Deterministic edge-weights in increasing tree families.
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Abstract

In this work we study edge weights for two specific families of increasirgstrehich include binary
increasing trees and plane oriented recursive trees as special @stamere plane-oriented recursive
trees serve as a combinatorial model of scale-free random tremstgithern = 1 case of the Bardaisi-
Albert model. An edge = (k, 1), connecting the nodes labelédand!, respectively, in an increasing
tree, is associated with the weight = |k — I|. We are interested in the distribution of the number
of edges with a fixed edge weiglitin a random generalized plane oriented recursive tree or random
d-ary increasing tree. We provide exact formulas for expectation aridnce and prove a normal limit
law for this quantity. A combinatorial approach is also presented and dpplie related parameter, the
maximum edge weight.

Keywords:Increasing trees, Scale-free trees, plane oriented tigeeurses, deterministic edge-weights,
j-independence, limiting distribution
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1 Introduction

1.1 Increasingtrees

Increasing trees are rooted labeled trees where the nodesasd of size: are labeled by distinct integers
from the set{1,...,n} in such a way that the sequence of labels along any brandingtat the root is
increasing. In this paper, we will consider two specific camaborial models of increasing trees, namely
the family of so-called generalized plane oriented regarsiees (often abbreviated as “gports”) ahdry
increasing trees.

The interest in these two tree families stems from the faat deveral important tree models, such
as plane-oriented recursive trees and binary increasees tfalso called tournament trees), are special
instances of these families. These tree models are of iupoetin many applications. Plane-oriented
recursive trees are a special instance of the well knowntBaraAlbert model [2] for scale-free networks
(see also [7]), which is used as a simplified growth model efwlorld wide web [1]. Binary increasing
trees ( = 2) are of special importance in computer science, since theysamorphic to binary search
trees, which in turn serve as an analytic model for the fanq@uisksort algorithm [11].

Generalized plane oriented recursive trees @&ady increasing trees can also be described via a tree
evolution process, as pointed out in [14]. For every fféeof sizen with verticesv, ..., v, one can
give probabilitiegpr: (v1), . .., prv(vy,), such that when starting withrandom tre€l” of sizen of the tree
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family considered, choosing a vertexin 7" at random according to the probabilities (v;) and attaching
noden + 1 to it, one obtains againr@ndom tre€l” of sizen + 1 of the tree family considered.

1.2 Deterministic edge weights

Let T denote an increasing tree of sizewhereT is either a generalized plane oriented recursive tree or a
d-ary increasing tree. We consider edge-weighted incrgdases, where every edgec £ = E(T) of the

tree will be weighted deterministically as follows. If thdgee = (k, 1) is adjacent to the nodes (labeled)

k andl, then we define the weight,. of the edge: asw, := |k —[|. The notion of edge weights provides a
natural new cost measure for constructing increasing {ieescale free networks): the smaller the sum of
the edge weights, the cheaper the construction. Let useéndt,, the set of edges of a random increasing
tree of sizen. The aim of this paper is to study the random varia®lg := > .. I;w,.=;;, counting the
number of edge weights of sizen a sizen random increasing tree. Het,,, —;, stands for the indicator
variable of the event that has weightj. An alternative representation 6f, ; is obtained by the growth
process generating random increasing trees ofisize

Snj = Z k< k—j1s (1)

k=j+1

wherek <. k — j denotes the event that no&lés a child of (attached to) node— j. In the following we
will use both combinatorial and probabilistic methods talgime the distribution of,, ;. In order to obtain
exact results for expectation and variance we will procé@darly to [7]. Using a decomposition fo$, ;
and a theorem concerning weakly dependent random varjakéewill be able to show that for arbitrary
but fixedj € N, the random variablg,, ; is asymptotically normal distributed.

A combinatorial approach via generating functions allows to compute all probabilitieB(.S,, ; =
m), but it seems to be impossible to derive the normal law freseis we will see, the recursions lead to
large systems of differential equations with no nice expsolutions. However, the same combinatorial
approach turns out to be somewhat more useful for the asadyshe probability?(M,, < k), where the
random variableV/,, = max.cg, w. iS the maximal edge weight in a random increasing tree ofsize
The analysis of the random variabl€s ; and A/, is much easier for recursive trees. An extensive study
for recursive trees was conducted in [13], where it was disava that for recursive trees the edge weights
w, have an intimate relationship with entries in inversiorig¢atof permutations.

1.3 Notation

We use the abbreviationd := z(z—1) - -- (z—I+1) andz! := z(z+1) - - (x+1— 1) for the falling and

rising factorials, respectively. Furthermore, we denqteXbé Y the equality in distribution of random
variablesX andY, by X @ Y the sum of two independent random variables andkby Y the sum of
not necessarily independent random variables. Moreovewsite X; @ - - - @ X; for the sum of mutually

independent random variables. We also denoté(pyﬁ X the weak convergence, i. e. the convergence
in distribution, of the sequence of random variah¥sto a random variable& .

Throughout this work we often use the abbreviation “gporssanding for generalized plane oriented
recursive trees. Note that we use the following notatioteralhangeablyy = — < — 1 = —d.

co

1.4 Plan of the Paper

The paper is organized as follows: in the next section, werdesthe construction of the tree families
we investigate. Then, we study the distribution of edge Wisidirst in the simple casg¢ = 1, then in
general. By means of an approach that is due to Baladnd Riordan [7], we find an explicit formula
for the probability that a certain set of edges is contaimed fandom tree. This allows us to determine
exact and asymptotic formulas for the mean and varianceallfzinve prove a central limit theorem for
the number of edges with a specific weight. After a short saabn edge weight tables, we consider a
combinatorial approach that is applied to the study of thengjties “number of edges with a given weight”
and “maximum edge weight”. However, it turns out that thebatuilistic approach usually yields much
stronger results.



2 Preiminaries

2.1 A combinatorial description of increasing trees

In the following we give a general combinatorial definitiohincreasing trees (including the families of
gports andi-ary increasing trees). Formally,simple family of increasing tre€g can be defined in the
following way. We start with a sequence of non-negative nersbpy,) >0, Whereyp, > 0. The sequence
(pr)k>0 Is called the degree-weight sequence. We assume that tkiste & > 2 with ¢, > 0. The
degree-weight sequence is used to define the weight) of any ordered tred” by w(T') := [], @q(v)
wherev ranges over all vertices df andd(v) is the out-degree af. Furthermore/£(T") denotes the set
of different increasing IabeIIings of the tr@ewith distinct integerg1,2,...,|T|}, where|T| denotes the
size of the tred’, andL(T) := ]LZ ] its cardinality. Then the familg™ consists of all tree§’ together
with their weightsw(T") and the set of increasing labelling$7T"). For a given degree-weight sequence
(¢r)k>0 With a degree-weight generating functieiit) := >°, -, ¢xt*, we now define the total Weights
by Ty, := 3" =, w(T') - L(T). It follows that the exponential generating functidiz) := 3, -, Tn% 2
satisfies the autonomous first order differential equation

T'(2) = @(T(z)), 7(0) =0. (2)

This can be deduced from the fact that a simple family of iasirey tree¥ is described by the formal
recursive equation

T=0x(po{tUp1-TUp TsTUps - T+T+TU -+ ) =Oxe(T), (3

where(@ denotes the node labelédx the Cartesian produci the disjoint unionx the partition product
for labeled objects, an@d(7") the substituted structure (see for instance [15] or [6])sHort, this formal
recursive equation corresponds to the fact that we may ibesaitree as a root node with several subtrees
of the same family attached to it. Next we are going to spetifydegree-weight generating function for
the tree families that are investigated in this paper. Gaized plane-oriented recursive trees ahdry
increasing trees are characterized by the degree-weigktaging functions

¥0

plry= 3 (18"

d
Yo (1 + %{f) for d-ary increasing trees

for generalized plane-oriented recursive trees

wherea = —c —1with gy > 0and0 < —c; < ¢y andd == & +1 € {2,3,4,... } with o9 > 0
andcy > 0. Identn‘ymgd and—a, we see that the definitions are very similar. By solvmg tiiekntial
equation (2) with respect to the degree-weight generatingtfonsy(¢), and extraction of coefficients one
obtains a formula for the total weigfit, of generalized plane-oriented recursive trees,&ady increasing

trees,
e n—1+2
7, = oo 09, @

with ¢, ¢; andc, as specified for the particular tree family.

2.2 Description via atree evolution processes

As mentioned before, generalized plane oriented recutises andl-ary increasing trees can be generated
by an evolution process. This description is a consequefitbe aonsiderations made in [14]. The process
generates random trees of arbitrary sizelhe process starts with the root labeledibyAt step: + 1 the
node with label + 1 is attached to any previous nodéwith out-degreei™ (v)) of the already grown tree
of sizes with probabilityp(v) equal to

deg™ i ' i
m, for generalized plane-oriented recursive trees
=1 PR
P d—degt(v) for d-ary increasing trees
(d—1)i+1’ ’ o

with d € N'\ {1} anda > 0 as before.d — deg™* (v) anddeg™ (v) + « are interpreted as the number of
places where a new node can be attached ®ven if the latter is not necessarily an integer. Hence, the
process associated to generalized plane oriented reetirses generalizes the preferential attachment rule
of the Baralsi-Albert modeln = 1.



2.3 Examples

Example 1. Plane-oriented recursive trees are the family of planesemsing trees such that all node de-
grees are allowed and assigned equal weights. The degightwenerating function is thus(t) = .

1—-t
Equation (2) leads to

T(z)=1-+v1-2z, and T, =23 =1.3.5-(2n-3)=(2n-3)!, n>1.

n—1

deg™ (v)+1

(L which

Moreover, the probability of attaching to a nodén a tree of size is given byp(v) =
corresponds to the case = 1 of the Baralasi-Albert model.

Example 2. Binary increasing trees have the degree-weight generativgion p(t) = (1 + t)2. Thus it
follows that

T(z) = %, and T, =nl, forn>1.
—Zz

2—degt (v)

Moreover, the the probability of attaching to a nadie a tree of size is given byp(v) = =%

Bearing the special cases of ordinary plane oriented tredsiary trees in mind, we will use the
expression “number of increasing trees” (with a certain benof nodes and within a given family of
increasing trees), even though “total weight” would be megppropriate (note that the total weight is not
even necessarily an integerifis not).

3 Thedistribution of edgeweights: casej = 1

First of all, we will discuss the cage= 1, which turns out to be somewhat simpler compared to the géner
case. We obtain explicit results for the probability distition and a normal limit law as tends to infinity.
The key tool for studying,, ; is the following Lemma, which provides the independencéhefihdicator
variables.

Lemma 1. The random variable,, ;, counting the number of edge weights of size 1 in asimndom
gport or d-ary increasing tree, satisfies the decomposition

Sn,j = @H{ch—l}, )
k=2

with the indicators being mutually independent.

Proof. We simply condition on the event that node- 1 is adjacent to node.

P{Spi=m}=P{Sp1=mn<.n—1}P{n<.n—1} +P{S,1 =m|n £.n— 1}P{n £. n—1}
=P{S,—11=m—-1}P{n<.n—1} +P{S,—11 = m}P{n £. n —1}.

Hence, we obtain the stated result by iterating this argamen O
The following lemma gives an explicit formula for the probaies P{k <. i} = E(Ifz< i)

Lemma 2 (Dobrow and Smythe [9]) The probability that the nodeis attached to nodg with1 < i < k,
in a sizen random grown simple increasing tree is given by

ez b 1ez) (M)

P{k <.i} =P{i+1<ci} [] P{I+1#e 1} = ——2F 11 (1— el (kzljw).
> €1
k—2

l=i+1 1 [=i+1 1
Now we are ready to state our result concernff}g;, which also appeared in a different context in

Dobrow and Smythe [9], and Panholzer and Prodinger [14]¢ceoting the depth of node in a sizen
random increasing tree.

Theorem 1. The random variable,, ; satisfies the following distributional decomposition.

Sn,l (i) Bl @"'@anlv (6)



whereB;, @ Be(

given by

2
e =) is Bernoulli distributed forl < k < n — 1. The probability distribution of,, ; is

C1

P{S,1=m} = (")

m

(I+2)" [n-1
(n—1+2)=L ’

where [];] denotes the signless Stirling numbers of the first kind. Xpeaation and the variance 6f, ;
are given by the following exact and asymptotic expressions

E(Sy.) = (1+§)(\p(n+cﬁ) —q/(1+%)) (1+° )1og( )+ O(1),

C1

V(S = (14 Cj) (w(n+ %) ~w(1+ Z—j)) +(1+ a) (vi(n+ i—j) —w(1+ %))

(1+ >logn+(’)( ),

where¥(z) = Llog(T'(2)) = FF((Z)) denotes the Digamma function and (z) = dzz log (T'(2)) the
Trigamma funct|on Furthermore the centered and norméli@ndom variableS, ; is asymptotically

normal distributed: s _E(S
11 = 2O £ o 1y, ®
’ V(Sn.1)

whereA/ (0, 1) denotes the standard normal distribution.

Proof (sketch).The expectation and the variance follow immediately from distributional decomposi-
tion and the asymptotic expansion of tlrefunction. The probabilities can easily be obtained from th
probability generating function as follows.
k- 1o(l+ 2) (e
Pisas =) = o) = 1 11 (“5 7 R
k=1 a n—1

_ Fm] Z ( v(1 +/§) +k — 2)2’“ _ ) 1

= ("THEY (1 - o) 0D

(1+2)"[z" "™ 1 (+2)" {n—l}
1 ’

:[’U

(9)

(%H%‘) (1-2) (n-1+2)=L

n—1

m

where we have useft”]1/(1 — z)**! = (“I™) and the expansion of the generating function for the
signless Stirling numbers of the first kind, which is given by

fa-2r =33 ] 5o

n>0m>0

For the normal limit law either apply Hwang’s Quasi Poweratteen [10], as done in [14], or use Poisson
approximation techniques [9]. O

Remark 1. Note that by Lemma 5 the random varialslg ; satisfies the same distribution as the random
variable D,, counting the depth of node in a sizen random increasing tree. The depth has been studied
before independently by Dobrow and Smythe [9] and PanhalzérProdinger [14].

4 Thedistribution of edge weights. casej > 1

In the casej > 1 the indicator variable$;, . ;_;, are by definition of the growth process not mutually
independent any more. For example, for plane oriented sa@urees we have

2 1
73#P{n<cn—2|n—1<cn—2}:2n73. (10)
Therefore we turn our attention to the derivation of an ef@chula for the variance of,, ; by other means.
For the exact variance we need to calculate probabilitieheformP{k; <. i1, ks <. i2}, assuming that
i1 < k1,12 < ko. In order to derive these probabilities we use an approash {@ Bollokas and Riordan

P{n<cn—2|n—1<cn—2}:2



[7]) that involves the calculation of a more general qugnitive determine the probability that a subgraph
S is present in a random tree of sizgi.e. we calculate probabilitieB{k; <. i1,...k <. i;}. Note
that in [7] the probabilitie®{k; <. i1,...k <. 4} were derived for the special case of plane oriented
recursive trees (correspondingdo= 1 in the growth process), we also refer to [8] for an applicatid
such a result.

4.1 An exact formulafor the expectation and variancefor j > 1

We fix a graphS with nodesV'(S) and edgesE(S). E(S) represents the collection of everts; <.
i1},{k2 <. i2},... S is a possible subgraph d8,, for largen, where B,, denotes a tree of size.
Furthermore orient each edge= (i,j) € E(S) with i < j from j to i. We write V' (S) for the set of
vertices ofS from which edges leave arid— (.5) for those vertices at which edges arrive. Note that usually
VH(S) N V=(S) # 0. Fori € V=(S) let g™ (i) denote the in-degree ofin 5. We obtain the following
result.

Theorem 2. The probabilityps that a given graphS is a subgraph ofB,, is given by the following
formulas.

_ G 1 Cs(k)
ps= II o= Il o= 1l (1+(a+1)(271)71)

i€V —(S) iEVH(S) kgV+(S)

for generalized plane oriented recursive trees and

_ 795" (0) 1 Cs(k)
rs= 1] 11 d-D(i-1)+1 11 (1_(d71)(271)+1)’

eV —(9) iEV+(S) EgV+(S)

for d-ary increasing trees. Her€'s(m) denotes the number of edges= (i,1) € E(S) withi < m and
[ >m.

Before we turn to the proof of Theorem 2, we state two of itsliappons. Forj > 1 we do not
have a decomposition &f, ; with mutually independent indicator variables for genigeal plane oriented
recursive trees andtary increasing trees. Nevertheless, the next result stwvsorj € N there is only a
local dependency structure of the indicator variables.

Corollary 1. The indicator variabled 4, of the eventsd, = {k <. k —j}, forj+1 < k < n,
are weakly dependent, grindependent, which means wheneyeand L are two subsets of the positive
integers{j + 1,...,n} withmin{|i — | : ¢ € I, € L} > j — 1, then the subsysten(By,,7 € I) and
(I4,,1 € L) are independent.

Remark 2. Note that Theorem 2 together with Corollary 1 extend theltesaf Lemma 2 and parts of
Theorem 1. Moreover, using the conventiba- —a, the two formulas stated in Theorem 2 are basically
equivalent.

Corollary 2. The probabilityP{k; <. i1,ke <. 2}, Withl < i1 < k1,1 < iy < kg andks > ky, is

given by the following closed formulas, using= —1 — &=—d,
(LT )
Caseiy > k- P{kl <c 11, ko <c ’LQ} ]P){k‘l <c Zl}P{kﬁQ <c ’LQ} = o 211;12 k;_z;:ﬁ s
) (P

i1 —14+22\ (kg —2—22
(1 I %) (71i11j1c1)( 1k12_2c1

)
(kl _ 1) (k271+%) (i2_1_21)

(T )
“L(y 1*”)«‘ )
% <“1 ()
BRI

Casei; <is < ky: Pk <.i1,ky <ciz} =

Casei =41 =iy : ]P){kl <c 1, ko <. Z} =

Casei; > is : P{kl <c i1, ko < ig}

(11)



Our proof of Theorem 2 closely follows the arguments of [7] flee special case of plane oriented
recursive trees. Le$,, denote the restriction of up to timen: S,, consists of edge& = (i,1), with
i,1 < n. First we need some notations. We denoteXhy; the outdegree and by

Xni +O¢,
et 12
B, { P (12)

the “actual node degree” responsible for the connectiViityoale: in a random size: increasing tree. We
will refer to 3,, ; simply as node degree. Further foe> i letr,, ; denote the number of edgés i) € E(.5)
with & > n. Thusr,, ; is just the number of edges coming to nadster timen. We consider the random
variable

Il s, forgports

Y, = I, % i€V (S),i<n . 13
i,lel;](:Sn) {@heB (B} H 67:;’, for d-ary increasing trees (13)
i€V(S),i<n

with A\,, = E(Y,,). For largen, one has,,; =0,Y,, = Hi,leE(Sn) Itiners,); andA, = P{S C B,}.
Theorem 2 will follow directly from our next lemma by meansimduction.

Remark 3. Fora = 1 we have ordinary plane oriented recursive trees, alreaayed in [7]. Note that for
recursive trees things are much easier siffle; <. i1,...,k <. i} = Hé.:l(kj —1)~L. Furthermore,
recall that ford-ary increasing trees there are at méstdges coming into each node by definition.

Lemma 3. For n > 0 the numbers,,, satisfy the following recurrences.

e Thereisanedge = (k,n+ 1) € E(S) withk < n:

oLt . t
———— forgports,
a+1l)n—1
Ant1 = An X ( drn+1),n+1 (14)
m for d-ary increasing trees,
- n
e Thereisnoedge = (k,n + 1) € E(S) withk < n:
am<l + Gslntl) ), for gports
(a+1)n -1
/\n+1 = )\n X C 1 (15)
drntintl (1 — @ s(?)++)1)7 for d-ary increasing trees
— n

whereCs(n + 1) = > cy(s) 1<n In,k denotes the number of edges- (k, 1) € £(S) withk < n
andl > n+ 1. B

Proof. We will focus on generalized plane oriented trees and omdiestome of the analogous formulas
for d-ary increasing trees. The outdegree of nade 1 in a sizen + 1 tree is alway<), and so we can
decomposé’, ;; as follows:

Y1 = 52?11,;1’1 g1 = Q' 70, (16)
with L
Znin= I  Tenessony  II Bd (17)
Z‘}lEE(S"+1) ZEV(S),’LSTL

First, we consider the case thgitdoes not contain an edge= (k,n + 1) with 1 < k < n. Then
Sp = Sp41 and alsary, 41 ; =y, ; for eachi < n. Hence

Zpy1 = H Liiners.a)) H Bt (18)
IEE(Sn) i€V (8),i<n

which is exactly the formula fo¥;, except for the node degregs ;. Now if noden + 1 does not attach
to any of the vertices of we have the equality,,,; = Y,,. We consider the random attachment of node



n + 1. If noden + 1 attaches to a nodiec S theng,, 1, = B, + 1 for gports (0r3,,+1; = B, — 1 for
d-ary increasing trees) and

Bri+ i

A N (19)
resp.
Tn,i n,i ﬂ'n i —Tn i oln,i
ﬂn+1,i = (ﬂn,z - l)r — = 6 5ﬁ7 (20)
and all other degrees stay the same, so that weZget — = Y.rni/Bni t€SP. Zpy1 — Y, =

=Y., 7n,i/Bn,i- In this setting the probability,, 1, ; of the event{n +1<.i},i€S,i<nisgivenby

Xn,ita Bn,i
it = @1 = Ginner  forgports, (21)
K Aoty = (d—ﬂfj’f;ﬂ for d-ary increasing trees

Thus the expected difference is given by

Sy PedbiTefng s(n+ )7 for gports
i . ﬂn,i (Oé + l)n -1
]E(Z v |B ) ) ieV(9),i<n
el niens Pn+1 zYn'rnz YnCS(n + ]-) . .
- Y : L . for d-ary increasing trees
, , Bh,i (d=1)n—1
i€V (S),i<n ’
(22)

ThereforeE(Z,,+1) = A (1 + %) resp.E(Z,4+1) = A\(1 — %). Now suppose that there

isan edge: = (n+ 1,k) € E(S) with & < n. In this casé/;,+; = 0 unless node: + 1 is attached td,
which happens with probability,,.1 ,. Under the assumptiom + 1 <. k} we have

H LinerBa)y = H Liiners.a)} (23)
i,l€E(Sn41) i,l€E(Sy)

and the node degrees change as follows. We Ivavg ; = G, for1 < i < n,i # kandB,11 % =
Bn.k+1(0r Brt1k = Bk — 1 for d-ary increasing trees). Furthermorte,, ; =r, ;forl <i<n,i#k
andr,41,, = — 1. Hence,

e =T ot 1 ot
I sy =Gu+vt [ 8= 3 I s @
i€V (S),i<n i€V (S),i<n,i#k ok eV (S)i<n
which finally leads t@8(Z,, 1) = E(Y,) 8, kPn+1k = (ariraT O

Theorem 3. The expectation and the variance%f ; are given by the following closed formulas.

n n (kij71+%)
E(Snj) = > Elei—iy) = Y %,
k=j+1 k=1 ( k._gcl)

V(Sn)= >, Y. Plk<ck—jl<cl—j}+E(Sn;) —E(Sny)%
k=j+11=j+1,1#k

withP{k <. k —j,l <.l —j} as given in Corollary 2. Moreover, the expectation and thearece satisfy
the asymptotic expansion

E(S,;) = (1+ Z—Q)logn +0(1), V(S,;) =0+ 2—2) logn + O(1).
1 1

Proof. The asymptotic results for the expectation are readilyinbthfrom the exact formula. The exact
result for the variance is a consequence of the relation

252, =B(( 3 lncun) ) =B+ Y 3 Bk<choil<cd—gh

k=j+1 k=j+11=j+1,1#k



Moreover, we have

n n
Y. D Plk<ck—jl<cl—j}—E(5.,)
k=j+11=j+1,1#k
n k+j—1

=23 > (Plh<ck—jl<cl—j}—P{k<ck—j}P{l<.1-j}),

k=j+1 I=k+1

according to Corollary 2, where the factor 2 is due to symynké&tweenk and/. Furthermore, we have
the upper bound

2
(Plh <ch il <cl=J} = Blk <k = J}F{I <c 1= j}) <
intherangg + 1 <k <nandk+1<!<k+j—1,withx =max{j + 1,d}. Hence,

2

SN Ple<ck—jl<cl—j}—E(S.;) <21"”~Z 2—17;

k=j+11=j+1,l#k k=j +1

which proves the stated result. O

4.2 Central limit theorem

By Corollary 1 we already know that the indicator variables aindependent. We will use a simplified
version of a result of Barbour et al. [3], see also [4].

Theorem 4 ([3], [4]). Suppose thatY},),cn is a sequence of random variables wii{Y;,) = 0 and
bounded third momeri(|Y,,|*) < oo, that arej-independent. Sef,, = Y; +--- +Y,, ando? := V(Z,).
If lim,, oo 2 >, E(JY;[®) = 0, thenZ, satisfies a central limit theorem; Z=— — N/(0, 1).

VV(Zn)
Now we are ready to state the central limit theoremdgy;.

Theorem 5. For arbitrary but fixedj € N andn tending to infinity, the suitably shifted and normalized

random variableS,, ; = ZeeEn Ifw(e)=5) is asymptotically normal distributed,

Sn,j — E(Sn;)

d
o) — N(0,1).

Proof. We want to apply Theorem 4 to the centered random varigiple= S,, ; —E(S,,;) = S/ i1 Y
with

Y, = H{l<cl7j} — P{l <1 —j}
By constructionE(Y;) = 0, and by Corollary 1 the centered indicator variafgeare j-independent. Let
2 denote the sample space of all trees of sizendP’ the probability measure dn. We have? = Q, UQ,
whereQ; = Q (k) = {w € Q : I3« ;) (w) = 1}, and furthermore

R e N |
= / (1—P{k <.k —j})3dP +/ P{k <.k — j}3dP
oh) 0

=Plk<ck—7}1-P{k<.k—3})>+ (1 -P{k <.k —jHP{k <.k —j}>.

Therefore we get the estimates

n n

ST EWP) = > Pk <c k=531 —P{k <ck—j})® + (1 —P{k <c k- jHP{k <. k — j}*)

k=j+1 k=j+1

< 3 (Plk <k} +P{k<ck—j}?) = (1 + 6—2) logn + O(1).
- 1
k=j+1
Sinces? = V(S,, ;) = V(Sn;) = (1+£) logn+ (9( ), the conditions of Theorem 4 are satisfied, which
implies the asymptotic normality cﬁ‘w/,/ Sh.i) O



Remark 4. Note that with a bit more effort, one can also obtain the spgembnvergence with respect to

H . Sn,]' Cj . - .
the metricd; [4]: one hasd; (ﬁ(m),/\/'(o, 1)) < ol whereC; is a constant depending gn
For two probability measureB and(@ their d;-distance is defined ak (P, Q) := sup) = |E(h(X)) —

E(h(Y))|, whereX andY are random variables with distributio® and @, respectively. We refer the
reader to [3] and [4].

5 Representation of increasing treesvia edge weight tables

It was shown in [13] that the family of recursive trees candygresented by a so-called edge-weight table,
corresponding to the inversion table of permutations. Meeg it was asked for a corresponding notion
for other tree families. Here we will introduce edge-weitdtiles for plane oriented recursive trees and
d-ary increasing trees. Such sequences may be importamtiegahe automatic generating of all trees of
a given family.

LetC,, denote the family of sequences= a1b1az2bs . . . a,b, of length2n,n > 1, suchthat < a; <1
andl < b; < {jli+1—-a; =i+1—a;1 <j <i-—1} +1. Moreover, letD, = D,(d) denote
the family of sequences, byasbs . . . a,b, of length2n, n > 1, suchthatl < a; <i4,1 < b; < d, and if
b =bj,theni+1—a;, #j+1—q;forl <i<j<n.

Proposition 1. The family of plane oriented increasing trees of siz¢ 1 is in bijection with the family
C,. Furthermore, the family af-ary increasing trees of size + 1 is in bijection with the familyD,,.

Proof. We use a recursive construction. For a given size 1 plane oriented recursive tree, we note the
edge-weight induced by the node labeted 1 and its position, going from left to right, which givegb,, .
Now we remove node + 1 and proceed recursively. Conversely, for a given edge-ieédples € C,, we
recursively construct the size+ 1 tree by attaching nodeto the node labeled+ 1 — a; at positionb;,
1< <n.

For d-ary increasing trees we proceed analogously, denotingdge-weight induced by the node
labeled:; and its positionj =n +1,...,2. O

6 A combinatorial approach: recurrences and a system of differen-
tial equations

At first sight the most natural approach for the analysi$,0f seems to be the usage of the combinatorial
description of increasing trees according to (3), which @féen useful for similar problems. Unfortunately,
this approach is not easily applicable since the subtreeseabeled in the description, whereas we cannot
simply drop the labeling of the subtrees without furthersidarations.

In order to analyze5,, ; combinatorially forj > 1, we have to proceed in a different way. The main
idea is to partition thd, different sizer increasing trees into classes according to the out-degfebs
nodesr —j+1,n—j+2,...,n—1, which are relevant fof,, ;. Then one can set up suitable recurrences
for the arising tree classes, always keeping track of thedehof all relevant outdegrees.

First we need some notation. Lgf_1 = (g1, 92, ..., gj—1) denote a vector of siz¢— 1, which will
encode the outdegrees of the nodes 1,n — 2,...,n — j + 1, andGy = Zle g; the sum of the first
entries,1 < k < j — 1. Furthermorel¥/;_; denotes the set of vectogs_; satisfyingg, > 0 and

k
0<Gr=) gi<k

i=1

for 1 < k < j — 1, which is the natural restriction for increasing trees. Vémate byTT[lg]”] =
Tlor92:93-11 the number of increasing trees of sizewhere the distribution of the outdegrees of the
nodes(n —1,n—2,...,n— j+ 1) is given by the vectog;_, € W;_1, i.e. noden — k has outdegregy,
for1 < k < j — 1. The total number is obtained from tﬂégj‘l] by summation over all possible degree
sequencesof —1,...,n+j — 1,

T,= Y Tl

gj—1€EW; 1

10



Ouir first result is an explicit formula f(ﬂ’,[Lg-f‘l], the number of all size-trees with degrees prescribed by
a sequence;_;. In the following, we will state all results first for gportsien ford-ary trees. The proofs
are only given for gports, the situation fétary trees being completely analogous.

Theorem 6. The numbef®~) of all sizen (n > j) increasing trees, where the outdegrees of the nodes
n—1,...,n— j+ 1are prescribed by, _; € W;_,, is given as follows: for generalized plane oriented
recursive trees,

- g1 ,.
TE =Ty ((a+ D) (n— ) 775 (Z
=1

For d-ary increasing trees,

j—1

T =T jr - ((d— 10— )2 ] ( - G)df
N gi
i=1

Proof. Given the tree induced by the first— j + 1 nodes (there ar#;,_;;, possibilities for this tree),
we can choose theg children of noder — i (i = 1,...,j — 1) out of a set of — GG;_; nodes with larger
number, which can be attachedift different ways. Finally, we have to attach the remainingl — G;_4
nodes from the setn,n — 1,...,n — j + 2} to nodes with smaller labels, which gives rise to the second
factor in our formula. O

Since we will use the (refined) quantiti@%g"*l] to describe a system of differential equations, we are
interested in the cardinality of the system depending.on

Proposition 2. The cardinality ofiV;_; is given by theg-th Catalan numbef’; = ( )/(g +1).

Proof (sketch).Observe that we can interpret the elemeagits; = (g1, 92,...,9;-1) of W;_; as lattice
paths with step§1,0), (1,1),...,(1,j — 1), starting a0, 0), which never exceed the diagona: x. O

Example 3. As an example, let us consider plane oriented recursive free- 1) with prescribed outde-
grees for the nodes — 1 andn — 2. We havelV,| = C3 = 5 and by Theorem 6

o

T ,0]

n

T!

n

(n—3)2(n—3)+1)2n -7, T =4(n—3)2n -7,
@2n -7, T =9(n—3)2n—7)11, TMHY = (2n — 7).

2
2

o

2]

Now IetT[gJ 1} denote the number of sizeincreasing trees witm edge weights of siz¢ and outde-
grees speC|f|ed bg] 1 € W;_; as before. We have the relation

TP{S,;=m}= > T
gi—1€EW,; 1

Furthermore leWV;_(g;_1) C W,_1 denote the set of vectots_ = (l,...,l;_1) € W;_1 such that
1,_1 hasthe form;_, = (g2,93,...,9j-1,%) —eg, With1 <k < j—2and0 < i < j — G;_1, wheree
denotes a unit vector. In other wordg); _; (g;_1) consists of all vectork;_, in W;_; with [}, = g, for

h e {1 o d =23\ {k}, andl; = gr+1 — 1, wherel < k < j — 2. We obtain the following recurrences

for 718~ by distinguishing two cases fgf .

n,j,m

Proposition 3. Forn > j + 1 andm > 0 the quantiUeéTT[Lg’,; , withg;_; € W;_4, satisfy the following
system of recurrence relations. For = 1,

JGJl

rles-1] [92,-++,95 -1, @
Tojm = Z AT, A= d
Forg; =0,
J=1=Gj1 J=1-Gj-1
[g] 1] _ [17 1] [92 95— 1,7;] [92 95— 12]
Tngm_ Z BTn 1]m+ Z CT’n 1,5,m + Z DT —-1,5,m—1 >

1;—1€W;(g;)

11



with B = B(l;_1), C = C(i) and D = D(3) given by

. S (gher — L) (U + ), . (@+hn=-1)-1-i-C—jo.  [ita
S 2 (gher — W) (d — 1), (d—1)(n—1)—1+i+G;_y — jd, d—1i,

and initial valuesT]gjO - T}g-f‘l] given by Theorem 6.

Proof. In the casey; = 1, the newly inserted node labeledmust be attached to node— 1. Hence
we have to consider trees with— 1 nodes andn edge weights of siz¢, where the outdegrees of nodes
n—2,...,n—j+1aregiven by, ..., g;—1 and the outdegregof noden — j is between zero and

J=1=Y gr=j—1-(Gji—g)=j—Gj 1.

The other casg, = 0, where node: is not attached to node— 1, splits into three possible cases: neds
attached to one of the nodes-2, ..., n—j+1, or noden is attached to node— j, increasing the number
of edge weights of siz¢ by one, or node: is not attached to any of the nodes- 2,...,n — j. First we
consider the case that nodés attached ta — k, with2 < k < j—1. Thenthere arg;, 1 —1+a =l +«
possible positions to attach nodeto anyn — k. Note that under the assumptibn.; € W;(g;) with
Iy = gryr1 — 1, we havezh 1(gh+1 ) (n + ) = Ik + «, as required.

Next we look at the case that nodes attached to node — j. Assuming that node — j has outdegree
i, we havei + « different places to attach nodeto noden — j.

Finally we consider the case that nodés not attached to any of the nodes nade %, 2 < k < j.
Hence, assuming again that node- j has outdegreg 0 <4 < j — 1 — G;_1, we have

j—1
(@+D)n-1)-1-(i+a)=> (grta)—a=(a+)(n-1)—1-i-G,; 1 — jo
k=2

different places to attach nodeto the tree of sizex — 1, which finishes the proof of our formula. O

Note that form = 0 one has to skip the terms mcludlﬂd”"“‘qf | _Now we introduce the bivariate

generatlng functions ;
F (gj—1] Z Z ng;n ;] z" o™ , (2 5)
n>j+1m>0 7’L - ‘7)

for g;_1 € W;_;. By multiplying our recurrence relations by*z"~7=! /(n — j — 1)! and summing over
n > j+ 1, m > 0 the recurrences above can by translated into a system af liifferential equations.

6.1 Thecasej =2

Let us now consider the cage= 2 for gports as an illustration. The initial values are givgrrin’é,l(]L2 =T

andTéﬂm2 = 0 for all otheri andm. For the sake of simplicity we will drop the dependencejen 2. By
Proposition 3 we get the recurrences

T, = (@ + D) =3) + DT, + Tl + (a+ D= 3T, + @+ DT,
Tv[lljn = T7[7,O] 1,m + aT’r[Ll] 1,m-*
(26)
Following (25), we set up the generating functions
0 N 2 [1] [1] 271,—2
ZZ n,m o, FR(z ) = Tn’m(n—Q)!v i

n>3m>0

N
v
w

>

(=)

Multiplication by v™2"~3 /(n — 3)! and summation over > 3 andm > 0 leads to the following system
of linear differential equations.
o)
aF[O](z,v) = (av+ 1) F(z,0) + (a + D)oFM(z,0) + (a + 1)v Ty
9] 0
1)z—FMo 1)z—F 27

(a4 D POz 0) + (a4 1)z FU (2, v), (27)
9]
—FM(z,0) = aF(z,0) + aFH (2, 0) + oTs.

12



Unfortunately, this system of differential equations ig ea&plicitly solvable. However, one can easily
determine the first few coefficients from it; in the case ofimady plane oriented recursive trees £ 1),
one obtains

7+ 260+ 1102 + 03 5 58 + 2220 + 119v% + 2003 + v?
3 27+ 2 +

FlO(z,0) = 20z 4 (1 + 40 +0%)22 +

and
142 3+ 10v + 202 17 + 62v + 2402 4 203
F[”(z,v):z+ 4;v22+ + 24— Uzg+ + v—;4v+ vz4+

and altogether

3410 202
FO(z 0) + Fl(z,0) = (14 20)z + %f

17 + 62v + 2402 + 203 3 133+ 506v + 26202 + 4203 + 20* N
+ 6 27+ 21 25+

6.2 Maximal edge weight

To show the usefulness of our approach, we consider a rgtadddem: letp,, ,, = P{M,, < m} denote
the probability that the maximal edge weight, = max.cg, we in a sizen random increasing tree is
less or equain. In order to study this probability, we use two different eggches. For large: (i.e.
m = n — k with fixed k), one can apply the principle of inclusion and exclusionéban expression for
the probabilitiew,, ,,, as follows:

Theorem 7. The probability that the maximal edge weigHt, is less or equah — k, with2 < k <n —1,
is given by

k—1
P{M, <n—k}=1+> (-1) > P{iy <e J1,-- i1 <e i}y
=1 n+2—k<i1 <---<yy;<n
1<ji), <in—(n+1-k)

with P{iy <. j1,...,% <. i} as given by Theorem 2.
Example 4. By application of Theorem 7 we obtain e. g. foe= 2
1

(n—nl_-‘;%) :

P{M, <n-2}=1-

For smallm we have to proceed differently. L@éﬁ’,’;‘d denote the probability that the maximal
edge weightM,, is less or equain and that the outdegrees of nodes- 1,...,n — m + 1 are given

byglw"agmfl-

Proposition 4. For n > 2, the probabilities;oﬁﬁ%l], withg,, 1 € W,,_1, satisfy the following system of
recurrence relations. Foy; = 1 we have

m—Gpmy—1 a
_ 2y g1, (a+1)(n—1)-1>
Pl = Y A A= . (28)
i=0 @—D(n—1)+1
For g; = 0 we have
m—1-Gm_1
Ln—1 25+ gm—15%
TR ED DI N R SRR
L1 €W (gm) =0
Zm—Q(g’ L lh) lpto i+a (29)
h=1 \Jh+1 — (a+1)(n—-1)-1 . (a+1)(n—-1)-1°
B=B(u1)={ d(_lh C=Cli):= "
S ohet (r+1 = W) G T D=1

with initial valueSp[;,] =1 andp[zo,]m = 0 for all m.

m =
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By using our earlier results concernifdg ; we immediately obtain

(QL_H)H—I

11 )

(=15
(%)nfl

(1 (")

Puy = P(M, <1} = P{S1 =n—1} =

Finally, we computep,, » by means of Proposition 4. Unlike the differential equadiabtained in the
previous section, the differential equations for the gatieg functions

PlEn-1l(z) i= Y plep-aln-i-t/(aty)
n>2

(in the case off-ary increasing tree, the exponent has to be modified-tol + ﬁ; this somewhat artifi-
cial choice results in simpler differential equations)lwié linear with constant coefficients and therefore
explicitly solvable. We illustrate this in the case= 2, where we get the recurrence relations
(a+1)(n—1) = plh = apl 5 + (a+ 1piLy .
(a+1)(n—1) = pih = aply 5 +ap,Ly

for gports and

((d=D)(n— 1)+ Dpy = dpy’y 5 + (d = DLy,
(d=1(n-1)+ 1)175,]2 = dpg?]—m + dpg]—m
for d-ary trees. Let us consider the latter case in more detaibdoction of the generating functions
PYl(z) = 3 gl
n>2
yields the differential equations

(d— 1) Pz = dP (2) + (d - )P (2),

d
(d— 1) Pi(z) = aPP () + aPf (z) + st/ 0D,
z

A particularly nice special case ds= 2, where one gets

2—4 2+4
Pz[o] (2)=2+z2+ 73\/21 e2+V2)z _ 73\/:1+ e2=V2)z

3 —2v2 3+ 2v2
sz (2)=-3-22+ — V2 e(2+HV2)z _ 74_2 V2 e(2=V2)z,

Putting these together, one obtains the simple explicihfda

L ((2 V2l (2 - \/5)"—1) .

Pn,2 = ol

Generally, the asymptotics of the probability depend onléngest eigenvalue of a matrix of dimension
|Wyn—1]; by Proposition 2, this is equal to~ (™). In the casen = 2, the largest eigenvalue is

m+1\m
a+va?+a res d+Vd?*—d
a+1 ' d—1 ~

but it seems that there is no nice explicit formula for theegahcase.
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