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Abstract

Suppose that n > (log k)°*, where c is a fixed positive constant. We prove that no matter

how the edges of K, are colored with k colors, there is a copy of K4 whose edges receive at most
two colors. This improves the previous best bound of kclk, where ¢ is a fixed positive constant,
which follows from results on classical Ramsey numbers.

1 Introduction

Let p, ¢ be positive integers with 2 < ¢ < (’2’) A (p, q)-coloring of K, is an edge-coloring such that
every copy of K, receives at least ¢ distinct colors on its edges. Let f(n,p,q) denote the minimum
number of colors in a (p, ¢)-coloring of K,. This parameter, introduced in [1] and subsequently
investigated by Erdés and Gyarfas [2] is a generalization of the classical Ramsey numbers. Indeed,
if Ry (p) denotes the minimum n so that every k-edge-coloring of K, results in a monochromatic K,
then determining all Ry (p) is equivalent to determining all f(n,p,2). Many special cases of f(n,p, q)
lead to nontrivial problems (see, e.g. [3, 5, 7, 8]). One particular interesting case is f(n,4,3). In [1]
it was observed that an easy application of the probabilistic method yields f(n,4,3) = o(n). This
was subsequently improved in [2] to f(n,4,3) = O(y/n) via the Local Lemma. The second author
[4] then improved the upper bound further to eOWlogn) — n°M | and this is the current best known
upper bound. The lower bound follows from the well-known fact Ry (4) < kO®) | which implies that
there is a constant ¢ such that

clogn
4,3) > 4,2) > ———.
f.4.8) 2 f(n.4.2) > ZEL
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Here we give the first improvement of this lower bound.

Theorem 1 Let a > 1 be fixred. There is a constant ¢ depending on a such that for all n > 2a,

clogn
2 1 _
f(n2a,a+1) > logloglogn

Let Rg(p,q) be the minimum n so that every k-edge-coloring of K, yields a copy of K, with at
most ¢ — 1 colors. Then Ry(p,q) < n implies that every k-edge coloring of K, yields a copy of K,
with at most ¢ — 1 colors. Therefore, in order to edge-color K,, with every copy of K, receiving at
least ¢ colors, we need at least k + 1 colors. This means that f(n,p,q) > k. Our main result is

Ri(2a,a+ 1) < ¢ (log k)" (1)
where ¢ is a positive constant depending only on a.

Let us argue that Theorem 1 follows from (1). First observe that (1) implies that
F(ld (logk)*|,2a,a + 1) > k.
Now suppose that a > 1 is fixed and n is sufficiently large. Let k be the largest integer such that
n > | (logk)¢*|. Then
f(n,2a,a+1) > f(|d(logk)“*],2a,a+ 1) > k.

Note that as n — oo, we also have k — oco. All asymptotic notation below is taken as both of these

parameters approach infinity. It suffices to solve for k in terms of n. By definition of k, we clearly

¢k+0(1) | Taking logs this yields logn = ©(kloglog k) or

logn
k_®<by%%>. (2)

Taking logs of the previous expresssion yields loglogn = ©(log k + logloglogk) = O(logk) and

have n = ¢/(log k)

taking logs once again gives logloglogn = ©(loglog k) or
loglog k = ©(log loglog n).

Plugging this into (2) gives us a constant ¢ such that & > clogn/logloglogn and this proves
Theorem 1.

2 The setup of the proof

Let a > 1 be a positive integer throughout the rest of the paper.



Clearly, f(n,2,2) =0 for n > 2. The idea of our proof is to run induction on something related to
a, but not on a itself, since in this case the scale would be too rough. To facilitate the induction,
we introduce some definitions.

Definition 2 A k-edge-coloring x of Ky, is a (71,...,7k)-coloring if, for each i € [k|, color i does
not appear in any subgraph Ko, 1o whose edges are colored with at most v; +1 colors. In particular,
if vi = 0, then color i does not appear in any subgraph Ko whose edges are colored with 1 color,
that s, does not appear at all.

Note that a k-edge-coloring of K is a (2a,a + 1)-coloring iff it is an (a — 1,...,a — 1)-coloring.
Consequently, Equation (1) states that if Ky admits an (a — 1,...,a — 1)-coloring with k colors,
then N < ¢(log k)¢'*, where ¢ depends only on a.

Definition 3 For an edge-coloring x of K,, and a color i, the weakness v;(x) of i is the minimum
p such that color i does not appear in a Kopyo with at most p+ 1 colors. In particular, v;(x) = 0
iff color i is not present in x at all. Then vy(x) = Zle vi(x) is called the weakness of .

Note that by definition, each edge-coloring y of K, is a (y1(x),---,7&(x))-coloring. Also by defi-
nition, the weakness of any (a — 1,...,a — 1)-coloring with k colors is at most (a — 1)k. Then (1)
will follow from the following fact.

Theorem 4 There is a positive constant ¢y such that if x is an edge-coloring of Ky, then

N < e1log 7(x)) 1.

In everything that follows, let vy be sufficiently large so that for v > g, we have loglog~y > 1,

logy " logy 4 log ~y >
1000 Tao loo ~ >, d 10 | ————— ] logl > log 2.
< 1000 log log 7> 4500 log log v an 1000 log log ~ oglogy ~ log 27y

Let

10001og1 1
_ 0g 0g7<

t—1)Y4| 40
€=¢€y = —
log vy 100

t=t,=[e 10, § =58y = |Vm > (3)

Let ¢ = Ry, (270) and define g(7) = c(logy)'%0% = ¢y,
We will prove Theorem 4 by showing the following:

Suppose that x is a (y1,...,79%)-coloring of Ky and v =), 7;. Then N < g(v). (%)

We will prove (%) by induction on v and k. If 0 < v < ~p, then certainly N < ¢ < g(v), so we
may assume that v > 7g. If some ~; = 0, then color ¢ cannot appear at all, so we apply induction



on k since the bound does not depend on k. Thus, we may assume that each ~; is positive; in
particular, k < . We will also assume that N > g(v) = c(log )% = ¢y and proceed to get a
contradiction.

For a vertex z in a colored K, and a color 4, let d;(z) denote the number of edges of color 7 incident
to z.

Claim 5 For v > v and e,t,s defined as above, we have 2t? < ~0-15¢=2,

Proof. Since 2 < t° and s > 400/¢, the result follows from 3% < ~5€/29 which is equivalent to
60logt < elog~. Since t < e ', we have

logt log e? 1 1 1
60 log - 660 log e 660 log [ 0g ] < logv log log = log . 0

€ € 1000 log log ~y o8 1000 log log ~v log log ~y

In the next section we prove the technical statement that every dense bipartite graph F(Vi, Va; E)
contains a ‘large’ subset M of Vj in which every t-element subset has ‘many’ common neighbors in
V5. In Section 4 we prove the main result.

3 A Probabilistic Lemma

One of our main tools is the following lemma, essentially Lemma 1 in [6]. The proof uses ideas of
Sudakov [9]. By N(A) we denote the set of common neighbors of all vertices in A.
Lemma 6 Let positive integers m,n, h,d and reals o, 3 be such that
mh < 3. (4)
Let F = (V1,Va; E) be a bipartite graph with |Vi| = m, |Va| = n such that
degp(v) > n/a  for each v € V.
Then there is a subset V' of V4 with |V{'| > m/a™ — 1 such that every d-tuple D of vertices in Vi’

has at least n/B common neighbors.

Proof. Let x1,...,x, be a sequence of h not necessarily distinct vertices of Vo, which we choose
uniformly and independently at random and denote S = {z1,...,z,}. Denote by V{ the set N(S)
of common neighbors of vertices in S. Note that the size of V] is a random variable and that
S C N(v) for every v € V{. Then, using (4), we can estimate the expected size of V{ as follows

B(vl) = Y privev) = 3 (M) s o 5

n
veV] veVy




On the other hand, by definition, the probability that a given set of vertices W C Vi is contained in
V] equals (\N(W)|/n)h Denote by Z the number of subsets W of V] of size d with |[N(W)| < n/f.
Then by (4) the expected value of Z is at most

E(Z) = 3 Pr(W Cc V) < <7Z> (;)h < md<;>h <1 (6)

WCVL: [W|=d, |N(W)|<n/B

Hence, the expectation of |V/| — Z is greater than m a~" —1 and thus, there is a choice Sy of S such
that the corresponding value of [V7(Sg)| — Z(Sp) is greater than m a~" — 1. For every d-tuple D of
vertices of V] (Sp), delete a vertex vp € D from V{(Sp). The resulting set V/” satisfies the lemma. []

4 Proof of the Theorem
Call a t-set of vertices rainbow if its edges are colored with at least 10t3/2 colors.

Claim 7 Suppose that n > v > 7, the edges of K,, are colored (with any number of colors) and
di(z) < 2ny=</10 for each x € V(K,) and each color i. Then the number of t-sets that are not
rainbow is at most (}) /7.

Proof. First, let us estimate v(i,t,n) — the number of ¢-sets in K, in which there is a vertex
incident with at least s edges of color ¢ in this ¢-set. We can first choose the vertex, then choose s
incident edges of color 7 and include the other ends of these edges, and then add n — s — 1 other
vertices. This gives

, di(x)\ (n—1—s 2N\ (n—1-s N\ _se/10 42
< < € < se s
v(itn) < Z < s )(t—l—s>_n<vs t—1-s)=\t)7 !

Similarly, let ¢(i,t,n) be the number of ¢-sets in K, in which there is a matching of color i of size
at least s. Let e; be the number of edges of color 4. Since

n
e < max d;(x) < n?y~/1,

2
e\ [n—2s w n—2s n
. < i < /10 < 2s —86/10.

Now Claim 5 implies that

. - N\ 25 —se/to _ 1 (T
V(z,t,n)+w(z,t,n)§2<t>t Syse/ <2< >

we have

5



Suppose that a t-set T' contains more than s? edges of color i and let G; be the graph of these
edges. Either GG; has a vertex incident with at least s edges, or Vizing’s Theorem implies that G;
has a proper edge-coloring with at most s colors. In the latter case, GG; has a matching of size at
least s2/s = s. We have already shown that the number of t-sets that contain a monochromatic
matching of size s or a vertex with s edges of the same color is at most (?) /~?%. Consequently, the
number of t-sets that contain more than s? edges of some color is at most

k(?) /7P < <7Z> /.

Each t-set not included above has at most s? edges in each color and therefore at least (;) /52
colors. By the choice of s, this is at least 10t3/2. Hence the number of rainbow t-sets is at least

(1=1/7)(%). O

Claim 8 Let u € V(Ky) and S = S(u) = {j € [k] : dj(u) < N/y*2}. Then for every
i€[k]— S and j € [k], the number of vertices v € N;(u) for which

|Nj (@) N Ni(u)| = 2d;(u) /v (7)

is at most vV73.

Proof. Suppose the contrary. Then there are colors i € [k] — S(u) and j € [k] such that N;(u)
contains a set M of [y7~3] vertices x such that (7) holds. Consider the bipartite graph F(V1, Va; E)
with partite sets Vi = M and V5 = N;(u) — M whose edges are all edges of color j in our Ky
connecting Vi with Va. By (7) and since |[M| = [y773] < [N/~4%] < d;(u)/y/*°, we have for every

v eV,
2d;(u) di(u) _ [V2

degp(v) > 76/10 — | M] 76/10 76/10'

Observe that graph F' satisfies the conditions of Lemma 6 with
m=|M|, n=|Vl, h=~/Vt, d=t, a=~/" g=om!/"
Hence, there is a subset M’ of V4 with
IM'| >m/ja =1 >~ 307" —1> N3y (VD10 _ s 09¢y (8)
such that every d-tuple D of vertices in M’ has at least n/3 common neighbors.

We will construct a sequence My C My C --- of subsets of M’ as follows. Let My = M’. Suppose
that My, My, ..., M; are constructed. If there is a vertex x;11 € M; and a color j;11 such that
INj, o (w141) VM| > |My|y=¢/10, then we let M; , = Nj,_, (w141) N My, otherwise we stop. Suppose
that we stop at Step ¢. Each color i appears at most 27; 41 times in {ji, ..., j;} since otherwise we



have a monochromatic Ko, which is forbidden. Consequently, ¢ < >°.(2v; +1) =2y +k < 37.
From this and (8),

|M,| > |M0](7—6/10)37 - |M0|7—376/10 > ,yO.QE%Y—S’ye/lO — A 067E 5

Hence, by Claim 7, M, contains a rainbow ¢-tuple D (in fact it contains many). Let Np(D) = U.
By Lemma 6, |U| > n/3. Now suppose ¢ is a color that appears in D. Then the weakness of ¢
within U is strictly smaller than -y, since if £ appears in a Ko, within U that receives at most p
colors, then this copy together with an edge of color £ from D yields a Ky(,11) with at most p + 1
colors (the only new color is possibly j). Therefore, the weakness of x when restricted to U is

10007 Gince

at most 7/ = ~ — 10t*/2. Hence by the induction hypothesis, |U| < g(v') = ¢(logv’)
U >n/p,

n < Belog )17
On the other hand, since |M| < d;(u)/2,

n=Val = difw) = [M] > =52 > oo

This gives
N < 2,yl+e/2(2mt/h)c<log 7/)10007’ _ 471+6/2mt\/£/’Yc(10g 7/)10007’ < 72+6t3/20<10g 7/)10007’7

where the last inequality holds because m = |M| < ¥. As N > g(v) = c(log )17, we get

1000y ,72+et3/2 10007 ,72+et3/2( 1000~

(log) (log~') log )

Taking logs, this reduces to
1000 loglog y < (2 + €t*?)logy + 1000/ log log 7.
Consequently,
(1000 log log 7)10t%/2 < (2 + et®?)log v = 2log v + 1000t*/? log log 7.

Simplifying, we obtain 9000t3/21loglog~ < 2log~. Finally, this yields

15
_dogy NP o gy
1000 log log - 45001oglog vy’

which contradicts our choice of ~. Ul

Claim 9 For everyu € V(Ky), the number of rainbow t-sets on V(K n)—{u} all of whose vertices

are connected with u by edges of the same color is at least 0.3 Zle (digu)).



Proof. Fix some u € V(Ky). Let S = {i € [k] : d;j(u) < N/y'*</2}. Then
5 (40) <r([75)) <o 1) o (409

We put the factor 2 since dj(u) +...+dg(u) = N —1 and not N. Since t = [e~1], we have te > 20
and hence

()= £ )

€S
Now, let ¢ ¢ S. Let M be the set of vertices z € N;(u) such that for some color j (7) holds. Let
M = N;(u) — M. By Claim 8,

N
M| <7772 < & <2
v t

Hence for the subgraph F of our Ky on M, the conditions of Claim 7 are satisfied since [M| >
(1 —1/t)d;(u) > 0.9d;(u) > ~. Thus by Claim 7, at least (1 — 1/7)(‘M‘) t-sets in M are rainbow.

77—1 (Iﬂtﬂ> § 77—1 (dxu)(lt— 1/t>>' |

For large ~, the last expression is at least

(7 (4) 234

Combining this with (9), we finish the proof. O

Now

By Claim 9, the total number of (¢ + 1)-sets {up,u1,...,us} of vertices of V(Ky) such that the
t-set {uy,...,u;} is rainbow and all edges from ug to uy,...,u; are of the same color is at least

03 3 i <d’£u)> > 0.3N-k<(N _tl)/k> > N~(2k)”<]tv>.

weV(Ky) i=1

It follows that some rainbow t-set {u1,...,u;} is contained in at least N - (2k)'~ such (¢ + 1)-sets.
Let U be the set of all vertices ug in these (¢ + 1)-sets containing our chosen {ui,...,u;}. Then,
for some 1 < i < k the size of the subset U; of U that is connected with each of uq,...,u; by an
edge of color i is at least 2N - (2k)~*. Since {uy,...,us} is rainbow, it contains edges of at least
10t3/2 colors. For every color ¢ that appears within {u1,...,u}, the weakness of £ when restricted



to U; is at most 4y — 1. Hence by the induction hypothesis, |U;] < g(7') = ¢(log~/)1%%7 | where
v =~ —10t32. Since |U;| > 2N/(2k)! and N > g(~), we obtain

c(log 7)10007 <N < (2k)tc(log’y')10007/ < (2k)tc(log 7)10007/.
Dividing by ¢ and taking logs,
10007y loglog v < tlog 2y + 1000+’ log log 7.

Consequently,
(1000 log log 7)10t%/2 < tlog 2.

Plugging in the values of ¢t and ¢, we obtain

1 5
10* N loglog~y = 10 ®loglogy < 10*V/tloglogy < log 2.
1000 log log

This contradicts our choice of v and completes the proof. a
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