
ar
X

iv
:0

80
8.

18
88

v4
 [

m
at

h.
C

O
]

 3
0

Ju
n

20
09

Weighted interlace polynomials

Lorenzo Traldi

Lafayette College

Easton, Pennsylvania 18042

Abstract

The interlace polynomials introduced by Arratia, Bollobás and Sorkin
extend to invariants of graphs with vertex weights, and these weighted
interlace polynomials have several novel properties. One novel property
is a version of the fundamental three-term formula

q(G) = q(G− a) + q(Gab
− b) + ((x− 1)2 − 1)q(Gab

− a− b)

that lacks the last term. It follows that interlace polynomial computations
can be represented by binary trees rather than mixed binary-ternary trees.
Binary computation trees provide a description of q(G) that is analogous
to the activities description of the Tutte polynomial. If G is a tree or
forest then these “algorithmic activities” are associated with a certain
kind of independent set in G. Three other novel properties are weighted
pendant-twin reductions, which involve removing certain kinds of vertices
from a graph and adjusting the weights of the remaining vertices in such
a way that the interlace polynomials are unchanged. These reductions
allow for smaller computation trees as they eliminate some branches. If a
graph can be completely analyzed using pendant-twin reductions then its
interlace polynomial can be calculated in polynomial time. An intuitively
pleasing property is that graphs which can be constructed through graph
substitutions have vertex-weighted interlace polynomials which can be
obtained through algebraic substitutions.

Keywords. interlace polynomial, vertex weight, pendant vertex, twin
vertex, series, parallel, graph composition, graph substitution, join, com-
putational complexity, tree, Tutte polynomial, Jones polynomial

Mathematics Subject Classification. 05C50

1 Introduction

Motivated by problems arising from DNA sequencing and the properties of
circle graphs of 2-in, 2-out digraphs, Arratia, Bollobás and Sorkin introduced
a new family of graph invariants, the interlace polynomials, in [3, 4, 5]. These
invariants may be defined either through recursive elimination of vertices or as

1

http://arxiv.org/abs/0808.1888v4

sums indexed by subsets of vertices [1, 5], much as the Tutte polynomial may
be defined either through recursive elimination of edges or as a sum indexed by
subsets of edges. Ellis-Monaghan and Sarmiento [20] have shown (among other
results) that one of the one-variable interlace polynomials, qN , can be computed
in polynomial time for bipartite distance hereditary graphs. Their proof depends
on the corresponding result for the Tutte polynomials of series-parallel graphs,
first proved in [26], and the fact that bipartite distance hereditary graphs are
circle graphs of Euler circuits in medial graphs of series-parallel graphs.

In this paper we discuss several useful features of interlace polynomials that
have been modified to incorporate vertex weights. After defining the weighted
interlace polynomials in Section 2, we observe that a simple adjustment of
weights makes it unnecessary to have the third term in the fundamental recur-
sion q(G) = q(G−a)+ q(Gab− b)+((x−1)2−1)q(Gab−a− b) of [5]. In Section
3 we present reduction formulas that can be used to eliminate a vertex that is
a twin of another, or pendant on another. These pendant-twin reductions are
analogous to the series-parallel reductions of electrical circuit theory, in which
two resistors wired in series (resp. parallel) are replaced by one resistor with
R = R1 +R2 (resp. R−1 = R−1

1 +R−1
2). The pendant-twin reductions are used

to extend the result of Ellis-Monaghan and Sarmiento mentioned above to the
two-variable interlace polynomials of looped, non-bipartite distance hereditary
graphs. In Section 4 we show that if G = H ∗K is a looped graph obtained using
the composition construction of Cunningham [19] then q(G) is equal to the in-
terlace polynomial of a suitably re-weighted version ofK; this generalizes results
of [4] that describe the qN polynomials of simple graphs constructed through
substitution. Composition has proven useful in the study of circle graphs (see
for instance [11, 12, 17]), so it is not surprising to see it appear in the theory
of the interlace polynomials. In Section 5 we discuss some elementary proper-
ties of the unweighted qN polynomial, focusing on simple (unlooped) graphs.
In Section 6 we sketch a combinatorial description of the interlace polynomials
of trees and forests introduced by Anderson, Cutler, Radcliffe and the present
author in [2]. This combinatorial description bears a striking resemblance to
the activities description of the Tutte polynomial, and in Section 7 we extend it
to arbitrary graphs using “activities” defined with respect to recursive interlace
polynomial calculations. We do not know whether or not these activities have
a convenient combinatorial description in general.

We should observe that the idea of using vertex weights for interlace poly-
nomials has appeared before, though our implementation of the idea is different
from those we have seen elsewhere. In [16], Courcelle introduced a multivariate
interlace polynomial that is more complicated than the polynomials we consider
here, and involves assigning indeterminates to the vertices of a graph. He used
monadic second-order logic to show that it is possible to compute bounded por-
tions of this polynomial (and the entire unweighted interlace polynomial q) in
polynomial time for graphs of bounded clique-width. This technique is quite
general but involves large built-in constants, so for pendant-twin reductions

2

and compositions the formulas presented here are considerably more practical.
Also, Bläser and Hoffmann [7] use the idea of assigning indeterminates to ver-
tices, along with the adjunction of two types of pendant-twin vertices, to show
that evaluating interlace polynomials is generally #P -hard for almost all values
of the variables.

In [3] Arratia, Bollobás and Sorkin observe that there is a natural (so natural
it is “practically a tautology”) correspondence between the Kauffman bracket
of an alternating link diagram and an interlace polynomial of an associated 2-
in, 2-out digraph. The situation is clear enough that we do not discuss it in
detail, but it is worth mentioning that this correspondence may be extended
to arbitrary link diagrams using vertex weights. The well-known relationship
between the Jones and Tutte polynomials is similar, in that an edge-weighted
or -signed version of the Tutte polynomial conveniently incorporates crossing
information when dealing with non-alternating links [23, 25, 27].

2 Expansions and recursions

We recall terminology and notation of [5]. Graphs may have loops but not
multiple edges or multiple loops. The rank r(G) and nullity n(G) of a graph
G are those of its adjacency matrix considered over GF (2). If S ⊆ V (G) then
G[S] is the subgraph of G induced by S. In addition, we say a graph is (vertex-)
weighted by functions α and β mapping V (G) into some commutative ring with
unity R. For ease of notation we prefer to denote a weighted graphG rather than
using the triple (G,α, β); even when two graphs differ only in their weights we
will denote them G and G′ rather than (G,α, β) and (G,α′, β′). Also, if a graph
is modified then unless otherwise stated, we presume that the weight functions
α and β are modified in the most natural way. For instance, if a ∈ V (G) then
the other vertices of G have the same vertex weights in G − a as they have in
G. If G is a weighted graph then the unweighted version of G is denoted Gu; it
has the same underlying graph and the trivial weights α ≡ β ≡ 1 ∈ Z.

Definition 1 If G is a vertex-weighted graph then the weighted interlace poly-
nomial of G is

q(G) =
∑

S⊆V (G)

(
∏

s∈S

α(s))(
∏

v 6∈S

β(v))(x − 1)r(G[S])(y − 1)n(G[S]).

Definition 2 If G is a vertex-weighted graph then the weighted vertex-nullity
interlace polynomial of G is

qN (G) =
∑

S⊆V (G)

(
∏

s∈S

α(s))(
∏

v 6∈S

β(v))(y − 1)n(G[S]).

Definition 3 If G is a vertex-weighted graph then the weighted vertex-rank
interlace polynomial of G is

qR(G) =
∑

S⊆V (G)

(
∏

s∈S

α(s))(
∏

v 6∈S

β(v))(x − 1)r(G[S]).

3

The original, unweighted interlace polynomials of G are recovered by using
Gu.

The three weighted interlace polynomials of a particular weighted graph G
may be substantially different from each other. Considered as functions defined
on the class of all weighted graphs, however, the three polynomials are essentially
equivalent: if G̃ is obtained from G by re-weighting V (G) = {v1, ..., vn} using
the indeterminates in the polynomial ring Z[α1, .., αn, β1, ..., βn], then the value
of any one weighted interlace polynomial on G̃ determines the values of all
three polynomials on all weighted versions of G. For instance, q(G) can be
obtained from qN (G̃) by substituting (x − 1) · α(vi) for αi, β(vi) for βi and
1 + y−1

x−1 for y. (In contrast, the functions defined by the three unweighted
interlace polynomials are rather different from one another, as there are many
pairs of graphs distinguished by qR but not by qN [5].) We mention all three
weighted polynomials simply because one of them may be more convenient for
some purposes than the others. Most of our results are stated for q because it
specializes to the others most readily.

In fact any one of q(G̃), qN (G̃), qR(G̃) determines G up to isomorphism,
because the vertex weights identify the contribution of each S ⊆ V (G). The
looped vertices of G appear in the 1-element subsets S of rank 1 (nullity 0),
some pairs of adjacent vertices of G appear in the 2-element subsets S that
contain at least one unlooped vertex and have rank 2 (nullity 0), and the other
pairs of adjacent vertices of G appear in the 2-element subsets S that contain
two looped vertices and have rank 1 (nullity 1). Moreover the same comment
applies even if only one of α, β is nontrivial, i.e., if β ≡ 1 or α ≡ 1. This might
make it seem possible to simplify our discussion by considering only α or only
β, but we prefer to use both weights because they produce especially easy-to-
read formulas, as noted in the discussions of Theorems 7 and 12 below. Setting
one weight identically equal to 1 would not simply leave us with the other
weight; in essence, the remaining one would replace the ratio of the original
two. Consequently, using only α or only β would entail unnecessary algebraic
complications and losses of generality, because many formulas would require
division. For instance, with β ≡ 1 Proposition 4 would state that replacing
α(a) with α′(a) = r1α(a)/(r1 + r2) results in a graph G′ with (r1 + r2)q(G

′) =
r1q(G) + r2q(G − a). The special case r1 = −r2 would require a separate
statement, and of course β(a) = 0 would be ruled out.

Our first proposition follows immediately from Definition 1.

Proposition 4 Suppose a ∈ V (G) and r1, r2 ∈ R. Let G′ be obtained from G
by changing the weights of a to α′(a) = r1α(a) and β′(a) = r1β(a) + r2. Then
q(G′) = r1q(G) + r2q(G− a).

A fundamental property of the interlace polynomials is that they can be
calculated recursively with the local complementation and pivot operations used
by Kotzig [24], Bouchet [13, 14] and Arratia, Bollobás and Sorkin [3, 4, 5].

4

Definition 5 (Local Complementation) If a is a vertex of G then Ga is obtained
from G by toggling adjacencies {x, y} involving neighbors of a that are distinct
from a.

Definition 6 (Pivot) If a and b are distinct vertices of G then the graph Gab

is obtained from G by toggling adjacencies {x, y} such that x, y /∈ {a, b}, x is
adjacent to a in G, y is adjacent to b in G, and either x is not adjacent to b or
y is not adjacent to a.

Note that local complementation includes loop-toggling (when x = y is a
neighbor of a distinct from a) but pivoting does not.

Theorem 7 If G is a weighted graph then q(G) can be calculated recursively
using the following properties.

(a) If a is a looped vertex then

q(G) = β(a)q(G − a) + α(a)(x − 1)q(Ga − a).

(b) If a and b are loopless neighbors then

q(G) = β(a)q(G−a)+β(b)q(Gab−b)+(α(a)α(b)(x−1)2−β(a)β(b))q(Gab−a−b).

(c) If G has no non-loop edges then q(G) is





∏

unlooped v∈V (G)

(α(v)(y − 1) + β(v))



 ·





∏

looped v∈V (G)

(α(v)(x − 1) + β(v))



 .

Proof. The proofs of parts (a) and (b) of Theorem 7 are essentially the same
as the proofs of the corresponding formulas for the unweighted two-variable
interlace polynomial [5]. Indeed, if we read α as “includes” and β as “excludes”
then the weighted formulas serve as mnemonic devices to recall the proofs.

For instance part (a) is proven as follows. The term β(a)q(G−a) reflects the
fact that if a 6∈ S ⊆ V (G) then G[S] = (G− a)[S], so the contributions of S to
q(G) and q(G− a) differ only by a factor β(a). The term α(a)(x− 1)q(Ga − a)
reflects the fact that if a ∈ S ⊆ V (G) then

r(G[S]) = r





1 1 0

1 M11 M12

0 M21 M22



 = 1 + r

(

M c
11 M12

M21 M22

)

= 1 + r((Ga − a)[S − a]),

where bold numerals represent rows and columns and M c
11 differs from M11

in every entry. Consequently the contributions of S to q(G) and S − {a} to
q(Ga − a) differ by a factor α(a)(x − 1).

The more complicated formula of part (b) reflects, among other things, the
fact that each subset S ⊆ V (G) with a, b 6∈ S contributes to all three terms; the
last two contributions cancel each other.

Part (c) follows directly from Definition 1. It is not technically necessary to
mention graphs with loops in (c), as loops can always be removed using part

5

(a). However applying part (a) to completely disconnected graphs is obviously
inefficient.

Other properties of the unweighted interlace polynomials also extend natu-
rally to the weighted polynomials. For instance, the second and third parts of
Theorem 8 below extend two properties discussed in Section 3 of [5]. The first
part will be useful in Section 4, where we discuss substituted graphs.

Theorem 8 (a) If a ∈ V (G) is loopless then

q(G) − β(a)q(G − a) = q(Ga)− β(a)q(Ga − a).

(b) If a, b ∈ V (G) are loopless neighbors then

q(G− a)− β(a)q(G − a− b) = q(Gab − a)− β(a)q(Gab − a− b).

(c) If G is the union of disjoint subgraphs G1 and G2 then q(G) = q(G1)q(G2).

Proof. To prove (a), note that if a ∈ S ⊆ V (G) then the adjacency matrix
of G[S] may be represented by





0 1 0

1 M11 M12

0 M21 M22



 .

Adding the first row to each of those in the second group results in




0 1 0

1 M c
11 M12

0 M21 M22



 ,

the adjacency matrix of Ga[S]. Definition 1 then tells us that

q(G)− β(a)q(G − a)

=
∑

a∈S⊆V (G)

(
∏

s∈S

α(s))(
∏

v 6∈S

β(v))(x − 1)r(G[S])(y − 1)n(G[S])

=
∑

a∈S⊆V (G)

(
∏

s∈S

α(s))(
∏

v 6∈S

β(v))(x − 1)r(G
a[S])(y − 1)n(G

a[S])

= q(Ga)− β(a)q(Ga − a).

The proofs of (b) and (c) are essentially the same as the proofs of the corre-
sponding results in [5].

6

Many properties of the unweighted interlace polynomials extend directly to
the weighted polynomials, as we see in Theorems 7 and 8. It may be a surprise
that some properties of the unweighted interlace polynomials can be signifi-
cantly simplified using vertex weights. For instance, consider a computation
tree representing a recursive implementation of Theorem 7. The tree has two
branches for each application of part (a), three branches for each application
of part (b), and a leaf for each application of part (c). As noted in the proof
of Theorem 7, the three terms of part (b) all incorporate contributions from
the same subsets S ⊆ V (G). The recursive computation calculates these same
contributions three times, on separate branches. This inefficiency can be elim-
inated by rephrasing part (b) of Theorem 7 so that no three-fold branches are
necessary.

Corollary 9 If a and b are loopless neighbors in G then q(G) = β(a)q(G−a)+
α(a)q((Gab − b)′), where (Gab − b)′ is obtained from Gab − b by changing the
weights of a to α′(a) = β(b) and β′(a) = α(b)(x − 1)2.

Proof. Let (Gab − b)′′ be the graph obtained from Gab − b by changing the
weights of a as in Proposition 4, with r1 = β(b) and r2 = α(a)α(b)(x − 1)2 –
β(a)β(b). Then α′′(a) = a(a)β(b) and β′′(a) = α(a)α(b)(x−1)2, so q((Gab−b)′′)
= α(a)q((Gab − b)′). On the other hand, Proposition 4 tells us that

q((Gab − b)′′) = β(b)q(Gab − b) + (α(a)α(b)(x − 1)2 − β(a)β(b))q(Gab − b− a).

If α′(a) = β(b)/(x − 1) and β′(a) = α(b)(x − 1) are used instead of the
weights given in Corollary 9, then the resulting formula q(G) = β(a)q(G− a) +
α(a)(x − 1)q((Gab − b)′) still has only two branches, and bears an interesting
resemblance to part (a) of Theorem 7. However using division to define α′(a)
may occasionally cause some algebraic difficulties, e.g., it complicates the eval-
uation at x = 1, and it prohibits the use of rings in which x − 1 is a divisor of
zero.

Corollary 9 is one of several results in which vertex weights allow us to
extend properties of the unweighted version of qN , seemingly the simplest kind
of interlace polynomial, to the other interlace polynomials. In this instance the
extended property is that of possessing a recursive description represented by
a binary computation tree. Another result of this type is Corollary 10, which
extends Remark 18 of [4]: if a and b are loopless neighbors in G then the
unweighted vertex-nullity interlace polynomials of G and Gab are the same.

Corollary 10 Let a and b be unlooped neighbors in G, and let (Gab)′ be the
weighted graph obtained from Gab by changing the weights of a and b to α′(a) =
β(b), β′(a) = α(b)(x − 1)2, α′(b) = β(a) and β′(b) = α(a)(x − 1)2. Then
(x− 1)2q(G) = q((Gab)′).

Proof. Applying Corollary 9 to (Gab)′, with the roles of a and b reversed,
tells us that q((Gab)′) = β′(b)q((Gab)′ − b) + α′(b)q((((Gab)′)ab − a)′). Observe

7

that (((Gab)′)ab − a)′ has the underlying graph (Gab)ab − a = G− a, and differs
from G−a only in the weights of b, which are given by α′′(b) = β′(a) = α(b)(x−
1)2 and β′′(b) = α′(a)(x−1)2 = β(b)(x−1)2. Consequently α′(b)q((((Gab)′)ab−
a)′) = α′(b)(x − 1)2q(G − a) = β(a)(x − 1)2q(G − a). As β′(b)q((Gab)′ − b) =
α(a)(x − 1)2q((Gab − b)′), the result follows directly from Corollary 9.

If we are confident that division by x − 1 will cause no trouble, Corollary
10 may be restated with a simpler conclusion: using α′(a) = β(b)/(x − 1),
β′(a) = α(b)(x − 1), α′(b) = β(a)/(x − 1) and β′(b) = α(a)(x − 1) yields
q(G) = q((Gab)′).

3 Pendant-twin reductions

Other novel properties of the weighted interlace polynomials arise from a general
observation. Suppose a, b ∈ V (G) happen to have the property that for S ⊆
V (G), the rank and nullity of S are determined by the rank and nullity of
S − {b}, perhaps in different ways according to which of a, b is contained in S.
Then it may be possible to adjust α(a) and β(a) in such a way that the weighted
interlace polynomial of the weight-adjusted version of G− b incorporates all the
information in q(G). The simplest instance of this observation occurs when a
and b give rise to identical rows and columns in the adjacency matrix of G.

Definition 11 Two vertices a, b of G are identical twins if (i) either they are
looped and adjacent or they are unlooped and not adjacent, and (ii) they have
the same neighbors outside {a, b}.

Identical twins are called clones in [7], and unlooped identical twins are
called duplicates in [4] and false twins in [20]. We prefer the present terminology
because the adjective false seems inappropriate, and because we do not know
what we would call non-identical duplicates or clones in Definition 7 below.
The following result extends Proposition 40 of [4], Proposition 4.14 of [20] and
Section 3.1 of [7] to vertex-weighted graphs.

Theorem 12 Suppose a and b are identical twins in G. Let G′ be the graph
obtained from G− b by changing the weights of a: β′(a) = β(a)β(b) and α′(a) =
α(a)β(b) + α(a)α(b)(y − 1) + β(a)α(b). Then q(G) = q(G′).

Proof. If a 6∈ S ⊆ V (G′) then r(G′[S]) = r(G[S]), because the adjacency
matrices are the same. If a ∈ S ⊆ V (G′) then r(G′[S]) = r(G[S]) = r(G[S∪{b}])
= r(G[(S − {a}) ∪ {b}]), because the only difference among the adjacency ma-
trices is that the matrix of G[S ∪ {b}] has two identical rows and columns,
corresponding to a and b. As mentioned above, it is helpful to read α as “in-
cludes” and β as “excludes” so that (for instance) the appearance of β(a)α(b) in
α′(a) indicates that if a ∈ S ⊆ V (G′) then the summand of q(G′) corresponding
to S includes the summand of q(G) corresponding to (S − {a}) ∪ {b}.

Theorem 12 has the following inductive generalization. Suppose k ≥ 1 and
a = b0, b1, ..., bk are identical twins in G. If G′ is the graph obtained from

8

G− b1 − ...− bk by changing the weights of a to

α′(a) =
∑

∅6=S⊆{b0,...,bk}

(
∏

bi∈S

α(bi))(
∏

bj 6∈S

β(bj))(y − 1)|S|−1

and β′(a) =

k
∏

i=0

β(bi),

then q(G) = q(G′). We refer to the process of combining several identical twins
into a single vertex as an identical twin reduction no matter how many identical
twins are combined.

Theorem 13 Suppose b is an unlooped degree-one vertex pendant on a. Let G′

be the graph obtained from G− b by changing the weights of a: α′(a) = α(a)β(b)
and β′(a) = α(a)α(b)(x− 1)2 +β(a)α(b)(y− 1)+β(a)β(b). Then q(G) = q(G′).

Proof. If a ∈ S ⊆ V (G′) then r(G′[S]) = r(G[S]), and if a 6∈ S ⊆ V (G′)
then r(G′[S]) = r(G[S ∪ {a, b}])− 2 = r(G[S ∪ {b}]) = r(G[S]).

If b = b0, b1, ..., bk are unlooped and pendant on a then b0, b1, ..., bk are
identical twins, so we can combine them into a single re-weighted vertex b using
Theorem 12 and then remove b using Theorem 13. We refer to the removal of
any number of unlooped vertices pendant on the same vertex as an unlooped
pendant vertex reduction. Theorem 13 extends Proposition 4.12 of [20] and
Section 3.2 of [7], where collections of pendant vertices are called combs.

A recursive calculation that depends solely on Theorem 7 and Corollary 9
is represented by a mixed binary-ternary computation tree; if Corollary 9 is
always used in place of part (b) of Theorem 7 then the tree will be binary.
Using identical twin and unlooped pendant vertex reductions makes the com-
putation tree smaller, because each time one of these reductions is used, we
avoid splitting the resulting portion of the calculation into branches. Similarly,
a Tutte polynomial computation that incorporates series-parallel reductions and
deletion-contraction operations will generally result in a smaller formula than
a computation that involves only deletion-contraction operations can provide.
This latter observation was made precise in [28]: computing the Tutte polyno-
mial of a matroid M using series-parallel reductions and deletion-contraction
operations will result in an expression with at least β(M) terms, where β(M) is
Crapo’s β invariant [18]; moreover if β(M) > 0 the lower bound is attainable.
(This result is merely the extension to the Tutte polynomial of the important
theory of reliability domination; see [9, 15] for expositions.) For interlace poly-
nomials, analogous lower bounds are derived from the unweighted vertex-nullity
polynomial qN (Gu). The coefficient of y in qN (Gu) is denoted γ(G) as in [20],
and the evaluation qN (Gu)(0) is denoted ε(G).

Theorem 14 If part (c) of Theorem 7 is applied only to loopless graphs then a
computation of q(G) using Corollary 9 and Theorems 7, 12 and 13 is represented

9

by a computation tree with no fewer than 1
2ε(G) leaves. If G is a simple graph

then the computation tree has no fewer than 1
2γ(G) leaves.

Proof. We quickly review some elementary properties of qN (Gu) from [3,
4, 5, 20]. This polynomial is described recursively as follows. If G has a loop at
a then qN (Gu) = qN ((Gu)a−a) + qN (Gu−a), if a and b are loopless neighbors
then qN (Gu) = qN (Gu − a) + qN ((Gu)ab − b), and if En is the edgeless n-
vertex graph then qN (Eu

n) = yn. The latter includes the empty graph E0 with
qN (Eu

0) = 1. It follows by induction on the number of vertices that no graph
has any negative coefficient in qN (Gu), and hence every graph has γ(G) ≥ 0
and ε(G) ≥ 0. Moreover, every nonempty simple graph has ε(G) = 0 and every
disconnected simple graph has γ(G) = 0.

Theorem 14 is certainly true for En, as
1
2γ(En),

1
2ε(En) ≤ 1.

Proceeding inductively, observe that if Corollary 9 or part (a) or (b) of Theo-
rem 7 is applied to a graph H represented by a certain node of the computation
tree, and H1 and H2 are the graphs represented by the (first two) resulting
branch nodes, then qN (Hu) = qN (Hu

1) + qN (Hu
2); certainly then 1

2ε(H) =
1
2ε(H1) +

1
2ε(H2). (By the way, we call vertices of the computation tree nodes

in order to distinguish them from vertices of G.) If Theorem 12 or 13 is applied
to remove a vertex b from a graph H then 1

2qN (Hu)(0) = 1
2qN (Hu − b)(0),

because the formulas of Theorems 12 and 13 yield α′(a) = β′(a) = 1 when α(a)
= β(a) = α(b) = β(b) = 1, x = 2 and y = 0.

It remains to consider the special case involving simple graphs. We actually
prove a slightly different result, namely: if G is simple then the portion of the
computation tree involving only nodes corresponding to connected graphs has
no fewer than 1

2γ(G) leaves. If G is disconnected then γ(G) = 0 so G satisfies
the result trivially. If G is a connected, simple graph with n ≤ 2 then G satisfies
the result because 1

2γ(G) ≤ 1. Proceeding inductively, observe that if Corollary
9 or Theorem 7 (b) is applied to a connected graph H represented by a certain
node of the computation tree, and H1 and H2 are the graphs represented by
the (first two) resulting branch nodes, then qN (Hu) = qN (Hu

1) + qN (Hu
2). It

follows that 1
2γ(H) = 1

2γ(H1) +
1
2γ(H2). If Theorem 12 or Theorem 13 is used

to remove a vertex b from a connected, simple graph H with 3 or more vertices
then γ(H) = γ(H − b), by Corollary 4.17 of [20].

Theorem 14 is of limited value because the computations discussed are not
optimal. The restriction that part (c) of Theorem 7 is only applied to loopless
graphs is an obvious inefficiency. In addition, if some (combinations of) weights
are 0 then it would be natural to simply ignore the corresponding parts of the
computation. There are also other useful twin reductions that do not fall under
Theorem 14.

Definition 15 Two vertices a, b of G are fraternal twins if (i) either they are
looped and nonadjacent or they are unlooped and adjacent, and (ii) they have
the same neighbors outside {a, b}.

10

Unlooped fraternal twins are called true twins in [20], but we prefer the
present terminology because the rows and columns of the adjacency matrix
corresponding to fraternal twins are not quite the same. Here is an extension
of Proposition 4.15 of [20] to weighted graphs.

Theorem 16 Suppose a and b are fraternal twins in G. Let G′ be the graph
obtained from G− b by changing the weights of a: α′(a) = α(a)β(b) + β(a)α(b)
and β′(a) = β(a)β(b) + α(a)α(b)(x − 1)2. Then q(G) = q(G′).

Proof. If a ∈ S ⊆ V (G′) then r(G′[S]) = r(G[S]) = r(G[(S ∪ {b})− {a}]),
because the adjacency matrices are the same. If a 6∈ S ⊆ V (G′) then r(G′[S])
= r(G[S]) = r(G[S ∪ {a, b}])− 2.

Theorem 16 has the following inductive generalization. Suppose k ≥ 1 and
a = b0, b1, ..., bk are fraternal twins in G. If G′ is the graph obtained from
G− b1 − ...− bk by changing the weights of a to

α′(a) =
∑

S⊆{b0,...,bk}
|S| odd

(
∏

bi∈S

α(bi))(
∏

bj 6∈S

β(bj))(x − 1)|S|−1

and β′(a) =
∑

S⊆{b0,...,bk}
|S| even

(
∏

bi∈S

α(bi))(
∏

bj 6∈S

β(bj))(x − 1)|S|,

then q(G) = q(G′). We refer to the process of combining several fraternal twins
into a single vertex as a fraternal twin reduction no matter how many fraternal
twins are combined.

In general, fraternal twin reductions are just as useful as identical twin re-
ductions. However, as noted in Proposition 38 of [4] and Corollary 4.16 of [20]
they have the effect of multiplying the unweighted vertex-nullity polynomial
by powers of 2. (Observe that if α(a) = β(a) = α(b) = β(b) = 1 and x = 2
then Theorem 16 gives α′(a) = β′(a) = 2.) Consequently the lower bounds of
Theorem 14 are not valid for computations that utilize Theorem 16 along with
Corollary 9 and Theorems 7, 12 and 13.

If we are given a reduction of a graph G to disconnected vertices using twin
reductions and unlooped pendant vertex reductions, then Theorems 12, 13 and
16 describe q(G) in linear time – simply update the vertex weights at each
step, and at the end refer to part (c) of Theorem 7. If we are not given such
a reduction then determining whether or not any such reduction exists, and
finding one if possible, can be accomplished in polynomial time: as in Corollary
5.3 of [20], simply search V (G) repeatedly for unlooped degree-one vertices and
pairs of vertices a, b with the same neighbors outside {a, b}. Hence if G has
such a reduction then in polynomial time, Theorems 12, 13 and 16 provide a
description of q(G) that completely avoids the branching formulas of Corollary
9 and parts (a) and (b) of Theorem 7. This observation extends Theorem 6.4 of

11

[20] from qN to q and from simple graphs that can be analyzed without fraternal
twin reductions to looped graphs that can be analyzed using all three types of
reductions:

Theorem 17 If a graph G can be reduced to a collection of disconnected vertices
using unlooped pendant vertex reductions and the two types of twin reductions
then Theorems 12, 13 and 16 provide a polynomial-time description of q(G).

The theorem refers to a description rather than a computation because we
have ignored the cost of arithmetic operations in the ring R. In case R = Q
arithmetic operations have low cost, and describing a weighted “polynomial”
q(G) is the same as computing an evaluation of the unweighted polynomial q(G).
The full unweighted polynomial may be recovered from several evaluations by
interpolation, so the theorem provides a polynomial-time computation of the un-
weighted polynomial. In more complicated rings like Z[x, y, α1, .., αn, β1, ..., βn]
arithmetic operations may be so expensive as to prohibit polynomial-time com-
putation of entire weighted polynomials. A thorough discussion of these matters
is given by Courcelle [16].

4 Composition

In this section we reformulate and extend some results of Arratia, Bollobás
and Sorkin [4] regarding substituted graphs, using the following version of a
construction introduced by Cunningham [19].

Definition 18 A vertex-weighted graph G is the composition of vertex-weighted
graphs H and K, G = H ∗K, if the following conditions hold.

(a) V (H) ∩ V (K) consists of a single unlooped vertex a.
(b) The vertex a is unweighted in both H and K, i.e., α(a) = 1 = β(a) in

H and K.
(c) V (G) = (V (H) ∪ V (K))− a, and the vertices of G inherit their weights

from H and K.
(d) E(G) = E(H) ∪ E(K) ∪ {vw|va ∈ E(G) and aw ∈ E(H)}.

Requiring a to be unlooped and unweighted in both H and K guarantees
that no information is lost when we remove a in constructing G.

Definition 18 includes several other familiar notions. If a is isolated in H or
K then H ∗K is the disjoint union of H−a and K−a. If a is adjacent to every
other vertex of H and K then H ∗K is also denoted (H − a) + (K − a). This
is traditionally called a “join” but that term has recently been used for general
compositions [17]. If a is adjacent to every other vertex of H then H ∗K is the
graph obtained by substituting H − a for a in K. If a is adjacent to every other
vertex of H and H − a is edgeless or complete then the (un)looped vertices of
H − a are twins in H ∗K.

The following observation will be useful.

12

 a

Figure 1: Composition of graphs.

Proposition 19 Suppose two graphs Γ1 and Γ2 are identical except for the
weights of a single vertex a, and let Γ be the graph that is identical to both Γ1

and Γ2 except for αΓ(a) = αΓ1
(a) + αΓ2

(a) and βΓ(a) = βΓ1
(a) + βΓ2

(a). Then
q(Γ1) + q(Γ2) = q(Γ).

Let a be an unweighted vertex of a simple vertex-weighted graph H , and let
H1 and H2 be the full subgraphs of H− a induced by the neighbors (resp. non-
neighbors) of a. Any weighted interlace polynomial q(H ∗K) may be analyzed
in the following way.

Step 1. Eliminate all edges between vertices ofH−a using pivots and weight-
changes as in Corollary 9. (In general there will be many different sequences of
pivots that may be used; this lack of uniqueness is not important in the analysis.)
The assignments of individual vertices of H to H1 and H2 may change during
this process, and vertex weights may also change; but these reassignments and
weight changes will be the same for all graphs K. As in the proof of Proposition
39 of [4] these pivots will not affect the internal structure of K, because no
two vertices of K have distinct, nonempty sets of neighbors in H . Here the
phrase “internal structure” refers to vertex weights, the positions of loops, and
adjacencies, including adjacencies between a and other vertices of K.

Step 2. When Step 1 is complete, q(H ∗K) is expressed as a sum in which
each summand is the product of an initial multiplying factor and the weighted
interlace polynomial q(H ′ ∗ K) of a graph in which every edge is incident on
a vertex of K − a. If v ∈ V (H ′

2) then v is isolated, so the only effect of v is
to multiply that summand by q({v}) = α(v)(y − 1) + β(v). This same effect
is realized by removing v and incorporating α(v)(y − 1) + β(v) into the initial
multiplying factor, so we may assume that every summand has H ′

2 = ∅. In a
summand with |V (H ′

1)| > 1 the vertices of H ′
1 are all identical twins, and may

be consolidated into a single vertex a using Theorem 12. In a summand with
|V (H ′

1)| = 0 a single vertex a ∈ V (H ′
1) may be introduced with α(a) = 0 and

β(a) = 1; this will not affect the value of the corresponding summand. As in
Step 1, these manipulations are the same for all K.

13

Step 3. The weighted interlace polynomial q(H ∗ K) is now expressed as
a sum in which each summand is the product of an initial multiplying factor
and a weighted interlace polynomial q(K ′) in which K ′ differs from K only in
the weights of a. In each summand we multiply the α and β weights of a by
the initial multiplying factor. This has the effect of multiplying q(K ′) by that
factor, so the summand is now simply q(K ′). Proposition 19 tells us that the
sum is equal to a single weighted interlace polynomial q(K ′), where α(a) and
β(a) are obtained by adding together the α and β weights of a in the various
summands.

We deduce that there are weights α(a) and β(a) that depend only on H and
a, and have the following property: In every instance of Definition 18 involving
H , the interlace polynomial q(H ∗K) equals q(K ′), where K ′ is obtained from
K by using α(a) and β(a) as weights for a. Finding explicit formulas for these
weights is not difficult.

Theorem 20 Let H be a vertex-weighted simple graph with an unweighted ver-
tex a. Then every composition H ∗ K has q(H ∗ K) = q(K ′), where K ′ is
obtained from K by using the following weights for a.

α(a) =
q(H)− yq(H − a)

(x− 1)2 − (y − 1)2

β(a) =
((x − 1)2 + y − 1)q(H − a)− (y − 1)q(H)

(x− 1)2 − (y − 1)2

Proof. With V (K) = {a}, we have q(H − a) = q(H ∗ K) = q(K ′) =
β(a) + (y − 1)α(a). With K consisting of two adjacent, unlooped, unweighted
vertices a and v we have q(H) = q(H∗K) = q(K ′) = ((x−1)2+y−1)α(a)+yβ(a).
The stated formulas for α(a) and β(a) follow.

In case (x−1)2−(y−1)2 might be a zero divisor in the ring R, one can avoid
any difficulty with the formulas of Theorem 20 by first evaluating them in the
polynomial ring Z[x, y, α1, .., αn, β1, ..., βn], and then evaluating the resulting
division-free formulas in R.

Theorem 20 concerns compositions H ∗ K in which H is simple. If H has
looped vertices, a similar analysis requires two new steps.

Step 0. Begin by removing all loops in H − a using local complementation
as in part (a) of Theorem 7. The result is a description of q(H ∗K) as a sum
in which each summand is the product of an initial factor and an interlace
polynomial q(H ′ ∗K) or q(H ′ ∗Ka), with no loops in H ′.

Step 4. After applying steps 1 - 3 to each of these summands, collect terms
to obtain a formula

q(H ∗K) = q(K ′) + q((Ka)′).

14

In order to distinguish the two terms on the right-hand side we denote by ac the
copy of a in Ka. It might seem that we now have to determine four unknowns,
namely the vertex weights α(a), α(ac), β(a) and β(ac) It turns out though that
these unknowns are not independent. There is an obvious isomorphism between
(K ′)a and Ka, and consequently

q((K ′)a)− β(a)q((K ′)a − a)

may be obtained from

q((Ka)′)− β(ac)q((K
a)′ − ac)

simply by replacing α(ac) with α(a). Theorem 8 tells us that

q(K ′)− β(a)q(K ′ − a) = q((K ′)a)− β(a)q((K ′)a − a),

so
q(K ′)− β(a)q(K ′ − a)

may be obtained from

q((Ka)′)− β(ac)q((K
a)′ − ac)

by replacing α(ac) with α(a). That is, the coefficient of α(a) in q(K ′) is precisely
the same as the coefficient of α(ac) in q((Ka)′). It follows that the sum q(K ′)
+ q((Ka)′) is unchanged if we replace α(a) by α(a) + α(ac) and replace α(ac)
by 0.

Theorem 21 Let H be a vertex-weighted graph with an unweighted, unlooped
vertex a. Then H and a determine weights α(a), β(a) and β(ac) such that every
composition H ∗K has q(H ∗K) = q(K ′)+ q((Ka)′), where K ′ is obtained from
K by using α(a) and β(a) as weights for a and (Ka)′ is obtained from Ka by
using α(ac) = 0 and β(ac) as weights for ac, the copy of a in (Ka)′.

Formulas for the three weights mentioned in Theorem 21 may be derived
from three instances of the theorem. We use H − a and H as in Theorem
20, and also Hℓ, the graph obtained from H by attaching a loop at a. These
correspond respectively to compositions of H with graphs K1,K2,K3 such that
V (K1) = {a}; V (K2) = {a, v} with v an unweighted, unlooped neighbor of a;
and V (K3) = {a, ℓ} with ℓ an unweighted, looped neighbor of a. Definition 1
gives the following values.

q(H − a) = q(K ′
1) + q((Ka

1)
′) = (y − 1)α(a) + β(a) + β(ac)

q(H) = q(K ′
2) + q((Ka

2)
′) = ((x − 1)2 + y − 1)α(a) + yβ(a) + xβ(ac)

q(Hℓ) = q(K ′
3) + q((Ka

3)
′) = ((x− 1)2 + y − 1)α(a) + xβ(a) + yβ(ac)

15

We deduce these formulas.

α(a) =
(x+ y)q(H − a)− q(H)− q(Hℓ)

(x+ y)(y − 1)− 2((x− 1)2 + y − 1)

β(a)− β(ac) =
q(H)− q(Hℓ)

y − x

β(a) + β(ac) =
2((x− 1)2 + y − 1)q(H − a)− (y − 1)

(

q(H) + q(Hℓ)
)

2((x− 1)2 + y − 1)− (y − 1)(x+ y)

Separate formulas for β(a) and β(ac) are derived in the obvious ways by adding
and subtracting the last two. As before, possible problems with denominators
may be avoided by first evaluating the formulas in Z[x, y, α1, .., αn, β1, ..., βn].

We close this section with different formulas for the weights α(a), β(a) and
β(ac) that appear in Theorems 20 and 21. Suppose H has an unweighted,
unlooped vertex a. Let N(a) denote the open neighborhood of a, i.e., the
set containing the vertices v 6= a ∈ V (H) that neighbor a. Given a subset
S ⊆ V (H − a) let ρ = ρS,a (resp. κ = κS,a) be the row (resp. column) vector
with entries indexed by {i : vi ∈ S} whose ith entry is 1 or 0 according to
whether vi ∈ N(A) or vi 6∈ N(a). Also let M = MS be the adjacency matrix of
H [S]. Note that r(M) ≤ r

(

M κ
)

≤ r(M) + 1 and

r(M) ≤ r

(

M κ
ρ 0

)

, r

(

M κ
ρ 1

)

≤ r(M) + 2

because adjoining a single row or column to a matrix raises the rank by 0 or 1.

Definition 22 The type of S with respect to a is defined as follows.

S is of type 1 if r(M) = r

(

M κ
ρ 0

)

= r

(

M κ
ρ 1

)

− 1.

S is of type 2 if r(M) + 2 = r

(

M κ
ρ 0

)

= r

(

M κ
ρ 1

)

.

S is of type 3 if r(M) = r

(

M κ
ρ 1

)

= r

(

M κ
ρ 0

)

− 1.

Lemma 23 Every S ⊆ V (H − a) is of one of these types. Moreover, if a has
no looped neighbor then there is no S ⊆ V (H − a) of type 3.

Proof. The fact that every S ⊆ V (H − a) is of type 1, 2 or 3 appears in
Lemma 2 of [8].

16

Suppose S is of type 3, so

r(M) + 1 = r

(

M κ
ρ 0

)

.

The row vector
(

ρ 0
)

cannot be a sum of rows of
(

M κ
)

. For if it were then
ρ would be the corresponding sum of rows of M , and by symmetry κ would be
the corresponding sum of columns of M . Consequently it would follow that

r(M) = r
(

M κ
)

= r

(

M κ
ρ 0

)

.

On the other hand, ρ must be the sum of the rows of M corresponding to the
elements of some subset T ⊆ S, for if it were not then it would follow that

r(M) + 1 = r

(

M
ρ

)

= r
(

M κ
)

= r

(

M κ
ρ 0

)

− 1.

Every such T must contain an odd number of neighbors of a, to avoid giving a
sum of rows of

(

M κ
)

equal to
(

ρ 0
)

.
Choose such a T , and consider the induced subgraph H [T ∩ N(a)]. As the

sum of the rows of M corresponding to elements of T is ρ, the sum of the rows
of the adjacency matrix of H [T ∩N(a)] is the row vector (1...1). |T ∩N(a)| is
odd, so the adjacency matrix of H [T ∩N(a)] has an odd number of entries equal
to 1. The matrix is symmetric, so at least one of these entries must appear on
the diagonal. That is, at least one vertex of H [T ∩N(a)] is looped.

For S ⊆ V (H−a) let Ma = Ma
S be the matrix obtained from M by toggling

every entry mij that has vi, vj ∈ N(a). Then r
(

M κ
)

= r
(

Ma κ
)

because
the first matrix is transformed into the second by adding the last column to every
column corresponding to a neighbor of a. Similarly, adding the last column of
the first matrix below to every column corresponding to a neighbor of a tells us
that

r

(

M κ
ρ 1

)

= r

(

Ma κ
0 1

)

= 1 + r(Ma).

Consequently, Definition 22 may be restated using the relationship between
r(M) and r(Ma): if S is of type 1 then r(M) = r(Ma), if S is of type 2 then
r(M) = r(Ma)− 1, and if S is of type 3 then r(M) = r(Ma) + 1.

Proposition 24 For i ∈ {1, 2, 3} let

qi(H − a) =
∑

S⊆V (H−a)
of type i

(
∏

s∈S

α(s))(
∏

v 6∈S

β(v))(x − 1)r((H−a)[S])(y − 1)n((H−a)[S]).

17

Then the following equations hold.

q(H − a) = q1(H − a) + q2(H − a) + q3(H − a)

q(H) = yq1(H − a) +

(

1 +
(x− 1)2

y − 1

)

q2(H − a) + xq3(H − a)

q(Hℓ) = xq1(H − a) +

(

1 +
(x − 1)2

y − 1

)

q2(H − a) + yq3(H − a)

Also,

q(Ha − a) = q1(H − a) +

(

x− 1

y − 1

)

q2(H − a) +

(

y − 1

x− 1

)

q3(H − a).

Proof. The first equality is obvious. For the second, note that each S ⊆
V (H − a) gives rise to two subsets of V (H), namely S and S ∪ {a}; these

correspond to the adjacency matrices M and

(

M κ
ρ 0

)

. Similarly, the third

equality is derived by considering the contributions of two adjacency matrices

for each S ⊆ V (H − a), namely M and

(

M κ
ρ 1

)

. The last equality follows

from the discussion preceding the proposition.

Corollary 25 The weights mentioned in Theorems 20 and 21 are β(a) = q1(H−
a), α(a) = q2(H − a)/(y − 1) and β(ac) = q3(H − a). In particular, β(ac) = 0
if a has no looped neighbor.

Proof. The corollary follows from Proposition 24 and the formulas given in
Theorem 20 and immediately after Theorem 21.

5 A characterization of simple graphs

In this section we focus our attention on the unweighted vertex-nullity polyno-
mial.

Proposition 26 If G is a connected, unweighted graph with at least one looped
vertex then ε(G) = qN (G)(0) > 1.

Proof. The proposition is certainly true if G has n ≤ 2 vertices, as all three
such graphs have ε(G) = 2. The argument proceeds by induction on n ≥ 3.
Recall that ε(G) ≥ 0 for every graph G, and let a be a looped vertex of G.
Then qN (G) = qN (G− a) + qN (Ga − a), so ε(G) ≥ max{ε(G− a), ε(Ga − a)}.

Suppose a is not a cutpoint of G. If G has some looped vertex other than a
then the inductive hypothesis implies that ε(G−a) > 1. If G has no looped ver-
tex other than a then every neighbor of a is looped in Ga−a. Every component

18

of Ga−a contains at least one neighbor of a, so the inductive hypothesis implies
that ε(C) > 1 for every component C ofGa−a. Hence ε(Ga−a) =

∏

C ε(C) > 1.
Suppose now that G has a looped cutpoint a. For each component C of G−a

and each vertex v ∈ N(a) that lies in some other component of G− a, no edge
connecting v to an element of N(a)∩V (C) appears in G−a. Consequently every
such edge appears in Ga − a, so all of N(a) is contained in a single component
of Ga − a. As G is connected, this implies that Ga − a is also connected. Hence
if any neighbor of a is unlooped in G, Ga−a is a connected graph with a looped
vertex and the inductive hypothesis implies that ε(Ga−a) > 1. If instead every
neighbor of a is looped in G, then every component C of G − a has a looped
vertex and the inductive hypothesis implies ε(G− a) =

∏

C ε(C) > 1.

Corollary 27 An unweighted graph G has ε(G) > 0 if and only if G has no
nonempty simple component.

Proof. As noted in Remark 20 of [4], every nonempty simple graph has
ε(G) = 0. It follows that every graph with a nonempty simple component also
has ε(G) = 0. On the other hand, Proposition 26 and the fact that ε(E0) =
1 together imply that every graph with no nonempty simple component has
ε(G) > 0.

Corollary 28 Let G be an unweighted graph, and let Gc be its complement, i.e.,
the graph with V (Gc) = V (G) whose edges (including loops) are precisely the
edges absent in G. Then the following are equivalent: G is simple, qN (G+Eu

1) =
yqN(Gc) and y|qN (G+ Eu

1).

Proof. Suppose first that G is simple, and let H = G + Eu
1 with a the

vertex of Eu
1 . Let K be the two-vertex graph with V (K) = {a, ℓ} in which ℓ is

an unweighted, looped neighbor of a. Theorem 20 tells us that

q(H ∗K) = q(K ′) = xβ(a) + ((x− 1)2 + y − 1)α(a).

On the other hand, the recursive description of q [5] tells us that

q(H ∗K) = q((H ∗K)− ℓ) + (x− 1)q((H ∗K)ℓ − ℓ) = q(G) + (x− 1)q(Gc).

Recalling that q(G) = q(H − a) = β(a) + (y − 1)α(a), we see that

0 = q(H ∗K)− q(H ∗K) = (x− 1)β(a) + (x− 1)2α(a)− (x− 1)q(Gc)

and consequently q(Gc) = β(a)+ (x− 1)α(a). Recalling that q(G+Eu
1) = q(H)

= ((x− 1)2 + y − 1)α(a) + yβ(a), we see that

qN (G+ Eu
1) = q(G+ Eu

1)|x=2 = y (α(a) + β(a)) |x=2 = yq(Gc)|x=2 = yqN (Gc).

Now suppose that G is not simple. Then G has a looped vertex, and so
does G+Eu

1 . As G+Eu
1 is connected, Corollary 27 states that ε(G+Eu

1) > 0;
consequently y ∤ qN (G+ Eu

1).

19

6 Trees

A combinatorial description of the interlace polynomials of trees and forests is
given in [2]. In order to motivate the next section we sketch this description
briefly here, omitting details and proofs. Recall that a tree T is rooted by
specifying a root vertex r ∈ V (T). Each non-root vertex v ∈ V (T) then has a
unique parent p(v), a neighbor whose distance from r is less than the distance
from r to v. The elements of p−1({p(v)}) are the children of p(v), and the
children of p(v) other than v itself are siblings of v. An ordered tree is a rooted
tree given with an order on the set of children of each parent vertex; non-root
vertices may then have earlier siblings and later siblings. A set of vertices that
contains no adjacent pair is independent, and a set of vertices dominates a vertex
v if it contains v or contains some neighbor of v.

Definition 29 An earlier sibling cover (or es-cover) in an ordered tree T is an
independent set I that dominates r and has the property that for every non-root
vertex v ∈ I, every earlier sibling of v is dominated by I.

Definition 30 For integers s and t the es-number cs,t(T) is the number of
s-element es-covers in T whose non-root elements have t different parents.

If T ′ is a subtree of T and r ∈ V (T ′) then we presume that the children of
each parent vertex v in T ′ are ordered by restricting the order of the children of
v in T . With this convention, it is easy to verify that the earlier sibling covers
in large trees arise from earlier sibling covers in subtrees.

Lemma 31 Let T be an ordered tree with a leaf ℓ such that p(ℓ) 6= r 6= ℓ, all
the siblings of ℓ are leaves, and ℓ has no later siblings. Then

{es-covers I in T with ℓ 6∈ I} = {es-covers in T − ℓ}

and

{es-covers I in T with ℓ ∈ I}

= {unions p−1({p(ℓ)}) ∪ I with I an es-cover in T − p(ℓ)− p−1({p(ℓ)})}.

Lemma 31 is the key to an inductive proof that the terms in the definition
of q(T) can be collected into sub-totals corresponding to earlier sibling covers.

Definition 32 Let T be an ordered tree with vertex weights, and let I be an
es-cover in T . Let

Ir = {v ∈ I : either v = r or I contains a later sibling of v},

Il = {v ∈ I : v 6= r and I contains no later sibling of v}, and

I ′c = {v 6∈ I : I contains a child of v}

20

For each vertex v define the I-weight wI(v) as follows:

wI(v) =



















β(v) + α(v)(y − 1) if v ∈ Ir

α(v) ·
(

(y − 1)β(p(v)) + (x− 1)2α(p(v))
)

if v ∈ Il

1 if v ∈ I ′c
β(v) if v /∈ I and v /∈ I ′c.

The product
∏

v∈V (T)

wI(v)

is the total weight of I in T , denoted wT (I).

Theorem 33 If T is an ordered tree with vertex weights then

q(T) =
∑

I an es−cover

wT (I).

Proof. If T has no more than one vertex of degree ≥ 2, it is not difficult to
verify the theorem directly. If T has more than one vertex of degree ≥ 2 then
the theorem follows inductively from Theorem 7 and Corollary 9 using Lemma
31, as detailed in [2].

Setting α ≡ 1 and β ≡ 1 we deduce that the unweighted interlace polynomial
of a tree is determined by a simple formula involving earlier sibling covers.

Corollary 34 If T is a tree then the unweighted interlace polynomial of T is

∑

s,t

cs,t(T) · y
s−t(y − 1 + (x− 1)2)t.

As the interlace polynomials are multiplicative on disjoint unions, these re-
sults extend directly to disconnected forests.

7 Algorithmic activities

The Tutte polynomial is a very useful invariant of graphs and matroids, which
incorporates a great deal of information and can be defined in several different
ways; see [10], [29] and [30] for more detailed discussions than we provide here.
One of its definitions is given in Definitions 35 and 36.

Definition 35 Suppose G is an unweighted graph with E(G) = {e1, ..., em},
and T is a maximal spanning forest of G. An element ei 6∈ E(T) is externally
active with respect to T if i is the least index of an element of the unique circuit
contained in E(T) ∪ {ei}. An element ei ∈ E(T) is internally active with
respect to T if i is the least index of an element of the unique cutset contained
in (E(G)−E(T))∪{ei}. The numbers of edges that are externally and internally
active with respect to T are denoted e(T) and i(T), respectively.

21

Definition 36 If G is an unweighted graph with E(G) = {e1, ..., em} then the
Tutte polynomial of G is

t(G) =
∑

T

xi(T)ye(T).

Theorem 33 and Corollary 34 bear a strong resemblance to this formula,
with earlier sibling covers in rooted trees replacing maximal spanning forests in
arbitrary graphs. We do not know whether there is a combinatorial analogue
of Definition 36 that describes the interlace polynomials of an arbitrary graph,
but there is an algorithmic analogue. Before presenting it, we recall another
definition of the Tutte polynomial.

Definition 37 If G is an unweighted graph then the Tutte polynomial t(G) is an
element of the polynomial ring Z[x, y] determined recursively by these properties.

(a) If e ∈ E(G) is neither a loop nor an isthmus then t(G) = t(G − e) +
t(G/e).

(b) If λ ∈ E(G) is a loop then t(G) = yt(G− λ).
(c) If β ∈ E(G) is an isthmus of G then t(G) = xt(G/β).
(d) For any positive integer n, t(En) = 1.

To recursively calculate t(G) one simply chooses an arbitrary edge of G, and
applies the appropriate part of Definition 37; this process is repeated as many
times as necessary. Such a computation is represented by a computation tree
in which a node that represents an instance of part (a) has two children and a
node that represents an instance of part (b) or (c) has only one.

Proposition 38 Let G be a graph with E(G) = {e1, ..., em}, and consider the
recursive implementation of Definition 37 in which em is removed first, then
em−1 is removed in all branches, then em−2 is removed in all branches, and
so on. The leaves of the computation tree representing this implementation
correspond to the maximal spanning forests of G, with the leaf corresponding
to T resulting from the portion of the computation in which edges of T are
contracted and elements of E(G)− E(T) are deleted. A node of this portion of
the computation tree represents the removal of an active edge if and only if it
has precisely one child.

Proof. The proposition is implicit in the fact that Definition 37 and Defini-
tion 36 both yield t(G), so it appears implicitly in just about every presentation
of the Tutte polynomial. See Theorem IX. 65 of [29] or Theorem X.10 of [10],
for instance. Explicit discussions of the connection between activities and com-
putation are less common in the literature, though there are some [6, 21, 22].

The proof is a direct induction on |E(G)|. If em is a loop then the maximal
spanning forests of G and G − em coincide, and the computation tree for t(G)
is obtained from the computation tree for t(G − em) by attaching a new root
node of degree 1, representing the removal of em. If em is an isthmus then
the maximal spanning forests of G and G/em correspond, and the computation

22

tree for t(G) is obtained from the computation tree for t(G/em) by attaching
a new root node of degree 1. Otherwise, the maximal spanning forests of G
that contain em correspond to the maximal spanning forests of G/em, and the
maximal spanning forests of G that do not contain em are the maximal spanning
forests of G − em. The computation tree for t(G) consists of the root and two
disjoint subtrees that are the computation trees for t(G/em) and t(G− em).

Definition 35 defines active edges using the structure of G, and this leads to
Definition 36’s description of t(G) as a generating function for maximal spanning
forests. Proposition 38 shows that we may also see activity from an algorithmic
viewpoint: the external activity of a particular e /∈ E(T) is revealed in the
fact that one step of a calculation of t(G) involves removing e using part (b)
of Definition 37 rather than part (a). This distinction affects the result of the
computation, so it would be important even if activity could not be conveniently
described using the structure of G, or did not contribute to a convenient closed
form for t(G).

Here is an analogue of Definition 37 for the weighted interlace polynomial.

Definition 39 If G is a weighted graph then q(G) is determined recursively by
the following properties.

(a) If a is a looped vertex then

q(G) = β(a)q(G − a) + α(a)(x − 1)q(Ga − a).

(b) If a and b are loopless neighbors in G then

q(G) = β(a)q(G − a) + α(a)q((Gab − b)′),

where (Gab−b)′ is obtained from Gab−b by changing the weights of a to α′(a) =
β(b) and β′(a) = α(b)(x − 1)2.

(c) If a is isolated and looped then q(G) = (α(a)(x − 1) + β(a))q(G − a).
(d) If a is isolated and unlooped then q(G) = (α(a)(y − 1) + β(a))q(G − a).
(e) The empty graph ∅ has q(∅) = 1.

The preceding discussion of activities and the Tutte polynomial suggests the
following.

Definition 40 A node of a computation tree representing a recursive implemen-
tation of Definition 39 is active if it has precisely one child, i.e., if it represents
an application of part (c) or part (d).

An “activities formula” for q(G) arises directly from a computation tree
representing an implementation of Definition 39. The formula has one summand
for each leaf of the computation tree (each call to part (e) of Definition 39),
representing the product of the coefficients contributed by the nodes in the
portion of the computation tree that gives rise to that leaf. Active and non-
active nodes contribute different coefficients.

23

If G is a rooted tree then the formulas of Theorem 33 and its corollaries are
activities formulas.

Proposition 41 Let T be a rooted tree with root r, and consider a recursive
implementation of Definition 39 structured as follows. If possible, apply part (d)
of Definition 39; if not and there is a parent vertex other than r then apply part
(b) with a leaf of the type denoted ℓ in Lemma 31 as a; otherwise apply part (b)
with the last child of r as a. The leaves of the computation tree representing this
implementation correspond to the earlier sibling covers of T , with the es-cover
I corresponding to a given leaf constructed from the portion of the computation
that gives rise to that leaf as follows: an occurrence of part (d) of Definition 39
contributes its a to I, and an occurrence of the q((Gab − b)′) branch of part (b)
contributes its a to I .

Proof. If T has no vertex other than r then {r} is the only es-cover in T ,
and the computation consists simply of a single call to part (e) of Definition 39.
If T contains no parent vertex other than r and a is the last child of r, then
the es-covers in T include V (T)−{r} and the es-covers of T − a. The first step
of the computation is an application of part (b) of Definition 39 with b = r.
The inductive hypothesis applies to T − a, and the branch of the computation
corresponding to (T ab− b)′ = (T − r)′ consists solely of calls to part (d) because
every vertex of T −r is isolated; consequently the latter part of the computation
tree contains only one leaf, corresponding to V (T)−{r}. If T contains a parent
vertex other than r, then the first step of the computation is an application
of part (b) of Definition 39 with a = ℓ as in Lemma 31, and b = p(ℓ). The
computation tree contains a single node representing this first step and also two
subtrees, one corresponding to T − a = T − ℓ and the other corresponding to
(T ab − b)′ = (T − p(ℓ))′. The proposition follows inductively from Lemma 31.

We do not know whether or not it is possible to reformulate Definition 40 so
that it always refers to G instead of a computation tree. Such a reformulation
would certainly be valuable, as the resulting activities formulas would shed light
on the combinatorial significance of the interlace polynomials.

Definition 40 extends directly to computation trees representing implemen-
tations of other recursions. For instance, if Definition 39 is augmented by in-
corporating pendant-twin reductions then the resulting computation trees will
have active nodes representing these reductions, in addition to active nodes
representing parts (c) and (d) of Definition 39.

Acknowledgments

We are grateful to M. Bläser, B. Courcelle, J. A. Ellis-Monaghan, G. Gordon,
C. Hoffmann and an anonymous referee for advice and encouragement. We also
appreciate the support of Lafayette College.

24

References

[1] Aigner, M. and van der Holst, H. (2004) Interlace polynomials. Linear Alg.
Appl. 377 11-30.

[2] Anderson, C., Cutler, J. D., Radcliffe, A. J., and Traldi, L.
On the interlace polynomials of forests, preprint, available at
http://www.lafayette.edu/˜traldil.

[3] Arratia, R., Bollobás, B., and Sorkin, G. B. (2000) The interlace poly-
nomial: A new graph polynomial. In Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms (San Francisco, 2000), As-
sociation for Computing Machinery, New York, ps. 237-245.

[4] Arratia, R., Bollobás, B., and Sorkin, G. B. (2004) The interlace polynomial
of a graph. J. Combin. Theory Ser. B 92 199-233.

[5] Arratia, R., Bollobás, B., and Sorkin, G. B. (2004) A two-variable interlace
polynomial. Combinatorica 24 567-584.

[6] Bari, R. A. (1979) Chromatic polynomials and the internal and external
activities of Tutte. In Graph Theory and Related Topics (Waterloo, 1977),
Academic Press, New York, ps. 41-52.

[7] Bläser, M. and Hoffmann, C. (2008) On the complexity of the interlace
polynomial, in: STACS 2008: 25th International Symposium on Theoretical
Aspects of Computer Science (Bordeaux, 2008), ps. 97-108, available at
http://www.stacs-conf.org/.

[8] Balister, P. N., Bollobás, B., Cutler, J. and Pebody, L. (2002) The interlace
polynomial of graphs at -1. Europ. J. Combinatorics 23 761-767.

[9] Boesch, F. T., Satyanarayana, A. and Suffel, C. L. (1988) Some recent ad-
vances in reliability analysis using graph theory: a tutorial. Congr. Numer.
64 253–276.

[10] Bollobás, B. (1998) Modern Graph Theory, Springer-Verlag, New York.

[11] Bouchet, A. (1987) Digraph decompositions and Eulerian systems. SIAM
J. Alg. Disc. Meth. 8 323–337.

[12] Bouchet, A. (1987) Reducing prime graphs and recognizing circle graphs.
Combinatorica 7 243-254.

[13] Bouchet, A. (1994) Circle graph obstructions. J. Combin. Theory Ser. B
60 107-144.

[14] Bouchet, A. (2001) Multimatroids III. Tightness and fundamental graphs.
Europ. J. Combinatorics 22 657-677.

25

http://www.lafayette.edu/~traldil
http://www.stacs-conf.org/

[15] Colbourn, C. J. (1987) The Combinatorics of Network Reliability, Oxford
Univ. Press, Oxford.

[16] Courcelle, B. (2008) A multivariate interlace polynomial and its computa-
tion for graphs of bounded clique-width. Electron. J. Combin. 15 #R69.

[17] Courcelle, B. (2008) Circle graphs and monadic second-order logic. J. Appl.
Logic 6 416-442.

[18] Crapo, H. (1967) A higher invariant for matroids. J. Combin. Theory 2

406–417.

[19] Cunningham, W. H. (1982) Decomposition of directed graphs. SIAM J.
Alg. Disc. Meth. 3 214-228.

[20] Ellis-Monaghan, J. A. and Sarmiento, I. (2007) Distance hereditary graphs
and the interlace polynomial. Combin. Prob. Comput. 16 947-973.

[21] Gordon, G. and McMahon, E. (1997) Interval partitions and activities for
the greedoid Tutte polynomial. Adv. in Appl. Math. 18 33-49.

[22] Gordon, G. and Traldi, L. (1990) Generalized activities and the Tutte poly-
nomial. Discrete Math. 85 167-176.

[23] Kauffman, L. H. (1989) A Tutte polynomial for signed graphs. Discrete
Appl. Math. 25 105-127.

[24] Kotzig, A. (1968) Eulerian lines in finite 4-valent graphs and their trans-
formations. In Theory of Graphs (Proc. Colloq., Tihany, 1966), Academic
Press, New York, ps. 219–230.

[25] Murasugi, K. (1989) On invariants of graphs with applications to knot
theory. Trans. Amer.Math. Soc. 314 1-49.

[26] Oxley, J. G. and Welsh, D. J. A. (1992) Tutte polynomials computable in
polynomial time. Discrete Math. 109 185-192.

[27] Traldi, L. (1989) A dichromatic polynomial for weighted graphs and link
polynomials. Proc. Amer. Math. Soc. 106 279-286.

[28] Traldi, L. (2000) Series and parallel reductions for the Tutte polynomial.
Discrete Math. 220 291-297.

[29] Tutte, W. T. (1984) Graph Theory, Cambridge Univ. Press, Cambridge.

[30] White, N., ed. (1992) Matroid Applications, Cambridge Univ. Press, Cam-
bridge.

26

	Introduction
	Expansions and recursions
	Pendant-twin reductions
	Composition
	A characterization of simple graphs
	Trees
	Algorithmic activities

