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ON A RANDOM GRAPH RELATED TO QUANTUM

THEORY

SVANTE JANSON

Abstract. We show that a random graph studied by Ioffe and Levit is
an example of an inhomogeneous random graph of the type studied by
Bollobás, Janson and Riordan, which enables us to give a new, simple,
proof of their result on a phase transition.

1. Introduction

Ioffe and Levit [4] have recently introduced and studied a new random
graph model called a quantum random graph, more precisely a quantum
version of the classical Erdős–Rényi random graph, because of connections
with a quantum model. (A random-cluster type modification of the graph
studied in [4] and here is a Fortuin–Kasteleyn representation of a mean-
field Curie–Weiss model in transverse magnetic field, see [1] and [4]. The
physical interpretations of the parameters β and λ below then are inverse
temperature and magnetic field strength.)

The purpose of this paper is to show that this random graph can be
regarded as an instance of the general inhomogeneous model studied by
Bollobás, Janson and Riordan [3], and that the general results on a phase
transition in [3] enable us to give a new, simple, proof of the main result by
Ioffe and Levit [4].

The random graph model defined by Ioffe and Levit [4] has three param-
eters, β ∈ (0,∞), λ ∈ [0,∞) and n ∈ N, and we will denote the resulting

random graph by Qβ,λ
n . (Ioffe and Levit [4] consider also the case β = ∞,

which gives an infinite random graph, but we will not do so.) We will keep
β and λ fixed and let n→ ∞. The parameter n then measures the size of
the graph; more precisely, as will be seen below, the number of vertices is
random but roughly proportional to n; note, however, that typically n is
not exactly the number of vertices.

To define Qβ,λ
n , following [4], let Sβ be a circle of length β, i.e., the interval

[0, β] with the endpoints identified, and consider n disjoint copies S1β, . . . ,S
n
β

of Sβ. Next, let there be a Poisson process of “holes” on each circle S
i
β; the

Poisson processes have intensities λ and are independent. Let Mi be the
number of holes on S

i
β; thus Mi ∼ Po(λβ). The holes split each circle S

i
β
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2 SVANTE JANSON

into open intervals Iki , k = 1, . . . ,M∗
i , where M

∗
i := max{Mi, 1}, and we let

these intervals be the vertices of Qβ,λ
n . (If Mi = 0, so there are no holes on

S
i
β, we regard the entire circle as an interval.) In other words, the vertex set

of Qβ,λ
n is {Iki : 1 ≤ i ≤ n, 1 ≤ k ≤ M∗

i }; the number of vertices in Qβ,λ
n is

thus
∑n

i=1M
∗
i .

Finally, for each unordered pair (i, j), we consider a Poisson process Lij

on Sβ, with intensity 1/n and independent of everything else; for each point

x in Lij we consider the corresponding points in S
i
β and S

j
β and take the

two intervals Iki and I lj containing these points; we add an edge between

these two intervals (regarded as vertices in Qβ,λ
n ). Note that this yields a

multigraph; there may be multiple edges. For the purpose of this paper, all
multiple edges may be ignored; more precisely, we may merge each group of
parallel edges into a single edge. Moreover, the expected number of multiple
edges is easily seen to be O(1), more precisely, it is less than β2/4, so they
may be ignored for almost all other purposes too.

Note that when λ = 0, the vertices are the n circles S
i
β, and Q

β,0
n is the

classical random graph G(n, p) with p = 1− exp(−β/n) ≈ β/n.
We state the main result by Ioffe and Levit [4] in Section 2. Our for-

mulation differs somewhat from [4], but the main features describing the

phase transition of Qβ,λ
n are the same. We give our proof in Section 4, after

showing in Section 3 that Qβ,λ
n is an instance of the inhomogeneous random

graph in [3].
We denote the numbers of vertices and edges of a graph G by v(G) and

e(G), respectively. Moreover, for a subgraph G of Qβ,λ
n , the vertices are

intervals in some S
i
β, and it is of interest to study the total length of these

intervals, i.e.,
∑

I∈V (G) |I|; we denote this sum by ℓ(G) and call it the length

ℓ(G) of G.
All unspecified limits are as n→ ∞.

Acknowledgement. I thank Geoffrey Grimmett and Oliver Riordan for
interesting discussions.

2. Results

We first observe that the number of vertices in Qβ,λ
n is random and, by the

construction above, given by v(Qβ,λ
n ) =

∑n
i=1M

∗
i , while the length ℓ(Q

β,λ
n ) =

βn is deterministic. Moreover, the number of edges e(Qβ,λ
n ) ∼ Po(β

(

n
2

)

1
n
)

(if we include possible multiple edges). It follows immediately from the law
of large numbers, cf. (3.3) and (3.5) below, that, as n→ ∞,

v(Qβ,λ
n )/n

p
−→ EM∗ = λβ + e−λβ , (2.1)

ℓ(Qβ,λ
n )/n = β, (2.2)

e(Qβ,λ
n )/n

p
−→ β/2. (2.3)
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Since the expected number of multiple edges is O(1), (2.3) holds whether
we count multiple edges or not.

Denote the components of Qβ,λ
n by C1, C2, . . . , in order of decreasing num-

ber of vertices (breaking ties by any rule), with Cj(G) = ∅ if Qβ,λ
n has fewer

than j components. The main result of Ioffe and Levit [4] is that there is a
phase transition similar to the well-known phase transition in the random
graph G(n, p) [2], [5]: for certain values of (β, λ), all components are of or-
der smaller than n, while for other values of the parameters, there is with
high probability (exactly) one giant component with a positive fraction of
all vertices. More precisely, we have the following result, essentially due to
Ioffe and Levit [4] but in our formulation and with some details added.

Theorem 2.1. Let

F (β, λ) :=
2

λ

(

1− e−λβ
)

− βe−λβ . (2.4)

If F (β, λ) ≤ 1, let π := 0, while if F (β, λ) > 1, let π > 0 be the unique
positive solution to

2λ+ π

(λ+ π)2
(

1− e−(λ+π)β
)

−
λβ

λ+ π
e−(λ+π)β = 1. (2.5)

Then

v(C1)/n
p

−→ ρ :=
πλβ

λ+ π

(

1− e−(λ+π)β
)

+ e−λβ
(

1− e−πβ
)

(2.6)

ℓ(C1)/n
p

−→ πβ, (2.7)

e(C1)/n
p

−→ ζ := π(1− π/2)β, (2.8)

while v(C2)/n
p

−→ 0, ℓ(C2)/n
p

−→ 0, e(C2)/n
p

−→ 0.

For λ = 0, we interpret (2.4) as the limiting value 2β−β = β; the results
then simplify to standard results for G(n, p).

Note that if F (β, λ) ≤ 1, then ρ = ζ = π = 0, and thus all components
are small (op(n) vertices and edges), while if F (β, λ) > 1, then there is with
high probability one (and only one) large component with a positive fraction
of the vertices, length and edges.

The constant π is by (2.7) and (2.2) the asymptotic fraction of the total

length ofQβ,λ
n that belongs to C1. Hence, π equals the asymptotic probability

that a given (or random) point on
⋃n

1 S
i
β belongs to C1. This leads to the

following corollary, due to Ioffe and Levit [4]. (Our π is denoted p(β, λ) in
[4]. Note that our formulation is somewhat weaker than theirs.)

Corollary 2.2. The asymptotic probability that two random points on
⋃n

1 S
i
β

(chosen independently and uniformly) belong to the same component equals

π2. The same holds conditioned on Qβ,λ
n too, with convergence in probability.

To choose a random point on
⋃n

1 S
i
β means that we choose a vertex in Qβ,λ

n

with probability proportional to its length. There is a similar result (with
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limit ρ2) if we choose two vertices at random with the uniform distribution,
see [3, Theorem 3.14(i)].

Remark 2.3. In the proof below based on general results in [3], π is calcu-
lated from the survival probability in a multi-type branching process. Be-
cause of the special structure in our case, π can also be interpreted as the sur-
vival probability in a standard, single-type, branching process, with offspring
distribution mixed Poisson Po(Γβ) where Γβ = min(Γ, β) and Γ ∼ Γ(2, λ−1),
see [4]. The multi-type branching process describes asymptotically the pro-
cess of finding new vertices in a component by successive exploration of the
neighbours of the ones already found; the type is here the length of the
vertex. The single-type branching process ignores the lengths; this can be
done because when we reach a new vertex, on a circle not seen before, its
length has the distribution Γβ, independent of what has happened before.

To consider this single-type process simplifies some of the calculations
below; for example, it is elementary to see that this process is supercritical
if and only if F (β, λ) > 1. We prefer, however, to use the setup in [3]
below and leave it to the reader to explore modifications involving also the
single-type process.

We can also obtain other results on Qβ,λ
n from [3], for example the asymp-

totic distribution of vertex degrees (a certain mixed Poisson distribution)
and the typical and maximal distances between two vertices in the same
component, where distances are measured in the graph theory sense of the
minimal number of connecting edges.

3. The general inhomogeneous model

The general inhomogeneous random graph GV(n, κ) is defined as follows;
see [3, Section 2] for further details. We proceed in two steps, constructing
first the vertices and then the edges. Note that n is a parameter measuring
the size of the graph, and we are primarily interested in asymptotics as
n→ ∞. (In general, as in Section 1, n is not exactly the number of vertices,
see (3.3) below. Moreover, there is no need for the parameter n to be integer
valued in general, although it is so in our application.)

A generalized vertex space V is a triple (S, µ, (xn)n≥1), such that the
following holds.

(i) S is a separable metric space.
(ii) µ is a (positive) Borel measure on S with 0 < µ(S) <∞.
(iii) For each n, xn is a random sequence (x1, x2, . . . , xNn) of Nn points

of S (where Nn may be deterministic or random).

(Formally, we should write xn = (x
(n)
1 , . . . , x

(n)
Nn

), say, as we assume no rela-
tionship between the elements of xn for different n, but we omit this extra
index.)

Let M(S) be the space of all (positive) finite Borel measures on S, and
equip M(S) with the standard weak topology: νn → ν iff

∫

f dνn →
∫

f dν
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for all bounded continuous functions f : S → R. Let

µn :=
1

n

Nn
∑

i=1

δxi

where δx is the Dirac measure at x ∈ S; thus µn is a random element of
M(S). We will further assume that

(iv) µn
p

−→ µ, as elements of M(S).

Recall that a set A ⊆ S is a µ-continuity set if A is (Borel) measurable and
µ(∂A) = 0, where ∂A is the boundary of A. The convergence condition (iv)
is equivalent to the condition that for every µ-continuity set A,

µn(A) := #{i ≤ Nn : xi ∈ A}/n
p

−→ µ(A); (3.1)

see [3, Lemma A.2].
Given a generalized vertex space V, we further assume that κ is a sym-

metric non-negative (Borel) measurable function on S × S. We let the
vertices of the random graph GV(n, κ) be the integers 1, . . . , Nn. For the
edges we have two different versions. (See [3, Section 2] for further, differ-
ent but asymptotically equivalent, versions). In both versions we assume
that xn is given and consider each pair of vertices (i, j) with i < j sepa-
rately. In the first version we add an edge between i and j with probability
pij := min

{

κ(xi, xj)/n, 1
}

. In the second version, we instead create a multi-

graph by adding a Po
(

κ(xi, xj)/n
)

number of edges between i and j. In
both versions, this is done independently (given xn) for all pairs (i, j).

In order to avoid pathologies, we finally assume

(v) κ is continuous a.e. on S × S;
(vi) κ ∈ L1(S × S, µ × µ);
(vii)

1

n
E e

(

GV(n, κ)
)

→ 1
2

∫∫

S2

κ(x, y) dµ(x) dµ(y). (3.2)

As shown in [3, Remark 8.2], (vii) follows from the other assumptions if κ
is bounded and Var(Nn) = o(n2).

Note that the number of vertices v(GV(n, κ)) is roughly proportional to
n; more precisely, by (3.1),

v(GV (n, κ))

n
=
Nn

n
= µn(S)

p
−→ µ(S). (3.3)

3.1. The Ioffe and Levit random graph. We now show that the con-

struction of Qβ,λ
n in Section 1 is an instance of the general construction just

given. For the space S we may choose the set of all open intervals in Sβ.
(We regard the full circle Sβ as an “interval”, and thus an element of S.)

The first phase of the construction defines the vertices of Qβ,λ
n , with each

vertex corresponding to an interval Ii ∈ S. In the second phase, edges are
added as in the second version above, with κ(I, J) = |I∩J | for two intervals
I, J ⊆ Sβ.
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The construction of edges a.s. does not distinguish between intervals of
full length β obtained by from a circle with a single hole, and the full circle
obtained when there is no hole at all. We thus identify the different intervals
of length β and let the precise definition of S be S := S1 ∪ S2, where
S1 := {Sβ} is a singleton and S2 is the set of all (open) intervals in Sβ of
length less than β. It is convenient to use the identification

S2 = {(x, ℓ) : x ∈ Sβ, 0 < ℓ < β}, (3.4)

where x is the left endpoint and ℓ is the length of the interval. We can define
S as a metric space by taking the product topology on S2 and letting both S1

and S2 be open in S; we omit the standard construction of a corresponding
metric.

Remark 3.1. It might be more natural to define S, as a topological and
metric space, as the cone obtained as a quotient space of the product Sβ ×
(0, β] by identifying all (x, β) to a single point. (This gives a space that
can be identified with an open disc of radius β.) For our purposes, the
construction is not very sensitive to the choice of topology on S, and both
these choices work well.

Clearly, (i) holds. Moreover, if xn is the collection of all intervals Iki (in
some order), then (iii) holds.

Consider the Poisson process of holes on a single circle Sβ. This yields
a (finite) random family of intervals I1, . . . , IM∗ , i.e., a random subset of
S. (In other terminology, a point process on S.) We let µ be the intensity
measure of this random set; in other words, for every Borel set A ⊆ S, µ(A)
is the expected number of the created intervals that belong to A:

µ(A) := E#{i ≤M∗ : Ii ∈ A}.

In particular, since the number of intervals M∗ = max{M, 1} with M ∼
Po(λβ),

µ(S) = EM∗ = EM + P(M = 0) = λβ + e−λβ. (3.5)

Clearly, (ii) holds.
Since the construction of holes and intervals proceeds independently in

the n circles Siβ, (3.1) follows, for every Borel set A ⊆ S, immediately by the

law of large numbers for sums of i.i.d. random variables. Hence, (iv) holds.

As already remarked, the second stage in the construction of Qβ,λ
n is as

required, with κ(I, J) = |I ∩ J | for I, J ∈ S. Clearly, κ is continuous and
bounded on S, and thus the remaining conditions (v), (vi) and (vii) hold,
using [3, Remark 8.2] for the latter.

The random graph Qβ,λ
n is thus an instance of the inhomogeneous random

graph in [3], and we may use the results of [3].
Note that κ(I, J) = 0 for some pairs of intervals I, J , but κ(I,Sβ) > 0 for

every I ∈ S. Since µ({Sβ}) > 0, it follows that κ is irreducible in the sense
of [3, Definition 2.10].
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To calculate the measure µ, note first that

µ({Sβ}) = P(M∗ = 1) = P(M ≤ 1) = (1 + λβ)e−λβ ;

this is the point mass at S1.
On S2 we use the coordinates (x, ℓ) as in (3.4). An interval I = (x, x+ ℓ),

with 0 < ℓ < β, is obtained as a piece if and only if both x and x + ℓ are
points in the Poisson process H of holes, and further no point of H falls
in (x, x + ℓ). The intensity of H is λ, and given that there is a point at
x, the gap L to the next point (if we unwind the cicrle Sβ to a line) has

an exponential distribution with distribution function P(L > ℓ) = e−λℓ and
thus density function λe−λℓ. Consequently, the restriction of µ to S2 has
the density λ2e−λℓ dxdℓ. (Another, but related, argument to see this uses,
twice, the fact that the Palm process of a Poisson process equals the process
itself.)

We thus have the formula
∫

S

f dµ = f(Sβ)(λβ + 1)e−λβ +

∫ β

0

∫ β

0
f(x, ℓ)λ2e−λℓ dxdℓ. (3.6)

Note that taking f = 1 yields
∫

S
dµ = e−λβ + λβ in accordance with (3.5).

4. Proof of Theorem 2.1

SinceQβ,λ
n thus is an instance of the general inhomogeneous graphGV(n, κ),

the results in [3] connect the asymptotic behaviour of Qβ,λ
n to properties of

the integral operator

Tf(x) =

∫

S

κ(x, y)f(y) dµ(y)

on L2(S, µ). For example, one of the main results [3, Theorem 3.1(i)] says

that there is a giant component in Qβ,λ
n if and only if ‖T‖L2(S,µ) > 1. (For

simplicity, we write ‖ ‖X also for the operator norm of an operator on a
Banach space X.)

Lemma 4.1. The operator norm ‖T‖L2(S,µ) equals F (β, λ) defined in (2.4).

Proof. We exploit the symmetry of the construction under the group R :=
{τy}y∈Sβ of translations (or rotations, depending on your point of view) of
the circle Sβ, where we define τy(x) := x + y (mod β) for x, y ∈ Sβ. Each
τy acts naturally on S (with Sβ ∈ S1 as a fixed point) and on L2(S, µ), and
it is obvious that T is invariant under R, i.e. that Tτy = τyT , y ∈ Sβ.

Note that a function f(I) is R-invariant if and only it depends on the
length |I| only. Let L2

R(S, µ) be the subspace of L2(S, µ) consisting of R-
invariant functions, and note that the R-invariance of T implies that T :
L2
R(S, µ) → L2

R(S, µ). Since κ is bounded, T is a Hilbert–Schmidt operator
and thus compact on L2(S, µ), and there exists a unique positive normalized
eigenfunction ψ with eigenvalue ‖T‖L2(S,µ). Since every translation τy(ψ)

evidently is another such eigenfunction, τy(ψ) = ψ so ψ ∈ L2
R(S, µ). (More
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precisely, τy(ψ) = ψ a.e. for every y, and it follows easily that ψ = ψ′ a.e.,
where τy(ψ

′) = ψ′ everywhere for each y.) Consequently,

‖T‖L2(S,µ) = ‖T‖L2

R
(S,µ). (4.1)

Let Ŝ := (0, β]. If g is any function on Ŝ = (0, β], we let ǧ denote the
function I 7→ g(|I|) on S. Thus ǧ is R-invariant, and every R-invariant

function on S equals ǧ for some g. Further, let µ̂ be the measure on Ŝ
induced by µ and the mapping I 7→ |I| of S onto Ŝ; in other words,

∫

Ŝ

g dµ̂ =

∫

S

ǧ dµ (4.2)

for any non-negative function g on Ŝ. Explicitly, by (3.6),
∫

Ŝ

g dµ̂ =

∫

S

g(|I|) dµ(I) = g(β)(λβ + 1)e−λβ +

∫ β

0
g(ℓ)βλ2e−λℓ dℓ. (4.3)

Equivalently, dµ̂ = (λβ + 1)e−λβδβ + βλ2e−λℓ dℓ. Clearly, the mapping

g 7→ ǧ defines a natural isometry of L2
R(S, µ) and L

2(Ŝ , µ̂).
If I, J ∈ S, the average of κ(I, τy(J)) = |I ∩ τy(J)| over all translations

τy is |I| |J |/β. Hence, if g ∈ L2(Ŝ, µ̂),

T ǧ(I) =

∫

S

κ(I, J)g(|J |) dµ(J) =

∫

S

|I| |J |

β
g(|J |) dµ(J) =

∫

Ŝ

|I|ℓ

β
g(ℓ) dµ̂(ℓ).

(4.4)

Define the kernel κ̂ on Ŝ by κ̂(x, y) := xy/β and let T̂ be the corresponding

integral operator. We then have, by (4.4), T ǧ(I) = T̂ g(|I|), and thus

T ǧ = (T̂ g)∨. (4.5)

Hence, the restriction of T to L2
R(S, µ) is unitarily equivalent to T̂ on

L2(Ŝ, µ̂), and thus, using (4.1),

‖T‖L2(S,µ) = ‖T‖L2

R
(S,µ) = ‖T̂ ‖

L2(Ŝ,µ̂).

Finally, the kernel κ̂ has rank 1, and T̂ g = β−1〈g, ι〉ι, where ι(x) = x.
Hence, by (4.3) and an elementary integration,

‖T̂‖
L2(Ŝ,µ̂) = β−1‖ι‖2

L2(Ŝ,µ̂)
= β−1

∫ β

0
x2 dµ̂(x)

= β(λβ + 1)e−λβ +

∫ β

0
ℓ2λ2e−λℓ dℓ = F (β, λ).

�

By Lemma 4.1 and [3, Theorem 3.1], v(C1)/n
p

−→ ρ for some ρ ≥ 0, where
ρ = 0 if F (β, λ) ≤ 1 and ρ > 0 if F (β, λ) > 1. Moreover, by [3, Theorem

3.6], v(C2)/n
p

−→ 0; hence also ℓ(C2)/n
p

−→ 0 because ℓ(C2) ≤ βv(C2), and

e(C2)/n
p

−→ 0 by [3, Proposition 8.11].
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To find the constant ρ, let, as in [3], ρκ(x), for x ∈ S, be the survival
probability for a multi-type Galton–Watson branching process with type
space S, starting with a single individual of type x and where an individual
of type y has offspring according to a Poisson process on S with intensity
κ(y, z) dµ(z). Then, see [3, Theorem 6.2], ρκ(x) is the maximal solution of

ρκ(x) = 1− e−Tρκ(x) = 1− exp
(

−

∫

S

κ(x, y)ρκ(y)
)

; (4.6)

further, if ‖T‖ ≤ 1 then ρκ(x) = 0, while otherwise ρκ(x) > 0 for every
x ∈ S, and there is no other non-zero solution. Then,

ρ =

∫

S

ρκ(x) dµ(x). (4.7)

Furthermore, by [3, Theorem 3.5], e(C1)/n
p

−→ ζ, where

ζ =
1

2

∫∫

S2

κ(x, y)
(

ρκ(x) + ρκ(y)− ρκ(x)ρκ(y)
)

dµ(x) dµ(y). (4.8)

Similarly, as an immediate consequence of [3, Theorem 9.10],

ℓ(C1)/n
p

−→

∫

S

|I|ρκ(I) dµ(I). (4.9)

It thus remains to find ρκ(x), and to compute these integrals.
By symmetry, ρκ(I) depends on |I| only, and thus ρκ = φ̌ for some func-

tion φ on Ŝ. Then (4.6) and (4.5) yield

φ̌ = 1− exp(−T φ̌) =
(

1− exp(T̂ φ)
)∨

and thus

φ = 1− exp(−T̂ φ); (4.10)

in other words, φ is the corresponding function for the kernel κ̂ on Ŝ. Since κ̂
has rank 1, T̂φ = πι for some π ≥ 0, where as above ι(x) = x. Consequently,
(4.10) shows that

φ(x) = 1− e−πx. (4.11)

Since T̂ φ(x) =
∫

Ŝ

xy
β
φ(y) dµ̂(y), the relation T̂ φ = πι, or T̂ φ(x) = πx, can

be written

π =

∫

Ŝ

y

β
φ(y) dµ̂(y) = β−1

∫

Ŝ

y
(

1− e−πy
)

dµ̂(y). (4.12)

Evaluating this integral by (4.3), we find the equation (2.5). The results
quoted from [3, Theorem 6.2] above imply that if F (β, λ) ≤ 1, then π = 0,
while if F (β, λ) > 1, then π > 0; moreover, there is no other positive solution
of (2.5), since otherwise we would have another positive solution of (4.10).

Next, by (4.7) and (4.2),

ρ =

∫

S

ρκ dµ =

∫

S

φ̌dµ =

∫

Ŝ

φdµ̂.
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By (4.11), (4.3) and an elementary integration, we find (2.6). Further, by
(4.9) and (4.12),

ℓ(C1)/n
p

−→

∫

Ŝ

xφ(x) dµ̂(x) = βπ,

which yields (2.7). Finally, (4.8) and (4.2) yield

ζ =
1

2

∫∫

Ŝ2

κ̂(x, y)
(

φ(x) + φ(y)− φ(x)φ(y)
)

dµ̂(x) dµ̂(y)

=
1

2β

(

2

∫

Ŝ

xφ(x) dµ̂(x)

∫

Ŝ

y dµ̂(y)−
(

∫

Ŝ

xφ(x) dµ̂(x)
)2

)

,

which by (4.12) and the elementary
∫

Ŝ
xdµ̂(x) = β yields (2.8).

Proof of Corollary 2.2. The sought probability is, given Qβ,λ
n ,

P(same component | Qβ,λ
n ) =

∑

j≥1 ℓ(Cj)
2

(βn)2
=

∑

j≥1

(ℓ(Cj)

βn

)2
. (4.13)

By (2.7), the term with j = 1 tends to π2 in probability. Moreover,
∑

j>1

(ℓ(Cj)

βn

)2
≤
ℓ(C2)

βn

∑

j>1

ℓ(Cj)

βn
≤
ℓ(C2)

βn

p
−→ 0.

Hence, the conditional probability in (4.13) tends to π2 in probability. The
unconditional probability is the expectation of (4.13), which converges to
π2 by bounded convergence. �

Remark 4.2. The proof shows that the largest component in Qβ,λ
n asymp-

totically behaves as for the random graph defined using the kernel κ̂ on the
space Ŝ with the measure µ̂. Nevertheless, these two inhomogeneous ran-
dom graphs differ in other respects, for example in the number of triangles,
see [3, Section 17].
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