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Area de la investigación cient́ıfica

Circuito Exterior, C.U. Coyoacán 04510,
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Abstract

The U -polynomial, the polychromate and the symmetric function gen-

eralization of the Tutte polynomial due to Stanley are known to be equiva-

lent in the sense that the coefficients of any one of them can be obtained as

a function of the coefficients of any other. The definition of each of these

functions suggests a natural way in which to generalize them which also

captures Tutte’s universal V -functions as a specialization. We show that

the equivalence remains true for the extended functions thus answering a

question raised by Dominic Welsh.

1 Introduction

This paper answers a question posed by Dominic Welsh in a talk in 2005 [17]
concerning the notions of equivalence and specialization of graph polynomials
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and symmetric functions. We say that for graph polynomials P and Q, P
specializes to Q written P ≻ Q if the coefficients of Q may be obtained as
functions of the coefficients of P and the number of vertices of the graph. Graph
polynomials P and Q are equivalent if P ≻ Q and Q ≻ P . These notions may
be extended to symmetric functions by allowing the coefficients to be those of
a symmetric function with respect to some basis. Defining equivalence in the
right way is not completely straightforward [9], but this very simplistic notion
will suffice for our purposes. Equivalence of graph polynomials or symmetric
functions is clearly an equivalence relation.

Many specializations of the Tutte polynomial are well-known and include
the chromatic and reliability polynomials. The key objects in this paper are ex-
tensions of two graph polynomials and one symmetric function that themselves
generalize the Tutte polynomial. Brylawski introduced the polychromate [2],
which is a polynomial in countably infinitely many variables. Stanley general-
ized the definition of the chromatic polynomial [13] to the chromatic symmetric
function and a little later extended this to a symmetric function generalization
of the Tutte polynomial [14]. For brevity we call this the Tutte symmetric func-
tion. Motivated by problems from knot theory, Noble and Welsh introduced the
U -polynomial [10] and proved that it is equivalent to the Tutte symmetric func-
tion. Sarmiento [12] then showed that the U -polynomial and the polychromate
are equivalent.

Taking for the moment an entirely naive and informal perspective, the defi-
nitions of these three functions lack a certain symmetry. In each of them the x
variable of the Tutte polynomial is generalized to countably infinitely many vari-
ables whereas the y variable remains essentially unchanged. More importantly
none of the three functions specializes to Tutte’s universal V -functions [15]. It
turns out that there are natural ways to define extended versions of each of
these polynomials to overcome this problem which at the same time address the
lack of symmetry.

The question asked by Welsh [17] was whether the equivalence of the U -
polynomial and the polychromate carries over to their extended versions. Sar-
miento’s proof is quite involved and extending her methods did not appear to
be an easy task. A key step in our approach is to introduce an extension of
the Tutte symmetric function as an intermediate object between the two poly-
nomials. Our main results are that the extended Tutte symmetric function is
equivalent to both the extended polychromate and the extended U -polynomial.
Since equivalence is transitive this answers Welsh’s question. Our proof suggests
a way to simplify Sarmiento’s proof.

An overview of the paper is as follows. In the next section we present some
preliminary definitions concerning symmetric functions. We then define the
previously studied polynomials covered here and briefly survey some of their
properties. Section four contains the definitions of two new graph polynomials
and one new graph symmetric function together with our main results. We end
with a brief conclusion and an open problem.
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2 Partitions and symmetric functions

We give some definitions and fix some notation which we will use throughout
the paper. Note that all of our graphs are finite and may have multiple edges
and loops. When the underlying graph is obvious we use V and E to denote
respectively its set of vertices and edges and let n = |V | and m = |E|. Given
a graph G, G|A is formed by deleting all the edges in E \ A (but keeping all
the vertices). We use k(G) to denote the number of connected components of
G and define the rank of a set A of edges to be given by r(A) = |V | − k(G|A).
If A ⊆ E then let π(A) denote the partition of V for which the blocks are the
connected components of G|A.

Given a partition π of a set A, its type is the integer partition of |A| for
which the parts are the sizes of the blocks of π. If τ is an integer partition
of n, we write τ ⊢ n and let k(τ) be the number of parts of τ . As usual
we write the components of an integer partition in decreasing order so that if
τ = (n1, n2, . . . , nk), we have n1 ≥ n2 ≥ . . . ≥ nk.

We next introduce two symmetric function bases. For r ≥ 1 let

pr(x) = pr(x1, x2, . . .) =

∞
∑

i=1

xr
i .

Now suppose that τ = (n1, . . . , nk) is an integer partition of n. Then we define

pτ (x) to be the symmetric function
∏k

i=1 pni
(x). The collection {pτ (x) : τ ⊢

n} forms a basis called the power-sum basis for the homogenous symmetric
functions of degree n in x [8].

Elements of the second basis, the augmented monomial basis are also defined
in terms of an integer partition τ = (n1, . . . , nk) of n. Let

mτ (x) =
∑

(i1,...,ik)

xn1

i1
· · ·xnk

ik
,

where the sum is over all k-tuples of pairwise distinct strictly positive integers.
Again, the collection {mτ (x) : τ ⊢ n} is a basis for the homogenous symmetric
functions of degree n in x. Note that mτ is often denoted by m̃τ .

We now generalize some of these ideas to what we call paired symmetric
functions. We have not been able to find any reference to these objects in the
literature but surely they have been encountered many times before. First we
define an integer pair partition of a pair of strictly positive integers (a, b) to be
a list of pairs of integers ((a1, b1), . . . , (ak, bk)) such that

1. (a1, . . . , ak) is an integer partition of a;

2. for all i, bi is a non-negative integer and
∑k

i=1 bi ≤ b;

3. if i < j then either ai > aj or ai = aj and bi ≥ bj , that is the pairs (ai, bi)
are written in lexicographically decreasing order.
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If τ is an integer pair partition of (a, b), we write τ ⊢ (a, b).
The canonical example of an integer pair partition is as follows. For a graph

G, let π be a partition of its vertex set. Order the blocks of π in an arbitrary
way. Let ai denote the number of vertices in the ith block and let bi denote
the number of edges of G having both endpoints in the ith block. Now write
the pairs (ai, bi) in lexicographically decreasing order to obtain the integer pair
partition which we denote τ (π).

We next define a paired symmetric function. Suppose f is a function in the
pairs of variables (x1, t1), . . . , (xi, ti), . . . such that for any permutation π of Z>0

f((xπ(1), tπ(1)), . . . , (xπ(i), tπ(i)), . . .) = f((x1, t1), . . . , (xi, ti), . . .).

We require additionally that f is homogenous in the x variables. Then we
call f a paired symmetric function. Notice that f is not generally a symmetric
function in the usual sense. A key observation is that it is possible to extend
the two classes of symmetric function bases discussed above to paired symmetric
functions.

We describe first how to extend the definition of the power-sum basis. If
r ∈ Z

>0 and s ∈ Z
≥0 define pr,s(x, t) =

∑∞
i=1 x

r
i t

s
i . For an integer pair partition

τ let
pτ (x, t) =

∏

(ai,bi)∈τ

pai,bi(x, t).

Then the collection {pτ (x, t) : τ ⊢ (n,m)} forms a basis for the paired symmetric
functions of degrees n and m in respectively x and t.

A second basis for the paired symmetric functions is defined by extending
the definition of the augmented monomial basis. If τ = ((a1, b1), . . . , (ak, bk)) is
an integer pair partition of (n,m) then let

mτ (x, t) =
∑

i1,...,ik

xa1

i1
(1 + ti1)

b1 · · ·xak

ik
(1 + tik)

bk ,

where the summation is over all k-tuples (i1, . . . , ik) of pairwise distinct strictly
positive integers. The collection {mτ (x, t) : τ ⊢ (n,m)} forms a basis for the
paired symmetric functions of degrees n and m in respectively x and t.

3 A menagerie of polynomials 1

We give definitions of and some relations between a collection of graph polyno-
mials beginning with two very well-established examples and moving on to four
that are more recent.

The chromatic polynomial PG(λ) was introduced by Birkhoff in 1912 [1] in
an effort to prove the four colour theorem. For a positive integer λ it is defined

1The section title is suggested by the title of [9]
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to be the number of proper colourings of the vertices of G using colours drawn
from a set of size λ. Whitney [18] showed that

PG(λ) =
∑

A⊆E

(−1)|A|λk(G|A). (3.1)

This relation is one way to prove that the chromatic polynomial is truly a
polynomial but more importantly a generalization of it forms the crux of one of
our proofs.

Tutte introduced his eponymous polynomial in [15]. Given a graph G, the
Tutte polynomial TG(x, y) is given by

TG(x, y) =
∑

A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A).

Using (3.1) one obtains the well-known specialization

PG(λ) = λk(G)TG(1− λ, 0).

Because k(G) = |V | − r(E) and r(E) is determined by the coefficients of the
Tutte polynomial we obtain T ≻ P .

The Tutte polynomial contains a whole host of specializations, for example
the number of spanning trees, number of spanning forests and the reliability
polynomial as well as applications in statistical mechanics and knot theory.
Details of many specializations are contained in [3, 16].

Motivated by a series of papers [4, 5, 6], the weighted graph polynomial U
was introduced in [10]. The authors of [4, 5, 6] introduce a graph polynomial
derived from Vassiliev invariants of knots and note that this polynomial does
not include the Tutte polynomial as a special case. With a slight generalisation
of their definition we obtain the weighted graph polynomial U that does include
the Tutte polynomial.

The original definition of U involved a recurrence relation using deletion and
contraction, but for the purposes of this paper it is most useful to define U using
the “states model expansion” from Proposition 5.1 in [10].

UG(x, y) = UG(x1, x2, . . . , y) =
∑

A⊆E

xn1xn2 · · ·xnk(G|A)
(y − 1)|A|−r(A), (3.2)

where n1, . . . , nk(G|A) are the numbers of vertices in the connected components
of G|A and x1, x2, . . . are commuting indeterminates. For example, if G is a
triangle then

UG(x, y) = x3
1 + 3x1x2 + 3x3 + (y − 1)x3 = x3

1 + 3x1x2 + 2x3 + yx3.

The next few results are all proved in [10]. The first result shows that U ≻ T .

Proposition 3.3. For any graph G,

TG(x, y) = (x− 1)−k(G)UG(xi = x, y).
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Note that we have abused notation somewhat by writing UG(xi = x, y) where
we mean setting xi = x for all i.

The attraction of U is that it contains many other graph invariants as spe-
cialisations, for instance the 2-polymatroid rank generating function of Oxley
and Whittle [11], and as a consequence the matching polynomial and the stable
set polynomial [7].

A stable set in a graph G is a set S of vertices for which G has no edge with
both endpoints in S. The stability polynomial AG(p) was introduced by Farr
in [7] and is given by

AG(p) =
∑

U∈S(G)

p|U|(1− p)|V (G)\U|,

where S(G) is the set of all stable sets of G.

Proposition 3.4. If G is loopless then A(G; p) is given by

AG(p) = UG(x1 = 1, xj = −(−p)j for j ≥ 2, y = 0).

The two-polymatroid rank generating function SG(u, v) was introduced by
Oxley and Whittle in [11] and is defined as follows. Given a graph G and
A ⊆ E(G) let f(A) denote the number of vertices of G that are an endpoint of
an edge in A. Then

SG(u, v) =
∑

A⊆E(G)

u|V (G)|−f(A)v2|A|−f(A).

S contains the matching polynomial as a specialisation.

Proposition 3.5. Let G be a loopless graph with no isolated vertices. Then

SG(u, v) = UG(x1 = u, x2 = 1, xj = vj−2 for j > 2, y = v2 + 1).

The chromatic symmetric function was developed by Stanley in [13]. Let
G be a graph with vertex set V = {v1, . . . , vn}. Then XG is a homogeneous
symmetric function of degree n defined by

XG(x) = XG(x1, x2, . . .) =
∑

χ

xχ(v1)xχ(v2) · · ·xχ(vn),

where the sum ranges over all proper colourings χ : V → Z
>0.

The following result from [10] shows that U ≻ X .

Proposition 3.6. For any graph G

XG(x) = (−1)|V |UG(xj = −pj, y = 0).
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In a second paper on the chromatic symmetric function [14], Stanley intro-
duced the Tutte symmetric function defined by

YG(x, t) = YG(x1, x2, . . . , t) =
∑

χ

xχ(v1)xχ(v2) · · ·xχ(vn)(1 + t)b(χ),

where the sum is now over all colourings χ : V → Z
>0 and b(χ) is the number of

monochromatic edges, that is, edges for which both endpoints receive the same
colour.

In [10], the following was shown.

Theorem 3.7. The polynomial U and symmetric function Y are equivalent. In

particular YG is easily obtained from UG by the substitution

YG(x, t) = t|V |UG

(

xj =
pj(x)

t
, y = t+ 1

)

.

Conversely, if we expand YG in terms of the power-sum basis then we can recover

UG.

If τ = (n1, . . . , nk) then we use xτ to denote the monomial
∏k

i=1 x
ni

i . An-
other way of describing the substitution into UG that produces YG is to say
that if for each τ ⊢ n and each i the monomial xτy

i in UG is replaced by
pτ (x)t

n−k(τ)(t+ 1)i then YG is obtained.
The final polynomial that we will define is the polychromate, introduced

originally by Brylawski [2]. Given a graph G and a partition π of its vertices
into non-empty blocks, we define e(π) to be the number of edges with both
endpoints in the same block of the partition.

The polychromate χG(x, y) is defined by

χG(x, y) =
∑

π

ye(π)xτ(π),

where the summation is over all partitions of V (G).
The following result is due to Sarmiento [12].

Theorem 3.8. The polynomials U and χG are equivalent.

Obtaining U from χG or vice versa is complicated and we do not explain
this here but discuss it further at the end of the next section.

4 Extensions

4.1 The extended Tutte symmetric function

Our extension of Stanley’s Tutte symmetric function replaces the t variable by
countably infinitely many variables t1, t2, . . . , enumerating not just the total
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number of monochromatic edges but the numbers of monochromatic edges of
each colour. It is defined as follows.

Y G(x, t) =
∑

χ

(

n
∏

i=1

xχ(vi)

)(

∞
∏

i=1

(1 + ti)
bi(χ)

)

, (4.1)

where the sum is over all colourings χ : V → Z
>0 and bi(χ) is the number of

monochromatic edges for which both endpoints have colour i.
The function Y is a paired symmetric function of degrees n and m in re-

spectively the x and t variables. Note that Y G is not homogenous in t unless
m = 0.

We can obtain a version of (3.1) which applies to the extended Tutte sym-
metric function.

Proposition 4.2. For any graph G,

Y G(x, t) =
∑

A⊆E

pτ(π(A))(x, t).

Proof. Given a colouring χ, let Bi(χ) denote the monochromatic edges for which
both endpoints have colour i. Furthermore let B(χ) =

⋃

i Bi(χ), the set of all
monochromatic edges. For each i we can write

(1 + ti)
bi(χ) =

∑

Ai⊆Bi(χ)

t
|Ai|
i .

So we have

Y G(x, t) =
∑

χ

(

n
∏

i=1

xχ(vi)

)





∞
∏

i=1

∑

Ai⊆Bi(χ)

t
|Ai|
i





=
∑

χ

(

n
∏

i=1

xχ(vi)

)

∑

A⊆B(χ)

(

∞
∏

i=1

t
|A∩Bi(χ)|
i

)

.

By interchanging the order of summation, we obtain

Y G(x, t) =
∑

A⊆E

∑

χ:B(χ)⊇A

(

n
∏

i=1

xχ(vi)

)(

∞
∏

i=1

t
|A∩Bi(χ)|
i

)

.

The colourings appearing in the inner summation are precisely those which are
monochromatic on the edges of G|A. So in any such colouring the vertices of
a component of G|A must all receive the same colour and the colours of the
monochromatic edges counted in the final product are determined by the colour
of the component of G|A to which they belong. Hence for any A ⊆ E

∑

χ:B(χ)⊇A

(

n
∏

i=1

xχ(vi)

)(

∞
∏

i=1

t
|A∩Bi(χ)|
i

)

= pτ(π(A))(x, t)

and the result follows.
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4.2 The extended U-polynomial

The extended U polynomial, which we denote by U , is a polynomial in countably
many commuting variables zi,j where i ∈ Z

>0 and j ∈ Z
≥0. The definition is a

natural generalization of (3.2) and was first introduced in [17].

UG(z) =
∑

A⊆E

zc1,e1−c1+1zc2,e2−c2+1 · · · zck(G|A),ek(G|A)−ck(G|A)+1, (4.3)

where ci and ei are respectively the number of vertices and edges in the ith
connected component of G|A.

For example if G is a triangle then

UG(z) = (z1,0)
3 + 3z1,0z2,0 + 3z3,0 + z3,1.

Observe that
UG(x, y) = UG(zij = xi(y − 1)j)

and so U ≻ U . If we take G1(G2) to be a path of length two with a loop
attached at a vertex of degree one (two) then

UG1(x, y) = UG2(x, y) = y(x3 + 2x2x1 + x3
1).

However

UG1(z) = z3,1 + z3,0 + z2,1z1,0 + z2,0z1,1 + 2z2,0z1,0 + z21,0z1,1 + z31,0

but
UG2(z) = z3,1 + z3,0 + 2z2,1z1,0 + 2z2,0z1,0 + z21,0z1,1 + z31,0.

Unfortunately we do not know of a pair of loopless graphs for which UG1 = UG2

but UG1 6= UG2 .
We now show that U and Y are equivalent.

Theorem 4.4. The polynomial U and the extended Tutte symmetric function

are equivalent. More precisely

Y G(x, t) = UG(zi,j = pi,i+j−1(x, t)).

Furthermore if we express Y G in terms of the power-sum basis as

Y G(x, t) =
∑

τ⊢(n,m)

aτpτ (x, t),

we obtain UG by replacing pr1,s1 · · · prk,sk by zr1,s1−r1+1 · · · zrk,sk−rk+1.

Proof. The result follows easily from Proposition 4.2. Note that

Y G(x, t) =
∑

A⊆E

pτ(π(A))(x, t) =
∑

A⊆E

pc1,e1 · · · pck(G|A),ek(G|A),

where ci, ei are respectively the number of vertices and number of edges in the ith
component of G|A. Comparing this expression with (4.3) gives the result.
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There is a recurrence relation for the extended U -polynomial involving dele-
tion and contraction just as there is for U itself [10]. The recurrence relation for
U involves a more general polynomial W defined on graphs where the vertices
have strictly positive integer weights. In order to describe the recurrence for
the extended U -polynomial we need to define an extended version of W . We
use the notation (G,ω) to describe a graph G with a strictly positive integer
weight ω(v) attached at each vertex v. We then let W (G,ω)(z) be a polynomial
in countably many commuting variables zi,j where i ∈ Z

>0 and j ∈ Z
≥0 and be

given by

W (G,ω)(z) =
∑

A⊆E

zw1,e1−c1+1zw2,e2−c2+1 · · · zwk(G|A),ek(G|A)−ck(G|A)+1, (4.5)

where ci, ei and wi are respectively the number of vertices, the number of edges
and the sum of the weights on the vertices in the ith connected component of
G|A.

For example if (G,ω) is a triangle for which the vertices have weights a, b
and c then

W (G,ω)(z) = za,0zb,0zc,0+za,0zb+c,0+zb,0zc+a,0+zc,0za+b,0+3za+b+c,0+za+b+c,1.

If we set ω(v) = 1 for all v then in (4.5) we have wi = ci for each i and we
obtain UG(z) = W (G,ω)(z).

We now define deletion and contraction of edges in a weighted graph. For
any edge e of a weighted graph (G,ω), the deletion of e, denoted by (G,ω)− e
is formed by removing e from E(G). For a non-loop edge e with endpoints u
and v, the contraction of e, denoted by (G,ω)/e is formed by removing e from
E(G) and identifying the vertices u and v to form a new vertex w having weight
ω(u) + ω(v). So both operations conserve the total weight of the vertices.

Theorem 4.6.

1. Suppose that the only edges of (G,ω) are loops. Let V = {v1, . . . , vn} and

suppose that ω(vi) = wi and that there are ei loops attached at vi. Then

W (G,ω) =

n
∏

i=1

ei
∑

j=0

(

ei
j

)

zwi,j . (4.7)

2. If e is an edge of (G,ω) that is not a loop then

W (G,ω) = W (G,ω)−e +W (G,ω)/e. (4.8)

Proof. The first part follows immediately from the definition. To prove the
second part, suppose that e is an edge of (G,ω) that is not a loop. By splitting
the sum in the definition of W depending on whether or not A contains e we

10



obtain

W (G,ω)(z) =
∑

A⊆E

zw1,e1−c1+1 · · · zwk(G|A),ek(G|A)−ck(G|A)+1

=
∑

A⊆E−e

zw1,e1−c1+1 · · · zwk(G|A),ek(G|A)−ck(G|A)+1

+
∑

e∈A⊆E

zw1,e1−c1+1 · · · zwk(G|A),ek(G|A)−ck(G|A)+1. (4.9)

From now on we just write G rather than (G,ω). The first term is WG−e(z) and
we claim that the second term is WG/e(z). To show this we compare the terms

appearing in the second sum in (4.9) with those in the definition of W applied
to G/e. Let A ⊆ E − e. Compare the connected components of G|(A ∪ e) and
(G/e)|A. One component C of G|(A ∪ e) contains e. Suppose the endpoints of
e are v and w. Then there is a component of (G/e)|A for which the vertices are
those of C−{v, w} together with the new vertex formed when e was contracted.
The weight of the new vertex is ω(v) + ω(w) and the weight of all the other
vertices in C is the same in G|(A ∪ e) as in (G/e)|A so the total weight of the
component is unchanged. Since e has been removed there is one more edge in
this component in G|(A∪e) compared with (G/e)|A. Similarly there is one more
vertex in the is component in G|(A ∪ e) compared with (G/e)|A. Every other
component other than C has the same vertices with the same weights and the
same edges in both G|(A ∪ e) and (G/e)|A. Hence the terms appearing in the
second sum in (4.9) are exactly those appearing in WG/e(z) and so the claim
and hence the theorem are proved.

To illustrate this theorem we show how to compute U for the following graph.

To do this we add weight one to each vertex and computeW of the corresponding
weighted graph. We use the convention that a depiction of a graph means W
of that graph.

1 1
=

1 1
+

2

=
1 1

+
2

+
2

= z1,1z1,0 + z21,0 + z2,1 + z2,0 + z2,2 + 2z2,1 + z2,0.
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We can now justify our claim in the introduction that the extended U -
polynomial (and as a corollary of the other results in this paper the extended
polychromate and extended Tutte symmetric function) specializes to Tutte’s
universal V -functions.

The universal V -function is a polynomial in the commuting indeterminates
y = (y0, . . . , ym) and is defined recursively as follows. If the only edges of G are
loops and the number of loops on the vertices are e1, . . . , en then

VG(y) =
n
∏

i=1

yei .

Otherwise for any edge e that is not a loop

VG(y) = VG−e(y) + VG/e(y). (4.10)

It is relatively simple to prove by induction that the definition is independent
of the choice of edge in (4.10).

Proposition 4.11.

VG(y) = UG

(

zij =

j
∑

k=0

(−1)j−k

(

j

k

)

yk

)

.

Proof. Notice that it follows from (4.5) that if the value of zij does not depend
on i then for any ω and ω′, W (G,ω)(z) = W (G,ω′)(z). In particular if for all v,

ω′(v) = 1, we get W (G,ω)(z) = UG(z). So UG(zij =
∑j

k=0(−1)j−k
(

j
k

)

yk) must

satisfy (4.7) and (4.8). It follows from (4.8) that UG(zij =
∑j

k=0(−1)j−k
(

j
k

)

yk)
satisfies (4.10). From (4.7), we see that if the only edges of G are loops and the
number of loops on the vertices are e1, . . . , en then

UG

(

zij =

j
∑

k=0

(−1)j−k

(

j

k

)

yk

)

=

n
∏

i=1

ei
∑

j=0

(

ei
j

) j
∑

k=0

(−1)j−k

(

j

k

)

yk

=

n
∏

i=1

yei .

4.3 The extended polychromate

Like the extended U -polynomial, the extended polychromate is a polynomial in
countably infinitely many commuting variables xi,j where i ∈ Z

>0 and j ∈ Z
≥0.

It was also first introduced in [17].
The extended polychromate χ is defined as follows.

χG(x) =
∑

π

x(τ (π)),

12



where the sum is over all partitions of V and if τ = ((a1, b1), . . . , (ak, bk)) then
x(τ ) = xa1,b1 · · ·xak,bk .

For example if G is a triangle then

χG(x) = x3
1,0 + 3x2,1x1,0 + x3,3

and if G is a path with two edges then

χG(x) = x3
1,0 + 2x2,1x1,0 + x2,0x1,0 + x3,2.

Note that we obtain the polychromate by substituting xi,j = xiy
j resulting in

a polynomial in x1, . . . , xn and y.
We now show that the extended polychromate and the extended Tutte sym-

metric function are equivalent

Theorem 4.12. The extended polychromate and the extended Tutte symmetric

function are equivalent. More precisely for each τ = ((a1, b1), . . . , (ak, bk)) ⊢
(n,m), the coefficient of mτ (x, t) in Y G is the same as the coefficient of xτ in

χG.

Proof. A colouring of G induces a partition of V in which two vertices are in the
same block if and only if they receive the same colour. So we may partition the
sum in (4.1) according to the partition of V induced by the colouring. Hence
we can write

Y G(x; t) =
∑

π

∑

χ

(

n
∏

i=1

xχ(vi)

)(

∞
∏

i=1

(1 + ti)
bi(χ)

)

,

where the first summation is over all partitions of V and the second over all
colourings of V with strictly positive integers so that vertices receive the same
colour if and only if they are in the same block of π. Fix a partition π of V and
suppose that τ (π) = ((a1, b1), . . . , (ak, bk)). Then the contribution to Y from
colourings inducing π is mτ (x, t). However the monomial in χG corresponding
to π is x(τ ) and the result follows.

Corollary 4.13. The extended polychromate and the extended U -polynomial

are equivalent.

Proof. This follows easily from the transitivity of equivalence.

In principle one could describe a substitution in order to obtain χ from U or
vice versa but the procedure would be very complicated. We show briefly how
Sarmiento’s result from [12] may be obtained as a special case of our results
by comparing the expressions linking the Tutte symmetric function with the
U -polynomial in Theorem 3.7 and an expression linking the Tutte symmetric
function with the polychromate deduced from Theorem 4.12.

Recall that the symmetric Tutte function is a function of (x1, x2, . . . , t) and
is a homogenous symmetric function of degree n in the x variables. Furthermore

13



recall that both the collections {pτ (x) : τ ⊢ n} and {mτ(x) : τ ⊢ n} are bases
for the homogenous symmetric functions of degree n in x. Consequently there
are constants aτ,τ ′ such that pτ (x) =

∑

τ ′ aτ,τ ′mτ ′(x).
It is not difficult to compute aτ,τ ′. Given a partition π, we say that the

partition π′ is a coarsening of π if every block of π′ is a union of blocks of π. Let
π be a partition of {1, . . . , n} of type τ . Then aτ,τ ′ is the number of coarsenings
of π of type τ ′.

Proposition 4.14. The polychromate may be obtained from the U -polynomial

by replacing for each τ such that τ ⊢ n, the monomial xτy
j by

∑

τ ′ aτ,τ ′xτ ′yj(y−
1)n−k(τ) where the sum is over all τ ′ ⊢ n.

Proof. Setting ti = t for all i in the extended symmetric Tutte function we can
write

YG(x, t) =
∑

τ⊢n

∑

i

cτ,imτ (x)(1 + t)i

for certain constants cτ,i. Recall that if τ = (n1, . . . , nk) then xτ = xn1 · · ·xnk
.

The polychromate may be written in the form

χG(x, t) =
∑

τ⊢n

∑

i

c′τ,ixτ t
i,

for certain constants c′τ,i. Theorem 4.12 implies that for all τ and i, cτ,i = c′τ,i.
The remarks immediately after Theorem 3.7 state that YG may be ob-

tained from UG by replacing the monomial xτy
i in UG by pτ (x)t

n−k(τ)(t+ 1)i.
Given the relationship between the the power-sum basis and the augmented
monomial basis an equivalent substitution is to replace xτy

i by tn−k(τ)(t +
1)i
∑

τ ′⊢n aτ,τ ′mτ ′(x).
Now the first part of the proof shows that replacing t by y − 1 and mτ (x)

by xτ in YG gives χG and the result follows.

A similar argument shows how to obtain U from the polychromate.

5 Conclusions and open problems

The graph polynomials and symmetric functions that we have discussed are re-
lated by the following partial order where a function P is aboveQ if P specializes
to Q.

14



PG(λ)

XG(x) TG(x, y)

YG(x, t) = UG(x, y) = χG(x, t)

Y G(x, t) = UG(z) = χG(x)

The relationships between many other polynomials are considered in [9].
An open problem is to find a pair of loopless graphs G1, G2 for which UG1 =

UG2 (or for which either of the other equivalent functions coincide) but UG1 6=
UG2 . The following graphs are the smallest known pair of non-isomorphic graphs
with the same polychromate [2]. However it is easy to see that they also have
the same extended U -polynomial.
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