers is sent once by the

sender and copied at each branch point of the multicast tree. Hence, in multicast, a message travels

only once over links from a sender to m receivers, in contrast to unicast where that message is sent

m times to each individual receiver (as today in emails). Clearly, when dealing with large groups of

destinations, multicast consumes less network resources and is more efficient than unicast. Multicast

is expected to be used in direct marketing, movie-distribution, pay-TV, automatic update of software

releases and many other services beside the already known applications such as video conference,

multicast file transfer, tele-classing and electronic games. Due to the promising potential of multicast,

an accurate modeling of multicast tree properties is a main motivation for the analysis of the SPT in

this article.

The knowledge of HN(m) is important to the estimation of the efficiency of multicast over unicast

in the Internet. The ratio E[HN (m)]
mE[HN (1)]

is regarded as a measure for the multicast efficiency. From Internet

measurements, Chuang and Sirbu [4] observed that the multicast efficiency E[HN (m)]
mE[HN (1)]

decreases as a

power of m, and they estimated the exponent by −0.2. Philips et al. [20] have dubbed this behavior
"the Chuang-Sirbu law". In [20] and [26], the multicast efficiency E[HN (m)]

mE[HN (1)]
was studied in more detail

using random graph models. The average number of links of the SPT gN (m) = E [HN (m)] in the

3



complete graph with exponential link weights to m arbitrary nodes derived in [26] is specified below

by (8). The proof of gN (m) in [26] uses inclusion/exclusion on the number of links, and writes

gN(m) =
mX
i=1

µ
m

i

¶
(−1)i−1E

h
X
(N)
i

i
, (4)

where X(N)
i denotes the number of joint links of the shortest paths from the root to i uniform and

different locations. The inclusion/exclusion formula (4) holds for any graph, and was also used in [26]

to compute gN (m) on a regular tree. In this paper, we will use a similar inclusion/exclusion relation

to compute the expected weight of the tree E[WN(m)] spanned by m uniform and different locations.

Moreover, we will give the exact law for HN(m) (Theorem 2.1) which completes our previous work

[26] where only E [HN(m)] was derived.

Although the class RGU seems adequate to model multicast, that graph is not a good model for the

topology of the Internet. From measurements, Faloutsos et al. [6] observed that the degree distribution

of Internet nodes obeys a power-law. On the other hand as shown in [15], the degree distribution of a

uniform node in the complete graph with exponential weights, counting only those links that are used

along a shortest path, has generating function equal to ϕHN
(z), and is thus close to a Poisson random

variable with expectation equal to logN . Since the URT is asymptotically also the SPT in random

graphs Gp(N) with i.i.d. exponential or uniform link weights and with the link density p = pN such

that NpN
(logN)3

→∞ as shown in [13], we believe that the presented results based on the complete graph

are also applicable to the class RGU. The interest of this generalization lies in the fact that Ad-Hoc

wireless networks [10] and certain peer-to-peer networks are well modelled by random graphs.

Recently, Bollobás et al. [3] have computed the asymptotic weight of the Steiner tree spanning

m+ 1 nodes in the complete graph with N nodes and with i.i.d. exponential link weights with mean

1 as

WSteiner,N(m) = (1 + o(1))
m

N
log

N

m+ 1
, (5)

for large N and m = o(N). The Steiner tree is the minimal weight tree that connects m + 1 given

nodes in a graph. Steiner tree problems arise in many applications [17]. The computation of the

Steiner tree is a NP-complete problem [18]: on current PCs, the exact computation of the Steiner tree

problem is limited to small graphs of size N < 50 [27]. From a practical point of view it often suffices

that the approximation is close enough, so that it is not necessary to compute the Steiner tree itself.

There exist many heuristics (see e.g. Winter et al. [17]) for the Steiner tree and many of them employ

the SPT. As a by-product of the results in this paper, we will complement the results of Bollobás et

al. [3] and investigate the relation between the Steiner tree and the SPT.

2 Main results

In this section, we present our main results. We start by identifying the distribution of HN(m).

Theorem 2.1 For all N ≥ 1 and 1 ≤ m ≤ N − 1, the probability generating function ϕHN (m)(z) =

E
£
zHN (m

¤
equals

ϕHN (m)(z) =
m!(N − 1−m)!

((N − 1)!)2
mX
k=0

µ
m

k

¶
(−1)m−kΓ(N + kz)

Γ(1 + kz)
. (6)
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Consequently,

P [HN (m) = j] =
m!(−1)N−(j+1)S(j+1)N S(m)j

(N − 1)!
¡
N−1
m

¢ , (7)

where S(j+1)N and S(m)j denote the Stirling numbers of first and second kind [1, 24.1.4 and 24.1.4].

Based on the properties of the URT, we derive a recursion relation for the generating function

ϕHN (m)(z) of the number of links HN(m) in Proposition 3.1 below. We solve this recursion exactly to

obtain (6). Figure 1 plots the probability density function of H50(m) for different values of m.
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Figure 1: The pdf of H50(m) for m = 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 47.

Even though (7) completely determines the law of HN (m), the Stirling numbers complicate the

computation of properties of the law of HN (m). By differentiating ϕHN (m)(z), we have computed the

expectation and variance of HN (m) as follows:

Corollary 2.2 For all N ≥ 1 and 1 ≤ m ≤ N − 1,

gN(m) = E [HN(m)] =
mN

N −m

NX
k=m+1

1

k
, (8)

and

Var [HN (m)] =
N − 1 +m

N + 1−m
gN(m)−

g2N(m)

N + 1−m
− m2N2

(N −m)(N + 1−m)

NX
k=m+1

1

k2
. (9)

For N = 1000, Figure 2 illustrates the typical behavior for large N of the expectation gN (m) and the

standard deviation σN(m) =
p
Var [HN (m)] of HN(m) for all values of m. Note that HN(N − 1) =

N − 1, so that Var [HN (N − 1)] = 0. Since gN(m) can be rewritten in terms of the digamma function
ψ(x) as gN (m) = mN

³
ψ(N)−ψ(m)

N−m
´
− 1, using [1, 6.1.38] we find the asymptotic law for N →∞ and

any m,

gN (m) =
mN

N −m
log

N

m
− 1
2
+O

µ
N +m

mN

¶
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From (9), we observe that for all m,

Var [HN (m)] ≤
N − 1 +m

N + 1−m
gN (m) ≤

2N

N −m
gN (m) =

2g2N(m)

m
PN

k=m+1
1
k

= o(g2N (m)),

which implies that |HN (m)−gN (m)|
gN (m)

= o (1) with probability converging to 1 for all m.
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Figure 2: The average number of hops gN(m) (left axis) and the corresponding standard deviation

σN (m) (right axis) as a function of m for N = 1000.

Our final result on HN (m) is more precise. We denote by

XN (m) =
HN (m)− gN(m)

σN(m)
, (10)

the standardized size HN (m) of the subtree. Figure 1 suggests that HN(m) is asymptotically normal.

Theorem 2.3 For all m = o(
√
N), XN(m) converges in distribution to a standard normal random

variable when N →∞, i.e., XN (m)
d−→ N (0, 1).

We believe that the convergence towards a normal random variable is true for more values of m, as

formulated in the following conjecture:

Conjecture 2.4 For all m such that N −m → ∞, XN (m) converges to a standard normal random

variable when N →∞.

Corollary 2.2 shows that σN(m)→∞ precisely when N −m→∞. Moreover, by the Chebychev
inequality, the variable XN (m) is tight, so that it remains to identify the limit to be Gaussian.

We now turn to the average weight uN (m) = E[WN(m)]. Our main result is the following theorem:

Theorem 2.5 For all 1 ≤ m ≤ N − 1, the average weight uN(m) = E[WN (m)] equals

uN (m) =
mX
j=1

1

N − j

N−1X
k=j

1

k
, (11)

where uN (1) is computed in (3).
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Corollary 2.6 For all N ≥ 2,

uN (N − 1) =
N−1X
n=1

1

n2
. (12)

Since uN (m) ≤ uN(N − 1) < π2

6 = ζ(2) where ζ(z) is the Riemann Zeta function, any SPT in

the considered graph has an average weight smaller than ζ(2) = 1.645. Frieze [7] has shown that the

average weight of the minimum spanning tree in the same considered graph is ζ(3) < ζ(2). Since

E[WSteiner,N(N − 1)] is increasing in N , there holds for any N that E[WSteiner,N(N − 1)] ≤ ζ(3) and

the ratio ζ(2)
ζ(3) = 1.368 indicates that the use of the SPT (computationally easy) never performs on

average more than 37% worse than the optimal Steiner tree (computationally unfeasible). In a broader

context and referring to the recent concept of "the Prize of Anarchy", which is broadly explained in

[22], the SPT used in a communication network is related to the Nash equilibrium, while the Steiner

tree gives the (hardly achievable) global optimum.

Corollary 2.7 For all m = O (Na) with a < 1,

uN (m) =
m

N
log

N

m+ 1
+O

³
N2(a−1) logN

´
(13)

The proof of (13) (which we omit) follows from (11) by using the asymptotic expansion of the

digamma-function [1, 6.3.38].

We now use Theorem 2.5 together with the main result (5) in [3] to compare the weight of the

SPT to that of the Steiner tree:

Corollary 2.8 For all m = o(N),

E[WSteiner,N (m)] = (1 + o(1))
m

N
log

N

m+ 1
. (14)

Consequently, for all m = o(N) and all � > 0,

P (|WSteiner,N(m)−WN (m)| > �uN (m))→ 0, and P (|WN(m)− uN(m)| > �uN(m))→ 0.

(15)

Corollary 2.8 shows that the complete graph with exponential weights is an example for which the

Steiner tree and the SPT perform asymptotically equally well, at least when m = o(N). Note that

when m = N − 1, this is not the case as explained above.

3 The recursion for ϕHN (m)(z)

In this section we derive a recursion for the probability generating function ϕHN (m)(z) of the number

of links HN (m) in the SPT to m uniformly chosen nodes. We also discuss a slight generalization of

this recursion and derive the recursion for gN(m) = E[HN (m)] = ϕ0HN (m)
(1).

Proposition 3.1 For N > 1 and all 1 ≤ m ≤ N − 1,

ϕHN (m)(z) =
(N −m− 1)(N − 1 +mz)

(N − 1)2 ϕHN−1(m)(z) +
m2z

(N − 1)2
ϕHN−1(m−1)(z). (16)
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2

Case A Case B Case C and D

Figure 3: The several possible cases in which the N th node can be attached uniformly to the URT of

size N − 1. The root is dark shaded while the m member nodes are lightly shaded.

Proof. To prove (16), we use the recursive growth of URTs: a URT of size N is a URT of size N − 1,
where we add an additional link to a uniformly chosen node.

Let HN (m) denote the number of links in the subtree spanned by the root and the m uniform

nodes. In order to obtain a recursion for HN(m) we distinguish between the m uniformly chosen nodes

all being in the URT of size N − 1 or not. The probability that they all belong to the tree of size
N − 1 is equal to 1− m

N−1 (case A in Figure 3). If they all belong to the URT of size N − 1, then we
have that HN(m) = HN−1(m). Thus, we obtain

ϕHN (m)(z) =

µ
1− m

N − 1

¶
ϕHN−1(m)(z) +

m

N − 1E
³
z1+LN−1(m)

´
, (17)

where LN−1(m) is the number of links in the subtree of the URT of sizeN−1 spanned bym−1 uniform
nodes together with the ancestor of the added N th node. We complete the proof by investigating the

generating function of LN−1(m). Again, there are two cases. In the first case (B in Figure 3), the
ancestor of the added N th node is one of the m − 1 previous nodes (which can only happen if it is
unequal to the root), else we get one of the cases C and D in Figure 3. The probability of the first

event equals m−1
N−1 , the probability of the latter equals 1 −

m−1
N−1 . If the ancestor of the added N th

node is one of the m− 1 previous nodes, then the number of links equals HN−1(m− 1), otherwise the
generating function of the number of additional links equals

N −m− 1
N −m

ϕHN−1(m)(z) +
1

N − 1ϕHN−1(m−1)(z).

The first contribution comes from the case where the ancestor of the added N th node is not the root,

and the second where it is equal to the root. Therefore,

E
h
zLN−1(m)

i
=

m− 1
N − 1ϕHN−1(m)(z) +

N −m

N − 1

µ
N −m− 1
N −m

ϕHN−1(m)(z) +
1

N −m
ϕHN−1(m−1)(z)

¶
=

m

N − 1ϕHN−1(m−1)(z) +
N −m− 1
N − 1 ϕHN−1(m)(z). (18)

Substitution of (18) into (17) leads to (16). ¤
Since gN (m) = E[HN (m)] = ϕ0HN (m)

(1), we obtain from (16) the recursion for gN (m),

gN (m) =

µ
1− m2

(N − 1)2

¶
gN−1(m) +

m2

(N − 1)2 gN−1(m− 1) +
m

N − 1 . (19)
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Denote by T the set of links of the SPT from the root to m uniformly chosen nodes. If each link e

in the graph is, independently of the i.i.d. exponential link weights, specified by an additional (i.i.d.)

link measure r = r (e), then the generating function ϕRN (m)(z) of RN (m) =
P

e∈T r (e) is

ϕRN (m)(z) = E [zRN (m) ] = E [z e∈T r(e) ] = E
h
(ϕr(z))

HN (m)
i
= ϕHN (m)(ϕr(z)), (20)

where ϕr(z) = E[zr] is the generating function of the i.i.d. common link value r. Examples of additional
link measures are the monetary usage cost of a link, the total number of lost packets, the physical

length of the link, etc. The role and impact of assigning additional properties r(e) (independent of

the link weights) to link e in a network are currently important issues of a quality of service (QoS)

architecture in the Internet [28].

4 Solution of the recursion for ϕHN (m)(z)

In this section, the recursion for ϕHN (m)(z) is solved and used to prove the other properties of HN (m).

Proof of Theorem 2.1: By iterating the recursion (16) for small values of m, the computations in
Appendix A suggest the solution (6) for (16). It is indeed verified that (6) satisfies (16). This proves

(6) of Theorem 2.1.

Using [1, 24.1.3.B], the Taylor expansion around z = 0 equals

ϕHN (m)(z) =
m!N(N − 1−m)!

(N − 1)!

mX
k=0

µ
m

k

¶
(−1)m−k

µ
Γ(N + kz)

N !Γ(1 + kz)
− 1

N

¶

=
m!N(N − 1−m)!

(N − 1)!

mX
k=0

µ
m

k

¶
(−1)m−k

N−1X
j=1

(−1)N−(j+1)S(j+1)N

N !
kjzj

=
m!N(N − 1−m)!

(N − 1)!

N−1X
j=1

(−1)N−(j+1)S(j+1)N

N !

Ã
mX
k=0

µ
m

k

¶
(−1)m−kkj

!
zj .

where S(k)N denotes the Stirling Numbers of the first kind [1, 24.1.3]. Using the definition of Stirling

Numbers of the second kind [1, 24.1.4.C],

m!S(m)j =
mX
k=0

µ
m

k

¶
(−1)m−kkj ,

for which S(m)j = 0 if j < m, gives

ϕHN (m)(z) =
(m!)2 (N − 1−m)!

((N − 1)!)2
N−1X
j=1

(−1)N−(j+1)S(j+1)N S(m)j zj .

This proves (7), and completes the proof of Theorem 2.1. ¤
Proof of Corollary 2.2: The expectation and variance of HN(m) will not be obtained using the

explicit probabilities (7), but by rewriting (6) as

ϕHN (m)(z) =
Γ(m+ 1)Γ(N −m)

Γ2(N)

mX
k=0

µ
m

k

¶
(−1)m−k∂N−1t

h
tN−1+kz

i
t=1

=
Γ(m+ 1)Γ(N −m)

Γ2(N)
(−1)m∂N−1t

£
tN−1(1− tz)m

¤
t=1

. (21)
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Indeed, we can write

E[HN(m)] =
Γ(m+ 1)Γ(N −m)

Γ2(N)
(−1)m∂z∂N−1t

£
tN−1(1− tz)m

¤
t=z=1

=
Γ(m+ 1)Γ(N −m)

Γ2(N)
m(−1)m−1∂N−1t

£
tN log t(1− t)m−1

¤
t=1

,

E[HN (m) (HN(m)− 1)] =
Γ(m+ 1)Γ(N −m)

Γ2(N)
(−1)m∂2z∂N−1t

£
tN−1(1− tz)m

¤
t=z=1

=
Γ(m+ 1)Γ(N −m)

Γ2(N)
m(−1)m−1

×∂N−1t

£
tN log2 t(1− t)m−2 [−(m− 1)t+ (1− t)]

¤
t=1

. (22)

We will start with the former. Using ∂it(1− t)j |t=1 = j!(−1)jδi,j and Leibniz rule, we find

E[HN (m)] =
Γ(m+ 1)Γ(N −m)

Γ2(N)
m!

µ
N − 1
m− 1

¶
∂N−mt

£
tN log t

¤
t=1

.

Since

∂kt [t
n log t]t=1 =

n!

(n− k)!

nX
j=n−k+1

1

j
,

we obtain expression (8) for E[HN(m)].

We now extend the above computation to E[HN(m)(HN (m)− 1)]. Using

∂kt [t
n log2 t]t=1 = 2

n!

(n− k)!

nX
i=n−k+1

nX
j=i+1

1

ij
=

n!

(n− k)!

"³ nX
i=n−k+1

1

i

´2
−

nX
i=n−k+1

1

i2

#
,

we obtain,

m(m− 1)(−1)m−2∂N−1t

£
tN+1 log2 t(1− t)m−2

¤
t=1

=

µ
N − 1
m− 2

¶
m(m− 1)(m− 2)!∂N−m+1t

£
tN+1 log2 t

¤
t=1

= (N + 1)!

µ
N − 1
m− 2

¶⎡⎣Ã N+1X
k=m+1

1

k

!2
−

N+1X
k=m+1

1

k2

⎤⎦ .
Similarly,

m(−1)m−1∂N−1t

£
tN log2 t(1− t)m−1

¤
t=1

=

µ
N − 1
m− 1

¶
m(m− 1)!∂N−mt

£
tN log2 t

¤
t=1

= N !

µ
N − 1
m− 1

¶⎡⎣Ã NX
k=m+1

1

k

!2
−

NX
k=m+1

1

k2

⎤⎦ .
Substitution into (22) leads to

E[HN (m)(HN (m)−1)] =
m2N2

(N + 1−m)(N −m)

⎡⎣Ã NX
k=m+1

1

k

!2
−

NX
k=m+1

1

k2

⎤⎦+ 2m(m− 1)N
(N + 1−m)(N −m)

NX
k=m+1

1

k
.

From gN(m) = E[HN (m)] and Var (HN (m)) = E[HN (m)(HN (m) − 1)] + gN (m) − g2N(m), we obtain

(9). This completes the proof of Corollary 2.2. ¤
Remark: The expectation and variance of the quantity RN(m) =

PHN (m)
i=1 ri, can be found by

conditioning on HN (m). Denote by µ = E[r] and by σ2 = Var(r), then

E[RN (m)] = µE[HN (m)], and Var(RN(m)) = σ2E[HN(m)] + µ2Var(HN(m)). (23)
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We close this section with the proof of Theorem 2.3:

Proof of Theorem 2.3: Observe from (9) that σN (m)√
gN (m)

→ 1 as long as m/N → 0. Therefore, it is

sufficient to prove that
HN(m)− gN (m)p

gN(m)

d−→ N (0, 1).

Denote by ψN the moment generating function of this quantity, then

ψN(t) = e−t
√
gN (m) · E

"
exp

(
tHN (m)p
gN (m)

)#
= e−t

√
gN (m)ϕHN (m)

µ
e

t√
gN (m)

¶
. (24)

Since exp(t2/2) is the moment generating function of a standard normal random variable, it suffices

to show that limN→∞ ψN(t) = exp(t
2/2). For large N , using [1, 6.1.47] we can write

Γ(N + kz)

Γ(N)
= Nkz

µ
1 +

fk(z)

N

¶
, 1 ≤ k ≤ m,

where fk(z) = kz(kz − 1)/2 + o(1) and as long as k3/N2 ≤ m3/N2 → 0. From this, we obtain¯̄̄̄
¯ϕHN (m)(z)−

m!(N − 1−m)!

(N − 1)!

mX
k=0

µ
m

k

¶
(−1)m−k Nkz

Γ(1 + kz)

¯̄̄̄
¯ ≤ m!(N − 1−m)!

(N − 1)!

mX
k=0

µ
m

k

¶
fk(z)N

kz−1

Γ(1 + kz)
.

(25)

Denote the upper bound on the right-hand side of (25) by eN(m), then for N →∞,

ϕHN (m) (z) =
m!(N − 1−m)!

(N − 1)!

mX
k=0

µ
m

k

¶
(−1)m−k
Γ (1 + kz)

Nkz +O(eN (m)).

We use Hankel’s contour integral [1, 6.1.4] to write

1

Γ (1 + kz)
=

i

2π

Z
C
(−u)−(1+kz)e−udu, (26)

and obtain

ϕHN (m) (z) =
m!(N − 1−m)!

(N − 1)!

mX
k=0

µ
m

k

¶³
Nkz

´
(−1)m−k i

2π

Z
C
(−u)−1−kze−udu+O(eN(m))

=
m!(N − 1−m)!

(N − 1)! Nmz i

2π

Z
C
(−u)−mz−1

µ
1−

µ
−u
N

¶z¶m

e−udu+O(eN(m)). (27)

We substitute (27) into (24) and compute the appearing factors separately. First, rewrite

e−t
√
gN (m) · (N − 1−m)!

(N − 1)! Nme

t√
gN (m)

=
(N − 1−m)!

(N − 1)! ·Nm · e−t
√
gN (m)Nm(e

t√
gN (m)−1).

Further, because gN (m)→∞ as N →∞, we have

e−t
√
gN (m)N

m e

t√
gN (m)−1

= exp

µ
−t
p
gN (m) +m logN

µ
e

t√
gN (m) − 1

¶¶
= exp

Ã
−t
p
gN (m) + gN(m)

Ã
tp

gN(m)
+

t2

2gN (m)
+O

Ã
t3

g
3/2
N (m)

!!!

= e
t2

2

Ã
1 +O

Ã
1p

gN(m)

!!
.

11



For m = o
³√

N
´
,

(N − 1)!
(N −m− 1)!Nm

=

µ
1− 1

N

¶µ
1− 2

N

¶
. . .
³
1− m

N

´
→ 1,

and since e
t√

gN (m) → 1,

m!
i

2π

Z
C
(−u)−me

t√
gN (m)−1

⎛⎜⎝1−µ−u
N

¶e

t√
gN (m)

⎞⎟⎠
m

e−udu→ 1.

Hence, for m = o
³√

N
´
, the first term of ψN(t)→ et

2/2. We proceed by showing that for m2/N → 0

the error term e
t√

gN (m) eN (m) will vanish. Indeed, again using Newton’s binomium and (26)

eN(m) ≤
m!(N − 1−m)!

(N − 1)! max
1≤k≤m

fk(z)
mX
k=0

µ
m

k

¶
Nkz−1

Γ(1 + kz)

=
m!(N − 1−m)!

(N − 1)! Nmz−1 max
1≤k≤m

fk(z)
i

2π

Z
C
(−u)−mz−1

µ
1 +

µ
−u
N

¶z¶m

e−udu.

As in the treatment of the main term for m = o
³√

N
´
, the expression

e
t√

gN (m) eN (m)

N−1max1≤k≤m fk(z)
→ exp(t2/2),

as N → ∞. Hence, e
t√

gN (m) eN(m) → 0 whenever N−1max1≤k≤m fk(z) → 0, which is again satisfied

when m = o
³√

N
´
. This proves Theorem 2.3. ¤

5 The expected weight uN(m) = E [WN(m)] of the SPT

In this section we prove Theorem 2.5. The proof consists of several steps which are sketched first.

As explained in Section 1.1, the SPT rooted at an arbitrary node to m uniformly chosen nodes in

the complete graph, with exponential weights is a URT. As shown in [25], the discovery process of the

nodes in this SPT is pure birth process with birth rate λn,n+1 = n(N − n).

Introduce for 1 ≤ i ≤ N − 1, the random variables Y (N)i as the sum of the link weights in the SPT

that i uniformly chosen nodes have in common. Obviously, E[Y (N)1 ] = uN (1) = E[WN(1)] which is

given by (3). By a similar argument as in [26, Theorem 3], the average weight uN (m) to m > 1 users

can be obtained by inclusion/exclusion as

uN(m) =
mX
i=1

µ
m

i

¶
(−1)i+1E[Y (N)i ]. (28)

We define the father of multiple nodes as the (unique) oldest common ancestor of these nodes. We

prove below that

E[Y (N)i ] =
NX
j=1

j−1X
l=1

1

l(N − l)
qN(j, i) (29)

12



where

qN (j, i) = P(jth node in URT is father of i uniform nodes)

=

N−j+1X
n=1

(j − 1)(N − j)!(N − n− 1)!
(N − 1)!(N − j − n+ 1)!

n!(N − i− 1)!
(n− i)!(N − 1)!

∙
1− 1

i

(n− i)

n

¸
. (30)

Putting together (28), (29) and (30) yields an explicit expression for uN (m), from which (11) will

follow after simplification.

Proof of Theorem 2.5: We start with a proof of (29). We have already seen that the additional
time (weight) between the attachment of node l and node l+1 equals 1

l(N−l) . This explains the factorPj−1
l=1

1
l(N−l) and, hence, the sum of the link weights in the SPT that i uniform nodes have common

nodes if the jth node is the father. We proceed with the proof of (30). By the law of total probability,

we can write

qN (j, i) =

N−j+1X
n=1

P(jth node in URT is father of i uniform nodes, |T (N)j | = n),

where |T (N)j | is the size of the subtree rooted at j. The probability

P(jth node in URT is father of i uniform nodes, |T (N)j | = n)

equals

P(|T (N)j | = n) · P(i uniform nodes are in T (N)j

¯̄
|T (N)j | = n) · [1− pn(i)],

where pn(i) is the probability that the paths from the root to i uniform nodes in a URT of size n share

a common link. Each of the above three factors can be computed. We start with the second, which

is the simplest one. Note that we may assume for i > 1 that j > 1, since the contribution from j = 1

in
Pj−1

l=1
1

l(N−l) equals 0. Since we choose the uniform nodes unequal to the root of the URT, we have

that

P(i uniform nodes are in T (N)j ||T (N)j | = n) =

¡
n
i

¢¡
N−1
i

¢ = n!(N − i− 1)!
(n− i)!(N − 1)! .

We proceed with the first factor. We need to attach n−1 nodes to the tree rooted at j, and N−j−n+1
to the other j − 1 nodes which leads to

P(|T (N)j | = n) =

µ
N − j

n− 1

¶
(n− 1)!(j − 1)j · · · (N − n− 1)

j(j + 1) · · · (N − 1) =
(j − 1)(N − j)!(N − n− 1)!
(N − 1)!(N − j − n+ 1)!

.

We complete the determination of qN (j, i) by computing pN(i). In a URT of size N we call the set

of nodes at distance k from the root as the level k set and denote its size by U (k)N . The following basic

property of a URT, proved in [15, Lemma 2.1], will be used: Let {U (k)N }k,N≥0 and {V (k)N }k,N≥0 be two
independent copies of the sizes of the level sets of two sequences of independent recursive trees. Then

the vector {Z(k)N }k≥0 of the size of the level sets in the URT of size N obeys

{Z(k)N }k≥0
d
= {U (k−1)N1

+ V
(k)
N−N1}k≥0, (31)

where on the right-hand side N1 is uniformly distributed over the set {1, 2, . . . , N − 1}, independently
of {U (k)N } and {V (k)N }. The above property can intuitively be understood as follows. The recursive
tree of size N can be divided into two subtrees, namely, the tree of nodes which are in hops closest to
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node 1 (the root), and the ones that are closest to node 2 (the first one that is attached to the root).

The basic property states that both the tree connected to node 2 and the tree of nodes connected to

the root form a URT. The first tree has size N1 and the second tree has size N − 1−N1, where N1 is

uniform over {1, 2, . . . , N − 1}. Given N1, the two trees are independent. Thus,

pN(i) =
1

N − 1

N−1X
k=1

P(i uniform nodes in tree rooted at 2 of size k)

+
1

N − 1

N−1X
k=1

P(i uniform nodes are outside tree rooted at 1 of size N − k, share link)

=
1

N − 1

N−1X
k=i

k(k − 1) · · · (k − i+ 1)

N(N − 1) · · · (N − i+ 1)
+

1

N − 1

N−1X
k=1

pk(i)
k(k − 1) · · · (k − i+ 1)

N(N − 1) · · · (N − i+ 1)
.

Defining αN (i) = N(N − 1) · · · (N − i+ 1)pN (i), we have that

αN (i) =
1

N − 1

N−1X
k=i

k!

(k − i)!
+

1

N − 1

N−1X
k=1

αk(i).

Subtraction yields

(N − 1)αN (i)− (N − 2)αN−1(i) =
(N − 1)!

(N − 1− i)!
+ αN−1(i),

so that

αN (i) =
(N − 2)!

(N − 1− i)!
+ αN−1(i).

Iteration yields

αN (i) =
lX

j=1

(N − 1− j)!

(N − i− j)!
+ αN−l(i).

Together with the fact that αi(i) = 0, we end up with

αN (i) =
N−iX
j=1

(N − 1− j)!

(N − i− j)!
=

N−2X
l=i−1

l!

(l + 1− i)!
=
1

i

(N − 1)!
(N − i− 1)! .

Thus,

pN(i) =
(N − i)!

N !
αN (i) =

N − i

iN
.

Combining all terms, proves (30).

We now proceed to prove (11). Substitution into (28) now yields

uN (m) = muN (1) +
mX
i=2

µ
m

i

¶
(−1)i+1

NX
j=1

j−1X
l=1

1

l(N − l)

×
N−j+1X
n=1

(j − 1)(N − j)!(N − n− 1)!
[(N − 1)!]2(N − j − n+ 1)!

n!(N − i− 1)!
(n− i)!

∙
1− 1

i

(n− i)

n

¸
. (32)

The above four-fold sum can be reordered as

uN (m) = muN(1) +
mX
i=2

µ
m

i

¶
(−1)i+1

N−1X
n=1

(N − n− 1)!n!(N − i− 1)!
[(N − 1)!]2(n− i)!

∙
1− 1

i

(n− i)

n

¸

×
N−nX
l=1

1

l(N − l)

N−n+1X
j=l+1

(j − 1)(N − j)!

(N − j − n+ 1)!
. (33)
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The last sum equals

N−n+1X
j=l+1

(j − 1)(N − j)!

(N − j − n+ 1)!
=

1

n(n+ 1)

(N − l)!

(N − l − n)!
[(N − n) + nl].

Using [26, Lemma 10]

NX
n=1

(K − n)!

(N − n)!

1

n
=

K!

N !
[ψ(K + 1)− ψ(K −N + 1)] , (34)

we can next compute the l -sum and obtain

N−nX
l=1

1

l(N − l)

N−n+1X
j=l+1

(j − 1)(N − j)!

(N − j − n+ 1)!
=

1

n(n+ 1)

(N − 1)!
(N − n− 1)! [ψ(N)− ψ(n) + 1] .

Since
N−1X
n=1

ψ(N)− ψ(n) + 1

n(n+ 1)
=

N−1X
n=1

1

n
, (35)

the termmuN (1) = mE [WN (1)] given in (3) equals the contribution due to i = 1 in (33). Substitution

and changing the order of summation leads to

uN (m) =
N−1X
n=1

(n− 1)!
(N − 1)!

ψ(N)− ψ(n) + 1

n+ 1
vN (m) (36)

where

vN (m) =
mX
i=1

µ
m

i

¶
(−1)i+1 (N − i− 1)!

(n− i)!

∙
1− n− i

in

¸
,

With
¡m
i

¢
−
¡m−1

i

¢
=
¡m
i

¢
i
m and i ·

£
1− n−i

in

¤
= n− (n+1)(n−i)

n , and defining

∆vN(m) = vN(m)− vN(m− 1),

we find that

m∆vN (m) =
mX
i=1

m

½µ
m

i

¶
−
µ
m− 1

i

¶¾
(−1)i+1 (N − i− 1)!

(n− i)!

∙
1− n− i

in

¸

= n
mX
i=1

µ
m

i

¶
(−1)i+1 (N − i− 1)!

(n− i)!
− n+ 1

n

mX
i=1

µ
m

i

¶
(−1)i+1 (N − i− 1)!

(n− i− 1)!

Using an instance of Vandermonde’s convolution formula [21, p. 8],

mX
i=1

µ
m

i

¶
(−1)i+1 (N − i− 1)!

(n− i)!
= −(N − n− 1)!

µ
N −m− 1

n

¶
+
(N − 1)!

n!

and similarly

mX
i=1

µ
m

i

¶
(−1)i+1 (N − i− 1)!

(n− i− 1)! = −(N − n)!

µ
N −m− 1

n− 1

¶
+
(N − 1)!
(n− 1)!

we arrive at

m∆vN(m) = (N − n− 1)!
µ
N −m− 1

n

¶µ
N + nm− n

N −m− n

¶
− (N − 1)!

n!
.
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Relation (36) shows that the difference ∆uN (m) = uN (m)− uN (m− 1) is directly written in terms of
the difference ∆vN(m),

m∆uN(m) =
N−1X
n=1

(n− 1)!
(N − 1)!

ψ(N)− ψ(n) + 1

n+ 1

∙
(N − n− 1)!

µ
N −m− 1

n

¶µ
N + nm− n

N −m− n

¶
− (N − 1)!

n!

¸

=
(N −m− 1)!
(N − 1)!

N−1X
n=1

ψ(N)− ψ(n) + 1

n(n+ 1)

∙
(N − n− 1)!(N +mn− n)

(N −m− n)!

¸
−

N−1X
n=1

1

n
.

Using the identity (39) proved in Appendix B yields

m∆uN(m) =
Nψ(N)−mψ(m)

N −m
−

N−1X
n=1

1

n
=

m

N −m

N−1X
k=m

1

k
,

or ∆uN (m) = 1
N−m

PN−1
k=m

1
k which is equivalent to (11). This completes the proof of Theorem 2.5. 2

6 Proof of Corollaries 2.6 and 2.8

We will first prove (12) by induction on (11). We also have a second proof by computing the sums in

(36), which we will omit here.

The induction is initiated by N = 2, for which both sides give 1. The inductive step from N to

N + 1 uses the induction hyptothesis as follows:

NX
k=1

1

k2
=

N−1X
k=1

1

k2
+

1

N2
=

N−1X
k=1

1

N − k

N−1X
n=k

1

n
+

1

N2
=

NX
l=2

1

N − l + 1

N−1X
n=l−1

1

n
+

1

N2

=
NX
l=1

1

N − l + 1

NX
n=l

1

n
− 2

N

N−1X
n=1

1

n
+

N−1X
l=1

1

l

1

N − l
=

NX
k=1

1

N + 1− k

NX
n=k

1

n

= uN+1(N)

since
PN−1

l=1
1
l

1
N−l =

2
N

PN−1
n=1

1
n . This proves (12). 2

We proceed by proving the statements in Corollary 2.8. For (14), we note that the upper bound

follows from the bound WSteiner,N(m) ≤WN (m) and (11). The lower bound follows immediately from

(5), since WSteiner,N(m) ≥ m
N log

N
m+1(1 + o(1)) with probability converging to one.

For the first statement in (15), we again use thatWSteiner,N(m) ≤WN (m), so that |WSteiner,N(m)−
WN (m)| =WN(m)−WSteiner,N(m). Since both have asymptotically the same expectation by (14), we

have that [WSteiner,N(m)−WN (m)]/uN (m) converges to 0 in L1, which in turn implies the convergence

in probability in the first part of (15). The second statement follows since

WN(m)
m
N log

N
m+1

=
WSteiner,N (m)

m
N log

N
m+1

+
WN(m)−WSteiner,N(m)

m
N log

N
m+1

.

The first term converges to 1 in probability by the main result (5) in [3] and the second term to 0 in

probability, so that WN (m)
m
N
log N

m+1

converges to 1 in probability. 2
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A Solving the recursion for ϕHN (m)(z)

In this section, we solve the recursion relation (16) for ϕHN (m)(z) for m = 1, 2 and 3, which suggests

(6). For m = 1, relation (6) equals (1). For the other extreme m = N−1 and with ϕHN (N)(z) = 0, the

recursion (16) reduces to ϕHN (N−1)(z) = zϕHN−1(N−2)(z) with solution ϕHN (N−1)(z) = zN−1. This
result, needed for the initial values below, directly follows from ϕHN (N−1)(z) = E

£
zHN (N−1)¤ because

HN(N − 1) = N − 1.
For m = 2, using (1), the recursion becomes

ϕHN (2)(z) =
(N − 3) (N − 1 + 2z)

(N − 1)2 ϕHN−1(2)(z) +
4z

(N − 1)(N − 2)

µ
Γ(z +N − 1)

(N − 1)!Γ(z + 1) −
1

N − 1

¶
,

with initial value ϕH3(2)(z) = z2. Iteration yields that ϕHN (2)(z) equalsQp
j=1(N − 2− j)Qp
j=1(N − j)2

pY
j=1

(N − j + 2z)ϕHN−p(2)(z)

+4z

pX
k=1

Qk+1
j=3(N − j)

(N − k)(N − k − 1)
Qk−1

j=1(N − j)2

k−1Y
j=1

(N − j + 2z)

µ
Γ(z +N − k)

(N − k)!Γ(z + 1)
− 1

N − k

¶
.

With ϕH3(2)(z) = z2, which is reached for N − p = 3 or p = N − 3, the iteration ends with result

ϕHN (2)(z) =

QN−3
j=1 (N − 2− j)QN−3
j=1 (N − j)2

N−3Y
j=1

(N − j + 2z)z2

+4z
N−3X
k=1

Qk+1
j=3(N − j)

(N − k)(N − k − 1)
Qk−1

j=1(N − j)2

k−1Y
j=1

(N − j + 2z)

µ
Γ(z +N − k)

(N − k)!Γ(z + 1)
− 1

N − k

¶

=
4(N − 3)!
((N − 1)!)2

z2
Γ(N + 2z)

Γ(3 + 2z)
+ 4z

(N − 3)!Γ(N + 2z)

((N − 1)!)2
N−1X
s=3

(s− 1)!
Γ(s+ 1 + 2z)

µ
Γ(z + s)

(s− 1)!Γ(z + 1) − 1
¶
.

Furthermore,

N−1X
s=3

(s− 1)!
Γ(s+ 1 + 2z)

µ
Γ(z + s)

(s− 1)!Γ(z + 1) − 1
¶
=

1

Γ(z + 1)

N−1X
s=3

Γ(z + s)

Γ(s+ 1 + 2z)
−

N−1X
s=3

Γ(s)

Γ(s+ 1 + 2z)
,

and with [15, Lemma A.4]

bX
k=a

Γ(k + x)

Γ(k + y)
=

1

1 + x− y

µ
Γ(1 + b+ x)

Γ(b+ y)
− Γ(a+ x)

Γ(a− 1 + y)

¶
, (37)

we obtain after some manipulations

ϕH2(N)(z) =
2

(N − 1)!(N − 1)(N − 2)

µ
Γ(N + 2z)

Γ(1 + 2z)
− 2Γ(N + z)

Γ(z + 1)
+ Γ(N)

¶
. (38)

This proves (6) for m = 2.

For m = 3, we obtain from (16) that

ϕHN (3)(z) =
(N − 4) (N − 1 + 3z)

(N − 1)2 ϕHN−1(3)(z) +
9z

(N − 1)2
ϕHN−1(2)(z).

17



Using (38), we obtain

ϕHN (3)(z) =
(N − 4) (N − 1 + 3z)

(N − 1)2 ϕHN−1(3)(z)

+
18z

(N − 1)2 (N − 2)(N − 3)

µ
Γ(N − 1 + 2z)

(N − 2)!Γ(1 + 2z) − 2
Γ(N − 1 + z)

(N − 2)!Γ(z + 1) + 1
¶
,

with initial value ϕH4(3)(z) = z3. Similarly as for m = 2, we observe by iteration that

ϕHN (3)(z) =

Qp
j=1(N − 3− j)Qp
j=1(N − j)2

pY
j=1

(N − j + 3z)ϕHN−p(3)(z)

+18z

pX
k=1

Qk−1
j=1(N − 3− j)

(N − k)2 (N − k − 1)(N − k − 2)
Qk−1

j=1(N − j)2

k−1Y
j=1

(N − j + 3z)

×
µ

Γ(N − k + 2z)

(N − k − 1)!Γ(1 + 2z) − 2
Γ(N − k + z)

(N − k − 1)!Γ(z + 1) + 1
¶
,

and with ϕH4(3)(z) = z3, which is reached for N − p = 4 or p = N − 4, the iteration ends with result

ϕHN (3)(z) =

QN−4
j=1 (N − 3− j)QN−4
j=1 (N − j)2

N−4Y
j=1

(N − j + 3z)z3

+18z
N−4X
k=1

Qk−1
j=1(N − 3− j)

(N − k)2 (N − k − 1)(N − k − 2)
Qk−1

j=1(N − j)2

k−1Y
j=1

(N − j + 3z)

×
µ

Γ(N − k + 2z)

(N − k − 1)!Γ(1 + 2z) − 2
Γ(N − k + z)

(N − k − 1)!Γ(z + 1) + 1
¶
.

We rewrite the above as for m = 2 as

ϕHN (3)(z) =
(3!)2(N − 4)!
((N − 1)!)2

Γ(N + 3z)

Γ(4 + 3z)
z3 + 18z

(N − 4)!Γ(N + 3z)

((N − 1)!)2
N−1X
s=4

(s− 1)!
Γ(s+ 1 + 3z)

×
µ

Γ(s+ 2z)

(s− 1)!Γ(1 + 2z) − 2
Γ(s+ z)

(s− 1)!Γ(z + 1) + 1
¶
.

Again using (37), we finally find

ϕHN (3)(z) =
18(N − 4)!
((N − 1)!)2

∙
Γ(N + 3z)

Γ(4 + 3z)

µ
2z3 +

Γ(4 + 2z)

Γ(1 + 2z)
− Γ(4 + z)

Γ(1 + z)
+ 2

¶
− Γ(N + 2z)

Γ(1 + 2z)
+
Γ(N + z)

Γ(1 + z)
− (N − 1)!

3

¸
=

3!

(N − 1)!(N − 1)(N − 2)(N − 3)

∙
Γ(N + 3z)

Γ(1 + 3z)
− 3Γ(N + 2z)

Γ(1 + 2z)
+ 3
Γ(N + z)

Γ(1 + z)
− Γ(N)

¸
,

which proves (6) for m = 3. This derivation suggests the general formula (6).

B Proof of the identity (39)

Lemma B.1

N−1X
n=1

ψ(N)− ψ(n) + 1

n(n+ 1)

∙
(N − n− 1)!(N +mn− n)

(N −m− n)!

¸
=
(N − 1)!
(N −m)!

(Nψ(N)−mψ(m)) . (39)

18



Proof: Use N+mn−n
n(n+1) = N

n −
N−m+1
n+1 , and the definitions

LS1 = N
N−1X
n=1

ψ(N)− ψ(n) + 1

n

(N − n− 1)!
(N − n−m)!

,

LS2 = (N −m+ 1)
N−1X
n=1

ψ(N)− ψ(n) + 1

n+ 1

(N − n− 1)!
(N − n−m)!

,

to express the left-hand side(LS) of (39) as the sum LS1 + LS2. With the definition of the digamma

function we obtain

LS1 = N
N−1X
n=1

1

n

(N − n− 1)!
(N − n−m)!

+N
N−1X
k=1

1

k

N−1X
n=1

1

n

(N − n− 1)!
(N − n−m)!

−N
N−1X
n=1

n−1X
k=1

1

k

1

n

(N − n− 1)!
(N − n−m)!

,

and similarly

LS2 = (N −m+ 1)
N−1X
n=1

1

n+ 1

(N − n− 1)!
(N − n−m)!

+ (N −m+ 1)
N−1X
k=1

1

k

N−1X
n=1

1

n+ 1

(N − n− 1)!
(N − n−m)!

−(N −m+ 1)
N−1X
n=1

n−1X
k=1

1

k

1

n+ 1

(N − n− 1)!
(N − n−m)!

.

From (34) we obtain
N−1X
n=1

1

n

(N − n− 1)!
(N − n−m)!

=
(N − 1)!
(N −m)!

[ψ(N)− ψ(m)],

Using

NX
n=1

(K − n)!

(N − n)!

Ã
1

n

n−1X
k=1

1

k

!
= −1

2

K!

N !

Ã
KX
l=1

1

l2
−

K−NX
l=1

1

l2

!
+
1

2

K!

N !
[ψ(K + 1)− ψ(K −N + 1)]2

which follows from [24, pp. 252] after some manipulations, we have

N−1X
n=1

n−1X
k=1

1

k

1

n

(N − n− 1)!
(N − n−m)!

= −1
2

(N − 1)!
(N −m)!

Ã
NX

k=m

1

k2

!
+
1

2

(N − 1)!
(N −m)!

[ψ(N)− ψ(m)]2.

Substitution yields

LS1 =
N !(1 + ψ(N))

(N −m)!
[ψ(N)− ψ(m)] +

1

2

N !

(N −m)!

Ã
NX

k=m

1

k2

!
− 1
2

N !

(N −m)!
[ψ(N)− ψ(m)]2.

Similarly

LS2 =
(N −m+ 1)(N − 1)!

(N −m)!
ψ(m)− N !ψ(N)

(N −m)!
[ψ(N + 1)− ψ(m)]

−1
2

N !

(N −m)!

Ã
N+1X
k=m

1

k2

!
+
1

2

N !

(N −m)!
[ψ(N + 1)− ψ(m)]2.

Simplifying the sum LS = LS1 + LS2 gives the right-hand side of (39).
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