*B*₂[*g*] Sets and a Conjecture of Schinzel and Schmidt

JAVIER CILLERUELO and CARLOS VINUESA^{†‡}

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049-Madrid, Spain (e-mail: franciscojavier.cilleruelo@uam.es, c.vinuesa@uam.es)

Received 27 May 2008; revised 29 July 2008; first published online 3 October 2008

A set of integers \mathcal{A} is called a $B_2[g]$ set if every integer *m* has at most *g* representations of the form m = a + a', with $a \leq a'$ and $a, a' \in \mathcal{A}$. We obtain a new lower bound for F(g, n), the largest cardinality of a $B_2[g]$ set in $\{1, \ldots, n\}$. More precisely, we prove that $\liminf_{n \to \infty} \frac{F(g, n)}{\sqrt{gn}} \geq \frac{2}{\sqrt{\pi}} - \varepsilon_g$ where $\varepsilon_g \to 0$ when $g \to \infty$. We show a connection between this problem and another one discussed by Schinzel and Schmidt, which can be considered its continuous version.

1. Introduction

A set of integers \mathcal{A} is called a $B_2[g]$ set if every integer *m* has at most *g* representations of the form m = a + a', with $a \leq a'$ and $a, a' \in \mathcal{A}$. We write $r_{\mathcal{A}}(m)$ for the number of such representations.

A major problem in additive number theory is the study of the behaviour of the function F(g, n), the largest cardinality of a $B_2[g]$ set in $\{1, ..., n\}$.

It is a well-known result on Sidon sets that $F(1,n) \sim n^{1/2}$, but the asymptotic behaviour of F(g,n) is an open problem for $g \ge 2$. The trivial counting argument gives $F(g,n) \le 2\sqrt{gn}$ and it is not too difficult to show (see Section 2) that $F(g,n) \ge \sqrt{gn}$.

We define

$$\beta(g) = \liminf_{n \to \infty} \frac{F(g, n)}{\sqrt{gn}} \leq \limsup_{n \to \infty} \frac{F(g, n)}{\sqrt{gn}} = \alpha(g).$$

In the last few years some progress has been made, improving the easier estimates $1 \le \beta(g) \le \alpha(g) \le 2$. In Table 1 we list successive results obtained by several authors, including the improvement obtained in this work.

[†] This work was developed during the Doccourse in Additive Combinatorics held in the Centre de Recerca Matemàtica from January to March 2007. The authors are extremely grateful for their hospitality.

[‡] Both authors are supported by Grants CCG07-UAM/ESP-1814 and DGICYT MTM 2005-04730 (Spain).

α(g)	≤ 2	trivial
	≤ 1.864	Cilleruelo, Ruzsa and Trujillo [1]
	≤ 1.844	Green [2]
	≤ 1.839	Martin and O'Bryant [5]
	≤ 1.789	Yu [9]
$\beta(g)$	≥1	Kolountzakis [3]
	$\gtrsim 1.060$	Cilleruelo, Ruzsa and Trujillo [1]
	$\gtrsim 1.122$	Martin and O'Bryant [4]
	$\gtrsim 2/\sqrt{\pi} = 1.128\cdots$	Corollary 1.2

The aim of this work is not only to improve the lower bound for $\beta(g)$ but also to show a connection with another problem discussed by Schinzel and Schmidt [7], which can be seen as the continuous version of this problem.

We define the Schinzel-Schmidt constant

$$S = \sup_{f \in \mathcal{F}} \frac{1}{|f * f|_{\infty}},\tag{1.1}$$

where $\mathcal{F} = \{f : f \ge 0, \sup(f) \subseteq [0, 1], |f|_1 = 1\}$ and $f * f(x) = \int f(t)f(x - t) dt$. We use the notation $|g|_1 = \int_0^1 |g(x)| dx, |g|_\infty = \sup_x g(x)$ and $\sup(g) = \{x : g(x) \neq 0\}$.

Remark. The definition in [7] is $S = \sup_{f \in \widetilde{\mathcal{F}}} |f|_1^2 / |f * f|_{\infty}$ with $\widetilde{\mathcal{F}} = \{f : f \ge 0, f \ne 0, supp(f) \subseteq [0, 1], f \in L_1[0, 1]\}$, but we can assume that $|f|_1 = 1$ because $|f|_1^2 / |f * f|_{\infty}$ is invariant under dilates of f.

It is easy to see that $1 \le S \le 2$, and Schinzel and Schmidt proved in [7] that $4/\pi \le S \le 1.7373$. The witness for the lower bound is the function $f(x) = \frac{1}{2\sqrt{x}} \in \mathcal{F}$. They also conjecture that $S = 4/\pi$. Our main theorem relates $\alpha(g)$ and $\beta(g)$ to S.

Theorem 1.1. $\sqrt{S} \leq \liminf_{g \to \infty} \beta(g) \leq \limsup_{g \to \infty} \alpha(g) \leq \sqrt{2S}.$

Corollary 1.2. $\beta(g) \ge 2/\sqrt{\pi} - \varepsilon_g$, where $\varepsilon_g \to 0$ when $g \to \infty$.

2. Lower bound constructions

At this point, it is convenient to introduce a few definitions.

Definitions. (1) We say that \mathcal{A} is a $B_2^*[g]$ set if any integer *n* has at most *g* representations of the form n = a + a' with $a, a' \in \mathcal{A}$. We write $r_{\mathcal{A}}^*(n)$ for the number of such representations.

(2) We say that \mathcal{A} is a *Sidon set* (mod *m*) if $a_1 + a_2 \equiv a_3 + a_4 \pmod{m} \implies \{a_1, a_2\} = \{a_3, a_4\}$, where $a_i \in \mathcal{A}$.

All the known lower bounds for $\beta(g)$ were obtained from the next lemma (see [1]).

Lemma 2.1. Let $\mathcal{A} = \{0 = a_1 < \cdots < a_k\}$ be a $B_2^*[g]$ set and let $\mathcal{C} \subseteq [1,m]$ be a Sidon set (mod m). Then $\mathcal{B} = \bigcup_{i=1}^k (\mathcal{C} + ma_i)$ is a $B_2[g]$ set in $[1, m(a_k + 1)]$ with $k|\mathcal{C}|$ elements.

Remark. The lemma shows how to obtain a $B_2[g]$ set by carefully arranging (with a dilation of a $B_2^*[g]$ set) several copies of a Sidon set (mod m).

Proof. To prove that \mathcal{B} is a $B_2[g]$ set, suppose that we have

$$b_{1,1} + b_{2,1} = \dots = b_{1,g+1} + b_{2,g+1} \tag{2.1}$$

for some $b_{1,j}, b_{2,j} \in \mathcal{B}$. We can write each $b_{i,j} = c_{i,j} + ma_{i,j}$ in a unique way with $c_{i,j} \in \mathcal{C}$ and $a_{i,j} \in \mathcal{A}$. Let us order the elements $b_{i,j}$ of each sum in such a way that for any i, j we have $c_{1,j} \leq c_{2,j}$, and when $c_{1,j} = c_{2,j}$ we order them so $a_{1,j} \leq a_{2,j}$.

To see that \mathcal{B} is a $B_2[g]$ set we need to check that there exist j and j' such that $b_{1,j} = b_{1,j'}$, $b_{2,j} = b_{2,j'}$.

From (2.1), and since C is a Sidon set (mod m), we get $\{c_{1,1}, c_{2,1}\} = \{c_{1,j}, c_{2,j}\}$ for every $1 \le j \le g + 1$. Moreover, since have we ordered the elements of the equalities in that way, we have $c_{1,1} = c_{1,j}$ and $c_{2,1} = c_{2,j}$ for every j.

Then, the equalities (2.1) imply these equations:

$$a_{1,1} + a_{2,1} = a_{1,2} + a_{2,2} = \dots = a_{1,g+1} + a_{2,g+1}.$$
 (2.2)

Since \mathcal{A} satisfies the $B_2^*[g]$ condition, there exist j and j' such that $a_{1,j} = a_{1,j'}$ and $a_{2,j} = a_{2,j'}$. Then, for these j and j' we have that $b_{1,j} = b_{1,j'}$ and $b_{2,j} = b_{2,j'}$. This proves that $\mathcal{B} \in B_2[g]$. Finally, it is clear that $B \subset \{1, \dots, (a_k + 1)m\}$ and $|\mathcal{B}| = k|\mathcal{C}|$.

In order to apply Lemma 2.1 in an efficient way, we have to take dense Sidon sets (mod m). For example, for each prime p we consider C_p , the Sidon set (mod m) with p - 1 elements and m = p(p-1) discovered by Ruzsa (see [6]).

Given a positive integer N, we write

$$(a_k+1)p_n(p_n-1) < N \leq (a_k+1)p_{n+1}(p_{n+1}-1)$$

for suitable consecutive primes, p_n and p_{n+1} . Clearly

$$\frac{F(g,N)}{\sqrt{gN}} \ge \frac{|\mathcal{C}_{p_n}|k}{\sqrt{g(a_k+1)p_{n+1}(p_{n+1}-1)}} \ge \frac{k}{\sqrt{g(a_k+1)}} \cdot \frac{p_n-1}{p_{n+1}}$$

Thus

$$\beta(g) = \liminf_{N \to \infty} \frac{F(g, N)}{\sqrt{gN}} \ge \frac{k}{\sqrt{g(a_k + 1)}} \liminf_{n \to \infty} \frac{p_n - 1}{p_{n+1}}.$$

Since $\liminf_{n\to\infty} \frac{p_n}{p_{n+1}} = 1$, as a consequence of the Prime Number Theorem, we get

$$\beta(g) \ge \frac{k}{\sqrt{g(a_k+1)}}.$$
(2.3)

So, to improve the lower bound for $\beta(g)$, we need to find a set $\mathcal{A} = \{0 = a_1 < \cdots < a_k\}$ which satisfies the $B_2^*[g]$ condition and maximizes the quotient $\frac{k}{\sqrt{g(a_k+1)}}$.

The sets

(a)
$$\mathcal{A} = \{0, 1, \dots, g-1\},\$$

(b) $\mathcal{A} = \{0, 1, \dots, g-1\} \cup \{g+1, g+3, \dots, g-1+2\lfloor g/2 \rfloor\},\$
(c) $\mathcal{A} = [0, \lfloor g/3 \rfloor) \cup (g - \lfloor g/3 \rfloor + 2 \cdot [0, \lfloor g/6 \rfloor)) \cup [g, g + \lfloor g/3 \rfloor)$
 $\cup (2g - \lfloor g/3 \rfloor, 3g - \lfloor g/3 \rfloor]$

provide, respectively, the lower bounds

(a) $\beta(g) \ge 1$, (b) $\beta(g) \ge \frac{g + \lfloor g/2 \rfloor}{\sqrt{g^2 + 2g \lfloor g/2 \rfloor}} \ge \sqrt{\frac{9}{8}} - \varepsilon_g = 1.060 \cdots - \varepsilon_g$, (c) $\beta(g) \ge \frac{g + 2\lfloor \frac{g}{3} \rfloor + \lfloor \frac{g}{6} \rfloor}{\sqrt{3g^2 - g \lfloor \frac{g}{3} \rfloor + g}} \ge \sqrt{\frac{121}{96}} - \varepsilon_g = 1.122 \cdots - \varepsilon_g$,

cited in the Introduction. In the next section we will find a denser set A.

3. The conjecture of Schinzel and Schmidt

The convolution f * f in the conjecture of Schinzel and Schmidt can be thought of as the continuous version of the function $r_{\mathcal{A}}^*(n)$ and $|f * f|_{\infty}$ as the analogue of the maximum of $r_{\mathcal{A}}^*(n)$.

The idea is to start with a function $f \in \mathcal{F}$ such that $1/|f * f|_{\infty}$ is close to S (see (1.1)) and use f as a model to construct our set \mathcal{A} . We will use the probabilistic method.

An interesting result in [7] relates the constant S with the coefficients of squares of polynomials. We state that result in a more convenient way for our purposes.

Theorem 3.1. For any $\varepsilon > 0$, for any $n > n(\varepsilon)$, there exists a sequence of non-negative real numbers c_0, \ldots, c_{n-1} such that:

(i)
$$\sum_{j=0}^{n-1} c_j = \sqrt{n}$$
,
(ii) $c_j \leq n^{-1/6} (1+\varepsilon)$ for all $j = 0, ..., n-1$,
(iii) $\sum_{j < m/2} c_j c_{m-j} \leq \frac{1}{2S} (1+\varepsilon)$ for any $m = 0, ..., n-1$.

Proof. We follow the ideas of the proof of assertion (iii) of Theorem 1 in [7]. Let $f \in \mathcal{F}$ with $|f * f|_{\infty}$ close to 1/S, say $|f * f|_{\infty} \leq 1/S + 1/n$, and define, for j = 0, ..., n - 1,

$$a_j = \frac{n}{2t} \int_{(j+1/2-t)/n}^{(j+1/2+t)/n} f(x) \, dx,$$

where $t = \lfloor 2n^{1/3} \rfloor$. We have the following estimate:

$$\left(\int_{r}^{s} f(x) dx\right)^{2} \leq \iint_{2r \leq x+y \leq 2s} f(x)f(y) dx dy$$
$$= \int_{2r}^{2s} \left(\int f(x)f(z-x) dx\right) dz$$
$$= \int_{2r}^{2s} f * f(z) dz \leq 2(s-r)(1/S+1/n) \leq 4(s-r),$$

where in the last inequality we used the fact that $S \ge 1$ and $n \ge 1$.

In particular, we can deduce $a_j \leq (2n/t)^{1/2}$. The idea for proving Theorem 1(iii) in [7] consists of showing that $\sum_{j=0}^{n-1} a_j \geq n + o(n)$ and $\sum_{j=0}^{m} a_j a_{m-j} \leq (1/S)(n + o(n))$ for all *m*. See [7] for details.

We define
$$c_j = a_j \rho$$
, where $\rho = \frac{\sqrt{n}}{\sum_{j=0}^{n-1} a_j}$. Clearly $\rho \leq (1/\sqrt{n})(1+o(1))$, so

$$c_j \leq n^{-1/6}(1+o(1)), \quad \sum_{j=0}^{n-1} c_j = \sqrt{n} \quad \text{and} \quad \sum_{j=0}^m c_j c_{m-j} \leq (1/S)(1+o(1)).$$

4. The proof

We will use a special case of Chernoff's inequality (see Corollary 1.9 in [8]).

Proposition 4.1 (Chernoff's inequality). Let $X = t_1 + \cdots + t_n$, where the t_i are independent Boolean random variables. Then, for any $\delta > 0$,

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge \delta \mathbb{E}(X)) \le 2e^{-\min(\delta^2/4, \delta/2)\mathbb{E}(X)}.$$
(4.1)

Given $\varepsilon > 0$ and the constants c_j defined in Theorem 3.1, we consider the probability space of all the subsets $\mathcal{A} \subseteq \{0, 1, 2, ..., n-1\}$ defined by $\mathbb{P}(j \in \mathcal{A}) = \lambda_n c_j$, where $\lambda_n = \lfloor n^{1/6}/(1+\varepsilon) \rfloor$ (observe that $c_j \lambda_n \leq 1$ for *n* large enough).

Lemma 4.2. With the conditions above, given $\varepsilon > 0$, there exists n_0 such that, for all $n \ge n_0$,

$$\mathbb{P}(|\mathcal{A}| \geq \lambda_n \sqrt{n}(1-\varepsilon)) > 0.9.$$

Proof. Since $|\mathcal{A}|$ is a sum of independent Boolean variables and $\mathbb{E}(|\mathcal{A}|) = \sum_{j=0}^{n-1} \mathbb{P}(j \in \mathcal{A}) = \lambda_n \sqrt{n}$, we can apply Chernoff's lemma to deduce that

$$\mathbb{P}\big(|\mathcal{A}| < \lambda_n \sqrt{n}(1-\varepsilon)\big) \leqslant 2e^{-\min(\varepsilon^2/4,\varepsilon/2)\lambda_n \sqrt{n}} < 0.1$$

for *n* large enough.

Lemma 4.3. Again with the same conditions, given $0 < \varepsilon < 1$, there exists n_1 such that, for all $n \ge n_1$,

$$r^*_{\mathcal{A}}(m) \leqslant rac{\lambda_n^2}{S}(1+arepsilon)^3 \quad \textit{for all } m,$$

with probability > 0.9.

Proof. Since $r_{\mathcal{A}}^*(m) = \sum_{j=0}^m \mathbb{I}(j \in \mathcal{A})\mathbb{I}(m-j \in \mathcal{A})$ is a sum of Boolean variables which are not independent, it is convenient to define a new variable,

$$r_{\mathcal{A}}^{*\,\prime}(m) = \frac{1}{2}r_{\mathcal{A}}^{*}(m) - \frac{1}{2}\mathbb{I}(m/2 \in \mathcal{A}) = \sum_{j < m/2}\mathbb{I}(j \in \mathcal{A})\mathbb{I}(m-j \in \mathcal{A}).$$

Now we can apply Chernoff's inequality to this variable.

Let μ_m denote the expected value of $r_{\mathcal{A}}^*(m)$. We observe that, from the independence of the indicator functions, $\mathbb{E}(\mathbb{I}(j \in \mathcal{A})\mathbb{I}(m-j \in \mathcal{A})) = \mathbb{P}(j \in \mathcal{A})\mathbb{P}(m-j \in \mathcal{A}) = \lambda_n^2 c_j c_{m-j}$ for every j < m/2, and so

$$\mu_m = \sum_{j < m/2} \mathbb{E} \left(\mathbb{I}(j \in \mathcal{A}) \mathbb{I}(m-j \in \mathcal{A}) \right) = \sum_{j < m/2} \lambda_n^2 c_j c_{m-j} \leqslant \frac{\lambda_n^2}{2S} (1+\varepsilon),$$

by Theorem 3.1(iii).

• If $\mu_m \ge \frac{\lambda_n^2}{6S}(1+\varepsilon)$, we apply Proposition 4.1 (observe that $\varepsilon < 2$ implies that $\varepsilon^2/4 \le \varepsilon/2$), to obtain

$$\mathbb{P}\left(r_{\mathcal{A}}^{*}(m) \ge \frac{\lambda_{n}^{2}}{2S}(1+\varepsilon)^{2}\right) \leqslant \mathbb{P}\left(r_{\mathcal{A}}^{*}(m) \ge \mu_{m}(1+\varepsilon)\right)$$
$$\leqslant 2\exp\left(-\frac{\mu_{m}\varepsilon^{2}}{4}\right)$$
$$\leqslant 2\exp\left(-\frac{\lambda_{n}^{2}}{24S}(1+\varepsilon)\varepsilon^{2}\right)$$

- If $\mu_m = 0$ then $r_A^*'(m) = 0$.
- If $0 < \mu_m < \frac{\lambda_n^2}{6S}(1+\varepsilon)$, for $\delta = \frac{\lambda_n^2}{\mu_m 2S}(1+\varepsilon)^2 1 \ge 2$ (now $\delta/2 \le \delta^2/4$), we obtain

$$\mathbb{P}\left(r_{\mathcal{A}}^{*}(m) \geq \frac{\lambda_{n}^{2}}{2S}(1+\varepsilon)^{2}\right) = \mathbb{P}\left(r_{\mathcal{A}}^{*}(m) \geq \mu_{m}(1+\delta)\right)$$

$$\leq 2\exp(-\delta\mu_{m}/2)$$

$$\leq 2\exp\left(-\frac{\lambda_{n}^{2}}{4S}(1+\varepsilon)^{2} + \frac{\mu_{m}}{2}\right)$$

$$\leq 2\exp\left(-\frac{\lambda_{n}^{2}}{4S}(1+\varepsilon)^{2} + \frac{\lambda_{n}^{2}}{12S}(1+\varepsilon)\right)$$

$$\leq 2\exp\left(-\frac{\lambda_{n}^{2}}{6S}(1+\varepsilon)^{2}\right).$$

Then

$$\mathbb{P}\left(r_{\mathcal{A}}^{*}(m) \ge \frac{\lambda_{n}^{2}}{2S}(1+\varepsilon)^{2} \text{ for some } m\right)$$

$$\leq 2n\left(\exp\left(-\frac{\lambda_{n}^{2}}{24S}(1+\varepsilon)\varepsilon^{2}\right) + \exp\left(-\frac{\lambda_{n}^{2}}{6S}(1+\varepsilon)^{2}\right)\right) < 0.1$$

for n large enough.

Because of the way we defined $r_{\mathcal{A}}^{*'}(m)$, this means

$$\mathbb{P}\left(r_{\mathcal{A}}^{*}(m) \geq \frac{\lambda_{n}^{2}}{S}(1+\varepsilon)^{2} + \mathbb{I}(m/2 \in \mathcal{A}) \text{ for some } m\right) < 0.1,$$

so

 $\mathbb{P}\left(r_{\mathcal{A}}^{*}(m) \geq \frac{\lambda_{n}^{2}}{S}(1+\varepsilon)^{3} \text{ for some } m\right) < 0.1$

for n large enough.

Lemmas 4.2 and 4.3 imply that, for any $0 < \varepsilon < 1$, for $n \ge n(\varepsilon) = \max(n_0, n_1)$, the probability that $|\mathcal{A}| \ge \lambda_n \sqrt{n(1-\varepsilon)}$ and $r^*_{\mathcal{A}}(m) \le \frac{\lambda_n^2}{S}(1+\varepsilon)^3$ for all *m* is greater than 0.8. We now choose one of these sets $\mathcal{A} \subset \{0, \ldots, n-1\}$ for a suitable *n*.

Write $g_{\varepsilon} = \lfloor \frac{\lambda_{n(\varepsilon)}^2}{S} (1+\varepsilon)^3 \rfloor$. For any $g \ge g_{\varepsilon}$ we take *n* such that $g = \lfloor \frac{\lambda_n^2}{S} (1+\varepsilon)^3 \rfloor$ (this is possible because $\frac{\lambda_n^2}{S} (1+\varepsilon)^3$ grows more slowly than *n*). Thus, for $g \ge g_{\varepsilon}$,

$$eta(g) \geqslant rac{|\mathcal{A}|}{g^{1/2}n^{1/2}} \geqslant rac{\lambda_n \sqrt{n}(1-arepsilon)}{(\lambda_n/\sqrt{S})(1+arepsilon)^{3/2}n^{1/2}} = \sqrt{S}rac{1-arepsilon}{(1+arepsilon)^{3/2}},$$

which completes the proof for the lower bound in Theorem 1.1, since we can take ε arbitrarily small.

To obtain the upper bound in Theorem 1.1, we will use the following result (assertion (ii) of Theorem 1 in [7]).

Theorem 4.4. Let *S* be the Schinzel–Schmidt constant and $Q = \{Q : Q \in \mathbb{R}_{\geq 0}[x], Q \neq 0, \deg(Q) < N\}$. Then

$$\frac{1}{N}\sup_{Q\in\mathcal{Q}}\frac{|Q^2(x)|_1}{|Q^2(x)|_\infty}\leqslant S,$$

where $|P|_1$ is the sum and $|P|_{\infty}$ the maximum of the coefficients of a polynomial P.

Given a $B_2[g]$ set, $\mathcal{A} \subseteq \{0, \dots, N-1\}$, we define the polynomial $Q_{\mathcal{A}}(x) = \sum_{a \in \mathcal{A}} x^a$, so $Q^2_{\mathcal{A}}(x) = \sum_n r^*_{\mathcal{A}}(n)x^n$. Theorem 4.4 says that, in particular,

$$S \geqslant rac{1}{N} \sup_{\mathcal{A} \subseteq \{0,\dots,N-1\}} rac{|\mathcal{A}|^2}{2g} = rac{F^2(g,N)}{2gN},$$

and so $\frac{F(g,N)}{\sqrt{gN}} \leqslant \sqrt{2S}$.

References

- Cilleruelo, J., Ruzsa, I. and Trujillo, C. (2002) Upper and lower bounds for finite B₂[g] sequences. J. Number Theory 97 26–34.
- [2] Green, B. (2001) The number of squares and $B_h[g]$ sequences. Acta Arithmetica 100 365–390.
- [3] Kolountzakis, M. (1996) The density of $B_h[g]$ sequences and the minimum of dense cosine sums. J. Number Theory 56 4–11.
- [4] Martin, G. and O'Bryant, K. (2006) Constructions of generalized Sidon sets. J. Combin. Theory Ser. A 113 591–607.
- [5] Martin, G. and O'Bryant, K. (2007) The symmetric subset problem in continuous Ramsey theory. *Experiment. Math.* 16 145–166.
- [6] Ruzsa, I. (1993) Solving a linear equation in a set of integers I. Acta Arithmetica 65 259–282.
- [7] Schinzel, A. and Schmidt, W. M. (2002) Comparison of L¹- and L[∞]-norms of squares of polynomials. Acta Arithmetica 104 283–296.
- [8] Tao, T. and Vu, V. (2006) Additive Combinatorics, Vol. 105 of Cambridge Studies in Advanced Mathematics, Cambridge University Press.
- [9] Yu, G. (2007) An upper bound for $B_2[g]$ sets. J. Number Theory 122 211–220.