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A DIRAC TYPE RESULT ON HAMILTON CYCLES IN ORIENTED

GRAPHS

LUKE KELLY, DANIELA KÜHN AND DERYK OSTHUS

Abstract. We show that for each α > 0 every sufficiently large oriented graph G with
δ+(G), δ−(G) ≥ 3|G|/8 + α|G| contains a Hamilton cycle. This gives an approximate
solution to a problem of Thomassen [21]. In fact, we prove the stronger result that G is
still Hamiltonian if δ(G) + δ+(G) + δ−(G) ≥ 3|G|/2 + α|G|. Up to the term α|G| this
confirms a conjecture of Häggkvist [10]. We also prove an Ore-type theorem for oriented
graphs.

1. Introduction

An oriented graph G is obtained from a (simple) graph by orienting its edges. Thus
between every pair of vertices of G there exists at most one edge. The minimum semi-
degree δ0(G) of G is the minimum of its minimum outdegree δ+(G) and its minimum in-
degree δ−(G). When referring to paths and cycles in oriented graphs we always mean that
these are directed without mentioning this explicitly.

A fundamental result of Dirac states that a minimum degree of |G|/2 guarantees a
Hamilton cycle in an undirected graph G. There is an analogue of this for digraphs due
to Ghouila-Houri [9] which states that every digraph D with minimum semi-degree at
least |D|/2 contains a Hamilton cycle. The bounds on the minimum degree in both re-
sults are best possible. A natural question is to ask for the (smallest) minimum semi-degree
which guarantees a Hamilton cycle in an oriented graph G. This question was first raised
by Thomassen [20], who [22] showed that a minimum semi-degree of |G|/2 −

√

|G|/1000
suffices (see also [21]). Note that this degree requirement means that G is not far from being
a tournament. Häggkvist [10] improved the bound further to |G|/2 − 2−15|G| and conjec-
tured that the actual value lies close to 3|G|/8. The best previously known bound is due
to Häggkvist and Thomason [11], who showed that for each α > 0 every sufficiently large
oriented graph G with minimum semi-degree at least (5/12 + α)|G| has a Hamilton cycle.
Our first result implies that the actual value is indeed close to 3|G|/8.
Theorem 1. For every α > 0 there exists an integer N = N(α) such that every oriented
graph G of order |G| ≥ N with δ0(G) ≥ (3/8 + α)|G| contains a Hamilton cycle.

A construction of Häggkvist [10] shows that the bound in Theorem 1 is essentially best
possible (see Proposition 6).

In fact, Häggkvist [10] formulated the following stronger conjecture. Given an oriented
graph G, let δ(G) denote the minimum degree of G (i.e. the minimum number of edges
incident to a vertex) and set δ∗(G) := δ(G) + δ+(G) + δ−(G).

Conjecture 2 (Häggkvist [10]). Every oriented graph G with δ∗(G) > (3n − 3)/2 has a
Hamilton cycle.

D. Kühn was partially supported by the EPSRC, grant no. EP/F008406/1. D. Osthus was partially
supported by the EPSRC, grant no. EP/E02162X/1 and EP/F008406/1.
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Our next result provides an approximate confirmation of this conjecture for large oriented
graphs.

Theorem 3. For every α > 0 there exists an integer N = N(α) such that every oriented
graph G of order |G| ≥ N with δ∗(G) ≥ (3/2 + α)|G| contains a Hamilton cycle.

Note that Theorem 1 is an immediate consequence of this. The proof of Theorem 3 can be
modified to yield the following Ore-type analogue of Theorem 1. (Ore’s theorem [19] states
that every graph G on n ≥ 3 vertices which satisfies d(x) + d(y) ≥ n whenever xy /∈ E(G)
has a Hamilton cycle.)

Theorem 4. For every α > 0 there exists an integer N = N(α) such that every oriented
graph G of order |G| ≥ N with d+(x) + d−(y) ≥ (3/4 +α)|G| whenever xy /∈ E(G) contains
a Hamilton cycle.

A version for general digraphs was proved by Woodall [23]: every strongly connected
digraph D on n ≥ 2 vertices which satisfies d+(x) + d−(y) ≥ n whenever xy /∈ E(D) has a
Hamilton cycle.

Theorem 1 immediately implies a partial result towards a conjecture of Kelly (see e.g. [3]),
which states that every regular tournament on n vertices can be partitioned into (n − 1)/2
edge-disjoint Hamilton cycles. (A regular tournament is an orientation of a complete graph
in which the indegree of every vertex equals its outdegree.)

Corollary 5. For every α > 0 there exists an integer N = N(α) such that every regular
tournament of order n ≥ N contains at least (1/8 − α)n edge-disjoint Hamilton cycles.

Indeed, Corollary 5 follows from Theorem 1 by successively removing Hamilton cycles until
the oriented graph G obtained from the tournament in this way has minimum semi-degree
less than (3/8 + α)|G|. The best previously known bound on the number of edge-disjoint
Hamilton cycles in a regular tournament is the one which follows from the result of Häggkvist
and Thomason [11] mentioned above. A related result of Frieze and Krivelevich [8] states
that every dense ε-regular digraph contains a collection of edge-disjoint Hamilton cycles
which covers almost all of its edges. This immediately implies that the same holds for
almost every tournament. Together with a lower bound by McKay [18] on the number of
regular tournaments, the above result in [8] also implies that almost every regular tournament
contains a collection of edge-disjoint Hamilton cycles which covers almost all of its edges.

Note that Theorem 3 implies that for sufficiently large tournaments T a minimum semi-
degree of at least (1/4 + α)|T | already suffices to guarantee a Hamilton cycle. (However, it
is not hard to prove this directly.) It was shown by Bollobás and Häggkvist [5] that this
degree condition even ensures the kth power of a Hamilton cycle (if T is sufficiently large
compared to 1/α and k). The degree condition is essentially best possible as a minimum
semi-degree of |T |/4− 1 does not even guarantee a single Hamilton cycle.

Since this paper was written, we have used some of the tools and methods to obtain an
exact version of Theorem 1 (but not of Theorems 3 and 4) for large oriented graphs [12] as
well as an approximate analogue of Chvátal’s theorem on Hamiltonian degree sequences for
digraphs [17]. See [13] for related results about short cycles and pancyclicity for oriented
graphs.

Our paper is organized as follows. In the next section we introduce some basic definitions
and describe the extremal example which shows that Theorem 1 (and thus also Theorems 3
and 4) is essentially best possible. Our proof of Theorem 3 relies on the Regularity lemma
for digraphs and on a variant (due to Csaba [6]) of the Blow-up lemma. These and other
tools are introduced in Section 3, where we also give an overview of the proof. In Section 4
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we collect some preliminary results. Theorem 3 is then proved in Section 5. In the last
section we discuss the modifications needed to prove Theorem 4.

2. Notation and the extremal example

Before we show that Theorems 1, 3 and 4 are essentially best possible, we will introduce
the basic notation used throughout the paper. Given two vertices x and y of an oriented
graph G, we write xy for the edge directed from x to y. The order |G| ofG is the number of its
vertices. We write N+

G (x) for the outneighbourhood of a vertex x and d+G(x) := |N+
G (x)| for

its outdegree. Similarly, we write N−
G (x) for the inneighbourhood of x and d−G(x) := |N−

G (x)|
for its indegree. We write NG(x) := N+

G (x) ∪ N−
G (x) for the neighbourhood of x and

use N+(x) etc. whenever this is unambiguous. We write ∆(G) for the maximum of |N(x)|
over all vertices x ∈ G.

Given a set A of vertices of G, we write N+
G (A) for the set of all outneighbours of vertices

in A. So N+
G (A) is the union of N+

G (a) over all a ∈ A. N−
G (A) is defined similarly. The

oriented subgraph of G induced by A is denoted by G[A]. Given two vertices x, y of G, an
x-y path is a directed path which joins x to y. Given two disjoint subsets A and B of vertices
of G, an A-B edge is an edge ab where a ∈ A and b ∈ B, the set of these edges is denoted
by EG(A,B) and we put eG(A,B) := |EG(A,B)|.

Recall that when referring to paths and cycles in oriented graphs we always mean that
they are directed without mentioning this explicitly. Given two vertices x and y on a directed
cycle C, we write xCy for the subpath of C from x to y. Similarly, given two vertices x and y
on a directed path P such that x precedes y, we write xPy for the subpath of P from x to y.
A walk in an oriented graph G is a sequence of (not necessary distinct) vertices v1, v2, . . . , vℓ
where vivi+1 is an edge for all 1 ≤ i < ℓ. The walk is closed if v1 = vℓ. A 1-factor of G is a
collection of disjoint cycles which cover all the vertices of G. We define things similarly for
graphs and for directed graphs. The underlying graph of an oriented graph G is the graph
obtained from G by ignoring the directions of its edges.

Given disjoint vertex sets A and B in a graph G, we write (A,B)G for the induced bipartite
subgraph of G whose vertex classes are A and B. We write (A,B) where this is unambiguous.
We call an orientation of a complete graph a tournament and an orientation of a complete
bipartite graph a bipartite tournament. An oriented graph G is d-regular if all vertices have
in- and outdegree d. G is regular if it is d-regular for some d. It is easy to see (e.g. by
induction) that for every odd n there exists a regular tournament on n vertices. Throughout
the paper we omit floors and ceilings whenever this does not affect the argument.

The following construction by Häggkvist [10] shows that Conjecture 2 is best possible for
infinitely many values of |G|. We include it here for completeness.

Proposition 6. There are infinitely many oriented graphs G with minimum semi-degree (3|G|−
5)/8 which do not contain a 1-factor and thus do not contain a Hamilton cycle.

Proof. Let n := 4m + 3 for some odd m ∈ N. Let G be the oriented graph obtained
from the disjoint union of two regular tournaments A and C on m vertices, a set B of m+2
vertices and a set D of m + 1 vertices by adding all edges from A to B, all edges from B
to C, all edges from C to D as well as all edges from D to A. Finally, between B and D
we add edges to obtain a bipartite tournament which is as regular as possible, i.e. the in-
and outdegree of every vertex differ by at most 1. So in particular every vertex in B sends
exactly (m+ 1)/2 edges to D (Figure 1).

It is easy to check that the minimum semi-degree of G is (m−1)/2+(m+1) = (3n−5)/8,
as required. Since every path which joins two vertices in B has to pass through D, it follows
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Figure 1. The oriented graph in the proof of Proposition 6.

that every cycle contains at least as many vertices from D as it contains from B. As
|B| > |D| this means that one cannot cover all the vertices of G by disjoint cycles, i.e. G
does not contain a 1-factor. �

3. The Diregularity lemma, the Blow-up lemma and other tools

3.1. The Diregularity lemma and the Blow-up lemma. In this section we collect all
the information we need about the Diregularity lemma and the Blow-up lemma. See [16] for
a survey on the Regularity lemma and [14] for a survey on the Blow-up lemma. We start
with some more notation. The density of a bipartite graph G = (A,B) with vertex classes A
and B is defined to be

dG(A,B) :=
eG(A,B)

|A| |B| .

We often write d(A,B) if this is unambiguous. Given ε > 0, we say that G is ε-regular
if for all subsets X ⊆ A and Y ⊆ B with |X| > ε |A| and |Y | > ε |B| we have that
|d(X,Y )− d(A,B)| < ε. Given d ∈ [0, 1] we say that G is (ε, d)-super-regular if it is ε-
regular and furthermore dG(a) ≥ (d − ε) |B| for all a ∈ A and dG(b) ≥ (d − ε) |A| for all
b ∈ B. (This is a slight variation of the standard definition of (ε, d)-super-regularity where
one requires dG(a) ≥ d |B| and dG(b) ≥ d |A|.)

The Diregularity lemma is a version of the Regularity lemma for digraphs due to Alon
and Shapira [1]. Its proof is quite similar to the undirected version. We will use the degree
form of the Diregularity lemma which can be easily derived (see e.g. [24]) from the standard
version, in exactly the same manner as the undirected degree form.

Lemma 7 (Degree form of the Diregularity lemma). For every ε ∈ (0, 1) and every inte-
ger M ′ there are integers M and n0 such that if G is a digraph on n ≥ n0 vertices and
d ∈ [0, 1] is any real number, then there is a partition of the vertices of G into V0, V1, . . . , Vk,
a spanning subdigraph G′ of G and a set U of ordered pairs ViVj (where 1 ≤ i, j ≤ k and
i 6= j) such that the following holds:

• M ′ ≤ k ≤ M ,
• |V0| ≤ εn,
• |V1| = · · · = |Vk| =: m,
• d+G′(x) > d+G(x)− (d+ ε)n for all vertices x ∈ G,
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• d−G′(x) > d−G(x)− (d+ ε)n for all vertices x ∈ G,

• |U | ≤ εk2,
• for every ordered pair ViVj /∈ U with 1 ≤ i, j ≤ k and i 6= j the bipartite graph
(Vi, Vj)G whose vertex classes are Vi and Vj and whose edge set is the set EG(Vi, Vj)
of all the Vi-Vj edges in G is ε-regular,

• G′ is obtained from G by deleting the following edges of G: all edges with both
endvertices in Vi for all i ≥ 1 as well as all edges in EG(Vi, Vj) for all ViVj ∈ U and
for all those ViVj /∈ U with 1 ≤ i, j ≤ k and i 6= j for which the density of (Vi, Vj)G
is less than d.

V1, . . . , Vk are called clusters, V0 is called the exceptional set and the vertices in V0 are
called exceptional vertices. U is called the set of exceptional pairs of clusters. Note that the
last two conditions of the lemma imply that for all 1 ≤ i, j ≤ k with i 6= j the bipartite
graph (Vi, Vj)G′ is ε-regular and has density either 0 or density at least d. In particular, in G′

all pairs of clusters are ε-regular in both directions (but possibly with different densities).
We call the spanning digraph G′ ⊆ G given by the Diregularity lemma the pure digraph.
Given clusters V1, . . . , Vk and the pure digraph G′, the reduced digraph R′ is the digraph
whose vertices are V1, . . . , Vk and in which ViVj is an edge if and only if G′ contains a Vi-Vj

edge. Note that the latter holds if and only if (Vi, Vj)G′ is ε-regular and has density at
least d. It turns out that R′ inherits many properties of G, a fact that is crucial in our proof.
However, R′ is not necessarily oriented even if the original digraph G is, but the next lemma
shows that by discarding edges with appropriate probabilities one can go over to a reduced
oriented graph R ⊆ R′ which still inherits many of the properties of G. (d) will only be used
in the proof of Theorem 4.

Lemma 8. For every ε ∈ (0, 1) there exist integers M ′ = M ′(ε) and n0 = n0(ε) such that the
following holds. Let d ∈ [0, 1] and let G be an oriented graph of order at least n0 and let R′

be the reduced digraph and U the set of exceptional pairs of clusters obtained by applying the
Diregularity lemma to G with parameters ε, d and M ′. Then R′ has a spanning oriented
subgraph R with

(a) δ+(R) ≥ (δ+(G)/|G| − (3ε+ d)) |R|,
(b) δ−(R) ≥ (δ−(G)/|G| − (3ε+ d)) |R|,
(c) δ(R) ≥ (δ(G)/|G| − (3ε+ 2d)) |R|,
(d) if 2ε ≤ d ≤ 1− 2ε and c ≥ 0 is such that d+(x) + d−(y) ≥ c|G| whenever xy /∈ E(G)

then d+R(Vi) + d−R(Vj) ≥ (c− 6ε− 2d)|R| whenever ViVj /∈ E(R) ∪ U .

Proof. Let us first show that every cluster Vi satisfies

(1) |NR′(Vi)|/|R′| ≥ δ(G)/|G| − (3ε + 2d).

To see this, consider any vertex x ∈ Vi. As G is an oriented graph, the Diregularity lemma
implies that |NG′(x)| ≥ δ(G)−2(d+ε)|G|. On the other hand, |NG′(x)| ≤ |NR′(Vi)|m+|V0| ≤
|NR′(Vi)||G|/|R′|+ ε|G|. Altogether this proves (1).

We first consider the case when

(2) δ+(G)/|G| ≥ 3ε+ d and δ−(G)/|G| ≥ 3ε+ d and c ≥ 6ε+ 2d.

Let R be the spanning oriented subgraph obtained from R′ by deleting edges randomly as
follows. For every unordered pair Vi, Vj of clusters we delete the edge ViVj (if it exists) with
probability

(3)
eG′(Vj , Vi)

eG′(Vi, Vj) + eG′(Vj , Vi)
.
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Otherwise we delete VjVi (if it exists). We interpret (3) as 0 if ViVj , VjVi /∈ E(R′). So if R′

contains at most one of the edges ViVj , VjVi then we do nothing. We do this for all unordered
pairs of clusters independently and let Xi be the random variable which counts the number
of outedges of the vertex Vi ∈ R. Then

E(Xi) =
∑

j 6=i

eG′(Vi, Vj)

eG′(Vi, Vj) + eG′(Vj , Vi)
≥

∑

j 6=i

eG′(Vi, Vj)

|Vi| |Vj |

≥ |R′|
|G| |Vi|

∑

x∈Vi

(d+G′(x)− |V0|)(4)

≥ (δ+(G′)/|G| − ε) |R| ≥ (δ+(G)/|G| − (2ε+ d)) |R|
(2)
≥ ε|R|.

A Chernoff-type bound (see e.g. [2, Cor. A.14]) now implies that there exists a constant β =
β(ε) such that

P(Xi < (δ+(G)/|G| − (3ε+ d)) |R|) ≤ P(|Xi − E(Xi)| > εE(Xi))

≤ e−βE(Xi) ≤ e−βε|R|.

Writing Yi for the random variable which counts the number of inedges of the vertex Vi in R,
it follows similarly that

P(Yi < (δ−(G)/|G| − (3ε + d)) |R|) ≤ e−βε|R|.

Suppose that c is as in (d). Consider any pair ViVj /∈ U of clusters such that either ViVj /∈
E(R′) or ViVj, VjVi ∈ E(R′). (Note that each ViVj /∈ E(R) ∪ U satisfies one of these
properties.) As before, let Xi be the random variable which counts the number of outedges
of Vi in R and let Yj be the number of inedges of Vj in R. Similary as in (4) one can show
that

(5) E(Xi + Yj) ≥
|R′|

|G| |Vi|





∑

x∈Vi

(d+G′(x)− |V0|) +
∑

y∈Vj

(d−G′(y)− |V0|)



 .

To estimate this, we will first show that there is a set M of at least (1− ε)|Vi| disjoint pairs
(x, y) with x ∈ Vi, y ∈ Vj and such that xy /∈ E(G). Suppose first that ViVj, VjVi ∈ E(R′).
But then (Vj , Vi)G is ε-regular of density at least d and thus it contains a matching of size
at least (1 − ε)|Vi|. As G is oriented this matching corresponds to a set M as required. If
ViVj /∈ E(R′) then (Vi, Vj)G is ε-regular of density less than d (since ViVj /∈ U). Thus the
complement of (Vi, Vj)G is ε-regular of density at least 1− d and so contains a matching of
size at least (1 − ε)|Vi| which again corresponds to a set M as required. Together with (5)
this implies that

E(Xi + Yj) ≥
|R′|

|G| |Vi|
∑

(x,y)∈M

(d+G′(x) + d−G′(y)− 2 |V0|)

≥ |R′|
|G| |Vi|

(c− 2(ε + d)− 2ε)|G|(1 − ε)|Vi| ≥ (c− (5ε+ 2d))|R|
(2)
≥ ε|R|.

Similarly as before a Chernoff-type bound implies that

P(Xi + Yj < (c− (6ε + 2d)) |R|) ≤ e−βε|R|.

As 2|R|2e−βε|R| < 1 if M ′ is chosen to be sufficiently large compared to ε, this implies that
there is some outcome R which satisfies (a), (b) and (d). But NR′(Vi) = NR(Vi) for every
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cluster Vi and so (1) implies that δ(R) ≥ (δ(G)/|G| − (3ε + 2d))|R|. Altogether this shows
that R is as required in the lemma.

If neither of the conditions in (2) hold, then (a), (b) and (d) are trivial and one can obtain
an oriented graph R which satisfies (c) from R′ by arbitrarily deleting one edge from each
double edge. If for example only the first of the conditions in (2) holds, then (b) and (d)
are trivial. To obtain an oriented graph R which satisfies (a) we consider the Xi as before,
but ignore the Yi and the sums Xi + Yj . Again, NR′(Vi) = NR(Vi) for every cluster Vi and
so (c) is also satisfied. The other cases are similar. �

The oriented graph R given by Lemma 8 is called the reduced oriented graph. The span-
ning oriented subgraph G∗ of the pure digraph G′ obtained by deleting all the Vi-Vj edges
whenever ViVj ∈ E(R′)\E(R) is called the pure oriented graph. Given an oriented subgraph
S ⊆ R, the oriented subgraph of G∗ corresponding to S is the oriented subgraph obtained
from G∗ by deleting all those vertices that lie in clusters not belonging to S as well as
deleting all the Vi-Vj edges for all pairs Vi, Vj with ViVj /∈ E(S).

In our proof of Theorem 3 we will also need the Blow-up lemma. Roughly speaking, it
states the following. Let F be a graph on r vertices, let K be a graph obtained from F by
replacing each vertex of F with a cluster and replacing each edge with a complete bipartite
graph between the corresponding clusters. Define G similarly except that the edges of F now
correspond to dense ε-super-regular pairs. Then every subgraph H of K which has bounded
maximum degree is also a subgraph in G. In the original version of Komlós, Sárközy and
Szemerédi [15] ε has to be sufficiently small compared to 1/r (and so in particular we cannot
take r = |R|). We will use a stronger (and more technical) version due to Csaba [6], which
allows us to take r = |R| and does not demand super-regularity. The case when ∆ = 3 of
this is implicit in [7].

In the statement of Lemma 9 and later on we write 0 < a1 ≪ a2 ≪ a3 to mean that we
can choose the constants a1, a2, a3 from right to left. More precisely, there are increasing
functions f and g such that, given a3, whenever we choose some a2 ≤ f(a3) and a1 ≤ g(a2),
all calculations needed in the proof of Lemma 9 are valid. Hierarchies with more constants
are defined in the obvious way.

Lemma 9 (Blow-up Lemma, Csaba [6]). For all integers ∆,K1,K2,K3 and every positive
constant c there exists an integer N such that whenever ε, ε′, δ′, d are positive constants with

0 < ε ≪ ε′ ≪ δ′ ≪ d ≪ 1/∆, 1/K1, 1/K2, 1/K3, c

the following holds. Suppose that G∗ is a graph of order n ≥ N and V0, . . . , Vk is a partition
of V (G∗) such that the bipartite graph (Vi, Vj)G∗ is ε-regular with density either 0 or d for
all 1 ≤ i < j ≤ k. Let H be a graph on n vertices with ∆(H) ≤ ∆ and let L0 ∪L1 ∪ · · · ∪Lk

be a partition of V (H) with |Li| = |Vi| =: m for every i = 1, . . . , k. Furthermore, suppose
that there exists a bijection φ : L0 → V0 and a set I ⊆ V (H) of vertices at distance at least 4
from each other such that the following conditions hold:

(C1) |L0| = |V0| ≤ K1dn.
(C2) L0 ⊆ I.
(C3) Li is independent for every i = 1, . . . , k.
(C4) |NH(L0) ∩ Li| ≤ K2dm for every i = 1, . . . , k.
(C5) For each i = 1, . . . , k there exists Di ⊆ I ∩ Li with |Di| = δ′m and such that for

D :=
⋃k

i=1 Di and all 1 ≤ i < j ≤ k

||NH(D) ∩ Li| − |NH(D) ∩ Lj|| < εm.
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(C6) If xy ∈ E(H) and x ∈ Li, y ∈ Lj where i, j 6= 0 then (Vi, Vj)G∗ is ε-regular with
density d.

(C7) If xy ∈ E(H) and x ∈ L0, y ∈ Lj then |NG∗(φ(x)) ∩ Vj| ≥ cm.
(C8) For each i = 1, . . . , k, given any Ei ⊆ Vi with |Ei| ≤ ε′m there exists a set Fi ⊆

(Li ∩ (I \ D)) and a bijection φi : Ei → Fi such that |NG∗(v) ∩ Vj | ≥ (d − ε)m
whenever NH(φi(v)) ∩ Lj 6= ∅ (for all v ∈ Ei and all j = 1, . . . , k).

(C9) Writing F :=
⋃k

i=1 Fi we have that |NH(F ) ∩ Li| ≤ K3ε
′m.

Then G∗ contains a copy of H such that the image of Li is Vi for all i = 1, . . . , k and the
image of each x ∈ L0 is φ(x) ∈ V0.

The additional properties of the copy of H in G∗ are not included in the statement of the
lemma in [6] but are stated explicitly in the proof.

Let us briefly motivate the conditions of the Blow-up lemma. The embedding of H into G
guaranteed by the Blow-up lemma is found by a randomized algorithm which first embeds
each vertex x ∈ L0 to φ(x) and then successively embeds the remaining vertices of H. So the
image of L0 will be the exceptional set V0. Condition (C1) requires that there are not too
many exceptional vertices and (C2) ensures that we can embed the vertices in L0 without
affecting the neighbourhood of other such vertices. As Li will be embedded into Vi we need
to have (C3). Condition (C5) gives us a reasonably large set D of ‘buffer vertices’ which will
be embedded last by the randomized algorithm. (C6) requires that edges between vertices
of H −L0 are embedded into ε-regular pairs of density d. (C7) ensures that the exceptional
vertices have large degree in all ‘neighbouring clusters’. (C8) and (C9) allow us to embed
those vertices whose set of candidate images in G∗ has grown very small at some point of
the algorithm. Conditions (C6), (C8) and (C9) correspond to a substantial weakening of the
super-regularity that the usual form of the Blow-up lemma requires, namely that wheneverH
contains an edge xy with and x ∈ Li, y ∈ Lj then (Vi, Vj)G∗ is (ε, d)-super-regular.

We would like to apply the Blow-up lemma with G∗ being obtained from the underlying
graph of the pure oriented graph by adding the exceptional vertices. It will turn out that
in order to satisfy (C8), it suffices to ensure that all the edges of a suitable 1-factor in
the reduced oriented graph R correspond to (ε, d)-superregular pairs of clusters. A well-
known simple fact (see the first part of the proof of Proposition 10) states that this can be
ensured by removing a small proportion of vertices from each cluster Vi, and so (C8) will
be satisfied. However, (C6) requires all the edges of R to correspond to ε-regular pairs of
density precisely d and not just at least d. (As remarked by Csaba [6], it actually suffices
that the densities are close to d in terms of ε.) The second part of the following proposition
shows that this too does not pose a problem.

Proposition 10. Let M ′, n0,D be integers and let ε, d be positive constants such that 1/n0 ≪
1/M ′ ≪ ε ≪ d ≪ 1/D. Let G be an oriented graph of order at least n0. Let R be the reduced
oriented graph and let G∗ be the pure oriented graph obtained by successively applying first
the Diregularity lemma with parameters ε, d and M ′ to G and then Lemma 8. Let S be an
oriented subgraph of R with ∆(S) ≤ D. Let G′ be the underlying graph of G∗. Then one
can delete 2Dε|Vi| vertices from each cluster Vi to obtain subclusters V ′

i ⊆ Vi in such a way
that G′ contains a subgraph G′

S whose vertex set is the union of all the V ′
i and such that

• (V ′
i , V

′
j )G′

S
is (

√
ε, d− 4Dε)-superregular whenever ViVj ∈ E(S),

• (V ′
i , V

′
j )G′

S
is

√
ε-regular and has density d− 4Dε whenever ViVj ∈ E(R).

Proof. Consider any cluster Vi ∈ V (S) and any neighbour Vj of Vi in S. Recall that
m = |Vi|. Let dij denote the density of the bipartite subgraph (Vi, Vj)G′ of G′ induced by Vi

and Vj . So dij ≥ d and this bipartite graph is ε-regular. Thus there are at most 2εm vertices
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v ∈ Vi such that ||NG′(v) ∩ Vj | − dijm| > εm. So in total there are at most 2Dεm vertices
v ∈ Vi such that ||NG′(v) ∩ Vj | − dijm| > εm for some neighbour Vj of Vi in S. Delete all
these vertices as well as some more vertices if necessary to obtain a subcluster V ′

i ⊆ Vi of size
(1− 2Dε)m =: m′. Delete any 2Dεm vertices from each cluster Vi ∈ V (R) \ V (S) to obtain
a subcluster V ′

i . It is easy to check that for each edge ViVj ∈ E(R) the graph (V ′
i , V

′
j )G′ is

still 2ε-regular and that its density d′ij satisfies

d′ := d− 4Dε < dij − ε ≤ d′ij ≤ dij + ε.

Moreover, whenever ViVj ∈ E(S) and v ∈ V ′
i we have that

(dij − 4Dε)m′ ≤ |NG′(v) ∩ V ′
j | ≤ (dij + 4Dε)m′.

For every pair Vi, Vj of clusters with ViVj ∈ E(S) we now consider a spanning random
subgraph G′

ij of (V ′
i , V

′
j )G′ which is obtained by choosing each edge of (V ′

i , V
′
j )G′ with prob-

ability d′/d′ij , independently of the other edges. Consider any vertex v ∈ V ′
i . Then the

expected number of neighbours of v in V ′
j (in the graph G′

ij) is at least (dij−4Dε)d′m′/d′ij ≥
(1 − √

ε)d′m′. So we can apply a Chernoff-type bound to see that there exists a constant
c = c(ε) such that

P(|NG′

ij
(v) ∩ V ′

j | ≤ (d′ −√
ε)m′) ≤ e−cd′m′

.

Similarly, whenever X ⊆ V ′
i and Y ⊆ V ′

j are sets of size at least 2εm′ the expected number

of X-Y edges in G′
ij is dG′(X,Y )d′|X||Y |/d′ij . Since (V ′

i , V
′
j )G′ is 2ε-regular this expected

number lies between (1−√
ε)d′|X||Y | and (1+

√
ε)d′|X||Y |. So again we can use a Chernoff-

type bound to see that

P(|eG′

ij
(X,Y )− d′|X||Y || > √

ε|X||Y |) ≤ e−cd′|X||Y | ≤ e−4cd′(εm′)2 .

Moreover, with probability at least 1/(3m′) the graph G′
ij has its expected density d′ (see

e.g. [4, p. 6]). Altogether this shows that with probability at least

1/(3m′)− 2m′e−cd′m′ − 22m
′

e−4cd′(εm′)2 > 0

we have that G′
ij is (

√
ε, d′)-superregular and has density d′. Proceed similarly for every pair

of clusters forming an edge of S. An analogous argument applied to a pair Vi, Vj of clusters
with ViVj ∈ E(R) \E(S) shows that with non-zero probability the random subgraph G′

ij is√
ε-regular and has density d′. Altogether this gives us the desired subgraph G′

S of G′. �

3.2. Overview of the proof of Theorem 3. Let G be our given oriented graph. The
rough idea of the proof is to apply the Diregularity lemma and Lemma 8 to obtain a reduced
oriented graph R and a pure oriented graph G∗. The following result of Häggkvist implies
that R contains a 1-factor.

Theorem 11 (Häggkvist [10]). Let R be an oriented graph with δ∗(R) > (3|R| − 3)/2.
Then R is strongly connected and contains a 1-factor.

So one can apply the Blow-up lemma (together with Proposition 10) to find a 1-factor
in G∗ − V0 ⊆ G − V0. One now would like to glue the cycles of this 1-factor together and
to incorporate the exceptional vertices to obtain a Hamilton cycle of G∗ and thus of G.
However, we were only able to find a method which incorporates a set of vertices whose
size is small compared to the cluster size m. This is not necessarily the case for V0. So we
proceed as follows. We first choose a random partition of the vertex set of G into two sets A
and V (G) \ A having roughly equal size. We then apply the Diregularity lemma to G − A
in order to obtain clusters V1, . . . , Vk and an exceptional set V0. We let m denote the size of
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these clusters and set B := V1∪. . . Vk. By arguing as indicated above, we can find a Hamilton
cycle CB in G[B]. We then apply the Diregularity lemma to G−B, but with an ε which is
small compared to 1/k, to obtain clusters V ′

1 , . . . , V
′
ℓ and an exceptional set V ′

0 . Since the
choice of our partition A,V (G)\A will imply that δ∗(G−B) ≥ (3/2+α/2)|G−B| we can again
argue as before to obtain a cycle CA which covers precisely the vertices in A′ := V ′

1 ∪· · ·∪V ′
ℓ .

Since we have chosen ε to be small compared to 1/k, the set V ′
0 of exceptional vertices is now

small enough to be incorporated into our first cycle CB . (Actually, CB is only determined
at this point and not yet earlier on.) Moreover, by choosing CB and CA suitably we can
ensure that they can be joined together into the desired Hamilton cycle of G.

4. Shifted Walks

In this section we will introduce the tools we need in order to glue certain cycles together
and to incorporate the exceptional vertices. Let R∗ be a digraph and let C be a collection
of disjoint cycles in R∗. We call a closed walk W in R∗ balanced w.r.t. C if

• for each cycle C ∈ C the walk W visits all the vertices on C an equal number of
times,

• W visits every vertex of R∗,
• every vertex not in any cycle from C is visited exactly once.

Let us now explain why balanced walks are helpful in order to incorporate the exceptional
vertices. Suppose that C is a 1-factor of the reduced oriented graph R and that R∗ is
obtained from R by adding all the exceptional vertices v ∈ V0 and adding an edge vVi

(where Vi is a cluster) whenever v sends edges to a significant proportion of the vertices
in Vi, say we add vVi whenever v sends at least cm edges to Vi. (Recall that m denotes the
size of the clusters.) The edges in R∗ of the form Viv are defined in a similar way. Let Gc be
the oriented graph obtained from the pure oriented graph G∗ by making all the non-empty
bipartite subgraphs between the clusters complete (and orienting all the edges between these
clusters in the direction induced by R) and adding the vertices in V0 as well as all the edges
of G between V0 and V (G − V0). Suppose that W is a balanced closed walk in R∗ which
visits all the vertices lying on a cycle C ∈ C precisely mC ≤ m times. Furthermore, suppose
that |V0| ≤ cm/2 and that the vertices in V0 have distance at least 3 from each other on W .
Then by ‘winding around’ each cycle C ∈ C precisely m−mC times (at the point when W
first visits C) we can obtain a Hamilton cycle in Gc. Indeed, the two conditions on V0 ensure
that the neighbours of each v ∈ V0 on the Hamilton cycle can be chosen amongst the at
least cm neighbours of v in the neighbouring clusters of v on W in such a way that they
are distinct for different exceptional vertices. The idea then is to apply the Blow-up lemma
to show that this Hamilton cycle corresponds to one in G. So our aim is to find such a
balanced closed walk in R∗. However, as indicated in Section 3.2, the difficulties arising
when trying to ensure that the exceptional vertices lie on this walk will force us to apply
the above argument to the subgraphs induced by a random partition of our given oriented
graph G.

Let us now go back to the case when R∗ is an arbitrary digraph and C is a collection of
disjoint cycles in R∗. Given vertices a, b ∈ R∗, a shifted a-b walk is a walk of the form

W = aa1C1b1a2C2b2 . . . atCtbtb

where C1, . . . , Ct are (not necessarily distinct) cycles from C and ai is the successor of bi
on Ci for all i ≤ t. (We might have t = 0. So an edge ab is a shifted a-b walk.) We
call C1, . . . , Ct the cycles which are traversed by W . So even if the cycles C1, . . . , Ct are
not distinct, we say that W traverses t cycles. Note that for every cycle C ∈ C the walk
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W − {a, b} visits the vertices on C an equal number of times. Thus it will turn out that by
joining the cycles from C suitably via shifted walks and incorporating those vertices of R∗

not covered by the cycles from C we can obtain a balanced closed walk on R∗.
Our next lemma will be used to show that if R∗ is oriented and δ∗(R∗) ≥ (3/2 + α)|R∗|

then any two vertices of R∗ can be joined by a shifted walk traversing only a small number
of cycles from C (see Corollary 14). The lemma itself shows that the δ∗ condition implies
expansion, and this will give us the ‘expansion with respect to shifted neighbourhoods’
we need for the existence of shifted walks. The proof of Lemma 12 is similar to that of
Theorem 11.

Lemma 12. Let R∗ be an oriented graph on N vertices with δ∗(R∗) ≥ (3/2+α)N for some
α > 0. If X ⊆ V (R∗) is nonempty and |X| ≤ (1− α)N then |N+(X)| ≥ |X|+ αN/2.

Proof. For simplicity, we write δ := δ(R∗), δ+ := δ+(R∗) and δ− := δ−(R∗). Suppose the
assertion is false, i.e. there exists X ⊆ V (R∗) with |X| ≤ (1− α)N and

(6)
∣

∣N+(X)
∣

∣ < |X|+ αN/2.

We consider the following partition of V (R∗):

A := X ∩N+(X), B := N+(X)\X, C := V (R∗)\(X ∪N+(X)), D := X\N+(X).

(6) gives us

(7) |D|+ αN/2 > |B|.

Suppose A 6= ∅. Then by an averaging argument there exists x ∈ A with |N+(x) ∩A| <
|A|/2. Hence δ+ ≤ |N+(x)| < |B|+ |A|/2. Combining this with (7) we get

(8) |A|+ |B|+ |D| ≥ 2δ+ − αN/2.

If A = ∅ then N+(X) = B and so (7) implies |D|+αN/2 ≥ |B| ≥ δ+. Thus (8) again holds.
Similarly, if C 6= ∅ then considering the inneighbourhood of a suitable vertex x ∈ C gives

(9) |B|+ |C|+ |D| ≥ 2δ− − αN/2.

If C = ∅ then the fact that |X| ≤ (1 − α)N and (6) together imply that D 6= ∅. But then
N−(D) ⊆ B and thus |B| ≥ δ−. Together with (7) this shows that (9) holds in this case
too.

If D = ∅ then trivially |A| + |B| + |C| = N ≥ δ. If not, then for any x ∈ D we have
N(x) ∩D = ∅ and hence

(10) |A|+ |B|+ |C| ≥ |N(x)| ≥ δ.

Combining (8), (9) and (10) gives

3|A|+ 4|B|+ 3|C|+ 2|D| ≥ 2δ− + 2δ+ + 2δ − αN = 2δ∗(R∗)− αN.

Finally, substituting (7) gives

3N + αN/2 ≥ 2δ∗(R∗)− αN ≥ 3N + αN,

which is a contradiction. �
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As indicated before, we will now use Lemma 12 to prove the existence of shifted walks
in R∗ traversing only a small number of cycles from a given 1-factor of R∗. For this (and
later on) the following fact will be useful.

Fact 13. Let G be an oriented graph with δ∗(G) ≥ (3/2 + α)|G| for some constant α > 0.
Then δ0(G) > α|G|.
Proof. Suppose that δ−(G) ≤ α|G|. As G is oriented we have that δ+(G) < |G|/2 and so
δ∗(G) < 3n/2 + α|G|, a contradiction. The proof for δ+(G) is similar. �

Corollary 14. Let R∗ be an oriented graph on N vertices with δ∗(R∗) ≥ (3/2 + α)N for
some α > 0 and let C be a 1-factor in R∗. Then for any distinct x, y ∈ V (R∗) there exists a
shifted x-y walk traversing at most 2/α cycles from C.
Proof. Let Xi be the set of vertices v for which there is a shifted x-v walk which traverses
at most i cycles. So X0 = N+(x) 6= ∅ and Xi+1 = N+(X−

i ) ∪Xi, where X−
i is the set of

all predecessors of the vertices in Xi on the cycles from C. Suppose that |Xi| ≤ (1 − α)N .
Then Lemma 12 implies that

|Xi+1| ≥ |N+(X−
i )| ≥ |X−

i |+ αN/2 = |Xi|+ αN/2.

So for i∗ := ⌊2/α⌋−1, we must have |X−
i∗ | = |Xi∗ | ≥ (1−α)N . But |N−(y)| ≥ δ−(R∗) > αN

and so N−(y) ∩ X−
i∗ 6= ∅. In other words, y ∈ N+(X−

i∗ ) and so there is a shifted x-y walk
traversing at most i∗ + 1 cycles. �

Corollary 15. Let R∗ be an oriented graph with δ∗(R∗) ≥ (3/2 +α) |R∗| for some 0 < α ≤
1/6 and let C be a 1-factor in R∗. Then R∗ contains a closed walk which is balanced w.r.t. C
and meets every vertex at most |R∗|/α times and traverses each edge lying on a cycle from C
at least once.

Proof. Let C1, . . . , Cs be an arbitrary ordering of the cycles in C. For each cycle Ci pick a
vertex ci ∈ Ci. Denote by c+i the successor of ci on the cycle Ci. Corollary 14 implies that
for all i there exists a shifted ci-c

+
i+1 walk Wi traversing at most 2/α cycles from C, where

cs+1 := c1. Then the closed walk

W ′ := c+1 C1c1W1c
+
2 C2c2 . . .Ws−1c

+
s CscsWsc

+
1

is balanced w.r.t. C by the definition of shifted walks. Since each shifted walk Wi traverses
at most 2/α cycles of C, the closed walk W meets each vertex at most (|R∗| /3)(2/α) + 1
times. Let W denote the walk obtained from W ′ by ‘winding around’ each cycle C ∈ C
once more. (That is, for each C ∈ C pick a vertex v on C and replace one of the occurences
of v on W ′ by vCv.) Then W is still balanced w.r.t. C, traverses each edge lying on a cycle
from C at least once and visits each vertex of R∗ at most (|R∗| /3)(2/α) + 2 ≤ |R∗| /α times
as required. �

5. Proof of Theorem 3

5.1. Partitioning G and applying the Diregularity lemma. Let G be an oriented
graph on n vertices with δ∗(G) ≥ (3/2 + α)n for some constant α > 0. Clearly we may
assume that α ≪ 1. Define positive constants ε, d and integers M ′

A,M
′
B such that

1/M ′
A ≪ 1/M ′

B ≪ ε ≪ d ≪ α ≪ 1.
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Throughout this section, we will assume that n is sufficiently large compared to M ′
A for our

estimates to hold. Choose a subset A ⊆ V (G) with (1/2− ε)n ≤ |A| ≤ (1/2 + ε)n and such
that every vertex x ∈ G satisfies

d+(x)

n
− α

10
≤ |N+(x) ∩A|

|A| ≤ d+(x)

n
+

α

10

and such that N−(x) ∩ A satisfies a similar condition. (The existence of such a set A
can be shown by considering a random partition of V (G).) Apply the Diregularity lemma
(Lemma 7) with parameters ε2, d+8ε2 and M ′

B to G−A to obtain a partition of the vertex
set of G−A into k ≥ M ′

B clusters V1, . . . , Vk and an exceptional set V0. Set B := V1∪ . . .∪Vk

and mB := |V1| = · · · = |Vk|. Let RB denote the reduced oriented graph obtained by an
application of Lemma 8 and let G∗

B be the pure oriented graph. Since δ+(G−A)/|G−A| ≥
δ+(G)/n − α/9 by our choice of A, Lemma 8 implies that

(11) δ+(RB) ≥ (δ+(G)/n − α/8)|RB |.
Similarly

(12) δ−(RB) ≥ (δ−(G)/n − α/8)|RB |
and δ(RB) ≥ (δ(G)/n − α/4)|RB |. Altogether this implies that

(13) δ∗(RB) ≥ (3/2 + α/2)|RB |.
So Theorem 11 gives us a 1-factor CB of RB . We now apply Proposition 10 with CB playing
the role of S, ε2 playing the role of ε and d + 8ε2 playing the role of d. This shows that
by adding at most 4ε2n further vertices to the exceptional set V0 we may assume that each
edge of RB corresponds to an ε-regular pair of density d (in the underlying graph of G∗

B)
and that each edge in the union

⋃

C∈CB
C ⊆ RB of all the cycles from CB corresponds to

an (ε, d)-superregular pair. (More formally, this means that we replace the clusters with
the subclusters given by Proposition 10 and replace G∗

B with its oriented subgraph obtained
by deleting all edges not corresponding to edges of the graph G′

CB
given by Proposition 10,

i.e. the underlying graph of G∗
B will now be G′

CB
.) Note that the new exceptional set now

satisfies |V0| ≤ εn.
Apply Corollary 15 with R∗ := RB to find a closed walk WB in RB which is balanced

w.r.t. CB , meets every cluster at most 2|RB |/α times and traverses all the edges lying on a
cycle from CB at least once.

Let Gc
B be the oriented graph obtained from G∗

B by adding all the Vi-Vj edges for all those
pairs Vi, Vj of clusters with ViVj ∈ E(RB). Since 2|RB |/α ≪ mB, we could make WB into a
Hamilton cycle of Gc

B by ‘winding around’ each cycle from CB a suitable number of times.
We could then apply the Blow-up lemma to show that this Hamilton cycle corresponds to
one in G∗

B . However, as indicated in Section 3.2, we will argue slightly differently as it is
not clear how to incorporate all the exceptional vertices by the above approach.

Set εA := ε/|RB |. Apply the Diregularity lemma with parameters ε2A, d + 8ε2A and M ′
A

to G[A ∪ V0] to obtain a partition of the vertex set of G[A ∪ V0] into ℓ ≥ M ′
A clusters

V ′
1 , . . . , V

′
ℓ and an exceptional set V ′

0 . Let A′ := V ′
1 ∪ · · · ∪ V ′

ℓ , let RA denote the reduced
oriented graph obtained from Lemma 8 and let G∗

A be the pure oriented graph. Similarly
as in (13), Lemma 8 implies that δ∗(RA) ≥ (3/2 + α/2)|RA| and so, as before, we can
apply Theorem 11 to find a 1-factor CA of RA. Then as before, Proposition 10 implies
that by adding at most 4ε2An further vertices to the exceptional set V ′

0 we may assume that
each edge of RA corresponds to an εA-regular pair of density d and that each edge in the
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Figure 2. Incorporating the exceptional vertex v.

union
⋃

C∈CA
C ⊆ RA of all the cycles from CA corresponds to an (εA, d)-superregular pair.

So we now have that

(14) |V ′
0 | ≤ εAn = εn/|RB |.

Similarly as before, Corollary 15 gives us a closed walk WA in RA which is balanced w.r.t. CA,
meets every cluster at most 2|RA|/α times and traverses all the edges lying on a cycle from CA
at least once.

5.2. Incorporating V ′
0 into the walk WB. Recall that the balanced closed walk WB

in RB corresponds to a Hamilton cycle in Gc
B . Our next aim is to extend this walk to one

which corresponds to a Hamilton cycle which also contains the vertices in V ′
0 . (The Blow-up

lemma will imply that the latter Hamilton cycle corresponds to one in G[B ∪ V ′
0 ].) We do

this by extending WB into a walk on a suitably defined digraph R∗
B ⊇ RB with vertex set

V (RB) ∪ V ′
0 in such a way that the new walk is balanced w.r.t. CB. R∗

B is obtained from
the union of RB and the set V ′

0 by adding an edge vVi between a vertex v ∈ V ′
0 and a

cluster Vi ∈ V (RB) whenever
∣

∣N+
G (v) ∩ Vi

∣

∣ > αmB/10 and adding the edge Viv whenever
∣

∣N−
G (v) ∩ Vi

∣

∣ > αmB/10. Thus

|N+
G (v) ∩B| ≤ |N+

R∗

B
(v)|mB + |RB |αmB/10.

Hence

|N+
R∗

B
(v)| ≥ |N+

G (v) ∩B|/mB − α|RB |/10 ≥ |N+
G (v) ∩B||RB |/|B| − α|RB |/10

≥ (|N+
G−A(v)| − |V0|)|RB |/|G −A| − α|RB |/10

≥ (δ+(G)/n − α/2)|RB | ≥ α|RB |/2.(15)

(The penultimate inequality follows from the choice of A and the final one from Fact 13.)
Similarly

|N−
R∗

B
(v)| ≥ α|RB |/2.

Given a vertex v ∈ V ′
0 pick U1 ∈ N+

R∗

B
(v), U2 ∈ N−

R∗

B
(v)\{U1}. Let C1 and C2 denote the

cycles from CB containing U1 and U2 respectively. Let U−
1 be the predecessor of U1 on C1,

and U+
2 be the successor of U2 on C2. (15) implies that we can ensure U−

1 6= U+
2 . (However,

we may have C1 = C2.) Corollary 14 gives us a shifted walk Wv from U−
1 to U+

2 traversing
at most 4/α cycles of CB . To incorporate v into the walk WB , recall that WB traverses all
those edges of RB which lie on cycles from CB at least once. Replace one of the occurences
of U−

1 U1 on WB with the walk

W ′
v := U−

1 WvU
+
2 C2U2vU1C1U1,
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i.e. the walk that goes from U−
1 to U+

2 along the shifted walk Wv, it then winds once
around C2 but stops in U2, then it goes to v and further to U1, and finally it winds around C1.
The walk obtained from WB by including v in this way is still balanced w.r.t. CB, i.e. each
vertex in RB is visited the same number of times as every other vertex lying on the same
cycle from CB . We add the extra loop around C1 because when applying the Blow-up lemma
we will need the vertices in V ′

0 to be at a distance of at least 4 from each other. Using this
loop, this can be ensured as follows. After we have incorporated v into WB we ‘ban’ all
the 6 edges of (the new walk) WB whose endvertices both have distance at most 3 from v.
The extra loop ensures that every edge in each cycle from C has at least one occurence
in WB which is not banned. (Note that we do not have to add an extra loop around C2

since if C2 6= C1 then all the banned edges of C2 lie on W ′
v but each edge of C2 also occurs

on the original walk WB.) Thus when incorporating the next exceptional vertex we can
always pick an occurence of an edge which is not banned to be replaced by a longer walk.
(When incorporating v we picked U−

1 U1.) Repeating this argument, we can incorporate all
the exceptional vertices in V ′

0 into WB in such a way that all the vertices of V ′
0 have distance

at least 4 on the new walk WB.
Recall that Gc

B denotes the oriented graph obtained from the pure oriented graph G∗
B by

adding all the Vi-Vj edges for all those pairs Vi, Vj of clusters with ViVj ∈ E(RB). Let G
c
B∪V ′

0

denote the graph obtained from Gc
B by adding all the V ′

0-B edges of G as well as all the
B-V ′

0 edges of G. Moreover, recall that the vertices in V ′
0 have distance at least 4 from each

other on WB and |V ′
0 | ≤ εn/|RB | ≪ αmB/20 by (14). As already observed at the beginning

of Section 4, altogether this shows that by winding around each cycle from CB , one can
obtain a Hamilton cycle Cc

B∪V ′

0

of Gc
B∪V ′

0

from the walk WB, provided that WB visits any

cluster Vi ∈ RB at most mB times. To see that the latter condition holds, recall that before
we incorporated the exceptional vertices in V ′

0 into WB, each cluster was visited at most
2|RB |/α times. When incorporating an exceptional vertex we replaced an edge of WB by a
walk whose interior visits every cluster at most 4/α+2 ≤ 5/α times. Thus the final walk WB

visits each cluster Vi ∈ RB at most

(16) 2|RB |/α+ 5|V ′
0 |/α

(14)
≤ 6εn/(α|RB |) ≤

√
εmB

times. Hence we have the desired Hamilton cycle Cc
B∪V ′

0

of Gc
B∪V ′

0

. Note that (16) implies

that we can choose Cc
B∪V ′

0

in such a way that for each cycle C ∈ CB there is subpath PC

of Cc
B∪V ′

0

which winds around C at least

(17) (1−√
ε)mB

times in succession.

5.3. Applying the Blow-up lemma to find a Hamilton cycle in G[B ∪ V ′
0 ]. Our

next aim is to use the Blow-up lemma to show that Cc
B∪V ′

0

corresponds to a Hamilton

cycle in G[B ∪ V ′
0 ]. Recall that k = |RB| and that for each exceptional vertex v ∈ V ′

0 the
outneighbour U1 of v on WB is distinct from its inneighbour U2 on WB. We will apply
the Blow-up lemma with H being the underlying graph of Cc

B∪V ′

0

and G∗ being the graph

obtained from the underlying graph of G∗
B by adding all the vertices v ∈ V ′

0 and joining

each such v to all the vertices in N+
G (v) ∩ U1 as well as to all the vertices in N−

G (v) ∩ U2.
Recall that after applying the Diregularity lemma to obtain the clusters V1, . . . , Vk we used
Proposition 10 to ensure that each edge of RB corresponds to an ε-regular pair of density d
(in the underlying graph of G∗

B and thus also in G∗) and that each edge of the union
⋃

C∈CB
C ⊆ RB of all the cycles from CB corresponds to an (ε, d)-superregular pair.
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V ′
0 will play the role of V0 in the Blow-up lemma and we take L0, L1, . . . , Lk to be the

partition of H induced by V ′
0 , V1, . . . , Vk. φ : L0 → V ′

0 will be the obvious bijection (i.e. the
identity). To define the set I ⊆ V (H) of vertices of distance at least 4 from each other
which is used in the Blow-up lemma, let P ′

C be the subpath of H corresponding to PC (for
all C ∈ CB). For each i = 1, . . . , k, let Ci ∈ CB denote the cycle containing Vi and let
Ji ⊆ Li consist of all those vertices in Li ∩ V (P ′

Ci
) which have distance at least 4 from the

endvertices of P ′
Ci
. Thus in the graph H each vertex u ∈ Ji has one of its neighbours in the

set L−
i corresponding to the predecessor of Vi on Ci and its other neighbour in the set L+

i

corresponding to the successor of Vi on Ci. Moreover, all the vertices in Ji have distance at
least 4 from all the vertices in L0 and (17) implies that |Ji| ≥ 9mB/10. It is easy to see that

one can greedily choose a set Ii ⊆ Ji of size mB/10 such that the vertices in
⋃k

i=1 Ii have

distance at least 4 from each other. We take I := L0 ∪
⋃k

i=1 Ii.
Let us now check conditions (C1)–(C9). (C1) holds with K1 := 1 since |L0| = |V ′

0 | ≤
εAn = εn/k ≤ d|H|. (C2) holds by definition of I. (C3) holds since H is a Hamilton cycle
in Gc

B∪V ′

0

(c.f. the definition of the graph Gc
B∪V ′

0

). This also implies that for every edge

xy ∈ H with x ∈ Li, y ∈ Lj (i, j ≥ 1) we must have that ViVj ∈ E(RB). Thus (C6) holds as
every edge of RB corresponds to an ε-regular pair of clusters having density d. (C4) holds
with K2 := 1 because

|NH(L0) ∩ Li| ≤ 2 |L0| = 2
∣

∣V ′
0

∣

∣

(14)
≤ 2εn/|RB | ≤ 5εmB ≤ dmB .

For (C5) we need to find a setD ⊆ I of buffer vertices. Pick any setDi ⊆ Ii with |Di| = δ′mB

and let D :=
⋃k

i=1Di. Since Ii ⊆ Ji we have that |NH(D) ∩ Lj| = 2δ′mB for all j = 1, . . . , k.
Hence

||NH(D) ∩ Li| − |NH(D) ∩ Lj|| = 0

for all 1 ≤ i < j ≤ k and so (C5) holds. (C7) holds with c := α/10 by our choice U1 ∈ N+
R∗

B
(v)

and U2 ∈ N−
R∗

B
(v) of the neighbours of each vertex v ∈ V ′

0 in the walk WB (c.f. the definition

of the graph R∗
B).

(C8) and (C9) are now the only conditions we need to check. Given a set Ei ⊆ Vi of size
at most ε′mB , we wish to find Fi ⊆ (Li ∩ (I \ D)) = Ii \ D and a bijection φi : Ei → Fi

such that every v ∈ Ei has a large number of neighbours in every cluster Vj for which Lj

contains a neighbour of φi(v). Pick any set Fi ⊆ Ii \D of size |Ei|. (This can be done since
|D ∩ Ii| = δ′mB and so |Ii \D| ≥ mB/10− δ′mB ≫ ε′mB .) Let φi : Ei → Fi be an arbitrary
bijection. To see that (C8) holds with these choices, consider any vertex v ∈ Ei ⊆ Vi and
let j be such that Lj contains a neighbour of φi(v) in H. Since φi(v) ∈ Fi ⊆ Ii ⊆ Ji, this
means that Vj must be a neighbour of Vi on the cycle Ci ∈ CB containing Vi. But this
implies that |NG∗(v) ∩ Vj| ≥ (d − ε)mB since each edge of the union

⋃

C∈CB
C ⊆ RB of all

the cycles from CB corresponds to an (ε, d)-superregular pair in G∗.

Finally, writing F :=
⋃k

i=1 Fi we have

|NH(F ) ∩ Li| ≤ 2ε′mB

(since Fj ⊆ Jj for each j = 1, . . . , k) and so (C9) is satisfied with K3 := 2. Hence (C1)–(C9)
hold and so we can apply the Blow-up lemma to obtain a Hamilton cycle in G∗ such that
the image of Li is Vi for all i = 1, . . . , k and the image of each x ∈ L0 is φ(x) ∈ V0. (Recall
that G∗ was obtained from the underlying graph of G∗

B by adding all the vertices v ∈ V ′
0

and joining each such v to all the vertices in N+
G (v) ∩ U1 as well as to all the vertices in

N−
G (v) ∩ U2, where U1 and U2 are the neighbours of v on the walk WB.) Using the fact

that H was obtained from the (directed) Hamilton cycle Cc
B∪V ′

0

and since U1 6= U2 for each
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v ∈ V ′
0 , it is easy to see that our Hamilton cycle in G∗ corresponds to a (directed) Hamilton

cycle CB in G[B ∪ V ′
0 ].

5.4. Finding a Hamilton cycle in G. The last step of the proof is to find a Hamilton
cycle in G[A′] which can be connected with CB into a Hamilton cycle of G. Pick an arbitrary
edge v1v2 on CB and add an extra vertex v∗ to G[A′] with outneighbourhood N+

G (v1) ∩ A′

and inneighbourhood N−
G (v2) ∩ A′. A Hamilton cycle CA in the digraph thus obtained

from G[A′] can be extended to a Hamilton cycle of G by replacing v∗ with v2CBv1. To find
such a Hamilton cycle CA, we can argue as before. This time, there is only one exceptional
vertex, namely v∗, which we incorporate into the walk WA. Note that by our choice of A
and B the analogue of (15) is satisfied and so this can be done as before. We then use the
Blow-up lemma to obtain the desired Hamilton cycle CA corresponding to this walk.

6. Proof of Theorem 4

The following observation guarantees that every oriented graph as in Theorem 4 has large
minimum semidegree.

Fact 16. Suppose that 0 < α < 1 and that G is an oriented graph such that d+(x)+d−(y) ≥
(3/4 + α)|G| whenever xy /∈ E(G). Then δ0(G) ≥ |G|/8 + α|G|/2.
Proof. Suppose not. We may assume that δ+(G) ≤ δ−(G). Pick a vertex x with d+(x) =
δ+(G). Let Y be the set of all those vertices y with xy /∈ E(G). Thus |Y | ≥ 7|G|/8−α|G|/2.
Moreover, d−(y) ≥ (3/4 + α)|G| − d+(x) ≥ 5|G|/8 + α|G|/2. Hence e(G) ≥ |Y |(5|G|/8 +
α|G|/2) > 35|G|2/64, a contradiction. �

The proof of Theorem 4 is similar to that of Theorem 3. Fact 16 and Lemma 8 together
imply that the reduced oriented graph RA (and similarly RB) has minimum semidegree
at least |R|/8 and it inherits the Ore-type condition from G (i.e. it satisfies condition (d)
of Lemma 8 with c = 3/4 + α). Together with Lemma 17 below (which is an analogue
of Lemma 12) this implies that RA (and RB as well) is an expander in the sense that
|N+(X)| ≥ |X| + α|RA|/2 for all X ⊆ V (RA) with |X| ≤ (1 − α)|RA|. In particular, RA

(and similarly RB) has a 1-factor: To see this, note that the above expansion property
together with Fact 16 imply that for any X ⊆ V (RA), we have |N+

RA
(X)| ≥ |X|. Together

with Hall’s theorem, this means that the following bipartite graph H has a perfect matching:
the vertex classes W1,W2 are 2 copies of V (RA) and we have an edge in H between w1 ∈ W1

and w2 ∈ W2 if there is an edge from w1 to w2 in RA. But clearly a perfect matching in H
corresponds to a 1-factor in RA. Using these facts, one can now argue precisely as in the
proof of Theorem 3.

Lemma 17. Suppose that 0 < ε ≪ α ≪ 1. Let R∗ be an oriented graph on N vertices and
let U be a set of at most εN2 ordered pairs of vertices of R∗. Suppose that d+(x) + d−(y) ≥
(3/4 + α)N for all xy /∈ E(R∗) ∪ U . Then any X ⊆ V (R∗) with αN ≤ |X| ≤ (1 − α)N
satisfies |N+(X)| ≥ |X|+ αN/2.

Proof. The proof is similar to that of Lemma 12. Suppose that Lemma 17 does not hold
and let X ⊆ V (R∗) with αN ≤ |X| ≤ (1− α)N be such that

(18)
∣

∣N+(X)
∣

∣ < |X|+ αN/2.

Call a vertex of R∗ good if it lies in at most
√
εN pairs from U . Thus all but at most 2

√
εN

vertices of R∗ are good. As in the proof of Lemma 12 we consider the following partition of
V (R∗):

A := X ∩N+(X), B := N+(X)\X, C := V (R∗)\(X ∪N+(X)), D := X\N+(X).
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(18) implies

(19) |D|+ αN/2 > |B|.
Suppose first that |D| > 2

√
εN . It is easy to see that there are vertices x 6= y in D

such that xy, yx /∈ U . Since no edge of R∗ lies within D we have xy, yx /∈ E(R∗) and so
d(x)+d(y) ≥ 3N/2+2αN . In particular, at least one of x, y has degree at least 3N/4+αN .
But then

(20) |A|+ |B|+ |C| ≥ 3N/4 + αN.

If |D| ≤ 2
√
εN then |A|+|B|+|C| ≥ N−|D| and so (20) still holds with room to spare. Note

that (19) and (20) together imply that 2|A|+2|C| ≥ 3N/2+2αN−2|B| ≥ 3N/2−|B|−|D| ≥
N/2. Thus at least one of A,C must have size at least N/8. In particular, this implies that
one of the following 3 cases holds.

Case 1. |A|, |C| > 2
√
εN .

Let A′ be the set of all good vertices in A. By an averaging argument there exists x ∈ A′

with |N+(x) ∩A′| < |A′|/2. Since N+(A) ⊆ A ∪ B this implies that |N+(x)| < |B| +
|A \ A′| + |A′|/2. Let C ′ ⊆ C be the set of all those vertices y ∈ C with xy /∈ U . Thus
|C \ C ′| ≤ √

εN since x is good. By an averaging argument there exists y ∈ C ′ with
|N−(y) ∩C ′| < |C ′|/2. But N−(C) ⊆ B ∪ C and so |N−(y)| < |B| + |C \ C ′| + |C ′|/2.
Moreover, d+(x) + d−(y) ≥ 3N/4 + αN since xy /∈ E(R∗) ∪ U . Altogether this shows that

|A′|/2 + |C ′|/2 + 2|B| ≥ d+(x) + d−(y)− |A \A′| − |C \ C ′| ≥ 3N/4 + αN/2.

Together with (20) this implies that 3|A|+6|B|+3|C| ≥ 3N +3αN , which in turn together
with (19) yields 3|A| + 3|B|+ 3|C|+ 3|D| ≥ 3N + 3αN/2, a contradiction.

Case 2. |A| > 2
√
εN and |C| ≤ 2

√
εN .

As in Case 1 we let A′ be the set of all good vertices in A and pick x ∈ A′ with |N+(x)| <
|B| + |A \ A′| + |A′|/2. Note that (19) implies that |D| > N − |X| − |C| − αN/2 ≥ √

εN .
Pick any y ∈ D such that xy /∈ U . Then xy /∈ E(R∗) since R∗ contains no edges from A
to D. Thus d+(x) + d−(y) ≥ 3N/4 + αN . Moreover, N−(y) ⊆ B ∪C. Altogether this gives

|A′|/2 + 2|B| ≥ d+(x) + d−(y)− |A \ A′| − |C| ≥ 3N/4 + αN/2.

As in Case 1 one can combine this with (20) and (19) to get a contradiction.

Case 3. |A| ≤ 2
√
εN and |C| > 2

√
εN .

This time we let C ′ be the set of all good vertices in C and pick y ∈ C ′ with |N−(y) ∩ C ′| <
|C ′|/2. Hence |N−(y)| < |B|+ |C \C ′|+ |C ′|/2. Moreover, we must have |D| = |X| − |A| >√
εN . Pick any x ∈ D such that xy /∈ U . Then xy /∈ E(R∗) since R∗ contains no edges

from D to C. Thus d+(x) + d−(y) ≥ 3N/4 + αN . Moreover, N+(x) ⊆ A ∪ B. Altogether
this gives

|C ′|/2 + 2|B| ≥ d+(x) + d−(y)− |A| − |C \ C ′| ≥ 3N/4 + αN/2,

which in turn yields a contradiction as before. �
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