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A set of integers A is called a B2[g] set if every integer m has at most g representations of the
form m = a + a′, with a � a′ and a, a′ ∈ A. We obtain a new lower bound for F(g, n), the largest
cardinality of a B2[g] set in {1, . . . , n}. More precisely, we prove that lim infn→∞

F(g,n)√
gn

� 2√
π

− εg

where εg → 0 when g → ∞. We show a connection between this problem and another one dis-
cussed by Schinzel and Schmidt, which can be considered its continuous version.

1. Introduction

A set of integers A is called a B2[g] set if every integer m has at most g representations of the form
m = a + a′, with a � a′ and a, a′ ∈ A. We write rA(m) for the number of such representations.

A major problem in additive number theory is the study of the behaviour of the function
F(g, n), the largest cardinality of a B2[g] set in {1, . . . , n}.

It is a well-known result on Sidon sets that F(1, n) ∼ n1/2, but the asymptotic behaviour of
F(g, n) is an open problem for g � 2. The trivial counting argument gives F(g, n) � 2

√
gn and

it is not too difficult to show (see Section 2) that F(g, n) � √
gn.

We define

β(g) = lim inf
n→∞

F(g, n)
√
gn

� lim sup
n→∞

F(g, n)
√
gn

= α(g).

In the last few years some progress has been made, improving the easier estimates 1 � β(g) �
α(g) � 2. In Table 1 we list successive results obtained by several authors, including the im-
provement obtained in this work.

† This work was developed during the Doccourse in Additive Combinatorics held in the Centre de Recerca Matemàtica
from January to March 2007. The authors are extremely grateful for their hospitality.
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Table 1.

α(g) � 2 trivial
� 1.864 Cilleruelo, Ruzsa and Trujillo [1]
� 1.844 Green [2]
� 1.839 Martin and O’Bryant [5]
� 1.789 Yu [9]

β(g) � 1 Kolountzakis [3]
� 1.060 Cilleruelo, Ruzsa and Trujillo [1]
� 1.122 Martin and O’Bryant [4]
� 2/

√
π = 1.128 · · · Corollary 1.2

The aim of this work is not only to improve the lower bound for β(g) but also to show a
connection with another problem discussed by Schinzel and Schmidt [7], which can be seen as
the continuous version of this problem.

We define the Schinzel–Schmidt constant

S = sup
f∈F

1

|f ∗ f|∞
, (1.1)

where F = {f : f � 0, supp(f) ⊆ [0, 1], |f|1 = 1} and f ∗ f(x) =
∫
f(t)f(x − t) dt. We use the

notation |g|1 =
∫ 1

0 |g(x)| dx, |g|∞ = supx g(x) and supp(g) = {x : g(x) �= 0}.

Remark. The definition in [7] is S = sup
f∈F̃ |f|21/|f ∗ f|∞ with F̃ = {f : f � 0, f �≡ 0,

supp(f) ⊆ [0, 1], f ∈ L1[0, 1]}, but we can assume that |f|1 = 1 because |f|21/|f ∗ f|∞ is in-
variant under dilates of f.

It is easy to see that 1 � S � 2, and Schinzel and Schmidt proved in [7] that 4/π � S �
1.7373. The witness for the lower bound is the function f(x) = 1

2
√
x

∈ F . They also conjecture
that S = 4/π. Our main theorem relates α(g) and β(g) to S .

Theorem 1.1.
√
S � lim infg→∞ β(g) � lim supg→∞ α(g) �

√
2S .

Corollary 1.2. β(g) � 2/
√
π − εg, where εg → 0 when g → ∞.

2. Lower bound constructions

At this point, it is convenient to introduce a few definitions.

Definitions. (1) We say that A is a B∗
2[g] set if any integer n has at most g representations of

the form n = a + a′ with a, a′ ∈ A. We write r∗
A(n) for the number of such representations.

(2) We say that A is a Sidon set (mod m) if a1 + a2 ≡ a3 + a4 (mod m) =⇒ {a1, a2} = {a3, a4},
where ai ∈ A.

All the known lower bounds for β(g) were obtained from the next lemma (see [1]).
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Lemma 2.1. Let A = {0 = a1 < · · · < ak} be a B∗
2[g] set and let C ⊆ [1, m] be a Sidon set

(mod m). Then B = ∪k
i=1(C + mai) is a B2[g] set in [1, m(ak + 1)] with k|C| elements.

Remark. The lemma shows how to obtain a B2[g] set by carefully arranging (with a dilation
of a B∗

2[g] set) several copies of a Sidon set (mod m).

Proof. To prove that B is a B2[g] set, suppose that we have

b1,1 + b2,1 = · · · = b1,g+1 + b2,g+1 (2.1)

for some b1,j , b2,j ∈ B. We can write each bi,j = ci,j + mai,j in a unique way with ci,j ∈ C and
ai,j ∈ A. Let us order the elements bi,j of each sum in such a way that for any i, j we have
c1,j � c2,j , and when c1,j = c2,j we order them so a1,j � a2,j .

To see that B is a B2[g] set we need to check that there exist j and j ′ such that b1,j = b1,j ′ ,
b2,j = b2,j ′ .

From (2.1), and since C is a Sidon set (mod m), we get {c1,1, c2,1} = {c1,j , c2,j} for every 1 �
j � g + 1. Moreover, since have we ordered the elements of the equalities in that way, we have
c1,1 = c1,j and c2,1 = c2,j for every j.

Then, the equalities (2.1) imply these equations:

a1,1 + a2,1 = a1,2 + a2,2 = · · · = a1,g+1 + a2,g+1. (2.2)

Since A satisfies the B∗
2[g] condition, there exist j and j ′ such that a1,j = a1,j ′ and a2,j = a2,j ′ .

Then, for these j and j ′ we have that b1,j = b1,j ′ and b2,j = b2,j ′ . This proves that B ∈ B2[g].
Finally, it is clear that B ⊂ {1, . . . , (ak + 1)m} and |B| = k|C|.

In order to apply Lemma 2.1 in an efficient way, we have to take dense Sidon sets (mod m).
For example, for each prime p we consider Cp, the Sidon set (mod m) with p − 1 elements and
m = p(p − 1) discovered by Ruzsa (see [6]).

Given a positive integer N, we write

(ak + 1)pn(pn − 1) < N � (ak + 1)pn+1(pn+1 − 1)

for suitable consecutive primes, pn and pn+1. Clearly

F(g,N)√
gN

� |Cpn |k√
g(ak + 1)pn+1(pn+1 − 1)

� k√
g(ak + 1)

· pn − 1

pn+1
.

Thus

β(g) = lim inf
N→∞

F(g,N)√
gN

� k√
g(ak + 1)

lim inf
n→∞

pn − 1

pn+1
.

Since lim infn→∞
pn
pn+1

= 1, as a consequence of the Prime Number Theorem, we get

β(g) � k√
g(ak + 1)

. (2.3)

So, to improve the lower bound for β(g), we need to find a set A = {0 = a1 < · · · < ak} which
satisfies the B∗

2[g] condition and maximizes the quotient k√
g(ak+1)

.
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The sets

(a) A = {0, 1, . . . , g − 1},
(b) A = {0, 1, . . . , g − 1} ∪ {g + 1, g + 3, . . . , g − 1 + 2�g/2�},
(c) A =

[
0, �g/3�

)
∪ (g − �g/3� + 2 ·

[
0, �g/6�

)
) ∪

[
g, g + �g/3�

)
∪

(
2g − �g/3�, 3g − �g/3�

]
provide, respectively, the lower bounds

(a) β(g) � 1,

(b) β(g) � g+�g/2�√
g2+2g�g/2�

�
√

9
8

− εg = 1.060 · · · − εg,

(c) β(g) � g+2� g
3 �+� g

6 �√
3g2−g� g

3 �+g
�

√
121
96

− εg = 1.122 · · · − εg,

cited in the Introduction. In the next section we will find a denser set A.

3. The conjecture of Schinzel and Schmidt

The convolution f ∗ f in the conjecture of Schinzel and Schmidt can be thought of as the
continuous version of the function r∗

A(n) and |f ∗ f|∞ as the analogue of the maximum of r∗
A(n).

The idea is to start with a function f ∈ F such that 1/|f ∗ f|∞ is close to S (see (1.1)) and use
f as a model to construct our set A. We will use the probabilistic method.

An interesting result in [7] relates the constant S with the coefficients of squares of polynomi-
als. We state that result in a more convenient way for our purposes.

Theorem 3.1. For any ε > 0, for any n > n(ε), there exists a sequence of non-negative real
numbers c0, . . . , cn−1 such that:

(i)
∑n−1

j=0 cj =
√
n,

(ii) cj � n−1/6(1 + ε) for all j = 0, . . . , n − 1,
(iii)

∑
j<m/2 cjcm−j � 1

2S
(1 + ε) for any m = 0, . . . , n − 1.

Proof. We follow the ideas of the proof of assertion (iii) of Theorem 1 in [7]. Let f ∈ F with
|f ∗ f|∞ close to 1/S , say |f ∗ f|∞ � 1/S + 1/n, and define, for j = 0, . . . , n − 1,

aj =
n

2t

∫ (j+1/2+t)/n

(j+1/2−t)/n

f(x) dx,

where t = �2n1/3�. We have the following estimate:(∫ s

r

f(x) dx

)2

�
∫∫

2r�x+y�2s

f(x)f(y) dx dy

=

∫ 2s

2r

(∫
f(x)f(z − x) dx

)
dz

=

∫ 2s

2r

f ∗ f(z) dz � 2(s − r)(1/S + 1/n) � 4(s − r),

where in the last inequality we used the fact that S � 1 and n � 1.
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In particular, we can deduce aj � (2n/t)1/2. The idea for proving Theorem 1(iii) in [7] consists
of showing that

∑n−1
j=0 aj � n + o(n) and

∑m
j=0 ajam−j � (1/S)(n + o(n)) for all m. See [7] for

details.
We define cj = ajρ, where ρ =

√
n∑ n−1

j=0 aj
. Clearly ρ � (1/

√
n)(1 + o(1)), so

cj � n−1/6(1 + o(1)),

n−1∑
j=0

cj =
√
n and

m∑
j=0

cjcm−j � (1/S)(1 + o(1)).

4. The proof

We will use a special case of Chernoff’s inequality (see Corollary 1.9 in [8]).

Proposition 4.1 (Chernoff’s inequality). Let X = t1 + · · · + tn, where the ti are independent
Boolean random variables. Then, for any δ > 0,

P(|X − E(X)| � δE(X)) � 2e− min(δ2/4,δ/2)E(X). (4.1)

Given ε > 0 and the constants cj defined in Theorem 3.1, we consider the probability space of
all the subsets A ⊆ {0, 1, 2, . . . , n − 1} defined by P(j ∈ A) = λncj , where λn = �n1/6/(1 + ε)�
(observe that cjλn � 1 for n large enough).

Lemma 4.2. With the conditions above, given ε > 0, there exists n0 such that, for all n � n0,

P
(
|A| � λn

√
n(1 − ε)

)
> 0.9.

Proof. Since |A| is a sum of independent Boolean variables and E(|A|) =
∑n−1

j=0 P(j ∈ A) =

λn
√
n, we can apply Chernoff’s lemma to deduce that

P
(
|A| < λn

√
n(1 − ε)

)
� 2e− min(ε2/4,ε/2)λn

√
n < 0.1

for n large enough.

Lemma 4.3. Again with the same conditions, given 0 < ε < 1, there exists n1 such that, for all
n � n1,

r∗
A(m) � λ2

n

S
(1 + ε)3 for all m,

with probability > 0.9.

Proof. Since r∗
A(m) =

∑m
j=0 I(j ∈ A)I(m − j ∈ A) is a sum of Boolean variables which are

not independent, it is convenient to define a new variable,

r∗
A

′
(m) =

1

2
r∗
A(m) − 1

2
I(m/2 ∈ A) =

∑
j<m/2

I(j ∈ A)I(m − j ∈ A).

Now we can apply Chernoff’s inequality to this variable.
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Let μm denote the expected value of r∗
A

′(m). We observe that, from the independence of the
indicator functions, E

(
I(j ∈ A)I(m − j ∈ A)

)
= P(j ∈ A)P(m − j ∈ A) = λ2

ncjcm−j for every
j < m/2, and so

μm =
∑
j<m/2

E
(
I(j ∈ A)I(m − j ∈ A)

)
=

∑
j<m/2

λ2
ncjcm−j � λ2

n

2S
(1 + ε),

by Theorem 3.1(iii).

• If μm � λ2
n

6S
(1 + ε), we apply Proposition 4.1 (observe that ε < 2 implies that ε2/4 � ε/2), to

obtain

P

(
r∗
A

′
(m) � λ2

n

2S
(1 + ε)2

)
� P

(
r∗
A

′
(m) � μm(1 + ε)

)
� 2 exp

(
−μmε

2

4

)

� 2 exp

(
− λ2

n

24S
(1 + ε)ε2

)
.

• If μm = 0 then r∗
A

′(m) = 0.

• If 0 < μm <
λ2
n

6S
(1 + ε), for δ = λ2

n

μm2S
(1 + ε)2 − 1 � 2 (now δ/2 � δ2/4), we obtain

P

(
r∗
A

′
(m) � λ2

n

2S
(1 + ε)2

)
= P

(
r∗
A

′
(m) � μm(1 + δ)

)
� 2 exp(−δμm/2)

� 2 exp

(
− λ2

n

4S
(1 + ε)2 +

μm

2

)

� 2 exp

(
− λ2

n

4S
(1 + ε)2 +

λ2
n

12S
(1 + ε)

)

� 2 exp

(
− λ2

n

6S
(1 + ε)2

)
.

Then

P

(
r∗
A

′
(m) � λ2

n

2S
(1 + ε)2 for some m

)

� 2n

(
exp

(
− λ2

n

24S
(1 + ε)ε2

)
+ exp

(
− λ2

n

6S
(1 + ε)2

))
< 0.1

for n large enough.
Because of the way we defined r∗

A
′(m), this means

P

(
r∗
A(m) � λ2

n

S
(1 + ε)2 + I(m/2 ∈ A) for some m

)
< 0.1,

so

P

(
r∗
A(m) � λ2

n

S
(1 + ε)3 for some m

)
< 0.1

for n large enough.
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Lemmas 4.2 and 4.3 imply that, for any 0 < ε < 1, for n � n(ε) = max(n0, n1), the probability
that |A| � λn

√
n(1 − ε) and r∗

A(m) � λ2
n

S
(1 + ε)3 for all m is greater than 0.8. We now choose one

of these sets A ⊂ {0, . . . , n − 1} for a suitable n.

Write gε = � λ2
n(ε)

S
(1 + ε)3�. For any g � gε we take n such that g = � λ2

n

S
(1 + ε)3� (this is possible

because λ2
n

S
(1 + ε)3 grows more slowly than n). Thus, for g � gε,

β(g) � |A|
g1/2n1/2

� λn
√
n(1 − ε)

(λn/
√
S)(1 + ε)3/2n1/2

=
√
S

1 − ε

(1 + ε)3/2
,

which completes the proof for the lower bound in Theorem 1.1, since we can take ε arbitrar-
ily small.

To obtain the upper bound in Theorem 1.1, we will use the following result (assertion (ii) of
Theorem 1 in [7]).

Theorem 4.4. Let S be the Schinzel–Schmidt constant and Q = {Q : Q ∈ R�0[x], Q �≡ 0,
deg(Q) < N}. Then

1

N
sup
Q∈Q

|Q2(x)|1
|Q2(x)|∞

� S,

where |P |1 is the sum and |P |∞ the maximum of the coefficients of a polynomial P .

Given a B2[g] set, A ⊆ {0, . . . , N − 1}, we define the polynomial QA(x) =
∑

a∈A xa, so
Q2

A(x) =
∑

n r
∗
A(n)xn. Theorem 4.4 says that, in particular,

S � 1

N
sup

A⊆{0,...,N−1}

|A|2
2g

=
F2(g,N)

2gN
,

and so F(g,N)√
gN

�
√

2S .
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