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Abstract

Suppose that n > (log k)ck, where c is a fixed positive constant. We prove that no matter
how the edges of Kn are colored with k colors, there is a copy of K4 whose edges receive at most
two colors. This improves the previous best bound of kc′k, where c′ is a fixed positive constant,
which follows from results on classical Ramsey numbers.

1 Introduction

Let p, q be positive integers with 2 ≤ q ≤
(
p
2

)
. A (p, q)-coloring of Kn is an edge-coloring such that

every copy of Kp receives at least q distinct colors on its edges. Let f(n, p, q) denote the minimum
number of colors in a (p, q)-coloring of Kn. This parameter, introduced in [1] and subsequently
investigated by Erdős and Gyárfás [2] is a generalization of the classical Ramsey numbers. Indeed,
if Rk(p) denotes the minimum n so that every k-edge-coloring of Kn results in a monochromatic Kp,
then determining all Rk(p) is equivalent to determining all f(n, p, 2). Many special cases of f(n, p, q)
lead to nontrivial problems (see, e.g. [3, 5, 7, 8]). One particular interesting case is f(n, 4, 3). In [1]
it was observed that an easy application of the probabilistic method yields f(n, 4, 3) = o(n). This
was subsequently improved in [2] to f(n, 4, 3) = O(

√
n) via the Local Lemma. The second author

[4] then improved the upper bound further to eO(
√

log n) = no(1), and this is the current best known
upper bound. The lower bound follows from the well-known fact Rk(4) < kO(k), which implies that
there is a constant c such that

f(n, 4, 3) ≥ f(n, 4, 2) >
c log n

log log n
.
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Here we give the first improvement of this lower bound.

Theorem 1 Let a ≥ 1 be fixed. There is a constant c depending on a such that for all n ≥ 2a,

f(n, 2a, a+ 1) >
c log n

log log log n
.

Let Rk(p, q) be the minimum n so that every k-edge-coloring of Kn yields a copy of Kp with at
most q − 1 colors. Then Rk(p, q) ≤ n implies that every k-edge coloring of Kn yields a copy of Kp

with at most q − 1 colors. Therefore, in order to edge-color Kn with every copy of Kp receiving at
least q colors, we need at least k + 1 colors. This means that f(n, p, q) > k. Our main result is

Rk(2a, a+ 1) ≤ c′(log k)c′k (1)

where c′ is a positive constant depending only on a.

Let us argue that Theorem 1 follows from (1). First observe that (1) implies that

f(bc′(log k)c′kc, 2a, a+ 1) > k.

Now suppose that a ≥ 1 is fixed and n is sufficiently large. Let k be the largest integer such that
n ≥ bc′(log k)c′kc. Then

f(n, 2a, a+ 1) ≥ f(bc′(log k)c′kc, 2a, a+ 1) > k.

Note that as n→∞, we also have k →∞. All asymptotic notation below is taken as both of these
parameters approach infinity. It suffices to solve for k in terms of n. By definition of k, we clearly
have n = c′(log k)c′k+O(1). Taking logs this yields log n = Θ(k log log k) or

k = Θ
(

log n
log log k

)
. (2)

Taking logs of the previous expresssion yields log log n = Θ(log k + log log log k) = Θ(log k) and
taking logs once again gives log log log n = Θ(log log k) or

log log k = Θ(log log log n).

Plugging this into (2) gives us a constant c such that k > c log n/ log log log n and this proves
Theorem 1.

2 The setup of the proof

Let a ≥ 1 be a positive integer throughout the rest of the paper.

2



Clearly, f(n, 2, 2) = 0 for n ≥ 2. The idea of our proof is to run induction on something related to
a, but not on a itself, since in this case the scale would be too rough. To facilitate the induction,
we introduce some definitions.

Definition 2 A k-edge-coloring χ of Kn is a (γ1, . . . , γk)-coloring if, for each i ∈ [k], color i does
not appear in any subgraph K2γi+2 whose edges are colored with at most γi +1 colors. In particular,
if γi = 0, then color i does not appear in any subgraph K2 whose edges are colored with 1 color,
that is, does not appear at all.

Note that a k-edge-coloring of KN is a (2a, a + 1)-coloring iff it is an (a − 1, . . . , a − 1)-coloring.
Consequently, Equation (1) states that if KN admits an (a − 1, . . . , a − 1)-coloring with k colors,
then N ≤ c′(log k)c′k, where c′ depends only on a.

Definition 3 For an edge-coloring χ of Kn and a color i, the weakness γi(χ) of i is the minimum
p such that color i does not appear in a K2p+2 with at most p+ 1 colors. In particular, γi(χ) = 0
iff color i is not present in χ at all. Then γ(χ) =

∑k
i=1 γi(χ) is called the weakness of χ.

Note that by definition, each edge-coloring χ of Kn is a (γ1(χ), . . . , γk(χ))-coloring. Also by defi-
nition, the weakness of any (a− 1, . . . , a− 1)-coloring with k colors is at most (a− 1)k. Then (1)
will follow from the following fact.

Theorem 4 There is a positive constant c1 such that if χ is an edge-coloring of KN , then

N ≤ c1(log γ(χ))c1γ(χ).

In everything that follows, let γ0 be sufficiently large so that for γ ≥ γ0, we have log log γ > 1,(
log γ

1000 log log γ

)15

>
log γ

4500 log log γ
, and 104

(
log γ

1000 log log γ

)5

log log γ > log 2γ.

Let

ε = εγ =
1000 log log γ

log γ
<

1
100

, t = tγ = dε−10e, s = sγ =

⌈
(t− 1)1/4

√
20

⌉
>

40
ε
. (3)

Let c = Rγ0(2γ0) and define g(γ) = c(log γ)1000γ = cγεγ .

We will prove Theorem 4 by showing the following:

Suppose that χ is a (γ1, . . . , γk)-coloring of KN and γ =
∑

i γi. Then N < g(γ). (∗)

We will prove (∗) by induction on γ and k. If 0 ≤ γ ≤ γ0, then certainly N < c ≤ g(γ), so we
may assume that γ > γ0. If some γi = 0, then color i cannot appear at all, so we apply induction
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on k since the bound does not depend on k. Thus, we may assume that each γi is positive; in
particular, k ≤ γ. We will also assume that N ≥ g(γ) = c(log γ)1000γ = cγεγ and proceed to get a
contradiction.

For a vertex x in a colored Kn and a color i, let di(x) denote the number of edges of color i incident
to x.

Claim 5 For γ > γ0 and ε, t, s defined as above, we have 2t2s < γ0.1sε−2.

Proof. Since 2 < ts and s > 400/ε, the result follows from t3s < γsε/20, which is equivalent to
60 log t < ε log γ. Since t < ε−11, we have

60 log t
ε

<
660 log ε−1

ε
<

660 log γ
1000 log log γ

log
[

log γ
1000 log log γ

]
<

log γ
log log γ

log log γ = log γ.

In the next section we prove the technical statement that every dense bipartite graph F (V1, V2;E)
contains a ‘large’ subset M of V1 in which every t-element subset has ‘many’ common neighbors in
V2. In Section 4 we prove the main result.

3 A Probabilistic Lemma

One of our main tools is the following lemma, essentially Lemma 1 in [6]. The proof uses ideas of
Sudakov [9]. By N(A) we denote the set of common neighbors of all vertices in A.

Lemma 6 Let positive integers m,n, h, d and reals α, β be such that

md/h < β. (4)

Let F = (V1, V2;E) be a bipartite graph with |V1| = m, |V2| = n such that

degF (v) ≥ n/α for each v ∈ V1.

Then there is a subset V ′′
1 of V1 with |V ′′

1 | > m/αh − 1 such that every d-tuple D of vertices in V ′′
1

has at least n/β common neighbors.

Proof. Let x1, ..., xh be a sequence of h not necessarily distinct vertices of V2, which we choose
uniformly and independently at random and denote S = {x1, ..., xh}. Denote by V ′

1 the set N(S)
of common neighbors of vertices in S. Note that the size of V ′

1 is a random variable and that
S ⊆ N(v) for every v ∈ V ′

1 . Then, using (4), we can estimate the expected size of V ′
1 as follows

E
(
|V ′

1 |
)

=
∑
v∈V1

Pr
(
v ∈ V ′

1

)
=

∑
v∈V1

(
|N(v)|
n

)h

≥ mα−h. (5)
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On the other hand, by definition, the probability that a given set of vertices W ⊂ V1 is contained in
V ′

1 equals
(
|N(W )|/n

)h. Denote by Z the number of subsets W of V ′
1 of size d with |N(W )| < n/β.

Then by (4) the expected value of Z is at most

E
(
Z

)
=

∑
W⊆V1 : |W |=d, |N(W )|<n/β

Pr
(
W ⊂ V ′

1

)
≤

(
m

d

)(
1
β

)h

≤ md

(
1
β

)h

< 1. (6)

Hence, the expectation of |V ′
1 |−Z is greater than mα−h−1 and thus, there is a choice S0 of S such

that the corresponding value of |V ′
1(S0)| −Z(S0) is greater than mα−h − 1. For every d-tuple D of

vertices of V ′
1(S0), delete a vertex vD ∈ D from V ′

1(S0). The resulting set V ′′
1 satisfies the lemma.

4 Proof of the Theorem

Call a t-set of vertices rainbow if its edges are colored with at least 10t3/2 colors.

Claim 7 Suppose that n ≥ γ > γ0, the edges of Kn are colored (with any number of colors) and
di(x) ≤ 2nγ−ε/10 for each x ∈ V (Kn) and each color i. Then the number of t-sets that are not
rainbow is at most

(
n
t

)
/γ.

Proof. First, let us estimate ν(i, t, n) — the number of t-sets in Kn in which there is a vertex
incident with at least s edges of color i in this t-set. We can first choose the vertex, then choose s
incident edges of color i and include the other ends of these edges, and then add n − s − 1 other
vertices. This gives

ν(i, t, n) ≤
∑

x∈V (Kn)

(
di(x)
s

)(
n− 1− s

t− 1− s

)
≤ n

( 2n
γε/10

s

)(
n− 1− s

t− 1− s

)
≤

(
n

t

)
γ−sε/10 t2s.

Similarly, let ψ(i, t, n) be the number of t-sets in Kn in which there is a matching of color i of size
at least s. Let ei be the number of edges of color i. Since

ei ≤
n

2
max

x∈V (Kn)
di(x) ≤ n2γ−ε/10,

we have

ψ(i, t, n) ≤
(
ei
s

)(
n− 2s
t− 2s

)
≤

( n2

γε/10

s

)(
n− 2s
t− 2s

)
≤

(
n

t

)
t2sγ−sε/10.

Now Claim 5 implies that

ν(i, t, n) + ψ(i, t, n) ≤ 2
(
n

t

)
t2sγ−sε/10 <

1
γ2

(
n

t

)
.
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Suppose that a t-set T contains more than s2 edges of color i and let Gi be the graph of these
edges. Either Gi has a vertex incident with at least s edges, or Vizing’s Theorem implies that Gi

has a proper edge-coloring with at most s colors. In the latter case, Gi has a matching of size at
least s2/s = s. We have already shown that the number of t-sets that contain a monochromatic
matching of size s or a vertex with s edges of the same color is at most

(
n
t

)
/γ2. Consequently, the

number of t-sets that contain more than s2 edges of some color is at most

k

(
n

t

)
/γ2 ≤

(
n

t

)
/γ.

Each t-set not included above has at most s2 edges in each color and therefore at least
(

t
2

)
/s2

colors. By the choice of s, this is at least 10t3/2. Hence the number of rainbow t-sets is at least
(1− 1/γ)

(
n
t

)
.

Claim 8 Let u ∈ V (KN ) and S = S(u) = {j ∈ [k] : dj(u) ≤ N/γ1+ε/2}. Then for every
i ∈ [k]− S and j ∈ [k], the number of vertices x ∈ Ni(u) for which

|Nj(x) ∩Ni(u)| ≥ 2di(u)/γε/10 (7)

is at most γεγ−3.

Proof. Suppose the contrary. Then there are colors i ∈ [k] − S(u) and j ∈ [k] such that Ni(u)
contains a set M of dγεγ−3e vertices x such that (7) holds. Consider the bipartite graph F (V1, V2;E)
with partite sets V1 = M and V2 = Ni(u) −M whose edges are all edges of color j in our KN

connecting V1 with V2. By (7) and since |M | = dγεγ−3e < dN/γ3e < di(u)/γε/10, we have for every
v ∈ V1,

degF (v) >
2di(u)
γε/10

− |M | > di(u)
γε/10

>
|V2|
γε/10

.

Observe that graph F satisfies the conditions of Lemma 6 with

m = |M |, n = |V2|, h = γ/
√
t, d = t, α = γε/10, β = 2mt/h.

Hence, there is a subset M ′ of V1 with

|M ′| > m/αh − 1 ≥ γεγ−3α−h − 1 > γεγ−3γ−(γ/
√

t)ε/10 − 1 > γ0.9εγ (8)

such that every d-tuple D of vertices in M ′ has at least n/β common neighbors.

We will construct a sequence M0 ⊂ M1 ⊂ · · · of subsets of M ′ as follows. Let M0 = M ′. Suppose
that M0,M1, . . . ,Ml are constructed. If there is a vertex xl+1 ∈ Ml and a color jl+1 such that
|Njl+1

(xl+1) ∩Ml| ≥ |Ml|γ−ε/10, then we let Ml+1 = Njl+1
(xl+1) ∩Ml, otherwise we stop. Suppose

that we stop at Step q. Each color i appears at most 2γi +1 times in {j1, . . . , jq} since otherwise we
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have a monochromatic K2γi+2 which is forbidden. Consequently, q ≤
∑

i(2γi + 1) = 2γ + k ≤ 3γ.
From this and (8),

|Mq| > |M0|(γ−ε/10)3γ = |M0|γ−3γε/10 > γ0.9εγγ−3γε/10 = γ0.6γε > γ.

Hence, by Claim 7, Mq contains a rainbow t-tuple D (in fact it contains many). Let NF (D) = U .
By Lemma 6, |U | ≥ n/β. Now suppose ` is a color that appears in D. Then the weakness of `
within U is strictly smaller than γ`, since if ` appears in a K2p within U that receives at most p
colors, then this copy together with an edge of color ` from D yields a K2(p+1) with at most p+ 1
colors (the only new color is possibly j). Therefore, the weakness of χ when restricted to U is
at most γ′ = γ − 10t3/2. Hence by the induction hypothesis, |U | < g(γ′) = c(log γ′)1000γ′

. Since
|U | ≥ n/β,

n ≤ βc(log γ′)1000γ′
.

On the other hand, since |M | < di(u)/2,

n = |V2| = di(u)− |M | > di(u)
2

>
N

2γ1+ε/2
.

This gives

N < 2γ1+ε/2(2mt/h)c(log γ′)1000γ′
= 4γ1+ε/2mt

√
t/γc(log γ′)1000γ′

< γ2+εt3/2
c(log γ′)1000γ′

,

where the last inequality holds because m = |M | < γεγ . As N ≥ g(γ) = c(log γ)1000γ , we get

(log γ)1000γ < γ2+εt3/2
(log γ′)1000γ′

< γ2+εt3/2
(log γ)1000γ′

.

Taking logs, this reduces to

1000γ log log γ < (2 + εt3/2) log γ + 1000γ′ log log γ.

Consequently,

(1000 log log γ)10t3/2 < (2 + εt3/2) log γ = 2 log γ + 1000t3/2 log log γ.

Simplifying, we obtain 9000t3/2 log log γ < 2 log γ. Finally, this yields(
log γ

1000 log log γ

)15

= ε−15 ≤ t3/2 <
log γ

4500 log log γ
,

which contradicts our choice of γ.

Claim 9 For every u ∈ V (KN ), the number of rainbow t-sets on V (KN )−{u} all of whose vertices
are connected with u by edges of the same color is at least 0.3

∑k
i=1

(
di(u)

t

)
.
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Proof. Fix some u ∈ V (KN ). Let S = {i ∈ [k] : di(u) ≤ N/γ1+ε/2}. Then

∑
i∈S

(
di(u)
t

)
≤ k

(⌊
N

γ1+ε/2

⌋
t

)
≤ k

(⌊
N
k

⌋
t

)
γ−εt/2 ≤ 2γ−εt/2

k∑
i=1

(
di(u)
t

)
.

We put the factor 2 since d1(u)+ . . .+dk(u) = N −1 and not N . Since t = dε−10e, we have tε > 20
and hence

∑
i∈S

(
di(u)
t

)
≤ γ−10

k∑
i=1

(
di(u)
t

)
. (9)

Now, let i /∈ S. Let M be the set of vertices x ∈ Ni(u) such that for some color j (7) holds. Let
M = Ni(u)−M . By Claim 8,

|M | < γεγ−2 <
N

γ2
<
|Ni(u)|

t
.

Hence for the subgraph F of our KN on M , the conditions of Claim 7 are satisfied since |M | >
(1 − 1/t)di(u) > 0.9di(u) > γ. Thus by Claim 7, at least (1 − 1/γ)

(|M |
t

)
t-sets in M are rainbow.

Now
γ − 1
γ

(
|M |
t

)
≥ γ − 1

γ

(
di(u)(1− 1/t)

t

)
.

For large γ, the last expression is at least

0.9
(
t− 1
t

)t (
di(u)
t

)
≥ 1

3

(
di(u)
t

)
.

Combining this with (9), we finish the proof.

By Claim 9, the total number of (t + 1)-sets {u0, u1, . . . , ut} of vertices of V (KN ) such that the
t-set {u1, . . . , ut} is rainbow and all edges from u0 to u1, . . . , ut are of the same color is at least

0.3
∑

u∈V (KN )

k∑
i=1

(
di(u)
t

)
≥ 0.3N · k

(
(N − 1)/k

t

)
≥ N · (2k)1−t

(
N

t

)
.

It follows that some rainbow t-set {u1, . . . , ut} is contained in at least N · (2k)1−t such (t+ 1)-sets.
Let U be the set of all vertices u0 in these (t + 1)-sets containing our chosen {u1, . . . , ut}. Then,
for some 1 ≤ i ≤ k the size of the subset Ui of U that is connected with each of u1, . . . , ut by an
edge of color i is at least 2N · (2k)−t. Since {u1, . . . , ut} is rainbow, it contains edges of at least
10t3/2 colors. For every color ` that appears within {u1, . . . , ut}, the weakness of ` when restricted
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to Ui is at most γ` − 1. Hence by the induction hypothesis, |Ui| ≤ g(γ′) = c(log γ′)1000γ′
, where

γ′ = γ − 10t3/2. Since |Ui| ≥ 2N/(2k)t and N ≥ g(γ), we obtain

c(log γ)1000γ ≤ N < (2k)tc(log γ′)1000γ′
< (2k)tc(log γ)1000γ′

.

Dividing by c and taking logs,

1000γ log log γ < t log 2γ + 1000γ′ log log γ.

Consequently,
(1000 log log γ)10t3/2 < t log 2γ.

Plugging in the values of t and ε, we obtain

104

(
log γ

1000 log log γ

)5

log log γ = 104ε−5 log log γ < 104
√
t log log γ < log 2γ.

This contradicts our choice of γ and completes the proof.
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