On the strong chromatic number of random graphs

Po-Shen Loh * Benny Sudakov ${ }^{\dagger}$

Abstract

Let G be a graph with n vertices, and let k be an integer dividing n. G is said to be strongly k-colorable if for every partition of $V(G)$ into disjoint sets $V_{1} \cup \ldots \cup V_{r}$, all of size exactly k, there exists a proper vertex k-coloring of G with each color appearing exactly once in each V_{i}. In the case when k does not divide n, G is defined to be strongly k-colorable if the graph obtained by adding $k\left\lceil\frac{n}{k}\right\rceil-n$ isolated vertices is strongly k-colorable. The strong chromatic number of G is the minimum k for which G is strongly k-colorable. In this paper, we study the behavior of this parameter for the random graph $G_{n, p}$. In the dense case when $p \gg n^{-1 / 3}$, we prove that the strong chromatic number is a.s. concentrated on one value $\Delta+1$, where Δ is the maximum degree of the graph. We also obtain several weaker results for sparse random graphs.

1 Introduction

Let G be a graph, and let V_{1}, \ldots, V_{r} be disjoint subsets of its vertex set. An independent transversal with respect to $\left\{V_{i}\right\}_{i=1}^{r}$ is an independent set in G which contains exactly one vertex from each V_{i}. The problem of finding sufficient conditions for the existence of an independent transversal, in terms of the ratio between the part sizes and the maximum degree Δ of the graph, dates back to 1975 , when it was raised by Bollobás, Erdős, and Szemerédi 10. Since then, much work has been done [1, 3, 5, 14, 15, 17, 18, 22, 26, 27, and this basic concept has also appeared in several other contexts, such as linear arboricity [4], vertex list coloring [23, 24, 8], and cooperative coloring [2, 19]. In the general case, it was proved by Haxell [14] that an independent transversal exists as long as all parts have size at least 2Δ. The sharpness of this bound was shown by Szabó and Tardos [26], extending earlier results of [18] and [27]. On the other hand, we proved in [19] that the upper bound can be further reduced to $(1+o(1)) \Delta$ if no vertex has more than $o(\Delta)$ neighbors in any single part. Such a condition arises naturally in certain applications, e.g., vertex list coloring.

In the case when all of the V_{i} are of the same size k, it is natural to ask when it is possible to find not just one, but k disjoint independent transversals with respect to the $\left\{V_{i}\right\}$. This is closely related to the following notion of strong colorability. Given a graph G with n vertices and a positive integer k dividing n, we say that G is strongly k-colorable if for every partition of $V(G)$ into disjoint sets $V_{1} \cup \ldots \cup V_{r}$, all of size exactly k, there exists a proper vertex k-coloring of G with each color appearing exactly once in each V_{i}. Notice that G is strongly k-colorable iff the chromatic number of

[^0]any graph obtained from G by adding a union of vertex disjoint k-cliques is k. If k does not divide n, then we say that G is strongly k-colorable if the graph obtained by adding $k\left\lceil\frac{n}{k}\right\rceil-n$ isolated vertices is strongly k-colorable. The strong chromatic number of G, denoted $s \chi(G)$, is the minimum k for which G is strongly k-colorable.

The concept of strong chromatic number first appeared independently in work by Alon [4] and Fellows [11. It was also the crux of the longstanding "cycle plus triangles" problem popularized by Erdős, which was to show that the strong chromatic number of the cycle on $3 n$ vertices is three. That problem was solved by Fleischner and Stiebitz [12]. The strong chromatic number is known [11] to be monotonic in the sense that strong k-colorability implies strong $(k+1)$-colorability. It is also easy to see that $s \chi(G)$ must always be strictly greater than the maximum degree Δ : simply take V_{1} to be the neighborhood of a vertex of maximal degree, and partition the rest of the vertices arbitrarily. The intriguing question of bounding the strong chromatic number in terms of the maximum degree has not yet been answered completely. Alon [5] showed that there exists a constant c such that $s \chi \leq c \Delta$ for every graph. Later, Haxell [15] improved the bound by showing that it is enough to use $c=3$, and in fact even $c=3-\epsilon$ for ϵ up to $1 / 4$ [16]. On the other hand, Fleischner and Stiebitz [13] observed that the disjoint union of complete bipartite graphs $K_{\Delta, \Delta}$ cannot be strongly ($2 \Delta-1$)-colored. Indeed, put each part of one of the $K_{\Delta, \Delta}$ into the sets V_{1} and V_{2}, respectively. Then these 2Δ vertices should get different colors. It is believed that this lower bound is tight and the strong chromatic number of any graph with maximum degree Δ should be at most 2Δ.

It is natural to wonder what is the asymptotic behavior of the strong chromatic number for the random graph $G_{n, p}$, relative to the maximum degree of the graph. As usual, $G_{n, p}$ is the probability space of all labeled graphs on n vertices, where every edge appears randomly and independently with probability $p=p(n)$. We say that the random graph possesses a graph property \mathcal{P} almost surely, or a.s. for brevity, if the probability that $G_{n, p}$ satisfies \mathcal{P} tends to 1 as n tends to infinity. One of the most interesting phenomena discovered in the study of random graphs is that many natural graph invariants are highly concentrated (see, e.g., [21] for the result on the clique number and [25, 20, 6] for the concentration of the chromatic number). In this paper we show that the strong chromatic number is another example of a tightly concentrated graph parameter. For dense random graphs, it turns out that we can concentrate $s \chi\left(G_{n, p}\right)$ on a single value, and for some smaller values of p we were only able to determine $s \chi\left(G_{n, p}\right)$ asymptotically. In the statement of our first result, and in the rest of this paper, the notation $f(n) \gg g(n)$ means that $f / g \rightarrow \infty$ together with n. Also, all logarithms are in the natural base e.

Theorem 1.1 Let Δ be the maximum degree of the random graph $G_{n, p}$, where $p<1-\theta$ for any arbitrary constant $\theta>0$.
(i) If $p \gg\left(\frac{\log ^{4} n}{n}\right)^{1 / 3}$, then almost surely the strong chromatic number of $G_{n, p}$ equals $\Delta+1$.
(ii) If $p \gg\left(\frac{\log n}{n}\right)^{1 / 2}$, then a.s. the strong chromatic number of $G_{n, p}$ is $(1+o(1)) \Delta$.

Unfortunately, our approach breaks down completely when $p \ll n^{-1 / 2}$. However, for this range of p, we have a different argument which shows how to find at least one independent transversal.

Theorem 1.2 Let Δ be the maximum degree of the random graph $G_{n, p}$. If $p \geq \frac{\log ^{4} n}{n}$, then almost surely every collection of disjoint subsets V_{1}, \ldots, V_{r} of $G_{n, p}$ with all $\left|V_{i}\right| \geq(1+o(1)) \Delta$ has an independent transversal.

This rest of this paper is organized as follows. In Section 2, we prove both parts of our first theorem concerning the strong chromatic number of relatively dense random graphs. We then shift our attention to the sparser case, proving our second result about transversals in Section 3. The last section of our paper contains some concluding remarks. Throughout this exposition, we will make no attempt to optimize absolute constants, and will often omit floor and ceiling signs whenever they are not crucial, for the sake of clarity of presentation.

2 Strong chromatic number

In this section, we prove Theorem 1.1, which determines the value of the strong chromatic number of a rather dense random graph. To this end, we first prove several lemmas that establish certain useful properties of random graphs. We will use these properties to find a partition of $G_{n, p}$ into independent transversals.

2.1 Properties of random graphs

Lemma 2.1 Let $\theta>0$ be an arbitrary fixed constant. If $\sqrt{\frac{\log n}{n}} \ll p<1-\theta$ then a.s. $G_{n, p}$ has the following properties.
(i) No pair of distinct vertices has more than $(1+o(1)) n p^{2}$ common neighbors.
(ii) The maximum degree is strictly between np and $1.01 n p$, and there is a unique vertex of maximum degree.
(iii) The gap between the maximum degree and the next largest degree is at least $\frac{\sqrt{n p}}{\log n}$.

Proof. For the first property, fix an arbitrary constant $\delta>0$ and two distinct vertices u and v. Their codegree X is binomially distributed with parameters $n-2$ and p^{2}. Thus by the Chernoff bound (see, e.g., Appendix A in [7]), $\mathbb{P}\left[X \geq(1+\delta) n p^{2}\right] \leq e^{-\Theta\left(\delta^{2} n p^{2}\right)}=o\left(n^{-2}\right)$. Taking a union bound over all $O\left(n^{2}\right)$ choices for u and v, we find that the probability that the first property is not satisfied tends to 0 as $n \rightarrow \infty$. The second and third claims are special cases of Corollary 3.13 and Theorem 3.15 in [9, respectively.

Lemma 2.2 Let $\alpha>0$ be an arbitrary fixed constant and let $\sqrt{\frac{\log n}{n}} \ll p \leq \frac{3}{5}$. Then almost surely $G_{n, p}$ does not contain a set U of size onp and $50 \log n$ sets $T_{i},\left|T_{i}\right| \leq\left\lceil\frac{1}{p}\right\rceil$, such that all the sets are disjoint and for every i all but at most $\alpha n p / 50$ vertices in U have neighbors in T_{i}.

Proof. Fix sets U and $\left\{T_{i}\right\}$ as specified above. If all but at most $\alpha n p / 50$ vertices in U have neighbors in T_{i}, we say for brevity that T_{i} almost dominates U. For a given vertex v, the probability that it has a neighbor in T_{i} is $1-(1-p)^{\left|T_{i}\right|} \leq 1-(1-p)^{\lceil 1 / p\rceil}<7 / 8$ for all $p \leq 3 / 5$, since $1-(1-p)^{\lceil 1 / p\rceil}$ is maximal in that range when $p \rightarrow 1 / 2$ from below. Therefore, by a union bound we have

$$
\begin{aligned}
\mathbb{P}\left[T_{i} \text { almost dominates } U\right] & \leq\binom{\alpha n p}{\alpha n p-\alpha n p / 50}\left(\frac{7}{8}\right)^{\alpha n p-\alpha n p / 50}=\binom{\alpha n p}{\alpha n p / 50}\left(\frac{7}{8}\right)^{49 \alpha n p / 50} \\
& \leq\left(50 e\left(\frac{7}{8}\right)^{49}\right)^{\alpha n p / 50}<3^{-\alpha n p / 50} .
\end{aligned}
$$

Since all sets T_{i} are disjoint, the events that T_{i} and T_{j} almost dominate U are independent. This implies that

$$
\mathbb{P}\left[\text { every } T_{i} \text { almost dominates } U\right] \leq\left(3^{-\alpha n p / 50}\right)^{50 \log n}=3^{-\alpha n p \log n}
$$

Using that $\log n / p=o(n p)$ and $\lceil 1 / p\rceil \leq 2 / p$, we can bound the probability that there is a choice of $\left\{T_{i}\right\}$ and U which violates the assertion of the lemma by

$$
\begin{aligned}
\mathbb{P} & \leq\binom{ n}{\alpha n p}\left[\frac{2}{p}\binom{n}{2 / p}\right]^{50 \log n} 3^{-\alpha n p \log n} \\
& \leq n^{\alpha n p}\left(\frac{2}{p}\right)^{50 \log n} n^{\frac{100 \log n}{p}} 3^{-\alpha n p \log n} \\
& =e^{(1+o(1)) \alpha n p \log n} \cdot 3^{-\alpha n p \log n}=o(1)
\end{aligned}
$$

so we are done.
Lemma 2.3 Let $\alpha>0$ be an arbitrary fixed constant and let $\sqrt{\frac{\log n}{n}} \ll p \leq \frac{3}{5}$. Then almost surely every collection of at most $\left\lceil\frac{1}{p}\right\rceil$ disjoint subsets of size $\alpha n p$ in $G_{n, p}$ has an independent transversal.

Proof. Fix a collection of disjoint subsets $V_{1}, \ldots, V_{r}, r \leq\left\lceil\frac{1}{p}\right\rceil$, of $G_{n, p}$, each of size $\alpha n p$. A partial independent transversal T is an independent set with at most one vertex in every V_{i}, and we say that it almost dominates some part if all but at most $\alpha n p / 50$ vertices in that part have neighbors in T. For every V_{i}, let $\left\{T_{i j}\right\}$ be a maximal collection of pairwise disjoint partial independent transversals, each of which almost dominates V_{i}. Then, by Lemma 2.2, a.s. the total number of $T_{i j}$ must be at most $r(50 \log n)$. Delete all the sets $T_{i j}$ from the graph, and let $\left\{V_{i}^{\prime}\right\}$ be the remaining parts. Clearly, it suffices to find an independent transversal among the $\left\{V_{i}^{\prime}\right\}$.

Since $\log n / p=o(n p)$ and each $T_{i j}$ is a partial transversal, each part loses a total of $\leq r(50 \log n) \leq$ $50\left\lceil\frac{1}{p}\right\rceil \log n=o(n p)$ vertices from the deletions. We can now use the greedy algorithm to find an independent transversal. Take v_{1} to be any remaining vertex in V_{1}^{\prime}, and iterate as follows. Suppose that we already have constructed a partial independent transversal $\left\{v_{1}, \ldots, v_{\ell-1}\right\}$ such that $v_{i} \in V_{i}^{\prime}$ for all $i<\ell$. This partial independent transversal does not almost dominate V_{ℓ}, or else it would contradict the maximality of $\left\{T_{\ell j}\right\}$ above. So, there are at least $\alpha n p / 50$ choices for $v_{\ell} \in V_{\ell}$ that would extend the partial independent transversal $\left\{v_{1}, \ldots, v_{\ell-1}\right\}$. Yet V_{ℓ} lost only $o(n p)$ vertices in the deletion process, so there is still a positive number of choices for $v_{\ell} \in V_{\ell}^{\prime}$ as well. Proceeding in this way, we find a complete independent transversal.
Lemma 2.4 Let $\sqrt{\frac{\log n}{n}} \ll p \leq \frac{3}{5}$. Then the following statement holds almost surely. For every choice of s and t that satisfies $n p / 2 \leq s \leq 2 n p$ and $40 \log n \leq t \leq s-40\left\lceil\frac{1}{p}\right\rceil \log n, G_{n, p}$ does not contain a collection of disjoint subsets U, T_{1}, \ldots, T_{t} such that $|U|=s$, each of the $\left|T_{i}\right| \leq\left\lceil\frac{1}{p}\right\rceil$, and at least $s-t$ vertices of U have neighbors in every T_{i}.

Proof. Fix some (s, t) within the above range. As we saw in the proof of Lemma 2.2, for a given vertex v the probability that it has a neighbor in T_{i} is $1-(1-p)^{\left|T_{i}\right|} \leq 1-(1-p)^{[1 / p\rceil}<7 / 8$, and by disjointness these events are independent for all $1 \leq i \leq t$. Therefore we can bound the the probability that there is a collection of sets which satisfies the above condition by

$$
\begin{align*}
\mathbb{P} & \leq\binom{ n}{s}\left[\frac{2}{p}\binom{n}{2 / p}\right]^{t} 2^{s}\left(\frac{7}{8}\right)^{(s-t) t} \\
& \leq \frac{n^{s}}{s!}\left(n^{2 / p}\right)^{t} 2^{s}\left(\frac{7}{8}\right)^{(s-t) t} \\
& \leq n^{s+2 t / p}\left(\frac{7}{8}\right)^{(s-t) t} \tag{1}
\end{align*}
$$

Throughout this bound, we use $\left\lceil\frac{1}{p}\right\rceil \leq \frac{2}{p}$. The first binomial coefficient and the quantity in the square brackets bound the number of ways to choose the sets U and $\left\{T_{i}\right\}$. The 2^{s} bounds the number of ways to select a subset of size $s-t$ from U, and the final factor bounds the probability that all vertices in this subset have neighbors in every T_{i}.

The logarithm of (1) is quadratic in t with positive t^{2}-coefficient. Therefore, the right hand side of (11) is largest when t is minimum or maximum in its range $40 \log n \leq t \leq s-40\left\lceil\frac{1}{p}\right\rceil \log n$. Let us begin with the small end, i.e., $t=40 \log n$. Then, since $\log n / p \ll n p$ and $s \geq n p / 2$, we have that

$$
\begin{aligned}
n^{s+2 t / p}\left(\frac{7}{8}\right)^{(s-t) t} & \leq e^{(1+o(1)) s \log n}\left(\frac{7}{8}\right)^{(40-o(1)) s \log n} \\
& \leq e^{(1+o(1)) s \log n} e^{-(4-o(1)) s \log n}=o\left(n^{-2}\right)
\end{aligned}
$$

Similarly, if $t=s-40\left\lceil\frac{1}{p}\right\rceil \log n$, the bound is

$$
\begin{aligned}
n^{s+2 t / p}\left(\frac{7}{8}\right)^{(s-t) t} & \leq e^{3 s \log n / p}\left(\frac{7}{8}\right)^{(40-o(1)) s\left\lceil\frac{1}{p}\right\rceil \log n} \\
& \leq e^{3 s \log n / p} e^{-(4-o(1)) s\left\lceil\frac{1}{p}\right\rceil \log n}=o\left(n^{-2}\right)
\end{aligned}
$$

Since the number of choices for t and s is at most n^{2}, we conclude that the probability that the assertion of the lemma is violated is $o(1)$.

2.2 Proof of Theorem 1.1

We start by proving part (i) of Theorem 1.1. If Δ is the maximum degree of $G_{n, p}$, then the strong chromatic number must be at least $\Delta+1$, as we already mentioned in the introduction. Suppose that G is a graph obtained from $G_{n, p}$ by adding $(\Delta+1)\left\lceil\frac{n}{\Delta+1}\right\rceil-n$ isolated vertices, and we have a partition of $V(G)$ into $V_{1} \cup \ldots \cup V_{r}$ with every $\left|V_{i}\right|=\Delta+1$. By Lemma [2.1, $\Delta \geq n p$ almost surely, so this implies that $r \leq\left\lceil\frac{1}{p}\right\rceil$. Note that if $3 / 5 \leq p<1-\theta$, then $r \leq 2$ and the theorem is an immediate consequence of the following lemma.

Lemma 2.5 Let $3 / 5 \leq p<1-\theta$, where $\theta>0$ is an arbitrary fixed constant, and let $V(G)=V_{1} \cup V_{2}$ be a partition of the vertices of G described above, with $\left|V_{1}\right|=\left|V_{2}\right|=\Delta+1$. Then a.s. V_{1} can be perfectly matched to V_{2} via non-edges of G.

Proof. Without loss of generality, we may assume that V_{1} contains at most $n / 2$ original vertices of $G_{n, p}$. Let $B \subset V_{1}$ be those original vertices. The rest of V_{1} consists of isolated vertices, so any perfect matching of B to V_{2} trivially extends to a full perfect matching between V_{1} and V_{2}. Therefore, by Hall's theorem, it suffices to verify that each subset $A \subset B$ has at least $|A|$ non-neighbors in V_{2}. If $A=\{v\}$ is a single vertex, this is immediate because $\left|V_{2}\right|>\Delta \geq d(v)$. For larger A, the Hall condition translates into checking that $\Delta+1-|N(A)| \geq|A|$, where $N(A)$ denotes the set of common neighbors of A in V_{2}. Since $|A| \geq 2$ we have, by Lemma 2.1(i), that the size of $N(A)$ is at most $(1+o(1)) n p^{2}$. So the Hall condition is satisfied for all A with $2 \leq|A| \leq \theta n p / 2<\Delta-(1+o(1)) n p^{2}$.

Let c be a constant for which $p-2 p^{c}>1 / 2$ for all p in the range $[3 / 5,1-\theta)$. One can easily show using a Chernoff bound that a.s. every set of c distinct vertices in $G_{n, p}$ has at most $2 n p^{c}$ common neighbors. This implies that the Hall condition is also satisfied for all A of size at least c, since then

$$
\Delta+1-|N(A)|>n p-2 n p^{c}>n / 2 \geq|B| \geq|A| .
$$

Together with the previous paragraph, this completes the proof.
It remains to consider $p<3 / 5$, so we will assume that bound on p for the remainder of this section. We use the following strategy to produce a partition of $\cup V_{i}$ into a disjoint union of independent transversals.

1. Find an independent transversal through the unique vertex of maximum degree Δ, and delete this transversal from the graph.
2. As long as there exists a vertex v which has at least $0.9 n p$ neighbors in some part V_{i}, find an independent transversal T through v, and delete T from the graph.
3. As long as there exists a minimal partial independent transversal T such that all but at most $n p / 100$ vertices in some part V_{i} have neighbors in T, split T into two nonempty $(|T| \geq 2$ because of Step 2) disjoint partial independent transversals $T_{1} \cup T_{2}$. Note that by minimality of T, each part V_{i} contains a subset U_{i} of at least $n p / 100$ vertices which have no neighbors in T_{1}. By Lemma 2.3, there is an independent transversal through $\left\{U_{i}\right\}$, which can be used to extend T_{1} to a full independent transversal T_{1}^{\prime}. Delete T_{1}^{\prime} from the graph, and then perform the same completion/deletion procedure for T_{2}.
4. Finally, we construct the rest of the independent transversals, building them simultaneously from V_{1} to V_{r} using Hall's matching theorem. Our deletions in Steps 1-3, together with the properties of $G_{n, p}$ which we established in the previous subsection, will ensure that this is possible.

The following lemma, which we prove later, ensures that we will indeed find the independent transversals claimed in Steps 1-2.

Lemma 2.6 Let $V_{1} \cup \ldots \cup V_{r}$ be the above partition of $V(G)$, and let x be any vertex in this graph.

- If x is the unique vertex of maximum degree Δ, then G contains an independent transversal through x.
- If x is not of maximum degree, then for all $k \leq\left\lceil\frac{1}{p}\right\rceil$ and for any collection of subsets $V_{i}^{\prime} \subset V_{i}$, $\left|V_{i}^{\prime}\right|=\Delta+1-k$, one of which contains x, there exists an independent transversal through x with respect to $\left\{V_{i}^{\prime}\right\}$.

Let us bound the number of independent transversals we delete in the first 3 steps. Note that if two vertices have at least $0.9 n p$ neighbors in the same V_{i}, since by Lemma $2.1\left|V_{i}\right| \leq \Delta+1 \leq 1.01 n p$, their codegree will be at least $0.79 n p \geq 1.01 n p^{2}$, contradicting Lemma 2.1. Therefore, during the first two steps, we will delete at most $r+1 \leq\left\lceil\frac{1}{p}\right\rceil+1$ transversals. Next, suppose that after deleting $O\left(\left\lceil\frac{1}{p}\right\rceil \log n\right)$ independent transversals from G, we have that for some set T all but at most $n p / 100$ vertices of some V_{i} have neighbors in T. Since $\left\lceil\frac{1}{p}\right\rceil \log n \ll n p$, this certainly implies that the number of vertices in the original V_{i} with no neighbors in T was bounded by $n p / 50$. Together with Lemma 2.2, this ensures that for each fixed $V_{i}, 1 \leq i \leq r$, we never repeat Step 3 more than $50 \log n$ times. Since each iteration deletes two independent transversals and $r \leq\left\lceil\frac{1}{p}\right\rceil$, we conclude that by the time we reach Step 4, we have deleted at most $1+\left\lceil\frac{1}{p}\right\rceil+100\left\lceil\frac{1}{p}\right\rceil \log n<110\left\lceil\frac{1}{p}\right\rceil \log n$ independent transversals from G.

Let us now describe Step 4 in more detail. At this point, all parts V_{i} have the same size $\left|V_{i}\right|=s=$ $\Delta+1-k$, where $k<110\left\lceil\frac{1}{p}\right\rceil \log n=o(n p)$ is the total number of independent transversals deleted so far. We build the remaining s disjoint independent transversals simultaneously as follows. Start s partial independent transversals $\left\{T_{i}\right\}_{i=1}^{s}$ by arbitrarily putting one vertex of V_{1} into each T_{i}. Now suppose we already have disjoint partial independent transversals $\left\{T_{i}\right\}_{i=1}^{s}$ through V_{1}, \ldots, V_{ℓ}. Create an auxiliary bipartite graph H whose right side is $V_{\ell+1}$ and left side has s vertices, identified with the transversals $\left\{T_{i}\right\}$. Join the i-th vertex on the left side with a vertex $v \in V_{\ell+1}$ if and only if v has no neighbors in T_{i}. Then, a perfect matching in this graph will yield a simultaneous extension of each T_{i} which covers $V_{\ell+1}$.

We ensure a perfect matching in H by verifying the Hall condition, i.e., we show that for every $t \leq s$, every set of t vertices on the left side of H has neighborhood on the right side of size at least t. Observe that after Step 3, for every T_{i} there are more than $n p / 100$ vertices in $V_{\ell+1}$ which have no neighbors in T_{i}. Therefore every vertex on the left side of H has degree greater than $n p / 100$ and hence the Hall condition is trivially satisfied for all $t \leq n p / 100$. If the Hall condition fails for some $n p / 100<t \leq s-40\left\lceil\frac{1}{p}\right\rceil \log n$, then by definition of H, there are t partial independent transversals among $\left\{T_{i}\right\}$ and a subset W of $V_{\ell+1}$ of size greater than $s-t$ such that every vertex of W has neighbors in every one of these transversals (i.e., is not adjacent to them in H). This contradicts Lemma 2.4, so the Hall condition also holds for these t. It remains to check the case when $t>s-40\left\lceil\frac{1}{p}\right\rceil \log n$. Note that given any vertex v in $V_{\ell+1}$ and any collection of disjoint partial independent transversals, the number of them in which v can have a neighbor is at most the degree of v. However, we deleted the maximum degree vertex in Step 1, so by Lemma $2.1 d(v) \leq \Delta-\frac{\sqrt{n p}}{\log n}$. Since $p \gg\left(\frac{\log ^{4} n}{n}\right)^{1 / 3}$, this is less than $\Delta-150\left\lceil\frac{1}{p}\right\rceil \log n \leq s-40\left\lceil\frac{1}{p}\right\rceil \log n$. Therefore, in the auxiliary graph H, any set of $t>s-40\left\lceil\frac{1}{p}\right\rceil \log n$ vertices on the left side has neighborhood equal to the entire right side. Hence Hall's condition is satisfied for all t and we can extend our transversals. This completes the proof, since one can iterate this extension procedure to convert all T_{i} into full independent transversals.

Proof of Lemma 2.6. First, consider the case when x is not the vertex of maximum degree Δ and we have a collection of subsets $V_{i}^{\prime} \subset V_{i}$ of size $\Delta+1-k$, where $k \leq\left\lceil\frac{1}{p}\right\rceil$. Without loss of generality,
assume that $x \in V_{1}^{\prime}$, and recall that by Lemma 2.1, the maximum degree Δ satisfies $n p<\Delta<1.01 n p$. If the number of neighbors of x in every set $V_{i}^{\prime}, i \geq 2$, is at most $0.96 n p$ then delete them and denote the resulting sets $V_{i}^{\prime \prime}$. Since each $V_{i}^{\prime \prime}$ still has size at least $\Delta+1-\left\lceil\frac{1}{p}\right\rceil-0.96 n p>0.03 n p$, by Lemma 2.3 there exists a partial independent transversal through $V_{2}^{\prime \prime}, \ldots, V_{r}^{\prime \prime}$, which together with x provides a full independent transversal containing x. Next, suppose that x has at least $0.96 n p$ neighbors in some part, say V_{2}^{\prime}. Since the degree of x is less than $\Delta<1.01 n p$, it must then have less than $0.05 n p$ neighbors in every other V_{i}^{\prime}. Furthermore, since x is not of maximum degree and $p \gg\left(\frac{\log ^{4} n}{n}\right)^{1 / 3}$, Lemma 2.1 implies that $(\Delta+1)-d(x) \geq \frac{\sqrt{n p}}{\log n} \gg 2\left\lceil\frac{1}{p}\right\rceil \geq r+k$. Therefore there are more than r vertices in V_{2}^{\prime} not adjacent to x. Also by Lemma 2.1, the codegree of every pair of vertices is at most $1.01 n p^{2}<0.61 n p$, so in particular no two vertices can both have $\geq 0.9 n p$ neighbors in any given V_{i}^{\prime}. By the pigeonhole principle, there must be a vertex $y \in V_{2}^{\prime}$ not adjacent to x with less than $0.9 n p$ neighbors in each of the other V_{i}^{\prime}. That means that every other part has less than 0.05 np neighbors of x and $0.9 n p$ neighbors of y. Since $\left|V_{i}^{\prime}\right| \geq \Delta-\left\lceil\frac{1}{p}\right\rceil>0.99 n p$, there are still at least $0.04 n p$ vertices left in each $V_{i}^{\prime}, i \geq 3$, that are non-adjacent to both x and y. Thus we can apply Lemma 2.3 as above to complete $\{x, y\}$ into an independent transversal.

The case when x is the vertex of maximum degree has a similar proof but involves one more step. As in the previous paragraph, we may assume that $x \in V_{1}$ and has at least $0.96 n p$ neighbors in V_{2}, or else we are done. Let W_{2} be the set of vertices in V_{2} that are not adjacent to x. Since $\left|V_{2}\right|=\Delta+1$, we have $W_{2} \neq \emptyset$. If there exists some $y \in W_{2}$ that has $<0.9 n p$ neighbors in each of the other $V_{i}, i \geq 3$, then we can complete $\{x, y\}$ to a full independent transversal as above. Otherwise, by Lemma 2.1 the codegree of every pair of vertices is at most $1.01 n p^{2}<0.61 n p$ and hence each $y \in W_{2}$ is associated with a distinct part in which it has $\geq 0.9 n p$ neighbors. Yet x has exactly $\left|W_{2}\right|-1$ neighbors among the other parts $V_{i}, i \geq 3$, so there must exist $y \in W_{2}$ such that x has no neighbors in the part (without loss of generality it is V_{3}) in which y has $\geq 0.9 n p$ neighbors. Since x is the unique vertex of maximum degree and $p \gg\left(\frac{\log ^{4} n}{n}\right)^{1 / 3}$, Lemma 2.1 gives

$$
d(y) \leq \Delta-\frac{\sqrt{n p}}{\log n}<\Delta-\left\lceil\frac{1}{p}\right\rceil \leq \Delta-r .
$$

Therefore V_{3} contains a subset W_{3} of at least $r+1$ vertices which are not adjacent to both x and y. Since for every $i \geq 4$ at most one vertex in W_{3} can have more than 0.81 neighbors in V_{i} (by another codegree argument), the pigeonhole principle ensures that there is a vertex $z \in W_{3}$ such that z has at most $0.81 n p$ neighbors in each $V_{i}, i \geq 4$. Also note that x has less than $0.05 n p$ neighbors in each such V_{i}, and y has less than $0.11 n p$. Therefore every $V_{i}, i \geq 4$, has in total less than $0.05 n p+0.11 n p+0.81 n p<(\Delta+1)-0.03 n p$ neighbors of any of $\{x, y, z\}$, so we can apply Lemma 2.3 as before to complete $\{x, y, z\}$ into an independent transversal.

Proof of Theorem 1.1 (ii). We may assume that $p<n^{-1 / 4}$ because the case $p \geq n^{-1 / 4}$ is already a consequence of part (i) of this theorem. Fix an arbitrary $\epsilon>0$. Suppose that G is a graph obtained from $G_{n, p}$ by adding $(1+\epsilon) \Delta\left\lceil\frac{n}{(1+\epsilon) \Delta}\right\rceil-n$ isolated vertices and $V(G)$ is partitioned into $V_{1} \cup \ldots \cup V_{r}$ with every $\left|V_{i}\right|=(1+\epsilon) \Delta$. Since $\Delta \geq n p$ a.s., we have that $r \leq\left\lceil\frac{1}{p}\right\rceil$. We use the same Steps $1-4$ to produce a partition of $\cup V_{i}$ into a disjoint union of independent transversals. Actually Steps 1-2 can now be made into a single step, since there is no need here to treat the vertex of maximum degree
separately. The codegree argument implies again that we perform Steps 1-2 at most $r+1$ times. Moreover, the existence of the independent transversals claimed in these two steps follows easily from Lemma [2.3, Indeed, suppose that we have deleted $O\left(\left\lceil\frac{1}{p}\right\rceil\right)$ independent transversals from G. Since $p \gg\left(\frac{\log n}{n}\right)^{1 / 2}$, we have $1 / p=o(n p)$ and thus every part still has size at least $(1+\epsilon / 2) \Delta$. Let x be an arbitrary remaining vertex. Since the degree of x is at most Δ, every part still contains at least $\epsilon \Delta / 2$ vertices non-adjacent to x. By Lemma 2.3, we can find an independent transversal through these vertices which will extend $\{x\}$.

There is no change in the analysis of Step 3 and the same argument as in the proof of part (i) shows that the total number of transversals deleted from G in Steps $1-3$ is at most $O\left(\left\lceil\frac{1}{p}\right\rceil \log n\right)$. Since $p \gg\left(\frac{\log n}{n}\right)^{1 / 2}$, this number is $o(n p)$, and therefore in the beginning of Step 4 each part V_{i} still has size $s \geq(1+\epsilon / 2) \Delta$. Recall that in Step 4 we build the remaining s disjoint independent transversals simultaneously, extending them one vertex at time to cover each new part $V_{\ell+1}$. So again we define an auxiliary bipartite graph H whose left part corresponds to the partial independent transversals $\left\{T_{i}\right\}$ on V_{1}, \ldots, V_{ℓ}, right part is $V_{\ell+1}$, and the i-th vertex on the left is adjacent to $v \in V_{\ell+1}$ iff v has no neighbors in transversal T_{i}. A perfect matching in H gives a simultaneous extension of each T_{i}.

Hence it is enough to verify the Hall condition for H, i.e., we must show that for all $t \leq s$, every set of t vertices on the left has at least t neighbors on the right. The proof that this holds for all $t \leq s-40\left\lceil\frac{1}{p}\right\rceil \log n$ is exactly the same as in part (i) and we omit it here. So suppose that $t>s-40\left\lceil\frac{1}{p}\right\rceil \log n \geq s-o(n p)>(1+\epsilon / 3) \Delta$. Since the degree of every vertex $v \in V_{\ell+1}$ is at most Δ, it can have neighbors in at most $\Delta<t$ transversals. Therefore there is at least one transversal in our set of size t which has no neighbors of v, and hence every set of $t>s-40\left\lceil\frac{1}{p}\right\rceil \log n$ vertices on the left has neighborhood equal to entire right side of H. This verifies the Hall condition and completes the proof.

3 Independent transversals

In this section, we prove our second theorem. We only need to consider here the range $\frac{\log ^{4} n}{n} \ll p \ll$ $\frac{\log ^{3 / 4} n}{\sqrt{n}}$, since part (ii) of Theorem 1.1 implies Theorem 1.2 for larger values of p. Again, we begin by showing that $G_{n, p}$ satisfies certain properties almost surely.

3.1 Properties of random graphs

Lemma 3.1 If $\frac{\log n}{n} \ll p \ll \frac{\log ^{3 / 4} n}{\sqrt{n}}$, then a.s. $G_{n, p}$ has the following properties:

1. No pair of distinct vertices has more than $3 \log ^{3 / 2} n$ common neighbors.
2. The maximum degree is strictly between $n p$ and $1.01 n p$.

Proof. The codegree X of a fixed pair of vertices is binomially distributed with parameters $n-2$ and p^{2}. Therefore
$\mathbb{P}\left[X \geq 3 \log ^{3 / 2} n\right] \leq\binom{ n-2}{3 \log ^{3 / 2} n}\left(p^{2}\right)^{3 \log ^{3 / 2} n} \leq\left(\frac{e n p^{2}}{3 \log ^{3 / 2} n}\right)^{3 \log ^{3 / 2} n} \ll(e / 3)^{3 \log ^{3 / 2} n}=o\left(n^{-2}\right)$.

Taking a union bound over all $O\left(n^{2}\right)$ pairs of vertices, we see that the first property holds a.s. The second property is a special case of Corollary 3.13 in (9).

Lemma 3.2 Let $C \geq 20$ and let G be a graph obtained from the random graph $G_{n, p}$ by connecting every vertex to at most $8 \log ^{2} n$ new neighbors. Then a.s. every subset $S \subset V(G)$ of size $|S| \leq C p^{-1} \log ^{2} n$ spans a subgraph with average degree less than $6 C \log ^{2} n$, i.e., contains $<3 C|S| \log ^{2} n$ edges.

Proof. Since the edges which we add to the random graph can increase the number of edges inside S by at most $|S|\left(8 \log ^{2} n\right) / 2=4|S| \log ^{2} n$, it suffices to show that in $G_{n, p}$ a.s. every subset S as above spans less than $e C|S| \log ^{2} n$ edges. The probability that this is not the case is at most

$$
\begin{aligned}
\sum_{m=1}^{C p^{-1} \log ^{2} n}\binom{n}{m}\binom{\binom{m}{2}}{e C m \log ^{2} n} p^{e C m \log ^{2} n} & \leq \sum_{m=1}^{C p^{-1} \log ^{2} n} n^{m}\left(\frac{e m}{2 e C \log ^{2} n} \cdot p\right)^{e C m \log ^{2} n} \\
& \leq \sum_{m=1}^{C p^{-1} \log ^{2} n} n^{m} 2^{-e C m \log ^{2} n} \\
& \leq \sum_{m=1}^{C p^{-1} \log ^{2} n}\left(n 2^{-e C \log ^{2} n}\right)^{m}=o(1)
\end{aligned}
$$

so we are done.

3.2 Proof of Theorem 1.2

Fix $\epsilon>0$, and suppose we have disjoint subsets V_{1}, \ldots, V_{r} of $G_{n, p}$, with all $\left|V_{i}\right|=(1+\epsilon) \Delta$. By Lemma 3.1, $r<n / \Delta<1 / p$. If a vertex v has more than $\frac{\Delta}{\log n}$ neighbors in some V_{i}, say that v is locally big with respect to V_{i}. If it has more than $\frac{\Delta}{2 \log n}$, call it almost locally big. For each i, let B_{i} be the set of v that are almost locally big with respect to V_{i}. We claim that $\left|B_{i}\right|<4 \log n$. Indeed, if $\left|B_{i}\right| \geq 4 \log n$, then Lemma 3.1 together with $\Delta \geq \log ^{4} n$ and the Jordan-Bonferroni inequality would imply that the union of neighborhoods in V_{i} of vertices from B_{i} is at least

$$
(4 \log n) \frac{\Delta}{2 \log n}-\binom{4 \log n}{2} 3 \log ^{3 / 2} n \geq \frac{3}{2} \Delta>\left|V_{i}\right|
$$

contradiction. Next, make each B_{i} a clique by adding all the missing edges. However, Δ will still refer to the maximum degree of the original graph. Since each vertex is almost locally big with respect to less than $2 \log n$ sets V_{i}, this operation increases the degree of each vertex by less than $2 \log n \cdot 4 \log n=8 \log ^{2} n \ll \frac{\Delta}{2 \log n}$. Thus every vertex that is locally big after the additions was almost locally big before. In particular, there is now an edge between every pair of vertices that are locally big with respect to the same V_{i}, and there are less than $r(4 \log n)<4 p^{-1} \log n$ locally big vertices in total.

Let $I_{1} \subset[r]$ be the set of indices i such that V_{i} contains more than $\frac{\epsilon}{4} \Delta$ locally big vertices, and define the notation V_{S} to represent $\bigcup_{i \in S} V_{i}$. Note that

$$
\left|V_{I_{1}}\right|<(1+\epsilon) \Delta \cdot\left(\frac{\epsilon}{4} \Delta\right)^{-1} 4 p^{-1} \log n<20 \epsilon^{-1} p^{-1} \log n
$$

(we can assume here and in the rest of the proof that ϵ is sufficiently small). As long as there exist $i \notin I_{1}$ such that there are more than $\left(240 \epsilon^{-1} \log ^{2} n\right)\left|V_{i}\right|$ crossing edges between V_{i} and $V_{I_{1}}$, add i to I_{1}. Note that each such index which we add to $V_{I_{1}}$ increases the number of edges in this set by more than $\left(240 \epsilon^{-1} \log ^{2} n\right)\left|V_{i}\right|$. Therefore if in this process I_{1} doubles in size we obtain a set of size at most $40 \epsilon^{-1} p^{-1} \log n$ with average degree more than $240 \epsilon^{-1} \log ^{2} n$, which contradicts Lemma 3.2. Thus at the end of the process we have $\left|I_{1}\right| \leq 40 \epsilon^{-1} p^{-1} \log n$.

Given I_{1}, for $t \geq 1$ we recursively define $I_{t+1} \subset I_{t}$ as follows. By Lemma 3.2, $V_{I_{t}}$ induces less than $\left(120 \epsilon^{-1} \log ^{2} n\right)\left|V_{I_{t}}\right|$ edges. Thus, there are less than $2\left(\frac{\Delta}{\log \Delta}\right)^{-1} \cdot\left(120 \epsilon^{-1} \log ^{2} n\right)\left|V_{I_{t}}\right|$ vertices in $V_{I_{t}}$ with $>\frac{\Delta}{\log \Delta}$ neighbors in this set. To define I_{t+1} we consider the following process. Start with I_{t+1} to be the set of all $i \in I_{t}$ for which V_{i} has more than $\frac{\epsilon}{4} \Delta$ vertices that have $>\frac{\Delta}{\log \Delta}$ neighbors in $V_{I_{t}}$. As long as there exist $i \in I_{t} \backslash I_{t+1}$ such that there are more than $\left(240 \epsilon^{-1} \log ^{2} n\right)\left|V_{i}\right|$ edges between V_{i} and $V_{I_{t+1}}$, add i to I_{t+1}. As above, Lemma 3.2 ensures that this process must stop before I_{t+1} doubles in size. Therefore in the end we have

$$
\begin{aligned}
\left|I_{t+1}\right| & \leq 2\left(\frac{\epsilon}{4} \Delta\right)^{-1} \cdot 2\left(\frac{\Delta}{\log \Delta}\right)^{-1} \cdot\left(120 \epsilon^{-1} \log ^{2} n\right)\left|V_{I_{t}}\right| \\
& \leq O\left(\frac{\log ^{2} n \log \Delta}{\Delta^{2}}\left|V_{I_{t} \mid}\right|\right) \leq O\left(\frac{\log ^{2} n \log \Delta}{\Delta}\left|I_{t}\right|\right) \\
& \ll \frac{1}{\log n}\left|I_{t}\right|
\end{aligned}
$$

Clearly, $\left|I_{1}\right| \leq r \leq n$. Therefore, when $t \geq \frac{2 \log n}{\log \log n}$, I_{t} will be empty. Let σ be the smallest index such that $I_{\sigma}=\emptyset$. We now recursively build partial independent transversals $T_{\sigma}, \ldots, T_{1}$, where T_{t} is an independent transversal on $V_{I_{t}}$. Let us say that T_{t} satisfies property \mathbf{P}_{t} if for every $i \notin I_{t}$, all the vertices in T_{t} that are not locally big with respect to V_{i} have together at most $300(\sigma-t) \frac{\Delta}{\log n}$ neighbors in V_{i}. It is clear that $T_{\sigma}=\emptyset$ satisfies \mathbf{P}_{σ}, so we can apply the following lemma inductively to construct T_{1}, an independent transversal on $V_{I_{1}}$ satisfying \mathbf{P}_{1}.

Lemma 3.3 Suppose $t>1$, and T_{t} is an independent transversal on $V_{I_{t}}$ which satisfies \mathbf{P}_{t}. Then we can extend T_{t} to T_{t-1}, an independent transversal on $V_{I_{t-1}}$ which satisfies \mathbf{P}_{t-1}.

We postpone the proof of this lemma until Section 3.4 Suppose that we have T_{1} as described above. Let J_{1} be the set of all indices $j \notin I_{1}$ such that some $v \in T_{1}$ is locally big with respect to V_{j}. Then, as we did with I_{1}, as long as there exist $\ell \notin I_{1} \cup J_{1}$ such that more than $\left(600 \epsilon^{-1} \log ^{2} n\right)\left|V_{\ell}\right|$ edges cross between V_{ℓ} and $V_{J_{1}}$, add ℓ to J_{1}. Since $\left|T_{1}\right|=\left|I_{1}\right|$ and each vertex can be locally big with respect to at most $(1+o(1)) \log n$ sets V_{i}, we have that initially $\left|J_{1}\right| \leq(1+o(1))\left|I_{1}\right| \log n \leq 50 \epsilon^{-1} p^{-1} \log ^{2} n$. Therefore as before, Lemma 3.2 ensures that this process stops before J_{1} doubles in size, so the final set J_{1} has size at most $100 \epsilon^{-1} p^{-1} \log ^{2} n$.

As before, we construct a sequence of nested index sets $J_{1} \supset \cdots \supset J_{\tau}=\emptyset$, where for $t \geq 1$, define J_{t+1} in terms of J_{t} as follows. Let $J_{t+1} \subset J_{t}$ be the set of all $j \in J_{t}$ for which V_{j} contains more than $\frac{\epsilon}{4} \Delta$ vertices that have $>\frac{\Delta}{\log \Delta}$ neighbors in $V_{J_{t}}$. Next, as long as there exist $j \in J_{t} \backslash J_{t+1}$ such that more than $\left(600 \epsilon^{-1} \log ^{2} n\right)\left|V_{j}\right|$ edges cross between V_{j} and $V_{J_{t+1}}$, add j to J_{t+1}. Lemma 3.2 again ensures that we stop before J_{t+1} doubles in size, and the same computation as we did for I_{t+1} shows
that $\left|J_{t+1}\right| \ll \frac{1}{\log n}\left|J_{t}\right|$. Thus when $t \geq \frac{2 \log n}{\log \log n}, J_{t}$ is empty. Let τ be the smallest index for which $J_{\tau}=\emptyset$.

Next, delete all neighbors of T_{1} in $V_{J_{1}}$ and all vertices in $V_{J_{1}}$ that are locally big with respect to any V_{k} with $k \notin I_{1}$. Denote the resulting sets $V_{j}^{\prime}, j \in J_{1}$. We claim that each V_{j}^{\prime} still has size at least $\frac{\epsilon}{2} \Delta$. Indeed, at most one $v \in T_{1}$ can be locally big with respect to V_{j}, because T_{1} is an independent set and all vertices that are locally big with respect to the same part were connected by our construction. Thus deleting neighbors of this v can decrease the size of V_{j} by at most $d(v)<\Delta+8 \log ^{2} n=(1+o(1)) \Delta$. As for the remaining vertices in T_{1}, which are not locally big with respect to V_{j}, \mathbf{P}_{1} ensures that together they have at most $O\left(\sigma \frac{\Delta}{\log n}\right)=o(\Delta)$ neighbors in V_{j}, since $\sigma \leq \frac{2 \log n}{\log \log n}$. Also, by construction of I_{1}, every part whose index is not in I_{1} has at most $\frac{\epsilon}{4} \Delta$ locally big vertices. Hence the size of V_{j}^{\prime} is at least $\left|V_{j}\right|-(1+o(1)) \Delta-\frac{\epsilon}{4} \Delta \geq \frac{\epsilon}{2} \Delta$, as claimed.

Let us say that a set U_{t} satisfies property \mathbf{Q}_{t} if for every $k \notin I_{1} \cup J_{t}$, all the vertices in U_{t} that are not locally big with respect to V_{k} have together at most $300(\tau-t) \frac{\Delta}{\log n}$ neighbors in V_{k}. We need the following analogue of Lemma 3.3.

Lemma 3.4 Suppose $t>1$, and U_{t} is an independent transversal on $V_{J_{t}}^{\prime}$ which satisfies \mathbf{Q}_{t}. Then we can extend U_{t} to U_{t-1}, an independent transversal on $V_{J_{t-1}}^{\prime}$ which satisfies \mathbf{Q}_{t-1}.

We also postpone the proof of this lemma until Section 3.4. Starting with $U_{\tau}=\emptyset$, we iterate this lemma until we obtain U_{1}, an independent transversal on $V_{J_{1}}^{\prime}$ which satisfies \mathbf{Q}_{1}. Since $\tau \leq \frac{2 \log n}{\log \log n}$, this property implies that each V_{k} with $k \notin I_{1} \cup J_{1}$ has $O\left(\tau \frac{\Delta}{\log n}\right)=o(\Delta)$ vertices with neighbors in U_{1}.

Finally, let $K=[r] \backslash\left(I_{1} \cup J_{1}\right)$. Delete all neighbors of $T_{1} \cup U_{1}$ and all locally big vertices from every V_{k} with $k \in K$, and denote the resulting sets by V_{k}^{\prime}. All V_{k}^{\prime} will still have size at least $\left(1+\frac{\epsilon}{2}\right) \Delta$, but now no vertex there has more than $\frac{\Delta}{\log n}$ neighbors in any single set V_{k}^{\prime}. Thus, the following result from [19] implies that for sufficiently large n, there is an independent transversal on V_{K}^{\prime}, which completes $T_{1} \cup U_{1}$ into an independent transversal through all parts.

Theorem 3.5 (Loh, Sudakov [19]) For every $\epsilon>0$ there exists $\gamma>0$ such that the following holds. If G is a graph with maximum degree at most Δ whose vertex set is partitioned into r parts $V_{1}, \ldots V_{r}$ of size $\left|V_{i}\right| \geq(1+\epsilon) \Delta$, and no vertex has more than $\gamma \Delta$ neighbors in any single part V_{i}, then G has an independent transversal.

This completes the proof of Theorem 1.2, modulo two remaining lemmas.

3.3 Probabilistic tools

We take a moment to record two results which we will need for the proofs of the remaining lemmas. The first is the symmetric version of the Lovász Local Lemma, which is typically used to show that with positive probability, no "bad" events happen.

Theorem 3.6 (Lovász Local Lemma [7]) Let E_{1}, \ldots, E_{n} be events. Suppose that there exist numbers p and d such that all $\mathbb{P}\left[E_{i}\right] \leq p$, and each E_{j} is mutually independent of all but at most d of the other events. If ep $(d+1) \leq 1$, then $\mathbb{P}\left[\bigcap \overline{E_{i}}\right]>0$.

The following result is a short consequence of this lemma, and we sketch its proof for completeness.
Proposition 3.7 (Alon (4]) Let G be a multipartite graph with maximum degree Δ, whose parts V_{1}, \ldots, V_{r} all have size at least $2 e \Delta$. Then G has an independent transversal.

Proof. Independently and uniformly select one vertex from each V_{i}, which we may assume is of size exactly $\lceil 2 e \Delta\rceil$. For each edge f of G, let the event A_{f} be when both endpoints of f are selected. The dependencies are bounded by $2\lceil 2 e \Delta\rceil \Delta-2$, and each $\mathbb{P}\left[A_{f}\right] \leq\lceil 2 e \Delta\rceil^{-2}$, so the Local Lemma implies this statement immediately.

3.4 Proofs of remaining lemmas

Since the proofs of Lemmas 3.3 and 3.4 are very similar, we only prove Lemma 3.3. We will simply indicate the two places where the proofs differ.

Proof of Lemma 3.3. Fix some t as in the statement of the lemma. To extend an independent transversal T_{t} on the set $V_{I_{t}}$, satisfying \mathbf{P}_{t}, to one on the larger set $V_{I_{t-1}}$, satisfying \mathbf{P}_{t-1}, we will use the following key properties of our construction.
(i) For every $i \in I_{t-1} \backslash I_{t}$, the set V_{i} contains at most $\frac{\epsilon}{4} \Delta$ vertices that have $>\frac{\Delta}{\log \Delta}$ neighbors in $V_{I_{t-1}}$.
(ii) Each set V_{i} has size $(1+\epsilon) \Delta$.
(iii) For every $i \notin I_{t-1}$, there are at most $\left(\beta \log ^{2} n\right)\left|V_{i}\right|$ edges between V_{i} and $V_{I_{t-1}}$, where we define the constant β to be $240 \epsilon^{-1}$.

In the case of Lemma 3.4, property (ii) is that each set V_{j}^{\prime} has size at least $\frac{\epsilon}{2} \Delta$, and the constant β in property (iii) is $\beta=600 \epsilon^{-1}$.

Let $D=I_{t-1} \backslash I_{t}$. From every V_{i} with $i \in D$, delete all vertices that have $>\frac{\Delta}{\log \Delta}$ neighbors in $V_{I_{t-1}}$, and all neighbors of vertices in T_{t}. Denote the resulting sets by V_{i}^{*}. Note that now all degrees in the subgraph on $V_{D}^{*}=\bigcup_{i \in D} V_{i}^{*}$ are at most $\frac{\Delta}{\log \Delta}$. Furthermore, we claim that every $\left|V_{i}^{*}\right| \geq \frac{\epsilon}{6} \Delta$. To see this, recall that at most one vertex $v \in T_{t}$ can be locally big with respect to V_{i}, because T_{t} is independent and all vertices that are locally big with respect to the same part are connected by our construction. Deleting neighbors of such v can decrease the size of V_{i} by at most $d(v)<\Delta+8 \log ^{2} n=(1+o(1)) \Delta$. The rest of the vertices in T_{t} are not locally big with respect to V_{i}, so \mathbf{P}_{t} implies that they have less than $O\left(\sigma \frac{\Delta}{\log n}\right)=o(\Delta)$ neighbors in V_{i} since $\sigma \leq \frac{2 \log n}{\log \log n}$. Finally, by property (i) above, in V_{i} we will delete at most $\frac{\epsilon}{4} \Delta$ vertices that have $>\frac{\Delta}{\log \Delta}$ neighbors in $V_{I_{t-1}}$, so property (ii) implies that $\left|V_{i}^{*}\right| \geq(1+\epsilon) \Delta-(1+o(1)) \Delta-\frac{\epsilon}{4} \Delta \geq \frac{\epsilon}{6} \Delta$, as claimed.

In the case of Lemma [3.4, recall that by construction all V_{j}^{\prime} with $j \in J_{1}$ contain no locally big vertices with respect to any part (we deleted all of them). Thus, the partial transversal U_{t} contains no locally big vertices with respect to V_{j}^{\prime}. Property \mathbf{Q}_{t} then implies that the total number of neighbors that vertices of U_{t} have in V_{j}^{\prime} is only $O\left(\tau \frac{\Delta}{\log n}\right)=o(\Delta)$. Hence when we reduce V_{j}^{\prime} to V_{j}^{*} by deleting all neighbors of U_{t}, and all vertices that have $>\frac{\Delta}{\log \Delta}$ neighbors in $V_{J_{t-1}}$, the total effect of U_{t} is $o(\Delta)$, not $(1+o(1)) \Delta$ as above. Combining this with properties (i) and (ii), we see that $\left|V_{j}^{*}\right| \geq\left|V_{j}^{\prime}\right|-o(\Delta)-\frac{\epsilon}{4} \Delta \geq \frac{\epsilon}{6} \Delta$, so the claim is still true. This is the second and final place in which
the proofs of the two lemmas differ, and explains why Lemma 3.4 holds with part sizes of only $\frac{\epsilon}{2} \Delta$, while Lemma 3.3 requires part sizes of $(1+\epsilon) \Delta$.

Returning to the proof of Lemma 3.3, randomly select a subset $W_{i} \subset V_{i}^{*}$ for each $i \in D$ by independently choosing each remaining vertex of V_{i}^{*} with probability $\frac{\log ^{3} \Delta}{\Delta}$, and let $W=\bigcup_{i \in D} W_{i}$. Define the following families of bad events. For each $i \in D$, let A_{i} be the event that $\left|W_{i}\right|<\frac{\epsilon}{8} \log ^{3} \Delta$, and for each $v \in V_{D}^{*}$, let B_{v} be the event that v has more than $2 \log ^{2} \Delta$ neighbors in W. Also, for each $j \notin I_{t-1}$, let C_{j} be the event that the collection of vertices in W that are not locally big with respect to V_{j} has neighborhood in V_{j} of size $>300 \frac{\Delta}{\log n}$. We use the Lovász Local Lemma to show that with positive probability, none of these events happen.

Let us begin by bounding the dependencies. Say that A_{i} lives on V_{i}^{*}, B_{v} lives on the neighborhood of v in V_{D}^{*}, and C_{j} lives on the neighborhood of V_{j} in V_{D}^{*}. Note that each of our events is completely determined by the outcomes of the vertices in the set that it lives on. Hence events living on disjoint sets are independent. A routine calculation shows that for any given event, at most $O\left(\Delta^{3}\right)$ other events can live on sets overlapping with its set; the worst case is that an event of C-type can live on a set that overlaps with the sets of $\leq(1+\epsilon) \Delta^{3}$ other C-type events.

It remains to show that each of $\mathbb{P}\left[A_{i}\right], \mathbb{P}\left[B_{v}\right]$, and $\mathbb{P}\left[C_{j}\right]$ are $\ll \Delta^{-3}$. The size of W_{i} is distributed binomially with expectation $\geq \frac{\epsilon}{6} \log ^{3} \Delta$, so by a Chernoff bound, $\mathbb{P}\left[A_{i}\right]<e^{-\Omega\left(\log ^{3} \Delta\right)} \ll \Delta^{-3}$. Similarly, for each $v \in V_{D}^{*}$ the expected value of the degree of v in W is at most $\frac{\Delta}{\log \Delta} \cdot \frac{\log ^{3} \Delta}{\Delta}=\log ^{2} \Delta$ so $\mathbb{P}\left[B_{v}\right]<e^{-\Omega\left(\log ^{2} \Delta\right)} \ll \Delta^{-3}$. For $\mathbb{P}\left[C_{j}\right]$, we proceed more carefully. For each $0 \leq k \leq 8$, let Y_{k} be the set of vertices in V_{D}^{*} that have between $\frac{\Delta}{\Delta^{(k+1) / 8} \log n}$ and $\frac{\Delta}{\Delta^{k / 8} \log n}$ many neighbors in V_{j}. By property (iii), the number of edges between $V_{I_{t-1}}$ and V_{j} is at most $\left(\beta \log ^{2} n\right)\left|V_{j}\right| \leq 2 \beta \Delta \log ^{2} n$. Therefore, $\left|Y_{k}\right| \leq 2 \beta \Delta^{(k+1) / 8} \log ^{3} n$. However, since $\Delta \geq n p \geq \log ^{4} n$, the probability that at least $30 \Delta^{k / 8}$ vertices in Y_{k} are selected to be in W is bounded by

$$
\begin{aligned}
\mathbb{P} \leq\binom{ 2 \beta \Delta^{(k+1) / 8} \log ^{3} n}{30 \Delta^{k / 8}}\left(\frac{\log ^{3} \Delta}{\Delta}\right)^{30 \Delta^{k / 8}} & \leq\left(\frac{e \cdot 2 \beta \Delta^{1 / 8} \log ^{3} n}{30} \cdot \frac{\log ^{3} \Delta}{\Delta}\right)^{30 \Delta^{k / 8}} \\
& \leq\left(\frac{e \beta}{15} \cdot \frac{\log ^{3} \Delta}{\Delta^{1 / 8}}\right)^{30 \Delta^{k / 8}} \ll \Delta^{-3}
\end{aligned}
$$

Therefore, with probability $1-o\left(\Delta^{-3}\right)$, the collection of vertices in W that are not locally big with respect to V_{j} has neighborhood in V_{j} of size less than $\sum_{k=0}^{8} 30 \Delta^{k / 8} \frac{\Delta}{\Delta^{k / 8} \log n}<300 \frac{\Delta}{\log n}$, and hence $\mathbb{P}\left[C_{j}\right] \ll \Delta^{-3}$.

By the Lovász Local Lemma, there exist subsets $W_{i} \subset V_{i}{ }^{*}$ for each $i \in D$ such that none of the A_{i}, B_{v}, or C_{j} hold. In particular, every $\left|W_{i}\right|$ is greater than $2 e$ times the maximum degree in the subgraph induced by W, so Proposition 3.7 implies that there exists an independent transversal T^{\prime} there. Letting $T_{t-1}=T_{t} \cup T^{\prime}$, we obtain an independent transversal on $V_{I_{t-1}}$. Since $T^{\prime} \subset W$ and no C_{j} hold, we have that for every $j \notin I_{t-1}$, the vertices in $T_{t} \cup T^{\prime}$ which are not locally big with respect to V_{j} have together at most $300(\sigma-t) \frac{\Delta}{\log n}+300 \frac{\Delta}{\log n}=300(\sigma-(t-1)) \frac{\Delta}{\log n}$ neighbors in V_{j}, i.e., $T_{t} \cup T^{\prime}$ satisfies \mathbf{P}_{t-1}.

4 Concluding remarks

A simple modification of our argument yields a slight improvement of Theorem 1.2, and shows that the theorem is in fact true for all $p \gg \frac{\log ^{3+\alpha}}{n}$, for any fixed $\alpha>0$. We decided not to prove that result here in such generality for the sake of clarity of presentation. Also, it is not very difficult, using our approach, to prove a statement similar to Theorem 1.2 for the sparse case, when $p \sim \frac{c}{n}$ for some constant c. However, these extensions are not as interesting as the main problem that remains open, which is to study the behavior of the strong chromatic number of random graphs when $p \leq n^{-1 / 2}$. We are certain that the strong chromatic number of the random graph $G_{n, p}$ is a.s. $(1+o(1)) \Delta$ for every $p \geq \frac{c}{n}$ for some constant c. It would also be very interesting to determine all the values of the edge probability p for which almost surely $s \chi\left(G_{n, p}\right)$ is precisely $\Delta+1$.

Acknowledgments. The authors would especially like to thank Bruce Reed for interesting remarks and useful insights at the early stage of this project. The idea of studying the strong chromatic number of random graphs originated from a conversation the second author had with Bruce Reed, during which it was realized that the strong chromatic number of dense random graphs should be $\Delta+1$. We would also like to thank Michael Krivelevich for stimulating discussions.

References

[1] R. Aharoni, E. Berger, and R. Ziv, Independent systems of representatives in weighted graphs, Combinatorica, to appear.
[2] R. Aharoni and R. Holzman, private communication, 2005.
[3] N. Alon, Problems and results in extremal combinatorics, Part I, Discrete Mathematics 273 (2003), 31-53.
[4] N. Alon, The linear arboricity of graphs, Israel Journal of Mathematics 62 (1988), 311-325.
[5] N. Alon, The strong chromatic number of a graph, Random Structures and Algorithms $\mathbf{3}$ (1992), 1-7.
[6] N. Alon and M. Krivelevich, The concentration of the chromatic number of random graphs, Combinatorica 17 (1997), 303-313.
[7] N. Alon and J. Spencer, The Probabilistic Method, 2nd ed., Wiley, New York, 2000.
[8] T. Bohman and R. Holzman, On a list coloring conjecture of Reed, Journal of Graph Theory 41 (2002), 106-109.
[9] B. Bollobás, Random Graphs, 2nd ed., Cambridge Studies in Advanced Mathematics, 73, Cambridge University Press, Cambridge, 2001.
[10] B. Bollobás, P. Erdős, and E. Szemerédi, On complete subgraphs of r-chromatic graphs, Discrete Mathematics 13 (1975), 97-107.
[11] M. Fellows, Transversals of vertex partitions in graphs, SIAM Journal on Discrete Mathematics 3 (1990), 206-215.
[12] H. Fleischner and M. Stiebitz, A solution to a colouring problem of P. Erdős. Discrete Mathematics 101 (1992), 39-48.
[13] H. Fleischner and M. Stiebitz, Some remarks on the cycle plus triangles problem, in: The Mathematics of Paul Erdős, vol. II, Algorithms and Combinatorics 14 (1997), 136-142.
[14] P. Haxell, A note on vertex list colouring, Combinatorics, Probability and Computing 10 (2001), 345-348.
[15] P. Haxell, On the strong chromatic number, Combinatorics, Probability and Computing 13 (2004), 857-865.
[16] P. Haxell, private communication, 2005.
[17] P. Haxell and T. Szabó, Odd transversals are odd, Combinatorics, Probability and Computing 15 (2006), 193-211.
[18] G. Jin, Complete subgraphs of r-partite graphs, Combinatorics, Probability and Computing 1 (1992), 241-250.
[19] P. Loh and B. Sudakov, Independent transversals in locally sparse graphs, Journal of Combinatorial Theory Series B, to appear.
[20] T. Łuczak, A note on the sharp concentration of the chromatic number of random graphs, Combinatorica 11 (1991), 295-297.
[21] D. Matula, On the complete subgraphs of a random graph, in: Proc. Second Chapel Hill Conf. on Combinatorial Mathematics and its Applications, Univ. North Carolina, Chapel Hill, NC, 1970, 356-369.
[22] R. Meshulam, Domination numbers and homology, Journal of Combinatorial Theory Series A 102 (2003) 321-330.
[23] B. Reed, The list colouring constants, Journal of Graph Theory 31 (1999), 149-153.
[24] B. Reed and B. Sudakov, Asymptotically the list colouring constants are 1, Journal of Combinatorial Theory Series B 86 (2002), 27-37.
[25] E. Shamir and J. Spencer, Sharp concentration of the chromatic number on random graphs $G_{n, p}$, Combinatorica 7 (1987), 121-129.
[26] T. Szabó and G. Tardos, Extremal problems for transversals in graphs with bounded degree, Combinatorica 26 (2006), 333-351.
[27] R. Yuster, Independent transversals in r-partite graphs, Discrete Mathematics 176 (1997), 255261.

[^0]: *Department of Mathematics, Princeton University, Princeton, NJ 08544. E-mail: ploh@math.princeton.edu. Research supported in part by a Fannie and John Hertz Foundation Fellowship, an NSF Graduate Research Fellowship, and a Princeton Centennial Fellowship.
 ${ }^{\dagger}$ Department of Mathematics, Princeton University, Princeton, NJ 08544, and Institute for Advanced Study, Princeton. E-mail: bsudakov@math.princeton.edu. Research supported in part by NSF CAREER award DMS-0546523, NSF grant DMS-0355497, USA-Israeli BSF grant, Alfred P. Sloan fellowship, and the State of New Jersey.

