$B_{2}[g]$ Sets and a Conjecture of Schinzel and Schmidt

JAVIER CILLERUELO and CARLOS VINUESA ${ }^{\dagger \ddagger}$
Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049-Madrid, Spain
(e-mail: franciscojavier.cilleruelo@uam.es, c.vinuesa@uam.es)

Received 27 May 2008; revised 29 July 2008; first published online 3 October 2008

Abstract

A set of integers \mathcal{A} is called a $B_{2}[g]$ set if every integer m has at most g representations of the form $m=a+a^{\prime}$, with $a \leqslant a^{\prime}$ and $a, a^{\prime} \in \mathcal{A}$. We obtain a new lower bound for $F(g, n)$, the largest cardinality of a $B_{2}[g]$ set in $\{1, \ldots, n\}$. More precisely, we prove that $\lim _{\inf }^{n \rightarrow \infty}$ $\frac{F(g, n)}{\sqrt{g n}} \geqslant \frac{2}{\sqrt{\pi}}-\varepsilon_{g}$ where $\varepsilon_{g} \rightarrow 0$ when $g \rightarrow \infty$. We show a connection between this problem and another one discussed by Schinzel and Schmidt, which can be considered its continuous version.

1. Introduction

A set of integers \mathcal{A} is called a $B_{2}[g]$ set if every integer m has at most g representations of the form $m=a+a^{\prime}$, with $a \leqslant a^{\prime}$ and $a, a^{\prime} \in \mathcal{A}$. We write $r_{\mathcal{A}}(m)$ for the number of such representations.

A major problem in additive number theory is the study of the behaviour of the function $F(g, n)$, the largest cardinality of a $B_{2}[g]$ set in $\{1, \ldots, n\}$.

It is a well-known result on Sidon sets that $F(1, n) \sim n^{1 / 2}$, but the asymptotic behaviour of $F(g, n)$ is an open problem for $g \geqslant 2$. The trivial counting argument gives $F(g, n) \leqslant 2 \sqrt{g n}$ and it is not too difficult to show (see Section 2) that $F(g, n) \gtrsim \sqrt{g n}$.

We define

$$
\beta(g)=\liminf _{n \rightarrow \infty} \frac{F(g, n)}{\sqrt{g n}} \leqslant \limsup _{n \rightarrow \infty} \frac{F(g, n)}{\sqrt{g n}}=\alpha(g) .
$$

In the last few years some progress has been made, improving the easier estimates $1 \leqslant \beta(g) \leqslant$ $\alpha(g) \leqslant 2$. In Table 1 we list successive results obtained by several authors, including the improvement obtained in this work.

[^0]Table 1.

$\alpha(g)$	$\leqslant 2$	trivial
	$\leqslant 1.864$	Cilleruelo, Ruzsa and Trujillo [1]
	$\leqslant 1.844$	Green [2]
	$\leqslant 1.839$	Martin and O'Bryant [5]
	$\leqslant 1.789$	Yu [9]
$\beta(g)$	$\geqslant 1$	Kolountzakis [3]
	$\gtrsim 1.060$	Cilleruelo, Ruzsa and Trujillo [1]
	$\gtrsim 1.122$	Martin and O'Bryant [4]
	$\gtrsim 2 / \sqrt{\pi}=1.128 \cdots$	Corollary 1.2

The aim of this work is not only to improve the lower bound for $\beta(g)$ but also to show a connection with another problem discussed by Schinzel and Schmidt [7], which can be seen as the continuous version of this problem.

We define the Schinzel-Schmidt constant

$$
\begin{equation*}
S=\sup _{f \in \mathcal{F}} \frac{1}{|f * f|_{\infty}} \tag{1.1}
\end{equation*}
$$

where $\mathcal{F}=\left\{f: f \geqslant 0, \operatorname{supp}(f) \subseteq[0,1],|f|_{1}=1\right\}$ and $f * f(x)=\int f(t) f(x-t) d t$. We use the notation $|g|_{1}=\int_{0}^{1}|g(x)| d x,|g|_{\infty}=\sup _{x} g(x)$ and $\operatorname{supp}(g)=\{x: g(x) \neq 0\}$.

Remark. The definition in [7] is $S=\sup _{f \in \tilde{\mathcal{F}}}|f|_{1}^{2} /|f * f|_{\infty}$ with $\widetilde{\mathcal{F}}=\{f: f \geqslant 0, f \not \equiv 0$, $\left.\operatorname{supp}(f) \subseteq[0,1], f \in L_{1}[0,1]\right\}$, but we can assume that $|f|_{1}=1$ because $|f|_{1}^{2} /|f * f|_{\infty}$ is invariant under dilates of f.

It is easy to see that $1 \leqslant S \leqslant 2$, and Schinzel and Schmidt proved in [7] that $4 / \pi \leqslant S \leqslant$ 1.7373. The witness for the lower bound is the function $f(x)=\frac{1}{2 \sqrt{x}} \in \mathcal{F}$. They also conjecture that $S=4 / \pi$. Our main theorem relates $\alpha(g)$ and $\beta(g)$ to S.

Theorem 1.1. $\sqrt{S} \leqslant \liminf _{g \rightarrow \infty} \beta(g) \leqslant \lim \sup _{g \rightarrow \infty} \alpha(g) \leqslant \sqrt{2 S}$.
Corollary 1.2. $\beta(g) \geqslant 2 / \sqrt{\pi}-\varepsilon_{g}$, where $\varepsilon_{g} \rightarrow 0$ when $g \rightarrow \infty$.

2. Lower bound constructions

At this point, it is convenient to introduce a few definitions.
Definitions. (1) We say that \mathcal{A} is a $B_{2}^{*}[g]$ set if any integer n has at most g representations of the form $n=a+a^{\prime}$ with $a, a^{\prime} \in \mathcal{A}$. We write $r_{\mathcal{A}}^{*}(n)$ for the number of such representations.
(2) We say that \mathcal{A} is a Sidon set $(\bmod m)$ if $a_{1}+a_{2} \equiv a_{3}+a_{4}(\bmod m) \Longrightarrow\left\{a_{1}, a_{2}\right\}=\left\{a_{3}, a_{4}\right\}$, where $a_{i} \in \mathcal{A}$.

All the known lower bounds for $\beta(\mathrm{g})$ were obtained from the next lemma (see [1]).

Lemma 2.1. Let $\mathcal{A}=\left\{0=a_{1}<\cdots<a_{k}\right\}$ be a $B_{2}^{*}[g]$ set and let $\mathcal{C} \subseteq[1, m]$ be a Sidon set $(\bmod m)$. Then $\mathcal{B}=\cup_{i=1}^{k}\left(\mathcal{C}+m a_{i}\right)$ is a $B_{2}[g]$ set in $\left[1, m\left(a_{k}+1\right)\right]$ with $k|\mathcal{C}|$ elements.

Remark. The lemma shows how to obtain a $B_{2}[g]$ set by carefully arranging (with a dilation of a $B_{2}^{*}[g]$ set) several copies of a Sidon set $(\bmod m)$.

Proof. To prove that \mathcal{B} is a $B_{2}[g]$ set, suppose that we have

$$
\begin{equation*}
b_{1,1}+b_{2,1}=\cdots=b_{1, g+1}+b_{2, g+1} \tag{2.1}
\end{equation*}
$$

for some $b_{1, j}, b_{2, j} \in \mathcal{B}$. We can write each $b_{i, j}=c_{i, j}+m a_{i, j}$ in a unique way with $c_{i, j} \in \mathcal{C}$ and $a_{i, j} \in \mathcal{A}$. Let us order the elements $b_{i, j}$ of each sum in such a way that for any i, j we have $c_{1, j} \leqslant c_{2, j}$, and when $c_{1, j}=c_{2, j}$ we order them so $a_{1, j} \leqslant a_{2, j}$.

To see that \mathcal{B} is a $B_{2}[g]$ set we need to check that there exist j and j^{\prime} such that $b_{1, j}=b_{1, j^{\prime}}$, $b_{2, j}=b_{2, j^{\prime}}$.

From (2.1), and since \mathcal{C} is a Sidon set $(\bmod m)$, we get $\left\{c_{1,1}, c_{2,1}\right\}=\left\{c_{1, j}, c_{2, j}\right\}$ for every $1 \leqslant$ $j \leqslant g+1$. Moreover, since have we ordered the elements of the equalities in that way, we have $c_{1,1}=c_{1, j}$ and $c_{2,1}=c_{2, j}$ for every j.

Then, the equalities (2.1) imply these equations:

$$
\begin{equation*}
a_{1,1}+a_{2,1}=a_{1,2}+a_{2,2}=\cdots=a_{1, g+1}+a_{2, g+1} \tag{2.2}
\end{equation*}
$$

Since \mathcal{A} satisfies the $B_{2}^{*}[g]$ condition, there exist j and j^{\prime} such that $a_{1, j}=a_{1, j^{\prime}}$ and $a_{2, j}=a_{2, j^{\prime}}$. Then, for these j and j^{\prime} we have that $b_{1, j}=b_{1, j^{\prime}}$ and $b_{2, j}=b_{2, j^{\prime}}$. This proves that $\mathcal{B} \in B_{2}[g]$. Finally, it is clear that $B \subset\left\{1, \ldots,\left(a_{k}+1\right) m\right\}$ and $|\mathcal{B}|=k|\mathcal{C}|$.

In order to apply Lemma 2.1 in an efficient way, we have to take dense Sidon sets $(\bmod m)$. For example, for each prime p we consider \mathcal{C}_{p}, the Sidon set $(\bmod m)$ with $p-1$ elements and $m=p(p-1)$ discovered by Ruzsa (see [6]).

Given a positive integer N, we write

$$
\left(a_{k}+1\right) p_{n}\left(p_{n}-1\right)<N \leqslant\left(a_{k}+1\right) p_{n+1}\left(p_{n+1}-1\right)
$$

for suitable consecutive primes, p_{n} and p_{n+1}. Clearly

$$
\frac{F(g, N)}{\sqrt{g N}} \geqslant \frac{\left|\mathcal{C}_{p_{n}}\right| k}{\sqrt{g\left(a_{k}+1\right) p_{n+1}\left(p_{n+1}-1\right)}} \geqslant \frac{k}{\sqrt{g\left(a_{k}+1\right)}} \cdot \frac{p_{n}-1}{p_{n+1}} .
$$

Thus

$$
\beta(g)=\liminf _{N \rightarrow \infty} \frac{F(g, N)}{\sqrt{g N}} \geqslant \frac{k}{\sqrt{g\left(a_{k}+1\right)}} \liminf _{n \rightarrow \infty} \frac{p_{n}-1}{p_{n+1}} .
$$

Since $\liminf _{n \rightarrow \infty} \frac{p_{n}}{p_{n+1}}=1$, as a consequence of the Prime Number Theorem, we get

$$
\begin{equation*}
\beta(g) \geqslant \frac{k}{\sqrt{g\left(a_{k}+1\right)}} . \tag{2.3}
\end{equation*}
$$

So, to improve the lower bound for $\beta(g)$, we need to find a set $\mathcal{A}=\left\{0=a_{1}<\cdots<a_{k}\right\}$ which satisfies the $B_{2}^{*}[g]$ condition and maximizes the quotient $\frac{k}{\sqrt{g\left(a_{k}+1\right)}}$.

The sets
(a) $\mathcal{A}=\{0,1, \ldots, g-1\}$,
(b) $\mathcal{A}=\{0,1, \ldots, g-1\} \cup\{g+1, g+3, \ldots, g-1+2\lfloor g / 2\rfloor\}$,
(c) $\mathcal{A}=[0,\lfloor g / 3\rfloor) \cup(g-\lfloor g / 3\rfloor+2 \cdot[0,\lfloor g / 6\rfloor)) \cup[g, g+\lfloor g / 3\rfloor)$ $\cup(2 g-\lfloor g / 3\rfloor, 3 g-\lfloor g / 3\rfloor]$
provide, respectively, the lower bounds
(a) $\beta(g) \geqslant 1$,
(b) $\beta(g) \geqslant \frac{g+\lfloor g / 2\rfloor}{\sqrt{g^{2}+2 g\lfloor g / 2\rfloor}} \geqslant \sqrt{\frac{9}{8}}-\varepsilon_{g}=1.060 \cdots-\varepsilon_{g}$,
(c) $\beta(g) \geqslant \frac{g+2\left\lfloor\frac{g}{\frac{g}{2}}\right\rfloor+\left\lfloor\frac{g}{6}\right\rfloor}{\sqrt{3 g^{2}-g\left\lfloor\frac{g}{3}\right\rfloor+g}} \geqslant \sqrt{\frac{121}{96}}-\varepsilon_{g}=1.122 \cdots-\varepsilon_{g}$,
cited in the Introduction. In the next section we will find a denser set \mathcal{A}.

3. The conjecture of Schinzel and Schmidt

The convolution $f * f$ in the conjecture of Schinzel and Schmidt can be thought of as the continuous version of the function $r_{\mathcal{A}}^{*}(n)$ and $|f * f|_{\infty}$ as the analogue of the maximum of $r_{\mathcal{A}}^{*}(n)$.

The idea is to start with a function $f \in \mathcal{F}$ such that $1 /|f * f|_{\infty}$ is close to S (see (1.1)) and use f as a model to construct our set \mathcal{A}. We will use the probabilistic method.

An interesting result in [7] relates the constant S with the coefficients of squares of polynomials. We state that result in a more convenient way for our purposes.

Theorem 3.1. For any $\varepsilon>0$, for any $n>n(\varepsilon)$, there exists a sequence of non-negative real numbers c_{0}, \ldots, c_{n-1} such that:
(i) $\sum_{j=0}^{n-1} c_{j}=\sqrt{n}$,
(ii) $c_{j} \leqslant n^{-1 / 6}(1+\varepsilon)$ for all $j=0, \ldots, n-1$,
(iii) $\sum_{j<m / 2} c_{j} c_{m-j} \leqslant \frac{1}{2 S}(1+\varepsilon)$ for any $m=0, \ldots, n-1$.

Proof. We follow the ideas of the proof of assertion (iii) of Theorem 1 in [7]. Let $f \in \mathcal{F}$ with $|f * f|_{\infty}$ close to $1 / S$, say $|f * f|_{\infty} \leqslant 1 / S+1 / n$, and define, for $j=0, \ldots, n-1$,

$$
a_{j}=\frac{n}{2 t} \int_{(j+1 / 2-t) / n}^{(j+1 / 2+t) / n} f(x) d x
$$

where $t=\left\lceil 2 n^{1 / 3}\right\rceil$. We have the following estimate:

$$
\begin{aligned}
\left(\int_{r}^{s} f(x) d x\right)^{2} & \leqslant \iint_{2 r \leqslant x+y \leqslant 2 s} f(x) f(y) d x d y \\
& =\int_{2 r}^{2 s}\left(\int f(x) f(z-x) d x\right) d z \\
& =\int_{2 r}^{2 s} f * f(z) d z \leqslant 2(s-r)(1 / S+1 / n) \leqslant 4(s-r)
\end{aligned}
$$

where in the last inequality we used the fact that $S \geqslant 1$ and $n \geqslant 1$.

In particular, we can deduce $a_{j} \leqslant(2 n / t)^{1 / 2}$. The idea for proving Theorem 1(iii) in [7] consists of showing that $\sum_{j=0}^{n-1} a_{j} \geqslant n+o(n)$ and $\sum_{j=0}^{m} a_{j} a_{m-j} \leqslant(1 / S)(n+o(n))$ for all m. See [7] for details.

We define $c_{j}=a_{j} \rho$, where $\rho=\frac{\sqrt{n}}{\sum_{j=0}^{n-1} a_{j}}$. Clearly $\rho \leqslant(1 / \sqrt{n})(1+o(1))$, so

$$
c_{j} \leqslant n^{-1 / 6}(1+o(1)), \quad \sum_{j=0}^{n-1} c_{j}=\sqrt{n} \quad \text { and } \quad \sum_{j=0}^{m} c_{j} c_{m-j} \leqslant(1 / S)(1+o(1))
$$

4. The proof

We will use a special case of Chernoff's inequality (see Corollary 1.9 in [8]).
Proposition 4.1 (Chernoff's inequality). Let $X=t_{1}+\cdots+t_{n}$, where the t_{i} are independent Boolean random variables. Then, for any $\delta>0$,

$$
\begin{equation*}
\mathbb{P}(|X-\mathbb{E}(X)| \geqslant \delta \mathbb{E}(X)) \leqslant 2 e^{-\min \left(\delta^{2} / 4, \delta / 2\right) \mathbb{E}(X)} \tag{4.1}
\end{equation*}
$$

Given $\varepsilon>0$ and the constants c_{j} defined in Theorem 3.1, we consider the probability space of all the subsets $\mathcal{A} \subseteq\{0,1,2, \ldots, n-1\}$ defined by $\mathbb{P}(j \in \mathcal{A})=\lambda_{n} c_{j}$, where $\lambda_{n}=\left\lfloor n^{1 / 6} /(1+\varepsilon)\right\rfloor$ (observe that $c_{j} \lambda_{n} \leqslant 1$ for n large enough).

Lemma 4.2. With the conditions above, given $\varepsilon>0$, there exists n_{0} such that, for all $n \geqslant n_{0}$,

$$
\mathbb{P}\left(|\mathcal{A}| \geqslant \lambda_{n} \sqrt{n}(1-\varepsilon)\right)>0.9
$$

Proof. Since $|\mathcal{A}|$ is a sum of independent Boolean variables and $\mathbb{E}(|\mathcal{A}|)=\sum_{j=0}^{n-1} \mathbb{P}(j \in \mathcal{A})=$ $\lambda_{n} \sqrt{n}$, we can apply Chernoff's lemma to deduce that

$$
\mathbb{P}\left(|\mathcal{A}|<\lambda_{n} \sqrt{n}(1-\varepsilon)\right) \leqslant 2 e^{-\min \left(\varepsilon^{2} / 4, \varepsilon / 2\right) \lambda_{n} \sqrt{n}}<0.1
$$

for n large enough.
Lemma 4.3. Again with the same conditions, given $0<\varepsilon<1$, there exists n_{1} such that, for all $n \geqslant n_{1}$,

$$
r_{\mathcal{A}}^{*}(m) \leqslant \frac{\lambda_{n}^{2}}{S}(1+\varepsilon)^{3} \quad \text { for all } m
$$

with probability >0.9.
Proof. Since $r_{\mathcal{A}}^{*}(m)=\sum_{j=0}^{m} \mathbb{I}(j \in \mathcal{A}) \mathbb{I}(m-j \in \mathcal{A})$ is a sum of Boolean variables which are not independent, it is convenient to define a new variable,

$$
r_{\mathcal{A}}^{*}(m)=\frac{1}{2} r_{\mathcal{A}}^{*}(m)-\frac{1}{2} \mathbb{I}(m / 2 \in \mathcal{A})=\sum_{j<m / 2} \mathbb{I}(j \in \mathcal{A}) \mathbb{I}(m-j \in \mathcal{A}) .
$$

Now we can apply Chernoff's inequality to this variable.

Let μ_{m} denote the expected value of $r_{\mathcal{A}}^{* \prime}(m)$. We observe that, from the independence of the indicator functions, $\mathbb{E}(\mathbb{I}(j \in \mathcal{A}) \mathbb{I}(m-j \in \mathcal{A}))=\mathbb{P}(j \in \mathcal{A}) \mathbb{P}(m-j \in \mathcal{A})=\lambda_{n}^{2} c_{j} c_{m-j}$ for every $j<m / 2$, and so

$$
\mu_{m}=\sum_{j<m / 2} \mathbb{E}(\mathbb{I}(j \in \mathcal{A}) \mathbb{I}(m-j \in \mathcal{A}))=\sum_{j<m / 2} \lambda_{n}^{2} c_{j} c_{m-j} \leqslant \frac{\lambda_{n}^{2}}{2 S}(1+\varepsilon),
$$

by Theorem 3.1(iii).

- If $\mu_{m} \geqslant \frac{\lambda_{n}^{2}}{6 S}(1+\varepsilon)$, we apply Proposition 4.1 (observe that $\varepsilon<2$ implies that $\varepsilon^{2} / 4 \leqslant \varepsilon / 2$), to obtain

$$
\begin{aligned}
\mathbb{P}\left(r_{\mathcal{A}}^{* \prime}(m) \geqslant \frac{\lambda_{n}^{2}}{2 S}(1+\varepsilon)^{2}\right) & \leqslant \mathbb{P}\left(r_{\mathcal{A}}^{* \prime}(m) \geqslant \mu_{m}(1+\varepsilon)\right) \\
& \leqslant 2 \exp \left(-\frac{\mu_{m} \varepsilon^{2}}{4}\right) \\
& \leqslant 2 \exp \left(-\frac{\lambda_{n}^{2}}{24 S}(1+\varepsilon) \varepsilon^{2}\right)
\end{aligned}
$$

- If $\mu_{m}=0$ then $r_{\mathcal{A}}^{*}{ }^{\prime}(m)=0$.
- If $0<\mu_{m}<\frac{\lambda_{n}^{2}}{6 S}(1+\varepsilon)$, for $\delta=\frac{\lambda_{n}^{2}}{\mu_{m} 2 S}(1+\varepsilon)^{2}-1 \geqslant 2$ (now $\delta / 2 \leqslant \delta^{2} / 4$), we obtain

$$
\begin{aligned}
\mathbb{P}\left(r_{\mathcal{A}}^{* \prime}(m) \geqslant \frac{\lambda_{n}^{2}}{2 S}(1+\varepsilon)^{2}\right) & =\mathbb{P}\left(r_{\mathcal{A}}^{* \prime}(m) \geqslant \mu_{m}(1+\delta)\right) \\
& \leqslant 2 \exp \left(-\delta \mu_{m} / 2\right) \\
& \leqslant 2 \exp \left(-\frac{\lambda_{n}^{2}}{4 S}(1+\varepsilon)^{2}+\frac{\mu_{m}}{2}\right) \\
& \leqslant 2 \exp \left(-\frac{\lambda_{n}^{2}}{4 S}(1+\varepsilon)^{2}+\frac{\lambda_{n}^{2}}{12 S}(1+\varepsilon)\right) \\
& \leqslant 2 \exp \left(-\frac{\lambda_{n}^{2}}{6 S}(1+\varepsilon)^{2}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
& \mathbb{P}\left(r_{\mathcal{A}}^{* \prime}(m) \geqslant \frac{\lambda_{n}^{2}}{2 S}(1+\varepsilon)^{2} \text { for some } m\right) \\
& \quad \leqslant 2 n\left(\exp \left(-\frac{\lambda_{n}^{2}}{24 S}(1+\varepsilon) \varepsilon^{2}\right)+\exp \left(-\frac{\lambda_{n}^{2}}{6 S}(1+\varepsilon)^{2}\right)\right)<0.1
\end{aligned}
$$

for n large enough.
Because of the way we defined $r_{\mathcal{A}}^{*}(m)$, this means

$$
\mathbb{P}\left(r_{\mathcal{A}}^{*}(m) \geqslant \frac{\lambda_{n}^{2}}{S}(1+\varepsilon)^{2}+\mathbb{I}(m / 2 \in \mathcal{A}) \text { for some } m\right)<0.1
$$

so

$$
\mathbb{P}\left(r_{\mathcal{A}}^{*}(m) \geqslant \frac{\lambda_{n}^{2}}{S}(1+\varepsilon)^{3} \text { for some } m\right)<0.1
$$

for n large enough.

Lemmas 4.2 and 4.3 imply that, for any $0<\varepsilon<1$, for $n \geqslant n(\varepsilon)=\max \left(n_{0}, n_{1}\right)$, the probability that $|\mathcal{A}| \geqslant \lambda_{n} \sqrt{n}(1-\varepsilon)$ and $r_{\mathcal{A}}^{*}(m) \leqslant \frac{\lambda_{n}^{2}}{S}(1+\varepsilon)^{3}$ for all m is greater than 0.8 . We now choose one of these sets $\mathcal{A} \subset\{0, \ldots, n-1\}$ for a suitable n.

Write $g_{\varepsilon}=\left\lfloor\frac{\lambda_{n(z)}^{2}}{S}(1+\varepsilon)^{3}\right\rfloor$. For any $g \geqslant g_{\varepsilon}$ we take n such that $g=\left\lfloor\frac{\lambda_{n}^{2}}{S}(1+\varepsilon)^{3}\right\rfloor$ (this is possible because $\frac{\lambda_{n}^{2}}{S}(1+\varepsilon)^{3}$ grows more slowly than $\left.n\right)$. Thus, for $g \geqslant g_{\varepsilon}$,

$$
\beta(g) \geqslant \frac{|\mathcal{A}|}{g^{1 / 2} n^{1 / 2}} \geqslant \frac{\lambda_{n} \sqrt{n}(1-\varepsilon)}{\left(\lambda_{n} / \sqrt{S}\right)(1+\varepsilon)^{3 / 2} n^{1 / 2}}=\sqrt{S} \frac{1-\varepsilon}{(1+\varepsilon)^{3 / 2}},
$$

which completes the proof for the lower bound in Theorem 1.1, since we can take ε arbitrarily small.

To obtain the upper bound in Theorem 1.1, we will use the following result (assertion (ii) of Theorem 1 in [7]).

Theorem 4.4. Let S be the Schinzel-Schmidt constant and $\mathcal{Q}=\left\{Q: Q \in \mathbb{R}_{\geqslant 0}[x], Q \not \equiv 0\right.$, $\operatorname{deg}(Q)<N\}$. Then

$$
\frac{1}{N} \sup _{Q \in \mathcal{Q}} \frac{\left|Q^{2}(x)\right|_{1}}{\left|Q^{2}(x)\right|_{\infty}} \leqslant S
$$

where $|P|_{1}$ is the sum and $|P|_{\infty}$ the maximum of the coefficients of a polynomial P.
Given a $B_{2}[g]$ set, $\mathcal{A} \subseteq\{0, \ldots, N-1\}$, we define the polynomial $Q_{\mathcal{A}}(x)=\sum_{a \in \mathcal{A}} x^{a}$, so $Q_{\mathcal{A}}^{2}(x)=\sum_{n} r_{\mathcal{A}}^{*}(n) x^{n}$. Theorem 4.4 says that, in particular,

$$
S \geqslant \frac{1}{N} \sup _{\mathcal{A} \subseteq\{0, \ldots, N-1\}} \frac{|\mathcal{A}|^{2}}{2 g}=\frac{F^{2}(g, N)}{2 g N}
$$

and so $\frac{F(g, N)}{\sqrt{g N}} \leqslant \sqrt{2 S}$.

References

[1] Cilleruelo, J., Ruzsa, I. and Trujillo, C. (2002) Upper and lower bounds for finite $B_{2}[g]$ sequences. J. Number Theory 97 26-34.
[2] Green, B. (2001) The number of squares and $B_{h}[g]$ sequences. Acta Arithmetica 100 365-390.
[3] Kolountzakis, M. (1996) The density of $B_{h}[g]$ sequences and the minimum of dense cosine sums. J. Number Theory 56 4-11.
[4] Martin, G. and O'Bryant, K. (2006) Constructions of generalized Sidon sets. J. Combin. Theory Ser. A 113 591-607.
[5] Martin, G. and O'Bryant, K. (2007) The symmetric subset problem in continuous Ramsey theory. Experiment. Math. 16 145-166.
[6] Ruzsa, I. (1993) Solving a linear equation in a set of integers I. Acta Arithmetica 65 259-282.
[7] Schinzel, A. and Schmidt, W. M. (2002) Comparison of L^{1} - and L^{∞}-norms of squares of polynomials. Acta Arithmetica 104 283-296.
[8] Tao, T. and Vu, V. (2006) Additive Combinatorics, Vol. 105 of Cambridge Studies in Advanced Mathematics, Cambridge University Press.
[9] Yu, G. (2007) An upper bound for $B_{2}[g]$ sets. J. Number Theory 122 211-220.

[^0]: ${ }^{\dagger}$ This work was developed during the Doccourse in Additive Combinatorics held in the Centre de Recerca Matemàtica from January to March 2007. The authors are extremely grateful for their hospitality.
 \ddagger Both authors are supported by Grants CCG07-UAM/ESP-1814 and DGICYT MTM 2005-04730 (Spain).

