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On the strong chromatic number of random graphs

Po-Shen Loh ∗ Benny Sudakov †

Abstract

Let G be a graph with n vertices, and let k be an integer dividing n. G is said to be strongly

k-colorable if for every partition of V (G) into disjoint sets V1 ∪ . . . ∪ Vr, all of size exactly k, there

exists a proper vertex k-coloring of G with each color appearing exactly once in each Vi. In the

case when k does not divide n, G is defined to be strongly k-colorable if the graph obtained by

adding k
⌈

n
k

⌉

− n isolated vertices is strongly k-colorable. The strong chromatic number of G is

the minimum k for which G is strongly k-colorable. In this paper, we study the behavior of this

parameter for the random graph Gn,p. In the dense case when p ≫ n−1/3, we prove that the strong

chromatic number is a.s. concentrated on one value ∆ + 1, where ∆ is the maximum degree of the

graph. We also obtain several weaker results for sparse random graphs.

1 Introduction

Let G be a graph, and let V1, . . . , Vr be disjoint subsets of its vertex set. An independent transversal

with respect to {Vi}ri=1 is an independent set in G which contains exactly one vertex from each Vi.

The problem of finding sufficient conditions for the existence of an independent transversal, in terms

of the ratio between the part sizes and the maximum degree ∆ of the graph, dates back to 1975,

when it was raised by Bollobás, Erdős, and Szemerédi [10]. Since then, much work has been done

[1, 3, 5, 14, 15, 17, 18, 22, 26, 27], and this basic concept has also appeared in several other contexts,

such as linear arboricity [4], vertex list coloring [23, 24, 8], and cooperative coloring [2, 19]. In the

general case, it was proved by Haxell [14] that an independent transversal exists as long as all parts

have size at least 2∆. The sharpness of this bound was shown by Szabó and Tardos [26], extending

earlier results of [18] and [27]. On the other hand, we proved in [19] that the upper bound can be

further reduced to (1 + o(1))∆ if no vertex has more than o(∆) neighbors in any single part. Such a

condition arises naturally in certain applications, e.g., vertex list coloring.

In the case when all of the Vi are of the same size k, it is natural to ask when it is possible to

find not just one, but k disjoint independent transversals with respect to the {Vi}. This is closely

related to the following notion of strong colorability. Given a graph G with n vertices and a positive

integer k dividing n, we say that G is strongly k-colorable if for every partition of V (G) into disjoint

sets V1 ∪ . . . ∪ Vr, all of size exactly k, there exists a proper vertex k-coloring of G with each color

appearing exactly once in each Vi. Notice that G is strongly k-colorable iff the chromatic number of
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any graph obtained from G by adding a union of vertex disjoint k-cliques is k. If k does not divide n,

then we say that G is strongly k-colorable if the graph obtained by adding k
⌈

n
k

⌉

−n isolated vertices is

strongly k-colorable. The strong chromatic number of G, denoted sχ(G), is the minimum k for which

G is strongly k-colorable.

The concept of strong chromatic number first appeared independently in work by Alon [4] and

Fellows [11]. It was also the crux of the longstanding “cycle plus triangles” problem popularized by

Erdős, which was to show that the strong chromatic number of the cycle on 3n vertices is three. That

problem was solved by Fleischner and Stiebitz [12]. The strong chromatic number is known [11] to

be monotonic in the sense that strong k-colorability implies strong (k + 1)-colorability. It is also easy

to see that sχ(G) must always be strictly greater than the maximum degree ∆: simply take V1 to be

the neighborhood of a vertex of maximal degree, and partition the rest of the vertices arbitrarily. The

intriguing question of bounding the strong chromatic number in terms of the maximum degree has not

yet been answered completely. Alon [5] showed that there exists a constant c such that sχ ≤ c∆ for

every graph. Later, Haxell [15] improved the bound by showing that it is enough to use c = 3, and in

fact even c = 3 − ǫ for ǫ up to 1/4 [16]. On the other hand, Fleischner and Stiebitz [13] observed that

the disjoint union of complete bipartite graphs K∆,∆ cannot be strongly (2∆ − 1)-colored. Indeed,

put each part of one of the K∆,∆ into the sets V1 and V2, respectively. Then these 2∆ vertices should

get different colors. It is believed that this lower bound is tight and the strong chromatic number of

any graph with maximum degree ∆ should be at most 2∆.

It is natural to wonder what is the asymptotic behavior of the strong chromatic number for the

random graph Gn,p, relative to the maximum degree of the graph. As usual, Gn,p is the probability

space of all labeled graphs on n vertices, where every edge appears randomly and independently with

probability p = p(n). We say that the random graph possesses a graph property P almost surely, or

a.s. for brevity, if the probability that Gn,p satisfies P tends to 1 as n tends to infinity. One of the

most interesting phenomena discovered in the study of random graphs is that many natural graph

invariants are highly concentrated (see, e.g., [21] for the result on the clique number and [25, 20, 6] for

the concentration of the chromatic number). In this paper we show that the strong chromatic number

is another example of a tightly concentrated graph parameter. For dense random graphs, it turns out

that we can concentrate sχ(Gn,p) on a single value, and for some smaller values of p we were only

able to determine sχ(Gn,p) asymptotically. In the statement of our first result, and in the rest of this

paper, the notation f(n) ≫ g(n) means that f/g → ∞ together with n. Also, all logarithms are in

the natural base e.

Theorem 1.1 Let ∆ be the maximum degree of the random graph Gn,p, where p < 1 − θ for any

arbitrary constant θ > 0.

(i) If p ≫
(

log4 n
n

)1/3
, then almost surely the strong chromatic number of Gn,p equals ∆ + 1.

(ii) If p ≫
(

logn
n

)1/2
, then a.s. the strong chromatic number of Gn,p is (1 + o(1))∆.

Unfortunately, our approach breaks down completely when p ≪ n−1/2. However, for this range of

p, we have a different argument which shows how to find at least one independent transversal.
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Theorem 1.2 Let ∆ be the maximum degree of the random graph Gn,p. If p ≥ log4 n
n , then almost

surely every collection of disjoint subsets V1, . . . , Vr of Gn,p with all |Vi| ≥ (1 + o(1))∆ has an inde-

pendent transversal.

This rest of this paper is organized as follows. In Section 2, we prove both parts of our first

theorem concerning the strong chromatic number of relatively dense random graphs. We then shift

our attention to the sparser case, proving our second result about transversals in Section 3. The last

section of our paper contains some concluding remarks. Throughout this exposition, we will make no

attempt to optimize absolute constants, and will often omit floor and ceiling signs whenever they are

not crucial, for the sake of clarity of presentation.

2 Strong chromatic number

In this section, we prove Theorem 1.1, which determines the value of the strong chromatic number of

a rather dense random graph. To this end, we first prove several lemmas that establish certain useful

properties of random graphs. We will use these properties to find a partition of Gn,p into independent

transversals.

2.1 Properties of random graphs

Lemma 2.1 Let θ > 0 be an arbitrary fixed constant. If
√

logn
n ≪ p < 1 − θ then a.s. Gn,p has the

following properties.

(i) No pair of distinct vertices has more than (1 + o(1))np2 common neighbors.

(ii) The maximum degree is strictly between np and 1.01np, and there is a unique vertex of maximum

degree.

(iii) The gap between the maximum degree and the next largest degree is at least
√
np

logn .

Proof. For the first property, fix an arbitrary constant δ > 0 and two distinct vertices u and v. Their

codegree X is binomially distributed with parameters n− 2 and p2. Thus by the Chernoff bound (see,

e.g., Appendix A in [7]), P
[

X ≥ (1 + δ)np2
]

≤ e−Θ(δ2np2) = o(n−2). Taking a union bound over all

O(n2) choices for u and v, we find that the probability that the first property is not satisfied tends to

0 as n → ∞. The second and third claims are special cases of Corollary 3.13 and Theorem 3.15 in [9],

respectively. �

Lemma 2.2 Let α > 0 be an arbitrary fixed constant and let
√

logn
n ≪ p ≤ 3

5 . Then almost surely

Gn,p does not contain a set U of size αnp and 50 log n sets Ti, |Ti| ≤
⌈

1
p

⌉

, such that all the sets are

disjoint and for every i all but at most αnp/50 vertices in U have neighbors in Ti.

Proof. Fix sets U and {Ti} as specified above. If all but at most αnp/50 vertices in U have neighbors

in Ti, we say for brevity that Ti almost dominates U . For a given vertex v, the probability that it has

a neighbor in Ti is 1 − (1 − p)|Ti| ≤ 1 − (1 − p)⌈1/p⌉ < 7/8 for all p ≤ 3/5, since 1 − (1 − p)⌈1/p⌉ is

maximal in that range when p → 1/2 from below. Therefore, by a union bound we have
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P [Ti almost dominates U ] ≤
(

αnp

αnp− αnp/50

)(

7

8

)αnp−αnp/50

=

(

αnp

αnp/50

)(

7

8

)49αnp/50

≤
(

50e
(7

8

)49
)αnp/50

< 3−αnp/50.

Since all sets Ti are disjoint, the events that Ti and Tj almost dominate U are independent. This

implies that

P [every Ti almost dominates U ] ≤
(

3−αnp/50
)50 logn

= 3−αnp logn.

Using that log n/p = o(np) and ⌈1/p⌉ ≤ 2/p, we can bound the probability that there is a choice of

{Ti} and U which violates the assertion of the lemma by

P ≤
(

n

αnp

)[

2

p

(

n

2/p

)]50 logn

3−αnp logn

≤ nαnp

(

2

p

)50 logn

n
100 log n

p 3−αnp logn

= e(1+o(1))αnp logn · 3−αnp logn = o(1),

so we are done. �

Lemma 2.3 Let α > 0 be an arbitrary fixed constant and let
√

logn
n ≪ p ≤ 3

5 . Then almost surely

every collection of at most
⌈

1
p

⌉

disjoint subsets of size αnp in Gn,p has an independent transversal.

Proof. Fix a collection of disjoint subsets V1, . . . , Vr, r ≤
⌈

1
p

⌉

, of Gn,p, each of size αnp. A partial

independent transversal T is an independent set with at most one vertex in every Vi, and we say that

it almost dominates some part if all but at most αnp/50 vertices in that part have neighbors in T .

For every Vi, let {Tij} be a maximal collection of pairwise disjoint partial independent transversals,

each of which almost dominates Vi. Then, by Lemma 2.2, a.s. the total number of Tij must be at most

r(50 log n). Delete all the sets Tij from the graph, and let {V ′
i } be the remaining parts. Clearly, it

suffices to find an independent transversal among the {V ′
i }.

Since log n/p = o(np) and each Tij is a partial transversal, each part loses a total of ≤ r(50 log n) ≤
50
⌈

1
p

⌉

log n = o(np) vertices from the deletions. We can now use the greedy algorithm to find an

independent transversal. Take v1 to be any remaining vertex in V ′
1 , and iterate as follows. Suppose

that we already have constructed a partial independent transversal {v1, . . . , vℓ−1} such that vi ∈ V ′
i for

all i < ℓ. This partial independent transversal does not almost dominate Vℓ, or else it would contradict

the maximality of {Tℓj} above. So, there are at least αnp/50 choices for vℓ ∈ Vℓ that would extend the

partial independent transversal {v1, . . . , vℓ−1}. Yet Vℓ lost only o(np) vertices in the deletion process,

so there is still a positive number of choices for vℓ ∈ V ′
ℓ as well. Proceeding in this way, we find a

complete independent transversal. �

Lemma 2.4 Let
√

logn
n ≪ p ≤ 3

5 . Then the following statement holds almost surely. For every choice

of s and t that satisfies np/2 ≤ s ≤ 2np and 40 log n ≤ t ≤ s − 40
⌈

1
p

⌉

log n, Gn,p does not contain a

collection of disjoint subsets U, T1, . . . , Tt such that |U | = s, each of the |Ti| ≤
⌈

1
p

⌉

, and at least s− t

vertices of U have neighbors in every Ti.
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Proof. Fix some (s, t) within the above range. As we saw in the proof of Lemma 2.2, for a given

vertex v the probability that it has a neighbor in Ti is 1 − (1 − p)|Ti| ≤ 1 − (1 − p)⌈1/p⌉ < 7/8, and by

disjointness these events are independent for all 1 ≤ i ≤ t. Therefore we can bound the the probability

that there is a collection of sets which satisfies the above condition by

P ≤
(

n

s

)[

2

p

(

n

2/p

)]t

2s
(

7

8

)(s−t)t

≤ ns

s!

(

n2/p
)t

2s
(

7

8

)(s−t)t

≤ ns+2t/p

(

7

8

)(s−t)t

. (1)

Throughout this bound, we use
⌈

1
p

⌉

≤ 2
p . The first binomial coefficient and the quantity in the square

brackets bound the number of ways to choose the sets U and {Ti}. The 2s bounds the number of ways

to select a subset of size s− t from U , and the final factor bounds the probability that all vertices in

this subset have neighbors in every Ti.

The logarithm of (1) is quadratic in t with positive t2-coefficient. Therefore, the right hand side of

(1) is largest when t is minimum or maximum in its range 40 log n ≤ t ≤ s− 40
⌈

1
p

⌉

log n. Let us begin

with the small end, i.e., t = 40 log n. Then, since log n/p ≪ np and s ≥ np/2, we have that

ns+2t/p

(

7

8

)(s−t)t

≤ e(1+o(1))s logn

(

7

8

)(40−o(1))s logn

≤ e(1+o(1))s logn e−(4−o(1))s logn = o
(

n−2
)

.

Similarly, if t = s− 40
⌈

1
p

⌉

log n, the bound is

ns+2t/p

(

7

8

)(s−t)t

≤ e3s logn/p
(

7

8

)(40−o(1))s
⌈

1
p

⌉

logn

≤ e3s logn/p e−(4−o(1))s
⌈

1
p

⌉

logn = o
(

n−2
)

.

Since the number of choices for t and s is at most n2, we conclude that the probability that the

assertion of the lemma is violated is o(1). �

2.2 Proof of Theorem 1.1

We start by proving part (i) of Theorem 1.1. If ∆ is the maximum degree of Gn,p, then the strong

chromatic number must be at least ∆ + 1, as we already mentioned in the introduction. Suppose that

G is a graph obtained from Gn,p by adding (∆+1)⌈ n
∆+1⌉−n isolated vertices, and we have a partition

of V (G) into V1 ∪ . . . ∪ Vr with every |Vi| = ∆ + 1. By Lemma 2.1, ∆ ≥ np almost surely, so this

implies that r ≤
⌈

1
p

⌉

. Note that if 3/5 ≤ p < 1 − θ, then r ≤ 2 and the theorem is an immediate

consequence of the following lemma.

Lemma 2.5 Let 3/5 ≤ p < 1 − θ, where θ > 0 is an arbitrary fixed constant, and let V (G) = V1 ∪ V2

be a partition of the vertices of G described above, with |V1| = |V2| = ∆ + 1. Then a.s. V1 can be

perfectly matched to V2 via non-edges of G.
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Proof. Without loss of generality, we may assume that V1 contains at most n/2 original vertices of

Gn,p. Let B ⊂ V1 be those original vertices. The rest of V1 consists of isolated vertices, so any perfect

matching of B to V2 trivially extends to a full perfect matching between V1 and V2. Therefore, by

Hall’s theorem, it suffices to verify that each subset A ⊂ B has at least |A| non-neighbors in V2. If

A = {v} is a single vertex, this is immediate because |V2| > ∆ ≥ d(v). For larger A, the Hall condition

translates into checking that ∆ + 1− |N(A)| ≥ |A|, where N(A) denotes the set of common neighbors

of A in V2. Since |A| ≥ 2 we have, by Lemma 2.1(i), that the size of N(A) is at most (1 + o(1))np2.

So the Hall condition is satisfied for all A with 2 ≤ |A| ≤ θnp/2 < ∆ − (1 + o(1))np2.

Let c be a constant for which p− 2pc > 1/2 for all p in the range [3/5, 1− θ). One can easily show

using a Chernoff bound that a.s. every set of c distinct vertices in Gn,p has at most 2npc common

neighbors. This implies that the Hall condition is also satisfied for all A of size at least c, since then

∆ + 1 − |N(A)| > np− 2npc > n/2 ≥ |B| ≥ |A|.

Together with the previous paragraph, this completes the proof. �

It remains to consider p < 3/5, so we will assume that bound on p for the remainder of this section.

We use the following strategy to produce a partition of ∪Vi into a disjoint union of independent

transversals.

1. Find an independent transversal through the unique vertex of maximum degree ∆, and delete

this transversal from the graph.

2. As long as there exists a vertex v which has at least 0.9np neighbors in some part Vi, find an

independent transversal T through v, and delete T from the graph.

3. As long as there exists a minimal partial independent transversal T such that all but at most

np/100 vertices in some part Vi have neighbors in T , split T into two nonempty (|T | ≥ 2 because

of Step 2) disjoint partial independent transversals T1 ∪ T2. Note that by minimality of T , each

part Vi contains a subset Ui of at least np/100 vertices which have no neighbors in T1. By

Lemma 2.3, there is an independent transversal through {Ui}, which can be used to extend T1

to a full independent transversal T ′
1. Delete T ′

1 from the graph, and then perform the same

completion/deletion procedure for T2.

4. Finally, we construct the rest of the independent transversals, building them simultaneously from

V1 to Vr using Hall’s matching theorem. Our deletions in Steps 1–3, together with the properties

of Gn,p which we established in the previous subsection, will ensure that this is possible.

The following lemma, which we prove later, ensures that we will indeed find the independent

transversals claimed in Steps 1–2.

Lemma 2.6 Let V1 ∪ . . . ∪ Vr be the above partition of V (G), and let x be any vertex in this graph.

• If x is the unique vertex of maximum degree ∆, then G contains an independent transversal

through x.

6



• If x is not of maximum degree, then for all k ≤
⌈

1
p

⌉

and for any collection of subsets V ′
i ⊂ Vi,

|V ′
i | = ∆+1−k, one of which contains x, there exists an independent transversal through x with

respect to {V ′
i }.

Let us bound the number of independent transversals we delete in the first 3 steps. Note that if

two vertices have at least 0.9np neighbors in the same Vi, since by Lemma 2.1 |Vi| ≤ ∆ + 1 ≤ 1.01np,

their codegree will be at least 0.79np ≥ 1.01np2, contradicting Lemma 2.1. Therefore, during the

first two steps, we will delete at most r + 1 ≤
⌈

1
p

⌉

+ 1 transversals. Next, suppose that after deleting

O
(⌈

1
p

⌉

log n
)

independent transversals from G, we have that for some set T all but at most np/100

vertices of some Vi have neighbors in T . Since
⌈

1
p

⌉

log n ≪ np, this certainly implies that the number

of vertices in the original Vi with no neighbors in T was bounded by np/50. Together with Lemma 2.2,

this ensures that for each fixed Vi, 1 ≤ i ≤ r, we never repeat Step 3 more than 50 log n times. Since

each iteration deletes two independent transversals and r ≤
⌈

1
p

⌉

, we conclude that by the time we

reach Step 4, we have deleted at most 1 +
⌈

1
p

⌉

+ 100
⌈

1
p

⌉

log n < 110
⌈

1
p

⌉

log n independent transversals

from G.

Let us now describe Step 4 in more detail. At this point, all parts Vi have the same size |Vi| = s =

∆ + 1 − k, where k < 110
⌈

1
p

⌉

log n = o(np) is the total number of independent transversals deleted

so far. We build the remaining s disjoint independent transversals simultaneously as follows. Start

s partial independent transversals {Ti}si=1 by arbitrarily putting one vertex of V1 into each Ti. Now

suppose we already have disjoint partial independent transversals {Ti}si=1 through V1, . . . , Vℓ. Create

an auxiliary bipartite graph H whose right side is Vℓ+1 and left side has s vertices, identified with the

transversals {Ti}. Join the i-th vertex on the left side with a vertex v ∈ Vℓ+1 if and only if v has no

neighbors in Ti. Then, a perfect matching in this graph will yield a simultaneous extension of each Ti

which covers Vℓ+1.

We ensure a perfect matching in H by verifying the Hall condition, i.e., we show that for every

t ≤ s, every set of t vertices on the left side of H has neighborhood on the right side of size at least

t. Observe that after Step 3, for every Ti there are more than np/100 vertices in Vℓ+1 which have

no neighbors in Ti. Therefore every vertex on the left side of H has degree greater than np/100 and

hence the Hall condition is trivially satisfied for all t ≤ np/100. If the Hall condition fails for some

np/100 < t ≤ s − 40
⌈

1
p

⌉

log n, then by definition of H, there are t partial independent transversals

among {Ti} and a subset W of Vℓ+1 of size greater than s−t such that every vertex of W has neighbors

in every one of these transversals (i.e., is not adjacent to them in H). This contradicts Lemma 2.4,

so the Hall condition also holds for these t. It remains to check the case when t > s − 40
⌈

1
p

⌉

log n.

Note that given any vertex v in Vℓ+1 and any collection of disjoint partial independent transversals,

the number of them in which v can have a neighbor is at most the degree of v. However, we deleted

the maximum degree vertex in Step 1, so by Lemma 2.1 d(v) ≤ ∆ −
√
np

logn . Since p ≫
(

log4 n
n

)1/3
,

this is less than ∆ − 150
⌈

1
p

⌉

log n ≤ s − 40
⌈

1
p

⌉

log n. Therefore, in the auxiliary graph H, any set of

t > s − 40
⌈

1
p

⌉

log n vertices on the left side has neighborhood equal to the entire right side. Hence

Hall’s condition is satisfied for all t and we can extend our transversals. This completes the proof,

since one can iterate this extension procedure to convert all Ti into full independent transversals. �

Proof of Lemma 2.6. First, consider the case when x is not the vertex of maximum degree ∆ and

we have a collection of subsets V ′
i ⊂ Vi of size ∆ + 1 − k, where k ≤

⌈

1
p

⌉

. Without loss of generality,

7



assume that x ∈ V ′
1 , and recall that by Lemma 2.1, the maximum degree ∆ satisfies np < ∆ < 1.01np.

If the number of neighbors of x in every set V ′
i , i ≥ 2, is at most 0.96np then delete them and denote

the resulting sets V ′′
i . Since each V ′′

i still has size at least ∆ + 1 −
⌈

1
p

⌉

− 0.96np > 0.03np, by Lemma

2.3 there exists a partial independent transversal through V ′′
2 , . . . , V

′′
r , which together with x provides

a full independent transversal containing x. Next, suppose that x has at least 0.96np neighbors in

some part, say V ′
2 . Since the degree of x is less than ∆ < 1.01np, it must then have less than 0.05np

neighbors in every other V ′
i . Furthermore, since x is not of maximum degree and p ≫

(

log4 n
n

)1/3
,

Lemma 2.1 implies that (∆ + 1) − d(x) ≥
√
np

logn ≫ 2⌈1p⌉ ≥ r + k. Therefore there are more than r

vertices in V ′
2 not adjacent to x. Also by Lemma 2.1, the codegree of every pair of vertices is at most

1.01np2 < 0.61np, so in particular no two vertices can both have ≥ 0.9np neighbors in any given V ′
i .

By the pigeonhole principle, there must be a vertex y ∈ V ′
2 not adjacent to x with less than 0.9np

neighbors in each of the other V ′
i . That means that every other part has less than 0.05np neighbors

of x and 0.9np neighbors of y. Since |V ′
i | ≥ ∆ −

⌈

1
p

⌉

> 0.99np, there are still at least 0.04np vertices

left in each V ′
i , i ≥ 3, that are non-adjacent to both x and y. Thus we can apply Lemma 2.3 as above

to complete {x, y} into an independent transversal.

The case when x is the vertex of maximum degree has a similar proof but involves one more step.

As in the previous paragraph, we may assume that x ∈ V1 and has at least 0.96np neighbors in V2, or

else we are done. Let W2 be the set of vertices in V2 that are not adjacent to x. Since |V2| = ∆ + 1, we

have W2 6= ∅. If there exists some y ∈ W2 that has < 0.9np neighbors in each of the other Vi, i ≥ 3,

then we can complete {x, y} to a full independent transversal as above. Otherwise, by Lemma 2.1 the

codegree of every pair of vertices is at most 1.01np2 < 0.61np and hence each y ∈ W2 is associated

with a distinct part in which it has ≥ 0.9np neighbors. Yet x has exactly |W2| − 1 neighbors among

the other parts Vi, i ≥ 3, so there must exist y ∈ W2 such that x has no neighbors in the part (without

loss of generality it is V3) in which y has ≥ 0.9np neighbors. Since x is the unique vertex of maximum

degree and p ≫
(

log4 n
n

)1/3
, Lemma 2.1 gives

d(y) ≤ ∆ −
√
np

log n
< ∆ −

⌈

1

p

⌉

≤ ∆ − r.

Therefore V3 contains a subset W3 of at least r + 1 vertices which are not adjacent to both x and y.

Since for every i ≥ 4 at most one vertex in W3 can have more than 0.81 neighbors in Vi (by another

codegree argument), the pigeonhole principle ensures that there is a vertex z ∈ W3 such that z

has at most 0.81np neighbors in each Vi, i ≥ 4. Also note that x has less than 0.05np neighbors

in each such Vi, and y has less than 0.11np. Therefore every Vi, i ≥ 4, has in total less than

0.05np + 0.11np + 0.81np < (∆ + 1) − 0.03np neighbors of any of {x, y, z}, so we can apply Lemma

2.3 as before to complete {x, y, z} into an independent transversal. �

Proof of Theorem 1.1 (ii). We may assume that p < n−1/4 because the case p ≥ n−1/4 is already

a consequence of part (i) of this theorem. Fix an arbitrary ǫ > 0. Suppose that G is a graph obtained

from Gn,p by adding (1 + ǫ)∆
⌈

n
(1+ǫ)∆

⌉

− n isolated vertices and V (G) is partitioned into V1 ∪ . . . ∪ Vr

with every |Vi| = (1 + ǫ)∆. Since ∆ ≥ np a.s., we have that r ≤
⌈

1
p

⌉

. We use the same Steps 1–4 to

produce a partition of ∪Vi into a disjoint union of independent transversals. Actually Steps 1–2 can

now be made into a single step, since there is no need here to treat the vertex of maximum degree
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separately. The codegree argument implies again that we perform Steps 1–2 at most r + 1 times.

Moreover, the existence of the independent transversals claimed in these two steps follows easily from

Lemma 2.3. Indeed, suppose that we have deleted O
(⌈

1
p

⌉)

independent transversals from G. Since

p ≫
(

logn
n

)1/2
, we have 1/p = o(np) and thus every part still has size at least (1 + ǫ/2)∆. Let x be

an arbitrary remaining vertex. Since the degree of x is at most ∆, every part still contains at least

ǫ∆/2 vertices non-adjacent to x. By Lemma 2.3, we can find an independent transversal through these

vertices which will extend {x}.

There is no change in the analysis of Step 3 and the same argument as in the proof of part (i)

shows that the total number of transversals deleted from G in Steps 1–3 is at most O
(⌈

1
p

⌉

log n
)

. Since

p ≫
(

logn
n

)1/2
, this number is o(np), and therefore in the beginning of Step 4 each part Vi still has

size s ≥ (1 + ǫ/2)∆. Recall that in Step 4 we build the remaining s disjoint independent transversals

simultaneously, extending them one vertex at time to cover each new part Vℓ+1. So again we define an

auxiliary bipartite graph H whose left part corresponds to the partial independent transversals {Ti}
on V1, . . . , Vℓ, right part is Vℓ+1, and the i-th vertex on the left is adjacent to v ∈ Vℓ+1 iff v has no

neighbors in transversal Ti. A perfect matching in H gives a simultaneous extension of each Ti.

Hence it is enough to verify the Hall condition for H, i.e., we must show that for all t ≤ s,

every set of t vertices on the left has at least t neighbors on the right. The proof that this holds

for all t ≤ s − 40
⌈

1
p

⌉

log n is exactly the same as in part (i) and we omit it here. So suppose that

t > s− 40
⌈

1
p

⌉

log n ≥ s− o(np) > (1 + ǫ/3)∆. Since the degree of every vertex v ∈ Vℓ+1 is at most ∆,

it can have neighbors in at most ∆ < t transversals. Therefore there is at least one transversal in our

set of size t which has no neighbors of v, and hence every set of t > s− 40
⌈

1
p

⌉

log n vertices on the left

has neighborhood equal to entire right side of H. This verifies the Hall condition and completes the

proof. �

3 Independent transversals

In this section, we prove our second theorem. We only need to consider here the range log4 n
n ≪ p ≪

log3/4 n√
n

, since part (ii) of Theorem 1.1 implies Theorem 1.2 for larger values of p. Again, we begin by

showing that Gn,p satisfies certain properties almost surely.

3.1 Properties of random graphs

Lemma 3.1 If logn
n ≪ p ≪ log3/4 n√

n
, then a.s. Gn,p has the following properties:

1. No pair of distinct vertices has more than 3 log3/2 n common neighbors.

2. The maximum degree is strictly between np and 1.01np.

Proof. The codegree X of a fixed pair of vertices is binomially distributed with parameters n − 2

and p2. Therefore

P

[

X ≥ 3 log3/2 n
]

≤
(

n− 2

3 log3/2 n

)

(p2)3 log
3/2 n ≤

(

enp2

3 log3/2 n

)3 log3/2 n

≪ (e/3)3 log
3/2 n = o(n−2).

9



Taking a union bound over all O(n2) pairs of vertices, we see that the first property holds a.s. The

second property is a special case of Corollary 3.13 in [9]. �

Lemma 3.2 Let C ≥ 20 and let G be a graph obtained from the random graph Gn,p by connecting every

vertex to at most 8 log2 n new neighbors. Then a.s. every subset S ⊂ V (G) of size |S| ≤ Cp−1 log2 n

spans a subgraph with average degree less than 6C log2 n, i.e., contains < 3C|S| log2 n edges.

Proof. Since the edges which we add to the random graph can increase the number of edges inside

S by at most |S|(8 log2 n)/2 = 4|S| log2 n, it suffices to show that in Gn,p a.s. every subset S as above

spans less than eC|S| log2 n edges. The probability that this is not the case is at most

Cp−1 log2 n
∑

m=1

(

n

m

)(

(m
2

)

eCm log2 n

)

peCm log2 n ≤
Cp−1 log2 n
∑

m=1

nm

(

em

2eC log2 n
· p
)eCm log2 n

≤
Cp−1 log2 n
∑

m=1

nm2−eCm log2 n

≤
Cp−1 log2 n
∑

m=1

(

n2−eC log2 n
)m

= o(1),

so we are done. �

3.2 Proof of Theorem 1.2

Fix ǫ > 0, and suppose we have disjoint subsets V1, . . . , Vr of Gn,p, with all |Vi| = (1 + ǫ)∆. By

Lemma 3.1, r < n/∆ < 1/p. If a vertex v has more than ∆
logn neighbors in some Vi, say that v is

locally big with respect to Vi. If it has more than ∆
2 logn , call it almost locally big. For each i, let Bi

be the set of v that are almost locally big with respect to Vi. We claim that |Bi| < 4 log n. Indeed, if

|Bi| ≥ 4 log n, then Lemma 3.1 together with ∆ ≥ log4 n and the Jordan-Bonferroni inequality would

imply that the union of neighborhoods in Vi of vertices from Bi is at least

(4 log n)
∆

2 log n
−
(

4 log n

2

)

3 log3/2 n ≥ 3

2
∆ > |Vi|,

contradiction. Next, make each Bi a clique by adding all the missing edges. However, ∆ will still

refer to the maximum degree of the original graph. Since each vertex is almost locally big with

respect to less than 2 log n sets Vi, this operation increases the degree of each vertex by less than

2 log n · 4 log n = 8 log2 n ≪ ∆
2 logn . Thus every vertex that is locally big after the additions was almost

locally big before. In particular, there is now an edge between every pair of vertices that are locally

big with respect to the same Vi, and there are less than r(4 log n) < 4p−1 log n locally big vertices in

total.

Let I1 ⊂ [r] be the set of indices i such that Vi contains more than ǫ
4∆ locally big vertices, and

define the notation VS to represent
⋃

i∈S Vi. Note that

|VI1 | < (1 + ǫ)∆ ·
( ǫ

4
∆
)−1

4p−1 log n < 20ǫ−1p−1 log n

10



(we can assume here and in the rest of the proof that ǫ is sufficiently small). As long as there exist

i 6∈ I1 such that there are more than (240ǫ−1 log2 n)|Vi| crossing edges between Vi and VI1 , add i to

I1. Note that each such index which we add to VI1 increases the number of edges in this set by more

than (240ǫ−1 log2 n)|Vi|. Therefore if in this process I1 doubles in size we obtain a set of size at most

40ǫ−1p−1 log n with average degree more than 240ǫ−1 log2 n, which contradicts Lemma 3.2. Thus at

the end of the process we have |I1| ≤ 40ǫ−1p−1 log n.

Given I1, for t ≥ 1 we recursively define It+1 ⊂ It as follows. By Lemma 3.2, VIt induces less than

(120ǫ−1 log2 n)|VIt | edges. Thus, there are less than 2
(

∆
log∆

)−1 · (120ǫ−1 log2 n)|VIt| vertices in VIt with

> ∆
log∆ neighbors in this set. To define It+1 we consider the following process. Start with It+1 to be

the set of all i ∈ It for which Vi has more than ǫ
4∆ vertices that have > ∆

log∆ neighbors in VIt. As

long as there exist i ∈ It \ It+1 such that there are more than (240ǫ−1 log2 n)|Vi| edges between Vi and

VIt+1 , add i to It+1. As above, Lemma 3.2 ensures that this process must stop before It+1 doubles in

size. Therefore in the end we have

|It+1| ≤ 2
( ǫ

4
∆
)−1

· 2

(

∆

log ∆

)−1

· (120ǫ−1 log2 n)|VIt |

≤ O

(

log2 n log ∆

∆2
|VIt |

)

≤ O

(

log2 n log ∆

∆
|It|
)

≪ 1

log n
|It|.

Clearly, |I1| ≤ r ≤ n. Therefore, when t ≥ 2 logn
log logn , It will be empty. Let σ be the smallest index

such that Iσ = ∅. We now recursively build partial independent transversals Tσ, . . . , T1, where Tt is

an independent transversal on VIt . Let us say that Tt satisfies property Pt if for every i 6∈ It, all the

vertices in Tt that are not locally big with respect to Vi have together at most 300(σ− t) ∆
log n neighbors

in Vi. It is clear that Tσ = ∅ satisfies Pσ , so we can apply the following lemma inductively to construct

T1, an independent transversal on VI1 satisfying P1.

Lemma 3.3 Suppose t > 1, and Tt is an independent transversal on VIt which satisfies Pt. Then we

can extend Tt to Tt−1, an independent transversal on VIt−1 which satisfies Pt−1.

We postpone the proof of this lemma until Section 3.4. Suppose that we have T1 as described

above. Let J1 be the set of all indices j 6∈ I1 such that some v ∈ T1 is locally big with respect to Vj .

Then, as we did with I1, as long as there exist ℓ 6∈ I1∪J1 such that more than (600ǫ−1 log2 n)|Vℓ| edges

cross between Vℓ and VJ1 , add ℓ to J1. Since |T1| = |I1| and each vertex can be locally big with respect

to at most (1 + o(1)) log n sets Vi, we have that initially |J1| ≤ (1 + o(1))|I1| log n ≤ 50ǫ−1p−1 log2 n.

Therefore as before, Lemma 3.2 ensures that this process stops before J1 doubles in size, so the final

set J1 has size at most 100ǫ−1p−1 log2 n.

As before, we construct a sequence of nested index sets J1 ⊃ · · · ⊃ Jτ = ∅, where for t ≥ 1, define

Jt+1 in terms of Jt as follows. Let Jt+1 ⊂ Jt be the set of all j ∈ Jt for which Vj contains more

than ǫ
4∆ vertices that have > ∆

log∆ neighbors in VJt . Next, as long as there exist j ∈ Jt \ Jt+1 such

that more than (600ǫ−1 log2 n)|Vj | edges cross between Vj and VJt+1 , add j to Jt+1. Lemma 3.2 again

ensures that we stop before Jt+1 doubles in size, and the same computation as we did for It+1 shows

11



that |Jt+1| ≪ 1
logn |Jt|. Thus when t ≥ 2 logn

log logn , Jt is empty. Let τ be the smallest index for which

Jτ = ∅.

Next, delete all neighbors of T1 in VJ1 and all vertices in VJ1 that are locally big with respect to any

Vk with k 6∈ I1. Denote the resulting sets V ′
j , j ∈ J1. We claim that each V ′

j still has size at least ǫ
2∆.

Indeed, at most one v ∈ T1 can be locally big with respect to Vj , because T1 is an independent set and

all vertices that are locally big with respect to the same part were connected by our construction. Thus

deleting neighbors of this v can decrease the size of Vj by at most d(v) < ∆ + 8 log2 n = (1 + o(1))∆.

As for the remaining vertices in T1, which are not locally big with respect to Vj , P1 ensures that

together they have at most O
(

σ ∆
logn

)

= o(∆) neighbors in Vj, since σ ≤ 2 logn
log logn . Also, by construction

of I1, every part whose index is not in I1 has at most ǫ
4∆ locally big vertices. Hence the size of V ′

j is

at least |Vj | − (1 + o(1))∆ − ǫ
4∆ ≥ ǫ

2∆, as claimed.

Let us say that a set Ut satisfies property Qt if for every k 6∈ I1 ∪ Jt, all the vertices in Ut that are

not locally big with respect to Vk have together at most 300(τ − t) ∆
logn neighbors in Vk. We need the

following analogue of Lemma 3.3.

Lemma 3.4 Suppose t > 1, and Ut is an independent transversal on V ′
Jt

which satisfies Qt. Then we

can extend Ut to Ut−1, an independent transversal on V ′
Jt−1

which satisfies Qt−1.

We also postpone the proof of this lemma until Section 3.4. Starting with Uτ = ∅, we iterate this

lemma until we obtain U1, an independent transversal on V ′
J1

which satisfies Q1. Since τ ≤ 2 logn
log logn ,

this property implies that each Vk with k 6∈ I1 ∪ J1 has O
(

τ ∆
logn

)

= o(∆) vertices with neighbors in

U1.

Finally, let K = [r]\(I1∪J1). Delete all neighbors of T1∪U1 and all locally big vertices from every

Vk with k ∈ K, and denote the resulting sets by V ′
k. All V ′

k will still have size at least
(

1 + ǫ
2

)

∆, but

now no vertex there has more than ∆
logn neighbors in any single set V ′

k. Thus, the following result from

[19] implies that for sufficiently large n, there is an independent transversal on V ′
K , which completes

T1 ∪ U1 into an independent transversal through all parts.

Theorem 3.5 (Loh, Sudakov [19]) For every ǫ > 0 there exists γ > 0 such that the following holds.

If G is a graph with maximum degree at most ∆ whose vertex set is partitioned into r parts V1, . . .Vr

of size |Vi| ≥ (1 + ǫ)∆, and no vertex has more than γ∆ neighbors in any single part Vi, then G has

an independent transversal.

This completes the proof of Theorem 1.2, modulo two remaining lemmas. �

3.3 Probabilistic tools

We take a moment to record two results which we will need for the proofs of the remaining lemmas.

The first is the symmetric version of the Lovász Local Lemma, which is typically used to show that

with positive probability, no “bad” events happen.

Theorem 3.6 (Lovász Local Lemma [7]) Let E1, . . . , En be events. Suppose that there exist numbers

p and d such that all P [Ei] ≤ p, and each Ej is mutually independent of all but at most d of the other

events. If ep(d + 1) ≤ 1, then P
[
⋂

Ei

]

> 0.
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The following result is a short consequence of this lemma, and we sketch its proof for completeness.

Proposition 3.7 (Alon [4]) Let G be a multipartite graph with maximum degree ∆, whose parts

V1, . . . , Vr all have size at least 2e∆. Then G has an independent transversal.

Proof. Independently and uniformly select one vertex from each Vi, which we may assume is of size

exactly ⌈2e∆⌉. For each edge f of G, let the event Af be when both endpoints of f are selected. The

dependencies are bounded by 2⌈2e∆⌉∆ − 2, and each P [Af ] ≤ ⌈2e∆⌉−2, so the Local Lemma implies

this statement immediately. �

3.4 Proofs of remaining lemmas

Since the proofs of Lemmas 3.3 and 3.4 are very similar, we only prove Lemma 3.3. We will simply

indicate the two places where the proofs differ.

Proof of Lemma 3.3. Fix some t as in the statement of the lemma. To extend an independent

transversal Tt on the set VIt , satisfying Pt, to one on the larger set VIt−1 , satisfying Pt−1, we will use

the following key properties of our construction.

(i) For every i ∈ It−1 \It, the set Vi contains at most ǫ
4∆ vertices that have > ∆

log∆ neighbors in VIt−1 .

(ii) Each set Vi has size (1 + ǫ)∆.

(iii) For every i 6∈ It−1, there are at most (β log2 n)|Vi| edges between Vi and VIt−1 , where we define

the constant β to be 240ǫ−1.

In the case of Lemma 3.4, property (ii) is that each set V ′
j has size at least ǫ

2∆, and the constant β

in property (iii) is β = 600ǫ−1.

Let D = It−1 \ It. From every Vi with i ∈ D, delete all vertices that have > ∆
log∆ neighbors

in VIt−1 , and all neighbors of vertices in Tt. Denote the resulting sets by V ∗
i . Note that now all

degrees in the subgraph on V ∗
D =

⋃

i∈D V ∗
i are at most ∆

log∆ . Furthermore, we claim that every

|V ∗
i | ≥ ǫ

6∆. To see this, recall that at most one vertex v ∈ Tt can be locally big with respect to

Vi, because Tt is independent and all vertices that are locally big with respect to the same part are

connected by our construction. Deleting neighbors of such v can decrease the size of Vi by at most

d(v) < ∆ + 8 log2 n = (1 + o(1))∆. The rest of the vertices in Tt are not locally big with respect to Vi,

so Pt implies that they have less than O
(

σ ∆
logn

)

= o(∆) neighbors in Vi since σ ≤ 2 logn
log logn . Finally, by

property (i) above, in Vi we will delete at most ǫ
4∆ vertices that have > ∆

log∆ neighbors in VIt−1 , so

property (ii) implies that |V ∗
i | ≥ (1 + ǫ)∆ − (1 + o(1))∆ − ǫ

4∆ ≥ ǫ
6∆, as claimed.

In the case of Lemma 3.4, recall that by construction all V ′
j with j ∈ J1 contain no locally

big vertices with respect to any part (we deleted all of them). Thus, the partial transversal Ut

contains no locally big vertices with respect to V ′
j . Property Qt then implies that the total number

of neighbors that vertices of Ut have in V ′
j is only O

(

τ ∆
logn

)

= o(∆). Hence when we reduce V ′
j to V ∗

j

by deleting all neighbors of Ut, and all vertices that have > ∆
log∆ neighbors in VJt−1 , the total effect

of Ut is o(∆), not (1 + o(1))∆ as above. Combining this with properties (i) and (ii), we see that

|V ∗
j | ≥ |V ′

j | − o(∆) − ǫ
4∆ ≥ ǫ

6∆, so the claim is still true. This is the second and final place in which
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the proofs of the two lemmas differ, and explains why Lemma 3.4 holds with part sizes of only ǫ
2∆,

while Lemma 3.3 requires part sizes of (1 + ǫ)∆.

Returning to the proof of Lemma 3.3, randomly select a subset Wi ⊂ V ∗
i for each i ∈ D by

independently choosing each remaining vertex of V ∗
i with probability log3 ∆

∆ , and let W =
⋃

i∈D Wi.

Define the following families of bad events. For each i ∈ D, let Ai be the event that |Wi| < ǫ
8 log3 ∆,

and for each v ∈ V ∗
D, let Bv be the event that v has more than 2 log2 ∆ neighbors in W . Also, for each

j 6∈ It−1, let Cj be the event that the collection of vertices in W that are not locally big with respect

to Vj has neighborhood in Vj of size > 300 ∆
log n . We use the Lovász Local Lemma to show that with

positive probability, none of these events happen.

Let us begin by bounding the dependencies. Say that Ai lives on V ∗
i , Bv lives on the neighborhood

of v in V ∗
D, and Cj lives on the neighborhood of Vj in V ∗

D. Note that each of our events is completely

determined by the outcomes of the vertices in the set that it lives on. Hence events living on disjoint

sets are independent. A routine calculation shows that for any given event, at most O(∆3) other

events can live on sets overlapping with its set; the worst case is that an event of C-type can live on

a set that overlaps with the sets of ≤ (1 + ǫ)∆3 other C-type events.

It remains to show that each of P [Ai], P [Bv], and P [Cj ] are ≪ ∆−3. The size of Wi is distributed

binomially with expectation ≥ ǫ
6 log3 ∆, so by a Chernoff bound, P [Ai] < e−Ω(log3 ∆) ≪ ∆−3. Similarly,

for each v ∈ V ∗
D the expected value of the degree of v in W is at most ∆

log∆ · log3 ∆
∆ = log2 ∆ so

P [Bv] < e−Ω(log2 ∆) ≪ ∆−3. For P [Cj ], we proceed more carefully. For each 0 ≤ k ≤ 8, let Yk be the

set of vertices in V ∗
D that have between ∆

∆(k+1)/8 logn
and ∆

∆k/8 logn
many neighbors in Vj . By property

(iii), the number of edges between VIt−1 and Vj is at most (β log2 n)|Vj | ≤ 2β∆ log2 n. Therefore,

|Yk| ≤ 2β∆(k+1)/8 log3 n. However, since ∆ ≥ np ≥ log4 n, the probability that at least 30∆k/8

vertices in Yk are selected to be in W is bounded by

P ≤
(

2β∆(k+1)/8 log3 n

30∆k/8

)(

log3 ∆

∆

)30∆k/8

≤
(

e · 2β∆1/8 log3 n

30
· log3 ∆

∆

)30∆k/8

≤
(

eβ

15
· log3 ∆

∆1/8

)30∆k/8

≪ ∆−3.

Therefore, with probability 1 − o(∆−3), the collection of vertices in W that are not locally big with

respect to Vj has neighborhood in Vj of size less than
∑8

k=0 30∆k/8 ∆
∆k/8 logn

< 300 ∆
log n , and hence

P [Cj] ≪ ∆−3.

By the Lovász Local Lemma, there exist subsets Wi ⊂ V ∗
i for each i ∈ D such that none of the

Ai, Bv, or Cj hold. In particular, every |Wi| is greater than 2e times the maximum degree in the

subgraph induced by W , so Proposition 3.7 implies that there exists an independent transversal T ′

there. Letting Tt−1 = Tt∪T ′, we obtain an independent transversal on VIt−1 . Since T ′ ⊂ W and no Cj

hold, we have that for every j 6∈ It−1, the vertices in Tt ∪ T ′ which are not locally big with respect to

Vj have together at most 300(σ − t) ∆
logn + 300 ∆

log n = 300(σ − (t− 1)) ∆
log n neighbors in Vj, i.e., Tt ∪ T ′

satisfies Pt−1. �
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4 Concluding remarks

A simple modification of our argument yields a slight improvement of Theorem 1.2, and shows that

the theorem is in fact true for all p ≫ log3+α

n , for any fixed α > 0. We decided not to prove that

result here in such generality for the sake of clarity of presentation. Also, it is not very difficult, using

our approach, to prove a statement similar to Theorem 1.2 for the sparse case, when p ∼ c
n for some

constant c. However, these extensions are not as interesting as the main problem that remains open,

which is to study the behavior of the strong chromatic number of random graphs when p ≤ n−1/2. We

are certain that the strong chromatic number of the random graph Gn,p is a.s. (1 + o(1))∆ for every

p ≥ c
n for some constant c. It would also be very interesting to determine all the values of the edge

probability p for which almost surely sχ(Gn,p) is precisely ∆ + 1.

Acknowledgments. The authors would especially like to thank Bruce Reed for interesting remarks

and useful insights at the early stage of this project. The idea of studying the strong chromatic

number of random graphs originated from a conversation the second author had with Bruce Reed,

during which it was realized that the strong chromatic number of dense random graphs should be

∆ + 1. We would also like to thank Michael Krivelevich for stimulating discussions.

References

[1] R. Aharoni, E. Berger, and R. Ziv, Independent systems of representatives in weighted graphs,

Combinatorica, to appear.

[2] R. Aharoni and R. Holzman, private communication, 2005.

[3] N. Alon, Problems and results in extremal combinatorics, Part I, Discrete Mathematics 273

(2003), 31–53.

[4] N. Alon, The linear arboricity of graphs, Israel Journal of Mathematics 62 (1988), 311–325.

[5] N. Alon, The strong chromatic number of a graph, Random Structures and Algorithms 3 (1992),

1–7.

[6] N. Alon and M. Krivelevich, The concentration of the chromatic number of random graphs,

Combinatorica 17 (1997), 303–313.

[7] N. Alon and J. Spencer, The Probabilistic Method, 2nd ed., Wiley, New York, 2000.

[8] T. Bohman and R. Holzman, On a list coloring conjecture of Reed, Journal of Graph Theory 41

(2002), 106–109.

[9] B. Bollobás, Random Graphs, 2nd ed., Cambridge Studies in Advanced Mathematics, 73,

Cambridge University Press, Cambridge, 2001.
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