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Abstract

In this work we study edge weights for two specific families of increasing trees, which include binary
increasing trees and plane oriented recursive trees as special instances, where plane-oriented recursive
trees serve as a combinatorial model of scale-free random trees given by them = 1 case of the Barab́asi-
Albert model. An edgee = (k, l), connecting the nodes labeledk andl, respectively, in an increasing
tree, is associated with the weightwe = |k − l|. We are interested in the distribution of the number
of edges with a fixed edge weightj in a random generalized plane oriented recursive tree or random
d-ary increasing tree. We provide exact formulas for expectation and variance and prove a normal limit
law for this quantity. A combinatorial approach is also presented and applied to a related parameter, the
maximum edge weight.
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1 Introduction

1.1 Increasing trees

Increasing trees are rooted labeled trees where the nodes ofa tree of sizen are labeled by distinct integers
from the set{1, . . . , n} in such a way that the sequence of labels along any branch starting at the root is
increasing. In this paper, we will consider two specific combinatorial models of increasing trees, namely
the family of so-called generalized plane oriented recursive trees (often abbreviated as “gports”) andd-ary
increasing trees.

The interest in these two tree families stems from the fact that several important tree models, such
as plane-oriented recursive trees and binary increasing trees (also called tournament trees), are special
instances of these families. These tree models are of importance in many applications. Plane-oriented
recursive trees are a special instance of the well known Barabási-Albert model [2] for scale-free networks
(see also [7]), which is used as a simplified growth model of the world wide web [1]. Binary increasing
trees (d = 2) are of special importance in computer science, since they are isomorphic to binary search
trees, which in turn serve as an analytic model for the famousQuicksort algorithm [11].

Generalized plane oriented recursive trees andd-ary increasing trees can also be described via a tree
evolution process, as pointed out in [14]. For every treeT ′ of sizen with verticesv1, . . . , vn one can
give probabilitiespT ′(v1), . . . , pT ′(vn), such that when starting with arandom treeT ′ of sizen of the tree
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family considered, choosing a vertexvi in T ′ at random according to the probabilitiespT ′(vi) and attaching
noden + 1 to it, one obtains again arandom treeT of sizen + 1 of the tree family considered.

1.2 Deterministic edge weights

Let T denote an increasing tree of sizen, whereT is either a generalized plane oriented recursive tree or a
d-ary increasing tree. We consider edge-weighted increasing trees, where every edgee ∈ E = E(T ) of the
tree will be weighted deterministically as follows. If the edgee = (k, l) is adjacent to the nodes (labeled)
k andl, then we define the weightwe of the edgee aswe := |k− l|. The notion of edge weights provides a
natural new cost measure for constructing increasing trees(i.e. scale free networks): the smaller the sum of
the edge weights, the cheaper the construction. Let us denote byEn the set of edges of a random increasing
tree of sizen. The aim of this paper is to study the random variableSn,j :=

∑

e∈En
I{we=j}, counting the

number of edge weights of sizej in a sizen random increasing tree. Here,I{we=j} stands for the indicator
variable of the event thate has weightj. An alternative representation ofSn,j is obtained by the growth
process generating random increasing trees of sizen:

Sn,j =

n
∑

k=j+1

I{k<ck−j}, (1)

wherek <c k − j denotes the event that nodek is a child of (attached to) nodek − j. In the following we
will use both combinatorial and probabilistic methods to analyze the distribution ofSn,j . In order to obtain
exact results for expectation and variance we will proceed similarly to [7]. Using a decomposition forSn,j

and a theorem concerning weakly dependent random variables, we will be able to show that for arbitrary
but fixedj ∈ N, the random variableSn,j is asymptotically normal distributed.

A combinatorial approach via generating functions allows one to compute all probabilitiesP(Sn,j =
m), but it seems to be impossible to derive the normal law from it—as we will see, the recursions lead to
large systems of differential equations with no nice explicit solutions. However, the same combinatorial
approach turns out to be somewhat more useful for the analysis of the probabilityP(Mn ≤ k), where the
random variableMn = maxe∈En

we is the maximal edge weight in a random increasing tree of sizen.
The analysis of the random variablesSn,j andMn is much easier for recursive trees. An extensive study
for recursive trees was conducted in [13], where it was also shown that for recursive trees the edge weights
we have an intimate relationship with entries in inversion tables of permutations.

1.3 Notation

We use the abbreviationsxl := x(x−1) · · · (x− l+1) andxl := x(x+1) · · · (x+ l−1) for the falling and

rising factorials, respectively. Furthermore, we denote by X
L
= Y the equality in distribution of random

variablesX andY , by X ⊕ Y the sum of two independent random variables and byX + Y the sum of
not necessarily independent random variables. Moreover, we writeX1 ⊕ · · · ⊕Xl for the sum of mutually

independent random variables. We also denote byXn
L−→ X the weak convergence, i. e. the convergence

in distribution, of the sequence of random variablesXn to a random variableX.
Throughout this work we often use the abbreviation “gports”, standing for generalized plane oriented

recursive trees. Note that we use the following notations interchangeably:α = − c1

c2
− 1 = −d.

1.4 Plan of the Paper

The paper is organized as follows: in the next section, we describe the construction of the tree families
we investigate. Then, we study the distribution of edge weights first in the simple casej = 1, then in
general. By means of an approach that is due to Bollobás and Riordan [7], we find an explicit formula
for the probability that a certain set of edges is contained in a random tree. This allows us to determine
exact and asymptotic formulas for the mean and variance. Finally, we prove a central limit theorem for
the number of edges with a specific weight. After a short section on edge weight tables, we consider a
combinatorial approach that is applied to the study of the quantities “number of edges with a given weight”
and “maximum edge weight”. However, it turns out that the probabilistic approach usually yields much
stronger results.
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2 Preliminaries

2.1 A combinatorial description of increasing trees

In the following we give a general combinatorial definition of increasing trees (including the families of
gports andd-ary increasing trees). Formally, asimple family of increasing treesT can be defined in the
following way. We start with a sequence of non-negative numbers(ϕk)k≥0, whereϕ0 > 0. The sequence
(ϕk)k≥0 is called the degree-weight sequence. We assume that there exists ak ≥ 2 with ϕk > 0. The
degree-weight sequence is used to define the weightw(T ) of any ordered treeT by w(T ) :=

∏

v ϕd(v),
wherev ranges over all vertices ofT andd(v) is the out-degree ofv. Furthermore,L(T ) denotes the set
of different increasing labellings of the treeT with distinct integers{1, 2, . . . , |T |}, where|T | denotes the
size of the treeT , andL(T ) :=

∣

∣L(T )
∣

∣ its cardinality. Then the familyT consists of all treesT together
with their weightsw(T ) and the set of increasing labellingsL(T ). For a given degree-weight sequence
(ϕk)k≥0 with a degree-weight generating functionϕ(t) :=

∑

k≥0 ϕktk, we now define the total weights

by Tn :=
∑

|T |=n w(T ) · L(T ). It follows that the exponential generating functionT (z) :=
∑

n≥1 Tn
zn

n!
satisfies the autonomous first order differential equation

T ′(z) = ϕ
(

T (z)
)

, T (0) = 0. (2)

This can be deduced from the fact that a simple family of increasing treesT is described by the formal
recursive equation

T = ©1 ×
(

ϕ0 · {ǫ} ∪̇ ϕ1 · T ∪̇ ϕ2 · T ∗ T ∪̇ ϕ3 · T ∗ T ∗ T ∪̇ · · ·
)

= ©1 × ϕ(T ), (3)

where©1 denotes the node labeled1, × the Cartesian product,∪̇ the disjoint union,∗ the partition product
for labeled objects, andϕ(T ) the substituted structure (see for instance [15] or [6]). Inshort, this formal
recursive equation corresponds to the fact that we may describe a tree as a root node with several subtrees
of the same family attached to it. Next we are going to specifythe degree-weight generating function for
the tree families that are investigated in this paper. Generalized plane-oriented recursive trees andd-ary
increasing trees are characterized by the degree-weight generating functions

ϕ(t) =











ϕ0

(1 + c2t
ϕ0

)α
, for generalized plane-oriented recursive trees

ϕ0

(

1 + c2t
ϕ0

)d

for d-ary increasing trees,

whereα := − c1

c2
− 1 with ϕ0 > 0 and0 < −c2 < c1; andd := c1

c2
+ 1 ∈ {2, 3, 4, . . . } with ϕ0 > 0

andc2 > 0. Identifyingd and−α, we see that the definitions are very similar. By solving the differential
equation (2) with respect to the degree-weight generating functionsϕ(t), and extraction of coefficients one
obtains a formula for the total weightTn of generalized plane-oriented recursive trees, andd-ary increasing
trees,

Tn = ϕ0c
n−1
1 (n − 1)!

(

n − 1 + c2

c1

n − 1

)

, (4)

with ϕ0, c1 andc2 as specified for the particular tree family.

2.2 Description via a tree evolution processes

As mentioned before, generalized plane oriented recursivetrees andd-ary increasing trees can be generated
by an evolution process. This description is a consequence of the considerations made in [14]. The process
generates random trees of arbitrary sizen. The process starts with the root labeled by1. At stepi + 1 the
node with labeli + 1 is attached to any previous nodev (with out-degreed+(v)) of the already grown tree
of sizei with probabilityp(v) equal to

p(v) =















deg+(v) + α

(α + 1)i − 1
, for generalized plane-oriented recursive trees,

d − deg+(v)

(d − 1)i + 1
, for d-ary increasing trees,

with d ∈ N \ {1} andα > 0 as before.d − deg+(v) anddeg+(v) + α are interpreted as the number of
places where a new node can be attached tov, even if the latter is not necessarily an integer. Hence, the
process associated to generalized plane oriented recursive trees generalizes the preferential attachment rule
of the Barab́asi-Albert modelm = 1.
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2.3 Examples

Example 1. Plane-oriented recursive trees are the family of plane increasing trees such that all node de-
grees are allowed and assigned equal weights. The degree-weight generating function is thusϕ(t) = 1

1−t .
Equation (2) leads to

T (z) = 1 −
√

1 − 2z, and Tn = (n−1)!
2n−1

(

2n−2
n−1

)

= 1 · 3 · 5 · · · (2n − 3) = (2n − 3)!!, n ≥ 1.

Moreover, the probability of attaching to a nodev in a tree of sizei is given byp(v) = deg+(v)+1
2i−1 , which

corresponds to the casem = 1 of the Barab́asi-Albert model.

Example 2. Binary increasing trees have the degree-weight generatingfunctionϕ(t) = (1 + t)2. Thus it
follows that

T (z) =
z

1 − z
, and Tn = n!, for n ≥ 1.

Moreover, the the probability of attaching to a nodev in a tree of sizei is given byp(v) = 2−deg+(v)
i+1 .

Bearing the special cases of ordinary plane oriented trees and d-ary trees in mind, we will use the
expression “number of increasing trees” (with a certain number of nodes and within a given family of
increasing trees), even though “total weight” would be moreappropriate (note that the total weight is not
even necessarily an integer ifα is not).

3 The distribution of edge weights: case j = 1

First of all, we will discuss the casej = 1, which turns out to be somewhat simpler compared to the general
case. We obtain explicit results for the probability distribution and a normal limit law asn tends to infinity.
The key tool for studyingSn,1 is the following Lemma, which provides the independence of the indicator
variables.

Lemma 1. The random variableSn,1, counting the number of edge weights of size 1 in a sizen random
gport ord-ary increasing tree, satisfies the decomposition

Sn,j =

n
⊕

k=2

I{k<ck−1}, (5)

with the indicators being mutually independent.

Proof. We simply condition on the event that noden − 1 is adjacent to noden.

P{Sn,1 = m} = P{Sn,1 = m|n <c n − 1}P{n <c n − 1} + P{Sn,1 = m|n ≮c n − 1}P{n ≮c n − 1}
= P{Sn−1,1 = m − 1}P{n <c n − 1} + P{Sn−1,1 = m}P{n ≮c n − 1}.

Hence, we obtain the stated result by iterating this argument.

The following lemma gives an explicit formula for the probabilities P{k <c i} = E(I{k<ci}).

Lemma 2 (Dobrow and Smythe [9]). The probability that the nodek is attached to nodei, with1 ≤ i < k,
in a sizen random grown simple increasing tree is given by

P{k <c i} = P{i + 1 <c i}
k−1
∏

l=i+1

P{l + 1 ≮c l} =
1 + c2

c1

i + c2

c1

k−1
∏

l=i+1

(

1 −
1 + c2

c1

l + c2

c1

)

=

(i−1+
c2
c1

i−1

)

(k−1+
c2
c1

k−2

)

.

Now we are ready to state our result concerningSn,1, which also appeared in a different context in
Dobrow and Smythe [9], and Panholzer and Prodinger [14], concerning the depth of noden in a sizen
random increasing tree.

Theorem 1. The random variableSn,1 satisfies the following distributional decomposition.

Sn,1
(d)
= B1 ⊕ · · · ⊕ Bn−1, (6)
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whereBk
(d)
= Be(

1+
c2
c1

k+
c2
c1

) is Bernoulli distributed for1 ≤ k ≤ n − 1. The probability distribution ofSn,1 is

given by

P{Sn,1 = m} =
(1 + c2

c1
)m

(n − 1 + c2

c1
)n−1

[

n − 1

m

]

, (7)

where
[

n
m

]

denotes the signless Stirling numbers of the first kind. The expectation and the variance ofSn,1

are given by the following exact and asymptotic expressions.

E(Sn,1) =
(

1 +
c2

c1

)(

Ψ
(

n +
c2

c1

)

− Ψ
(

1 +
c2

c1

))

∼
(

1 +
c2

c1

)

log(n) + O(1),

V(Sn,1) =
(

1 +
c2

c1

)(

Ψ
(

n +
c2

c1

)

− Ψ
(

1 +
c2

c1

))

+
(

1 +
c2

c1

)2(

Ψ1

(

n +
c2

c1

)

− Ψ1

(

1 +
c2

c1

))

∼
(

1 +
c2

c1

)

log n + O(1),

whereΨ(z) = d
dz log (Γ(z)) = Γ′(z)

Γ(z) denotes the Digamma function andΨ1(z) = d2

dz2 log (Γ(z)) the
Trigamma function. Furthermore the centered and normalized random variableS∗

n,1 is asymptotically
normal distributed:

S∗
n,1 =

Sn − E(Sn,1)
√

V(Sn,1)

L−→ N (0, 1), (8)

whereN (0, 1) denotes the standard normal distribution.

Proof (sketch).The expectation and the variance follow immediately from the distributional decomposi-
tion and the asymptotic expansion of theΨ-function. The probabilities can easily be obtained from the
probability generating function as follows.

P{Sn,1 = m} = [vm]pn(v) = [vm]

n−1
∏

k=1

(

k − 1 + v(1 + c2

c1
)

k + c2

c1

)

= [vm]

(v(1+
c2
c1

)+n−2

n−1

)

(n−1+
c2
c1

n−1

)

=
[znvm]
(n−1+

c2
c1

n−1

)

∑

k≥1

(

v(1 + c2

c1
) + k − 2

k − 1

)

zk =
[zn−1vm]
(n−1+

c2
c1

n−1

)

1

(1 − z)v(1+
c2
c1

)

=
(1 + c2

c1
)m[zn−1vm]

(n−1+
c2
c1

n−1

)

1

(1 − z)v
=

(1 + c2

c1
)m

(n − 1 + c2

c1
)n−1

[

n − 1

m

]

,

(9)

where we have used[zn]1/(1 − z)α+1 =
(

α+n
n

)

and the expansion of the generating function for the
signless Stirling numbers of the first kind, which is given by

1/(1 − z)v =
∑

n≥0

∑

m≥0

[

n

m

]

zn

n!
vm.

For the normal limit law either apply Hwang’s Quasi Power theorem [10], as done in [14], or use Poisson
approximation techniques [9].

Remark 1. Note that by Lemma 5 the random variableSn,1 satisfies the same distribution as the random
variableDn counting the depth of noden in a sizen random increasing tree. The depth has been studied
before independently by Dobrow and Smythe [9] and Panholzerand Prodinger [14].

4 The distribution of edge weights: case j > 1

In the casej > 1 the indicator variablesI{k<ck−j} are by definition of the growth process not mutually
independent any more. For example, for plane oriented recursive trees we have

P{n <c n − 2|n − 1 <c n − 2} =
2

2n − 3
6= P{n <c n − 2|n − 1 ≮c n − 2} =

1

2n − 3
. (10)

Therefore we turn our attention to the derivation of an exactformula for the variance ofSn,j by other means.
For the exact variance we need to calculate probabilities ofthe formP{k1 <c i1, k2 <c i2}, assuming that
i1 < k1, i2 < k2. In order to derive these probabilities we use an approach (due to Bollob́as and Riordan
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[7]) that involves the calculation of a more general quantity. We determine the probability that a subgraph
S is present in a random tree of sizen, i.e. we calculate probabilitiesP{k1 <c i1, . . . kl <c il}. Note
that in [7] the probabilitiesP{k1 <c i1, . . . kl <c il} were derived for the special case of plane oriented
recursive trees (corresponding toα = 1 in the growth process), we also refer to [8] for an application of
such a result.

4.1 An exact formula for the expectation and variance for j > 1

We fix a graphS with nodesV (S) and edgesE(S). E(S) represents the collection of events{k1 <c

i1}, {k2 <c i2}, . . . S is a possible subgraph ofBn for large n, whereBn denotes a tree of sizen.
Furthermore orient each edgee = (i, j) ∈ E(S) with i < j from j to i. We writeV +(S) for the set of
vertices ofS from which edges leave andV −(S) for those vertices at which edges arrive. Note that usually
V +(S) ∩ V −(S) 6= ∅. For i ∈ V −(S) let g[in]

S (i) denote the in-degree ofi in S. We obtain the following
result.

Theorem 2. The probabilitypS that a given graphS is a subgraph ofBn is given by the following
formulas.

pS =
∏

i∈V −(S)

αg
[in]
S

(i)
∏

i∈V +(S)

1

(α + 1)(i − 1) − 1

∏

k/∈V +(S)

(

1 +
CS(k)

(α + 1)(k − 1) − 1

)

for generalized plane oriented recursive trees and

pS =
∏

i∈V −(S)

d
g
[in]
S

(i)
∏

i∈V +(S)

1

(d − 1)(i − 1) + 1

∏

k/∈V +(S)

(

1 − CS(k)

(d − 1)(k − 1) + 1

)

,

for d-ary increasing trees. HereCS(m) denotes the number of edgese = (i, l) ∈ E(S) with i < m and
l ≥ m.

Before we turn to the proof of Theorem 2, we state two of its applications. Forj > 1 we do not
have a decomposition ofSn,j with mutually independent indicator variables for generalized plane oriented
recursive trees andd-ary increasing trees. Nevertheless, the next result showsthat forj ∈ N there is only a
local dependency structure of the indicator variables.

Corollary 1. The indicator variablesIAk
of the eventsAk = {k <c k − j}, for j + 1 ≤ k ≤ n,

are weakly dependent, orj-independent, which means wheneverI andL are two subsets of the positive
integers{j + 1, . . . , n} with min{|i − l| : i ∈ I, l ∈ L} > j − 1, then the subsystems(IAi

, i ∈ I) and
(IAl

, l ∈ L) are independent.

Remark 2. Note that Theorem 2 together with Corollary 1 extend the results of Lemma 2 and parts of
Theorem 1. Moreover, using the conventiond = −α, the two formulas stated in Theorem 2 are basically
equivalent.

Corollary 2. The probabilityP{k1 <c i1, k2 <c i2}, with 1 ≤ i1 < k1, 1 ≤ i2 < k2 andk2 > k1, is
given by the following closed formulas, usingα = −1 − c1

c2
= −d,

Casei2 ≥ k1 : P{k1 <c i1, k2 <c i2} = P{k1 <c i1}P{k2 <c i2} =

(i1−1+
c2
c1

i1−1

)(i2−1+
c2
c1

i2−1

)

(k1−1+
c2
c1

k1−2

)(k2−1+
c2
c1

k2−2

)

,

Casei1 < i2 < k1 : P{k1 <c i1, k2 <c i2} =
(1 + c2

c1
)

(k1 − 1)

(i1−1+
c2
c1

i1−1

)(k1−2− c2
c1

k1−2

)

(k2−1+
c2
c1

k2−2

)(i2−1− c2
c1

i2−1

)

Casei = i1 = i2 : P{k1 <c i, k2 <c i} =
1

k1 − 1

(i−1+
c2
c1

i−1

)(k1−2− c2
c1

k1−2

)

(k2−1+
c2
c1

k2−2

)(i−1− c2
c1

i−1

)

Casei1 > i2 : P{k1 <c i1, k2 <c i2} =
(1 + c2

c1
)

(k1 − 1)

(i2−1+
c2
c1

i2−1

)(k1−2− c2
c1

k1−2

)

(k2−1+
c2
c1

k2−2

)(i1−1− c2
c1

i1−1

)

.

(11)
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Our proof of Theorem 2 closely follows the arguments of [7] for the special case of plane oriented
recursive trees. LetSn denote the restriction ofS up to timen: Sn consists of edgesE = (i, l), with
i, l ≤ n. First we need some notations. We denote byXn,i the outdegree and by

βn,i =

{

Xn,i + α,

d − Xn,i,
(12)

the “actual node degree” responsible for the connectivity of nodei in a random sizen increasing tree. We
will refer toβn,i simply as node degree. Further forn ≥ i let rn,i denote the number of edges(k, i) ∈ E(S)
with k > n. Thusrn,i is just the number of edges coming to nodei after timen. We consider the random
variable

Yn =
∏

i,l∈E(Sn)

I{(i,l)∈E(Bn)} ×















∏

i∈V (S),i≤n

β
rn,i

n,i , for gports

∏

i∈V (S),i≤n

β
rn,i

n,i , for d-ary increasing trees,
(13)

with λn = E(Yn). For largen, one hasrn,i ≡ 0, Yn =
∏

i,l∈E(Sn) I{(i,l)∈E(Bn)} andλn = P{S ⊂ Bn}.
Theorem 2 will follow directly from our next lemma by means ofinduction.

Remark 3. Forα = 1 we have ordinary plane oriented recursive trees, already treated in [7]. Note that for
recursive trees things are much easier sinceP{k1 <c i1, . . . , kl <c il} =

∏l
j=1(kj − 1)−1. Furthermore,

recall that ford-ary increasing trees there are at mostd edges coming into each node by definition.

Lemma 3. For n ≥ 0 the numbersλn satisfy the following recurrences.

• There is an edgee = (k, n + 1) ∈ E(S) with k ≤ n:

λn+1 = λn ×















αrn+1,n+1

(α + 1)n − 1
for gports,

drn+1,n+1

(d − 1)n + 1
for d-ary increasing trees,

(14)

• There is no edgee = (k, n + 1) ∈ E(S) with k ≤ n:

λn+1 = λn ×















αrn+1,n+1

(

1 +
CS(n + 1)

(α + 1)n − 1

)

, for gports

drn+1,n+1

(

1 − CS(n + 1)

(d − 1)n + 1

)

, for d-ary increasing trees,
(15)

whereCS(n + 1) =
∑

k∈V (S),k≤n rn,k denotes the number of edgese = (k, l) ∈ E(S) with k ≤ n
andl ≥ n + 1.

Proof. We will focus on generalized plane oriented trees and only state some of the analogous formulas
for d-ary increasing trees. The outdegree of noden + 1 in a sizen + 1 tree is always0, and so we can
decomposeYn+1 as follows:

Yn+1 = β
rn+1,n+1

n+1,n+1Zn+1 = αrn+1,n+1Zn+1, (16)

with
Zn+1 =

∏

i,l∈E(Sn+1)

I{(i,l)∈E(Bn+1)}
∏

i∈V (S),i≤n

β
rn+1,i

n+1,i . (17)

First, we consider the case thatS does not contain an edgee = (k, n + 1) with 1 ≤ k ≤ n. Then
Sn = Sn+1 and alsorn+1,i = rn,i for eachi ≤ n. Hence

Zn+1 =
∏

i,l∈E(Sn)

I{(i,l)∈E(Bn)}
∏

i∈V (S),i≤n

β
rn,i

n+1,i, (18)

which is exactly the formula forYn except for the node degreesβn,i. Now if noden + 1 does not attach
to any of the vertices ofS we have the equalityZn+1 = Yn. We consider the random attachment of node
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n + 1. If noden + 1 attaches to a nodei ∈ S thenβn+1,i = βn,i + 1 for gports (orβn+1,i = βn,i − 1 for
d-ary increasing trees) and

β
rn,i

n+1,i = (βn,i + 1)rn,i =
βn,i + rn,i

βn,i
β

rn,i

n,i (19)

resp.

β
rn,i

n+1,i = (βn,i − 1)rn,i =
βn,i − rn,i

βn,i
β

rn,i

n,i , (20)

and all other degrees stay the same, so that we getZn+1 − Yn = Ynrn,i/βn,i resp. Zn+1 − Yn =
−Ynrn,i/βn,i. In this setting the probabilitypn+1,i of the event{n + 1 <c i}, i ∈ S, i ≤ n is given by

pn+1,i =

{

Xn,i+α
(α+1)n−1 =

βn,i

(α+1)n−1 for gports,
d−Xn,i

(d−1)n−1 =
βn,i

(d−1)n+1 for d-ary increasing trees.
(21)

Thus the expected difference is given by

E(Zn+1 − Yn|Bn) =



















∑

i∈V (S),i≤n

pn+1,iYnrn,i

βn,i
=

YnCS(n + 1)

(α + 1)n − 1
, for gports,

−
∑

i∈V (S),i≤n

pn+1,iYnrn,i

βn,i
= −YnCS(n + 1)

(d − 1)n − 1
, for d-ary increasing trees.

(22)
ThereforeE(Zn+1) = λn(1 + CS(n+1)

(α+1)n−1 ) resp.E(Zn+1) = λn(1 − CS(n+1)
(d−1)n−1 ). Now suppose that there

is an edgee = (n + 1, k) ∈ E(S) with k ≤ n. In this caseYn+1 = 0 unless noden + 1 is attached tok,
which happens with probabilitypn+1,k. Under the assumption{n + 1 <c k} we have

∏

i,l∈E(Sn+1)

I{(i,l)∈E(Bn+1)} =
∏

i,l∈E(Sn)

I{(i,l)∈E(Bn)}, (23)

and the node degrees change as follows. We haveβn+1,i = βn,i for 1 ≤ i ≤ n, i 6= k andβn+1,k =
βn,k +1 (or βn+1,k = βn,k −1 for d-ary increasing trees). Furthermorern+1,i = rn,i for 1 ≤ i ≤ n, i 6= k
andrn+1,k = rn,k − 1. Hence,

∏

i∈V (S),i≤n

β
rn+1,i

n+1,i = (βn,k + 1)rn,k−1
∏

i∈V (S),i≤n,i 6=k

β
rn,i

n,i =
1

βn,k

∏

i∈V (S),i≤n

β
rn,i

n,i , (24)

which finally leads toE(Zn+1) = E(Yn)β−1
n,kpn+1,k = E(Yn)

(α+1)n−1 .

Theorem 3. The expectation and the variance ofSn,j are given by the following closed formulas.

E(Sn,j) =

n
∑

k=j+1

E(I{k<ck−j}) =

n
∑

k=j+1

(k−j−1+
c2
c1

k−j−1

)

(k−1+
c2
c1

k−2

)

,

V(Sn,j) =
n
∑

k=j+1

n
∑

l=j+1,l 6=k

P{k <c k − j, l <c l − j} + E(Sn,j) − E(Sn,j)
2,

with P{k <c k − j, l <c l− j} as given in Corollary 2. Moreover, the expectation and the variance satisfy
the asymptotic expansion

E(Sn,j) = (1 +
c2

c1
) log n + O(1), V(Sn,j) = (1 +

c2

c1
) log n + O(1).

Proof. The asymptotic results for the expectation are readily obtained from the exact formula. The exact
result for the variance is a consequence of the relation

E(S2
n,j) = E

(

(

n
∑

k=j+1

I{k<ck−j}
)2
)

= E(Sn,j) +
n
∑

k=j+1

n
∑

l=j+1,l 6=k

P{k <c k − j, l <c l − j}.
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Moreover, we have

n
∑

k=j+1

n
∑

l=j+1,l 6=k

P{k <c k − j, l <c l − j} − E(Sn,j)
2

= 2
n
∑

k=j+1

k+j−1
∑

l=k+1

(

P{k <c k − j, l <c l − j} − P{k <c k − j}P{l <c l − j}
)

,

according to Corollary 2, where the factor 2 is due to symmetry betweenk andl. Furthermore, we have
the upper bound

(

P{k <c k − j, l <c l − j} − P{k <c k − j}P{l <c l − j}
)

≤ 2κ

(k − 2)2
,

in the rangej + 1 ≤ k ≤ n andk + 1 ≤ l ≤ k + j − 1, with κ = max{j + 1, d}. Hence,

n
∑

k=j+1

n
∑

l=j+1,l 6=k

P{k <c k − j, l <c l − j} − E(Sn,j)
2 ≤ 2jκ

n
∑

k=j+1

1

(k − 2)2
≤ jκ

π2

3
,

which proves the stated result.

4.2 Central limit theorem

By Corollary 1 we already know that the indicator variables are j-independent. We will use a simplified
version of a result of Barbour et al. [3], see also [4].

Theorem 4 ([3], [4]) . Suppose that(Yn)n∈N is a sequence of random variables withE(Yn) = 0 and
bounded third momentE(|Yn|3) < ∞, that arej-independent. SetZn = Y1 + · · ·+ Yn andσ2

n := V(Zn).
If limn→∞

1
σ3

n

∑n
l=1 E(|Yl|3) = 0, thenZn satisfies a central limit theorem, Zn√

V(Zn)
→ N (0, 1).

Now we are ready to state the central limit theorem forSn,j .

Theorem 5. For arbitrary but fixedj ∈ N andn tending to infinity, the suitably shifted and normalized
random variableSn,j =

∑

e∈En
I{w(e)=j} is asymptotically normal distributed,

Sn,j − E(Sn,j)
√

V(Sn,j)

d−→ N (0, 1).

Proof. We want to apply Theorem 4 to the centered random variableS̃n,j = Sn,j −E(Sn,j) =
∑n

l=j+1 Yl,
with

Yl = I{l<cl−j} − P{l <c l − j}.
By construction,E(Yl) = 0, and by Corollary 1 the centered indicator variablesYl arej-independent. Let
Ω denote the sample space of all trees of sizen andP the probability measure onΩ. We haveΩ = Ω1∪Ωc

1,
whereΩ1 = Ω1(k) = {ω ∈ Ω : I{k<ck−j}(ω) = 1}, and furthermore

E(|Yk|3) =

∫

Ω

|I{k<ck−j} − P{k <c k − j}|3(ω)dP

=

∫

Ω1

(1 − P{k <c k − j})3dP +

∫

Ωc
1

P{k <c k − j}3dP

= P{k <c k − j}(1 − P{k <c k − j})3 + (1 − P{k <c k − j})P{k <c k − j}3.

Therefore we get the estimates

n
∑

k=j+1

E(|Yl|3) =
n
∑

k=j+1

(P{k <c k − j}(1 − P{k <c k − j})3 + (1 − P{k <c k − j})P{k <c k − j}3)

≤
n
∑

k=j+1

(P{k <c k − j} + P{k <c k − j}3) =
(

1 +
c2

c1

)

log n + O(1).

Sinceσ2
n = V(S̃n,j) = V(Sn,j) =

(

1+ c2

c1

)

log n+O(1), the conditions of Theorem 4 are satisfied, which

implies the asymptotic normality of̃Sn,j/
√

V(Sn,j).

9



Remark 4. Note that with a bit more effort, one can also obtain the speedof convergence with respect to

the metricd1 [4]: one hasd1

(

L(
S̃n,j√
V(Sn,j)

),N (0, 1)
)

≤ Cj√
log n

, whereCj is a constant depending onj.

For two probability measuresP andQ theird1-distance is defined asd1(P,Q) := sup||h||=1 |E(h(X)) −
E(h(Y ))|, whereX andY are random variables with distributionP andQ, respectively. We refer the
reader to [3] and [4].

5 Representation of increasing trees via edge weight tables

It was shown in [13] that the family of recursive trees can be represented by a so-called edge-weight table,
corresponding to the inversion table of permutations. Moreover, it was asked for a corresponding notion
for other tree families. Here we will introduce edge-weighttables for plane oriented recursive trees and
d-ary increasing trees. Such sequences may be important regarding the automatic generating of all trees of
a given family.

LetCn denote the family of sequencesσ = a1b1a2b2 . . . anbn of length2n, n ≥ 1, such that1 ≤ ai ≤ i
and1 ≤ bi ≤ |{j|j + 1 − aj = i + 1 − ai, 1 ≤ j ≤ i − 1}| + 1. Moreover, letDn = Dn(d) denote
the family of sequencesa1b1a2b2 . . . anbn of length2n, n ≥ 1, such that1 ≤ ai ≤ i, 1 ≤ bi ≤ d, and if
bi = bj , theni + 1 − ai 6= j + 1 − aj for 1 ≤ i < j ≤ n.

Proposition 1. The family of plane oriented increasing trees of sizen + 1 is in bijection with the family
Cn. Furthermore, the family ofd-ary increasing trees of sizen + 1 is in bijection with the familyDn.

Proof. We use a recursive construction. For a given sizen + 1 plane oriented recursive tree, we note the
edge-weight induced by the node labeledn+1 and its position, going from left to right, which givesanbn.
Now we remove noden + 1 and proceed recursively. Conversely, for a given edge-weight tableσ ∈ Cn we
recursively construct the sizen + 1 tree by attaching nodei to the node labeledi + 1 − ai at positionbi,
1 ≤ i ≤ n.

For d-ary increasing trees we proceed analogously, denoting theedge-weight induced by the node
labeledi and its position,i = n + 1, . . . , 2.

6 A combinatorial approach: recurrences and a system of differen-
tial equations

At first sight the most natural approach for the analysis ofSn,j seems to be the usage of the combinatorial
description of increasing trees according to (3), which wasoften useful for similar problems. Unfortunately,
this approach is not easily applicable since the subtrees are relabeled in the description, whereas we cannot
simply drop the labeling of the subtrees without further considerations.

In order to analyzeSn,j combinatorially forj > 1, we have to proceed in a different way. The main
idea is to partition theTn different size-n increasing trees into classes according to the out-degreesof the
nodesn− j +1, n− j +2, . . . , n−1, which are relevant forSn,j . Then one can set up suitable recurrences
for the arising tree classes, always keeping track of the behavior of all relevant outdegrees.

First we need some notation. Letgj−1 = (g1, g2, . . . , gj−1) denote a vector of sizej − 1, which will
encode the outdegrees of the nodesn − 1, n − 2, . . . , n − j + 1, andGk =

∑k
i=1 gi the sum of the firstk

entries,1 ≤ k ≤ j − 1. Furthermore,Wj−1 denotes the set of vectorsgj−1 satisfyinggk ≥ 0 and

0 ≤ Gk =

k
∑

i=1

gi ≤ k

for 1 ≤ k ≤ j − 1, which is the natural restriction for increasing trees. We denote byT
[gj−1]
n =

T
[g1,g2,...,gj−1]
n the number of increasing trees of sizen, where the distribution of the outdegrees of the

nodes(n− 1, n− 2, . . . , n− j + 1) is given by the vectorgj−1 ∈ Wj−1, i.e. noden− k has outdegreegk

for 1 ≤ k ≤ j − 1. The total number is obtained from theT
[gj−1]
n by summation over all possible degree

sequences ofn − 1, . . . , n + j − 1,

Tn =
∑

gj−1∈Wj−1

T [gj−1]
n .
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Our first result is an explicit formula forT [gj−1]
n , the number of all size-n trees with degrees prescribed by

a sequencegj−1. In the following, we will state all results first for gports,then ford-ary trees. The proofs
are only given for gports, the situation ford-ary trees being completely analogous.

Theorem 6. The numberT [gj−1]
n of all size-n (n ≥ j) increasing trees, where the outdegrees of the nodes

n − 1, . . . , n − j + 1 are prescribed bygj−1 ∈ Wj−1, is given as follows: for generalized plane oriented
recursive trees,

T [gj−1]
n = Tn−j+1 ·

(

(α + 1)(n − j)
)j−1−Gj−1 ·

j−1
∏

i=1

(

i − Gi−1

gi

)

αgi .

For d-ary increasing trees,

T [gj−1]
n = Tn−j+1 ·

(

(d − 1)(n − j)
)j−1−Gj−1 ·

j−1
∏

i=1

(

i − Gi−1

gi

)

dgi .

Proof. Given the tree induced by the firstn − j + 1 nodes (there areTn−j+1 possibilities for this tree),
we can choose thegi children of noden − i (i = 1, . . . , j − 1) out of a set ofi − Gi−1 nodes with larger
number, which can be attached inαgi different ways. Finally, we have to attach the remainingj−1−Gj−1

nodes from the set{n, n − 1, . . . , n − j + 2} to nodes with smaller labels, which gives rise to the second
factor in our formula.

Since we will use the (refined) quantitiesT
[gj−1]
n to describe a system of differential equations, we are

interested in the cardinality of the system depending onj.

Proposition 2. The cardinality ofWj−1 is given by thej-th Catalan numberCj =
(

2j
j

)

/(j + 1).

Proof (sketch).Observe that we can interpret the elementsgj−1 = (g1, g2, . . . , gj−1) of Wj−1 as lattice
paths with steps(1, 0), (1, 1), . . . , (1, j−1), starting at(0, 0), which never exceed the diagonaly = x.

Example 3. As an example, let us consider plane oriented recursive trees (α = 1) with prescribed outde-
grees for the nodesn − 1 andn − 2. We have|W2| = C3 = 5 and by Theorem 6

T [0,0]
n = 2(n − 3)(2(n − 3) + 1)(2n − 7)!!, T [0,1]

n = 4(n − 3)(2n − 7)!!,

T [0,2]
n = 2(2n − 7)!!, T [1,0]

n = 2(n − 3)(2n − 7)!!, T [1,1]
n = (2n − 7)!!.

Now letT [gj−1]
n,j,m denote the number of size-n increasing trees withm edge weights of sizej and outde-

grees specified bygj−1 ∈ Wj−1 as before. We have the relation

TnP{Sn,j = m} =
∑

gj−1∈Wj−1

T
[gj−1]
n,m,j .

Furthermore letWj−1(gj−1) ⊂ Wj−1 denote the set of vectorslj−1 = (l1, . . . , lj−1) ∈ Wj−1 such that
lj−1 has the formlj−1 = (g2, g3, . . . , gj−1, i)− ek, with 1 ≤ k ≤ j − 2 and0 ≤ i ≤ j −Gj−1, whereek

denotes a unit vector. In other words,Wj−1(gj−1) consists of all vectorslj−1 in Wj−1 with lh = gh+1 for
h ∈ {1, . . . , j − 2} \ {k}, andlk = gk+1 − 1, where1 ≤ k ≤ j − 2. We obtain the following recurrences

for T
[gj−1]
n,j,m by distinguishing two cases forg1.

Proposition 3. For n ≥ j + 1 andm ≥ 0 the quantitiesT [gj−1]
n,j,m , with gj−1 ∈ Wj−1, satisfy the following

system of recurrence relations. Forg1 = 1,

T
[gj−1]
n,j,m =

j−Gj−1
∑

i=0

A · T [g2,...,gj−1,i]
n−1,j,m , A :=







α,

d.

For g1 = 0,

T
[gj−1]
n,j,m =

∑

lj−1∈Wj(gj)

B · T [lj−1]
n−1,j,m +

j−1−Gj−1
∑

i=0

C · T [g2,...,gj−1,i]
n−1,j,m +

j−1−Gj−1
∑

i=0

D · T [g2,...,gj−1,i]
n−1,j,m−1 ,
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with B = B(lj−1), C = C(i) andD = D(i) given by

B :=







∑j−2
h=1(gh+1 − lh)(lh + α),

∑j−2
h=1(gh+1 − lh)(d − lh),

C :=







(α + 1)(n − 1) − 1 − i − Gj−1 − jα,

(d − 1)(n − 1) − 1 + i + Gj−1 − jd,
D :=







i + α,

d − i,

and initial valuesT [gj−1]
j,j,0 = T

[gj−1]
j given by Theorem 6.

Proof. In the caseg1 = 1, the newly inserted node labeledn must be attached to noden − 1. Hence
we have to consider trees withn − 1 nodes andm edge weights of sizej, where the outdegrees of nodes
n − 2, . . . , n − j + 1 are given byg2, . . . , gj−1 and the outdegreei of noden − j is between zero and

j − 1 −
j−1
∑

k=2

gk = j − 1 − (Gj−1 − g1) = j − Gj−1.

The other caseg1 = 0, where noden is not attached to noden−1, splits into three possible cases: noden is
attached to one of the nodesn−2, . . . , n−j+1, or noden is attached to noden−j, increasing the number
of edge weights of sizej by one, or noden is not attached to any of the nodesn − 2, . . . , n − j. First we
consider the case that noden is attached ton−k, with 2 ≤ k ≤ j−1. Then there aregk+1−1+α = lk +α
possible positions to attach noden to anyn − k. Note that under the assumptionlj−1 ∈ Wj(gj) with
lk = gk+1 − 1, we have

∑j−2
h=1(gh+1 − lh)(lh + α) = lk + α, as required.

Next we look at the case that noden is attached to noden− j. Assuming that noden− j has outdegree
i, we havei + α different places to attach noden to noden − j.

Finally we consider the case that noden is not attached to any of the nodes noden − k, 2 ≤ k ≤ j.
Hence, assuming again that noden − j has outdegreei, 0 ≤ i ≤ j − 1 − Gj−1, we have

(α + 1)(n − 1) − 1 − (i + α) −
j−1
∑

k=2

(gk + α) − α = (α + 1)(n − 1) − 1 − i − Gj−1 − jα

different places to attach noden to the tree of sizen − 1, which finishes the proof of our formula.

Note that form = 0 one has to skip the terms includingT [g2,...,gj−1,i]
n−1,j,−1 . Now we introduce the bivariate

generating functions

F [gj−1](z, v) =
∑

n≥j+1

∑

m≥0

T
[gj−1]
n,m,j

zn−j

(n − j)!
vm, (25)

for gj−1 ∈ Wj−1. By multiplying our recurrence relations byvmzn−j−1/(n − j − 1)! and summing over
n ≥ j + 1,m ≥ 0 the recurrences above can by translated into a system of linear differential equations.

6.1 The case j = 2

Let us now consider the casej = 2 for gports as an illustration. The initial values are given by T
[1]
2,0,2 = T2

andT
[i]
2,m,2 = 0 for all otheri andm. For the sake of simplicity we will drop the dependence onj = 2. By

Proposition 3 we get the recurrences

T [0]
n,m = ((α + 1)(n − 3) + 1)T

[0]
n−1,m + αT

[0]
n−1,m−1 + (α + 1)(n − 3)T

[1]
n−1,m + (α + 1)T

[1]
n−1,m−1,

T [1]
n,m = αT

[0]
n−1,m + αT

[1]
n−1,m.

(26)

Following (25), we set up the generating functions

F [0](z, v) =
∑

n≥3

∑

m≥0

T [0]
n,m

zn−2

(n − 2)!
vm, F [1](z, v) =

∑

n≥3

∑

m≥0

T [1]
n,m

zn−2

(n − 2)!
vm.

Multiplication by vmzn−3/(n − 3)! and summation overn ≥ 3 andm ≥ 0 leads to the following system
of linear differential equations.

∂

∂z
F [0](z, v) = (αv + 1)F [0](z, v) + (α + 1)vF [1](z, v) + (α + 1)vT2

+ (α + 1)z
∂

∂z
F [0](z, v) + (α + 1)z

∂

∂z
F [1](z, v),

∂

∂z
F [1](z, v) = αF [0](z, v) + αF [1](z, v) + αT2.

(27)
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Unfortunately, this system of differential equations is not explicitly solvable. However, one can easily
determine the first few coefficients from it; in the case of ordinary plane oriented recursive trees (α = 1),
one obtains

F [0](z, v) = 2vz + (1 + 4v + v2)z2 +
7 + 26v + 11v2 + v3

3
z3 +

58 + 222v + 119v2 + 20v3 + v4

12
+ . . .

and

F [1](z, v) = z +
1 + 2v

2
z2 +

3 + 10v + 2v2

6
z3 +

17 + 62v + 24v2 + 2v3

24
z4 + . . .

and altogether

F [0](z, v) + F [1](z, v) = (1 + 2v)z +
3 + 10v + 2v2

2
z2

+
17 + 62v + 24v2 + 2v3

6
z3 +

133 + 506v + 262v2 + 42v3 + 2v4

24
z4 + . . .

6.2 Maximal edge weight

To show the usefulness of our approach, we consider a relatedproblem: letpn,m = P{Mn ≤ m} denote
the probability that the maximal edge weightMn = maxe∈En

we in a sizen random increasing tree is
less or equalm. In order to study this probability, we use two different approaches. For largem (i.e.
m = n − k with fixed k), one can apply the principle of inclusion and exclusion to get an expression for
the probabilitiespn,n−k as follows:

Theorem 7. The probability that the maximal edge weightMn is less or equaln− k, with 2 ≤ k ≤ n− 1,
is given by

P{Mn ≤ n − k} = 1 +

k−1
∑

l=1

(−1)l
∑

n+2−k≤i1<···<il≤n
1≤jih

≤ih−(n+1−k)

P{i1 <c j1, . . . , il <c jl},

with P{i1 <c j1, . . . , il <c jl} as given by Theorem 2.

Example 4. By application of Theorem 7 we obtain e. g. fork = 2

P{Mn ≤ n − 2} = 1 − 1
(n−1+

c2
c1

n−2

)

.

For smallm we have to proceed differently. Letp[gm−1]
n,m denote the probability that the maximal

edge weightMn is less or equalm and that the outdegrees of nodesn − 1, . . . , n − m + 1 are given
by g1, . . . , gm−1.

Proposition 4. For n ≥ 2, the probabilitiesp[gm−1]
n,m , with gm−1 ∈ Wm−1, satisfy the following system of

recurrence relations. Forg1 = 1 we have

p[gm−1]
n,m =

m−Gm−1
∑

i=0

A · p[g2,...,gm−1,i]
n−1,m , A :=







α
(α+1)(n−1)−1 ,

d
(d−1)(n−1)+1 .

(28)

For g1 = 0 we have

p[gm−1]
n,m =

∑

lm−1∈Wm(gm)

B · p[lm−1]
n−1,m +

m−1−Gm−1
∑

i=0

C · p[g2,...,gm−1,i]
n−1,m ,

B = B(lm−1) :=







∑m−2
h=1 (gh+1 − lh) lh+α

(α+1)(n−1)−1 ,

∑m−2
h=1 (gh+1 − lh) d−lh

(d−1)(n−1)+1 ,
C = C(i) :=







i+α
(α+1)(n−1)−1 ,

d−i
(d−1)(n−1)+1 .

(29)

with initial valuesp[1]
2,m = 1 andp

[0]
2,m = 0 for all m.
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By using our earlier results concerningSn,1 we immediately obtain

pn,1 = P{Mn ≤ 1} = P{Sn,1 = n − 1} =















( α
α+1 )n−1

(n−1)!(
n−1− 1

α+1
n−1

)
,

( d
d−1 )n−1

(n−1)!(
n−1+ 1

d−1
n−1

)
.

Finally, we computepn,2 by means of Proposition 4. Unlike the differential equations obtained in the
previous section, the differential equations for the generating functions

P [gm−1]
m (z) :=

∑

n≥2

p[gm−1]
n,m zn−1−1/(α+1)

(in the case ofd-ary increasing tree, the exponent has to be modified ton− 1 + 1
d−1 ; this somewhat artifi-

cial choice results in simpler differential equations) will be linear with constant coefficients and therefore
explicitly solvable. We illustrate this in the casem = 2, where we get the recurrence relations

((α + 1)(n − 1) − 1)p
[0]
n,2 = αp

[0]
n−1,2 + (α + 1)p

[1]
n−1,2,

((α + 1)(n − 1) − 1)p
[1]
n,2 = αp

[0]
n−1,2 + αp

[1]
n−1,2

for gports and

((d − 1)(n − 1) + 1)p
[0]
n,2 = dp

[0]
n−1,2 + (d − 1)p

[1]
n−1,2,

((d − 1)(n − 1) + 1)p
[1]
n,2 = dp

[0]
n−1,2 + dp

[1]
n−1,2

for d-ary trees. Let us consider the latter case in more detail: introduction of the generating functions

P
[i]
2 (z) :=

∑

n≥2

p
[i]
n,2z

n−1+1/(d−1)

yields the differential equations

(d − 1)
d

dz
P

[0]
2 (z) = dP

[0]
2 (z) + (d − 1)P

[1]
2 (z),

(d − 1)
d

dz
P

[1]
2 (z) = dP

[0]
2 (z) + dP

[1]
2 (z) + dz1/(d−1).

A particularly nice special case isd = 2, where one gets

P
[0]
2 (z) = 2 + z +

3
√

2 − 4

4
e(2+

√
2)z − 3

√
2 + 4

4
e(2−

√
2)z,

P
[1]
2 (z) = −3 − 2z +

3 − 2
√

2

2
e(2+

√
2)z − 3 + 2

√
2

2
e(2−

√
2)z.

Putting these together, one obtains the simple explicit formula

pn,2 =
1

2n!

(

(2 +
√

2)n−1 + (2 −
√

2)n−1
)

.

Generally, the asymptotics of the probability depend on thelargest eigenvalue of a matrix of dimension
|Wm−1|; by Proposition 2, this is equal to1

m+1

(

2m
m

)

. In the casem = 2, the largest eigenvalue is

α +
√

α2 + α

α + 1
resp.

d +
√

d2 − d

d − 1
,

but it seems that there is no nice explicit formula for the general case.
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