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A set of integers A is called a By[g] set if every integer m has at most g representations of the
formm = a+ d’, witha < d and a,d’ € A. We obtain a new lower bound for F(g, n), the largest

cardinality of a By[g] setin {1,...,n}. More precisely, we prove that lim inf,,_, % > % — &g
where ¢; — 0 when g — oo. We show a connection between this problem and another one dis-
cussed by Schinzel and Schmidt, which can be considered its continuous version.

1. Introduction

A set of integers A is called a B [g] set if every integer m has at most g representations of the form
m=a+d,witha < d and a,d’ € A. We write r 4(m) for the number of such representations.

A major problem in additive number theory is the study of the behaviour of the function
F(g,n), the largest cardinality of a By[g] setin {1,...,n}.

It is a well-known result on Sidon sets that F(1,n) ~ n!/2, but the asymptotic behaviour of
F(g,n) is an open problem for g > 2. The trivial counting argument gives F(g,n) < 2 \/g7 and
it is not too difficult to show (see Section 2) that F(g,n) = \/g?

We define

. . F(g,n . F
= liminf < limsu
p(g) = limin i msup — =
In the last few years some progress has been made, improving the easier estimates 1 < f(g) <
o(g) < 2. In Table 1 we list successive results obtained by several authors, including the im-
provement obtained in this work.

T This work was developed during the Doccourse in Additive Combinatorics held in the Centre de Recerca Matematica
from January to March 2007. The authors are extremely grateful for their hospitality.
¥ Both authors are supported by Grants CCGO7-UAM/ESP-1814 and DGICYT MTM 2005-04730 (Spain).
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Table 1.
o(g) <2 trivial
< 1.864 Cilleruelo, Ruzsa and Trujillo [1]
< 1.844 Green [2]
< 1.839 Martin and O’Bryant [5]
< 1.789 Yu [9]
p(g) >1 Kolountzakis [3]
2 1.060 Cilleruelo, Ruzsa and Trujillo [1]
>1.122 Martin and O’Bryant [4]
22/ Jn=1128- Corollary 1.2

The aim of this work is not only to improve the lower bound for f(g) but also to show a
connection with another problem discussed by Schinzel and Schmidt [7], which can be seen as
the continuous version of this problem.

We define the Schinzel-Schmidt constant

S (1.1)

1
=T
where F = {f : f > 0,supp(f) = [0,1], [f|1 = 1} and f * f(x) = [ f(¢)f(x — ) dt. We use the
notation [g|; = [ [g(x)| dx. |gl.. = sup, g(x) and supp(g) = {x : g(x) # 0}.

Remark. The definition in [7] is S = SUp 7 \f13/1f * fle with F= {f: f=0, f=#£0,
supp(f) < [0, 1], f € L;[0,1]}, but we can assume that |f|; = 1 because |f|2/|f * f| is in-
variant under dilates of f.

It is easy to see that 1 < S < 2, and Schinzel and Schmidt proved in [7] that 4/ < S <

1.7373. The witness for the lower bound is the function f(x) = %ﬁ € F. They also conjecture
that S = 4/%. Our main theorem relates o(g) and ff(g) to S.

Theorem 1.1. /S < lim infy, B(g) < limsup,_, ., a(g) < /2S.

Corollary 1.2. f(g) > 2/,/m — &g, where &g — 0 when g — c0.

2. Lower bound constructions
At this point, it is convenient to introduce a few definitions.
Definitions. (1) We say that A is a B} [g] set if any integer n has at most g representations of
the form n = a + a’ with a,a’ € A. We write r’y(n) for the number of such representations.
(2) We say that A is a Sidon set (mod m) if a; + a; = a3z + a4 (mod m) => {a;, a2} = {a3,a4},

where a; € A.

All the known lower bounds for f(g) were obtained from the next lemma (see [1]).
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Lemma 2.1. Let A={0=a; < <ag} be a B5[g] set and let C = [1,m] be a Sidon set
(mod m). Then B = Uli‘zl(C + ma;) is a By[g] set in [1,m(ay + 1)] with k|C| elements.

Remark. The lemma shows how to obtain a B;[g] set by carefully arranging (with a dilation
of a B;[g] set) several copies of a Sidon set (mod m).

Proof. To prove that 3 is a B,[g] set, suppose that we have
bii+byy = =bigi+brgi 2.1

for some by j, by j € B. We can write each b;; = ¢;; + ma;; in a unique way with ¢;; € C and
a;j € A. Let us order the elements b;; of each sum in such a way that for any i, j we have
c1,j < ¢j, and when ¢y j = ¢o; we order them so a1 ; < ap ;.

To see that 3 is a B,[g] set we need to check that there exist j and j' such that by ; = by j,
b2,j = bz’jf.

From (2.1), and since C is a Sidon set (mod m), we get {c1,1,¢21} = {c1, ¢} forevery 1 <
Jj < g + 1. Moreover, since have we ordered the elements of the equalities in that way, we have
ci,1 = cijand ¢a1 = ¢y for every j.

Then, the equalities (2.1) imply these equations:

apl +ay =aip+ap = =dayep1 + gy (2.2)

Since A satisfies the B;[g] condition, there exist j and j’ such that a;; = a;; and a»j = ay ;.
Then, for these j and j' we have that by ; = b and b, ; = b, j. This proves that B € B;[g].
Finally, it is clear that B < {1,..., (ax + 1)m} and |B| = k[C|. U]

In order to apply Lemma 2.1 in an efficient way, we have to take dense Sidon sets (mod m).
For example, for each prime p we consider C,, the Sidon set (mod m) with p — 1 elements and
m = p(p — 1) discovered by Ruzsa (see [6]).

Given a positive integer N, we write

(ak + l)pn(pn - 1) <N g (ak + l)pn+1(pn+1 - 1)
for suitable consecutive primes, p, and p,4. Clearly

F(g,N) |Cp, |k k pn—1
2 pH 2 . .
JeN 7 Jela+ Dpuri(peir — 1)~ Jglax + 1) pant

Thus
g, N —1
pie) = liming ZEL) - liminf 221
\/7 & ak + 1 =0 Dpig
Since lim inf,,_, p”ﬁ = 1, as a consequence of the Prime Number Theorem, we get
k
B(g) = (2.3)

Jela+1)

So, to improve the lower bound for $(g), we need to findaset A = {0 = a; < - < a} which
satisfies the B;[g] condition and maximizes the quotient

k
Nk
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The sets
(@ A={0,1,...,g — 1},
b)) A={0,1,...,.g—1}U{g+1,g+3,...,.g —1+2[g/2]}.
©A=[0,]g/3]) U(g—lg/3] +2-[0,1g/6])) U [g.g + 1g/3])
U(2¢ —g/31.3g — 1g/3]]
provide, respectively, the lower bounds

(a) B(g) =
g+Lg/2J 9 _ . _

®) B(g) > T > &g = 1.060 -
+2L J+1£]

© Blg) = - > %—eg = 1122+ — g,

3t —glil+e

cited in the Introduction. In the next section we will find a denser set A.

3. The conjecture of Schinzel and Schmidt

The convolution f * f in the conjecture of Schinzel and Schmidt can be thought of as the
continuous version of the function r’;(n) and [f * f|,, as the analogue of the maximum of r’y(n).
The idea is to start with a function f € F such that 1/|f * f|, is close to S (see (1.1)) and use
f as amodel to construct our set .A. We will use the probabilistic method.
An interesting result in [7] relates the constant S with the coefficients of squares of polynomi-
als. We state that result in a more convenient way for our purposes.

Theorem 3.1. For any ¢ > 0, for any n > n(g), there exists a sequence of non-negative real
numbers ¢, ..., cq,—1 such that:

n—1
(@ Z/ 0¢ = ~/m
(i) ¢; < =01 + s)for all j = 0,. —1,
(i) D jpyn Cjem—j < < 51+ 8)f0rany m=0,...,n—1
Proof. We follow the ideas of the proof of assertion (iii) of Theorem 1 in [7]. Let f € F with
If * f|o close to 1/8, say |f * fl., < 1/S + 1/n, and define, for j =0,...,n — 1,
(j+1/2+0)/n
aj=1 | F) d,
(j+1/2—t)/n

where t = [2n!/3]. We have the following estimate:

s 2
(/ﬂmﬂ)< J[ soseasay

2r<x+y<2s

=/2rzs</f(x)f(z—x) dx) dz

2s

fxfz)dz <2s—r)(1/S +1/n) <4(s—7r),
2r

where in the last inequality we used the factthat S > 1 and n > 1.



B, [g] Sets and a Conjecture of Schinzel and Schmidt 745

In particular, we can deduce a; < (2n / t)l/ 2 The idea for proving Theorem 1(iii) in [7] consists
of showing that Z?;é aj =z n+o(n)and 327, ajam—j < (1/S)(n + o(n)) for all m. See [7] for
details.

We define ¢; = a;p, where p = % Clearly p < (1//n)(1 + o(1)), so

j=09j

n—1 m
e <nS(14o(1), Y ej=n and > cjen; < (1/8)(1+o(1)) O
j=0 j=0

4. The proof
We will use a special case of Chernoff’s inequality (see Corollary 1.9 in [8]).
Proposition 4.1 (Chernoff’s inequality). Let X =t; + - + t,, where the t; are independent
Boolean random variables. Then, for any 6 > 0,
P(X — E(X)| > 0E(X)) < 2 ™in(d*/43/2EX) 4.1

Given ¢ > 0 and the constants ¢; defined in Theorem 3.1, we consider the probability space of
all the subsets A = {0,1,2,...,n— 1} defined by P(j € A) = A,cj, where 4, = [n'//(1 4+ ¢)]
(observe that cj4, < 1 for n large enough).
Lemma 4.2. With the conditions above, given ¢ > 0, there exists ng such that, for all n > ny,

]P’(|A\ > in\/ﬁ(l — s)) > 0.9.
Proof. Since |A| is a sum of independent Boolean variables and E(|.A|) = Z;-’;é P(je A=
An \/ﬁ, we can apply Chernoff’s lemma to deduce that
P(JA] < Zny/n(1 — ) < 2e7MnC /462430 < 0.1

for n large enough. |

Lemma 4.3. Again with the same conditions, given 0 < ¢ < 1, there exists n| such that, for all
nzni,

N

S

riam) < L1 +e)  forallm,

“|

with probability > 0.9.

Proof.  Since r’y(m) = Z'j”:o I(j € A)I(m — j € A) is a sum of Boolean variables which are

not independent, it is convenient to define a new variable,
. 1, 1 . .
rA/(m) = —r(m)— 5]1(m/2 eA)= Z I(j e Al(m— j € A).

2 :
j<m/2

Now we can apply Chernoff’s inequality to this variable.
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Let u,, denote the expected value of rl'(m). We observe that, from the independence of the
indicator functions, IE(]I(j e A)i(m—je A)) =P(j € AP(m — j € A) = 22cjc,—; for every
j < m/2,and so

}
Il(1+8)

o= E(IG € Alm—jeA) =3 Acjon; < 3¢

j<m/2 j<m/2
by Theorem 3.1(iii).

o Ifu,> %(1 + ¢), we apply Proposition 4.1 (observe that & < 2 implies that £2/4 < &/2), to
obtain

/ A
P(r;‘(m) 2S(1+£)) IP’(rA( ) > (1 —i—s))

2
< 2exp <_,u,;,rs)

2
< 26Xp< 2)45(14-8) >

e If y,, = 0 then r;l/(m) =0.

o IfO<pu, < %(1 +¢), ford = tlés )> — 1> 2 (now 6/2 < 6%/4), we obtain

2
n»(ﬂ’( 1> it )>=P(rj4/(m)>,um(1+5))
< 26Xp(—5ﬂm/2)
< Jex )2(1+8) 2 Hm
S 2P Ty 2

22 2
Zexp( 4S(l—i—e) 125 ))
2

< Zexp( ;S(l +8)2)

Then

22
P (ri((m) > ;—g(l + ¢)? for some m>

2 2
< 2n <exp( 2/33(1 +e)e ) +exp (—égu + g)2>> <0.1
for n large enough.

Because of the way we defined rl’(m), this means

P (r;‘(m) >

2
%(1 +¢)? 4+ 1I(m/2 € A) for some m) < 0.1,

)
/12
]P’<rj4(m) > §"(1 + ¢)? for some m> <0.1

for n large enough. ]



B, [g] Sets and a Conjecture of Schinzel and Schmidt 747

Lemmas 4.2 and 4.3 imply that, for any 0 < e < 1, forn > n(¢) = max(no, n1), the probability
that |A| > 4, \f (1 —¢)andriy(m) < §(1 + ¢)? for all m is greater than 0.8. We now choose one
of these sets A < {0,...,n — 1} for a suitable n.

Write g8 = ”S‘” (1+¢) 3J Forany g > g, we take nsuch that g = L%%(l + ¢)3] (this is possible
because * S ( + ¢)* grows more slowly than n). Thus, for g > g,,
Al Ju Ji(1 = g) 1—e
> > = ,
B(g) g2 7 (/IS + e 2l \f(l TP

which completes the proof for the lower bound in Theorem 1.1, since we can take ¢ arbitrar-
ily small.

To obtain the upper bound in Theorem 1.1, we will use the following result (assertion (ii) of
Theorem 1 in [7]).

Theorem 4.4. Let S be the Schinzel-Schmidt constant and Q ={Q : Q € Rx[x], O #0,
deg(Q) < N}. Then

1 Q*(X)Is

sup ———
N gco [02(x)]o

where |P|; is the sum and |P |y, the maximum of the coefficients of a polynomial P.

<S8,

Given a Bs[g] set, A<= {0,...,N — 1}, we define the polynomial Q4(x) = >, 4 x% so
0% (x) =3, r’y(n)x". Theorem 4.4 says that, in particular,

1 2 F%g,N
g2l qp M _PlN
N scio,..N-11 28 2gN
and so F\(/gg’%) < 4J28.
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