Directed graphs without short cycles

Jacob Fox* ${ }^{*}$ Peter Keevash ${ }^{\dagger} \quad$ Benny Sudakov ${ }^{\ddagger}$

Abstract

For a directed graph G without loops or parallel edges, let $\beta(G)$ denote the size of the smallest feedback arc set, i.e., the smallest subset $X \subset E(G)$ such that $G \backslash X$ has no directed cycles. Let $\gamma(G)$ be the number of unordered pairs of vertices of G which are not adjacent. We prove that every directed graph whose shortest directed cycle has length at least $r \geq 4$ satisfies $\beta(G) \leq c \gamma(G) / r^{2}$, where c is an absolute constant. This is tight up to the constant factor and extends a result of Chudnovsky, Seymour, and Sullivan.

This result can be also used to answer a question of Yuster concerning almost given length cycles in digraphs. We show that for any fixed $0<\theta<1 / 2$ and sufficiently large n, if G is a digraph with n vertices and $\beta(G) \geq \theta n^{2}$, then for any $0 \leq m \leq \theta n-o(n)$ it contains a directed cycle whose length is between m and $m+6 \theta^{-1 / 2}$. Moreover, there is a constant C such that either G contains directed cycles of every length between C and $\theta n-o(n)$ or it is close to a digraph G^{\prime} with a simple structure: every strong component of G^{\prime} is periodic. These results are also tight up to the constant factors.

1 Introduction

A digraph (directed graph) G is a pair $\left(V_{G}, E_{G}\right)$ where V_{G} is a finite set of vertices and E_{G} is a set of ordered pairs (u, v) of vertices called edges. All digraphs we consider in this paper are simple, i.e., they do not have loops or parallel edges. A path of length r in G is a collection of distinct vertices v_{1}, \ldots, v_{r} together with edges $\left(v_{i}, v_{i+1}\right)$ for $1 \leq i \leq r-1$. Moreover, if $\left(v_{r}, v_{1}\right)$ is also an edge, then it is an r-cycle.

The concept of cycle plays a fundamental role in graph theory, and there are numerous papers which study cycles in graphs. In contrast, the literature on cycles in directed graphs is not so extensive. It seems the main reason for this is that questions concerning cycles in directed graphs are often much more challenging than the corresponding questions in graphs. An excellent example of this difficulty is the well-known Caccetta-Häggkvist conjecture [4]. For $r \geq 2$, we say that a digraph is r-free if it does not contain a directed cycle of length at most r. The Caccetta-Häggkvist conjecture states that every r-free digraph on n vertices has a vertex of outdegree less than n / r. This notorious conjecture

[^0]is still open even for $r=3$, and we refer the interested reader to the recent surveys [11, 14], which discuss known results on this problem and other related open questions.

In approaching the Caccetta-Häggkvist conjecture it is natural to see what properties of an r-free digraph one can prove. A feedback arc set in a digraph is a collection of edges whose removal makes the digraph acyclic. For a digraph G, let $\beta(G)$ denote the size of the smallest feedback arc set. This parameter appears naturally in testing of electronic circuits and in efficient deadlock resolution (see, e.g., [10, 12]). It is also known that it is NP-hard to compute the minimum size of a feedback arc set even for tournaments [1, 5] (a tournament is an oriented complete graph). Let $\gamma(G)$ be the number of unordered pairs of vertices of G which are not adjacent. Chudnovsky, Seymour and Sullivan [7] conjectured that if G is a 3-free digraph then $\beta(G)$ is bounded from above by $\gamma(G) / 2$. They proved this conjecture in two special cases, when the digraph is the union of two cliques or is a circular interval digraph. Moreover, for general 3-free digraphs G, they showed that $\beta(G) \leq \gamma(G)$.

Generalizing this conjecture, Sullivan [13] suggested that every r-free digraph G satisfies $\beta(G) \leq$ $2 \gamma(G) /(r+1)(r-2)$, and gave an example showing that this would be best possible. She posed an open problem to prove that $\beta(G) \leq f(r) \gamma(G)$ for every r-free digraph G, for some function $f(r)$ tending to 0 as $r \rightarrow \infty$. Here we establish a stronger bound which shows that Sullivan's conjecture is true up to a constant factor. This extends the result of Chudnovsky, Seymour and Sullivan to general r.

Theorem 1.1 For $r \geq 3$, every r-free digraph G satisfies $\beta(G) \leq 800 \gamma(G) / r^{2}$.

The above result is tight up to a constant factor. Indeed, consider a blowup of an $(r+1)$-cycle, obtained by taking disjoint sets V_{1}, \cdots, V_{r+1} of size $n /(r+1)$ and all edges from V_{i} to $V_{i+1}, 1 \leq i \leq r+1$ (where $V_{r+2}=V_{1}$). This digraph on n vertices is clearly r-free, has $\gamma(G)=\binom{n}{2}-\frac{n^{2}}{r+1} \geq \frac{n(n-2)}{4}$, and $\beta(G) \geq \frac{n^{2}}{(r+1)^{2}}$. Indeed, G contains $\frac{n^{2}}{(r+1)^{2}}$ edge-disjoint cycles of length $r+1$, and one needs to delete at least one edge from each cycle to make G acyclic.

In order to prove Theorem 1.1, we obtain a bound on the edge expansion of r-free digraphs which may be of independent interest. For vertex subsets $S, T \subset V_{G}$, let $e_{G}(S, T)$ be the number of edges in G that go from S to T. The edge expansion $\mu(S)$ of a vertex subset $S \subset V_{G}$ with cardinality $|S| \leq\left|V_{G}\right| / 2$ is defined to be

$$
\frac{1}{|S|} \min \left\{e_{G}\left(S, V_{G} \backslash S\right), e_{G}\left(V_{G} \backslash S, S\right)\right\} .
$$

The edge expansion $\mu=\mu(G)$ of G is the minimum of $\mu(S)$ over all vertex subsets S of G with $|S| \leq\left|V_{G}\right| / 2$. We show that r-free digraphs can not have large edge expansion.

Theorem 1.2 Suppose G is a digraph on n vertices, $r \geq 9$ and $\mu=\mu(G) \geq 25 n / r^{2}$. Then every vertex of G is contained in a directed cycle of length at most r.

Using this result, it is easy to deduce the following corollary, which implies Theorem 1.1 in the case G is not too dense.

Corollary 1.3 Every r-free digraph G on n vertices satisfies $\beta(G) \leq 25 n^{2} / r^{2}$.

Corollary 1.3 will also enable us to answer the following question posed by Yuster [15]. Suppose that a digraph G on n vertices is far from being acyclic, in that $\beta(G) \geq \theta n^{2}$. What lengths of directed cycles can we find in G ? Yuster [15] showed that for any $\theta>0$ there are constants K and η so that for any $m \in(0, \eta n)$ there is a directed cycle whose length is between m and $m+K$. He gave examples showing that one must have $K \geq \theta^{-1 / 2}$ and $\eta \leq 4 \theta$, and posed the problem of determining the correct order of magnitude of these parameters as a function of θ. The following theorem, which is tight up to constant factors for both K and η, answers Yuster's question.

Theorem 1.4 For any $0<\delta, \theta<1$ the following holds for n sufficiently large. Suppose G is a digraph on n vertices with $\beta(G) \geq \theta n^{2}$. Then for any $0 \leq m \leq(1-\delta) \theta n$ there is $m \leq \ell \leq m+(5+\delta) \theta^{-1 / 2}$ such that G contains a directed cycle of length ℓ.

Moreover, we can show that G either contains directed cycles of all lengths between some constant C and $\theta n-o(n)$ or is highly structured in the following sense. Say that G is periodic if the length of every directed cycle in G is divisible by some number $p \geq 2$, and pseudoperiodic if every strong component C is periodic (possibly with differing periods). A digraph is strong if, for every pair u, v of vertices, there is a path from u to v and a path from v to u. A strong component of a digraph G is a maximal strong subgraph of G. A pseudoperiodic digraph G is highly structured, as Theorem 10.5.1 of [3] shows that a strongly connected digraph with period p is contained in the blowup of a p-cycle. Let $\lambda(G)$ denote the minimum number of edges of G that need to be deleted from G to obtain a pseudoperiodic digraph. Note that $\beta(G) \geq \lambda(G)$, as every acyclic digraph is pseudoperiodic.

Theorem 1.5 For any $0<\delta, \theta<1$ there are numbers C and n_{0} so that the following holds for $n \geq n_{0}$. If G is a digraph on n vertices with $\lambda(G) \geq \theta n^{2}$ then G contains a directed cycle of length ℓ for any $C \leq \ell \leq(1-\delta) \theta n$.

The rest of this paper is organised as follows. In the next section we collect two simple lemmas concerning nearly complete digraphs. We need these lemmas in Section 3 to prove Theorems 1.1, 1.2 and Corollary 1.3. In Section 4, we discuss Szemerédi's Regularity Lemma for digraphs and some of its consequences. We use these results together with Corollary 1.3 in Section 5 to prove Theorems 1.4 and 1.5. The final section contains some concluding remarks.

Notation. An oriented graph is a digraph which can be obtained from a simple undirected graph by orienting its edges. Note that for $r \geq 2$, every r-free digraph is an oriented graph, as two opposite edges on the same pair of vertices form a 2 -cycle. Suppose G is an oriented graph and S and T are subsets of its vertex set V_{G}. Let $E_{G}(S, T)$ be the set of edges in G that go from S to T, so $e_{G}(S, T)=\left|E_{G}(S, T)\right|$. We drop the subscript G if there is no danger of confusion. Let $G[S]$ denote the restriction of G to S, in which the vertex set is S and the edges are all those edges of G with both endpoints in S, and let $G \backslash S=G\left[V_{G} \backslash S\right]$ be the restriction of G to the complement of S. We use the notation $0<\alpha \ll \beta$ to mean that there is a increasing function $f(x)$ so that the following argument is valid for $0<\alpha<f(\beta)$. Throughout the paper, we systematically omit floor and ceiling signs whenever they are not crucial, for the sake of clarity of presentation. We also do not make any serious attempt to optimize absolute constants in our statements and proofs.

2 Basic facts

We start with two simple lemmas concerning oriented graphs that are nearly complete. First we prove a lemma which shows that such an oriented graph contains a vertex that has large indegree and large outdegree. Consider an oriented graph G whose vertex set is partitioned $V_{G}=V_{1} \cup V_{2}$ with $\left|V_{1}\right|=\left|V_{2}\right|=n / 2$, such that all edges go from V_{1} to V_{2}, and the restriction of G to each V_{i} is regular with indegree and outdegree of every vertex equal to $(1-2 \epsilon) n / 4$. The number of edges in G is $(1-\epsilon) n^{2} / 2$ and no vertex has indegree and outdegree both more than $(1-2 \epsilon) n / 4$. This example demonstrates tightness of the following lemma.

Lemma 2.1 Let G be an oriented graph with n vertices and $(1-\epsilon) n^{2} / 2$ edges. Then G contains a vertex with indegree and outdegree at least $(1-2 \epsilon) n / 4$.

Proof. Suppose for a contradiction that no vertex of G has indegree and outdegree at least $(1-2 \epsilon) n / 4$. Delete vertices one by one whose indegree and outdegree in the current oriented graph are both less than $(1-2 \epsilon) n / 4$. Let G^{\prime} be the oriented graph that remains and αn be the number of deleted vertices. Then G^{\prime} has $(1-\alpha) n$ vertices, at least $(1-\epsilon) n^{2} / 2-\alpha n \cdot 2(1-2 \epsilon) n / 4$ edges, and every vertex has either indegree or outdegree at least $(1-2 \epsilon) n / 4$, but not both. Partition $V_{G^{\prime}}=V_{1} \cup V_{2}$, where V_{1} consists of those vertices of G^{\prime} that have indegree at least $(1-2 \epsilon) n / 4$. Since $\left|V_{1}\right|+\left|V_{2}\right|=(1-\alpha) n$ we have $\left|V_{1}\right|\left|V_{2}\right| \leq(1-\alpha)^{2} n^{2} / 4$, and so

$$
e\left(V_{1}\right)+e\left(V_{2}\right) \geq(1-\epsilon) n^{2} / 2-(1-2 \epsilon) \alpha n^{2} / 2-\left|V_{1}\right|\left|V_{2}\right| \geq\left(1-2 \epsilon+4 \alpha \epsilon-\alpha^{2}\right) n^{2} / 4
$$

We may assume without loss of generality that $e\left(V_{1}\right) / e\left(V_{2}\right) \geq\left|V_{1}\right| /\left|V_{2}\right|$ (the other case can be treated similarly). In the first case,
$e\left(V_{1}\right) \geq \frac{\left|V_{1}\right|}{\left|V_{1}\right|+\left|V_{2}\right|}\left(e\left(V_{1}\right)+e\left(V_{2}\right)\right) \geq \frac{\left|V_{1}\right|}{\left|V_{1}\right|+\left|V_{2}\right|}\left(1-2 \epsilon+4 \alpha \epsilon-\alpha^{2}\right) \frac{n^{2}}{4}=\left|V_{1}\right|\left(1-2 \epsilon+4 \alpha \epsilon-\alpha^{2}\right) \frac{n}{4(1-\alpha)}$.
Then the average outdegree of a vertex in V_{1} is at least $\left(1-2 \epsilon+4 \alpha \epsilon-\alpha^{2}\right) \frac{n}{4(1-\alpha)}$. It is easy to check as a function of α this is increasing for $\alpha \in[0,1)$ and is therefore minimized when $\alpha=0$. Therefore the average outdegree of a vertex in V_{1} is at least $(1-2 \epsilon) n / 4$. Now we can choose a vertex in V_{1} with outdegree at least the average, and then by definition of V_{1} it has both indegree and outdegree at least $(1-2 \epsilon) n / 4$, a contradiction.

We can use this lemma to find in a nearly complete oriented graph a vertex of very large total degree and reasonably large indegree and outdegree.

Lemma 2.2 Let G be an oriented graph with $n \geq 20$ vertices and $\gamma=\alpha n^{2}$ non-adjacent pairs, with $\alpha \leq 1 / 16$. Then G has a vertex v of total degree at least $(1-4 \alpha) n$ and indegree and outdegree at least $\frac{n}{10}$.

Proof. Let V^{\prime} be those vertices of G with total degree at least $(1-4 \alpha) n$. Then $V \backslash V^{\prime}$ is incident to at least $\left|V \backslash V^{\prime}\right| 4 \alpha n / 2$ non-adjacent pairs, so $\left(n-\left|V^{\prime}\right|\right) 2 \alpha n \leq \gamma=\alpha n^{2}$, i.e., $\left|V^{\prime}\right| \geq n / 2$. Write $\left|V^{\prime}\right|=\omega n$. The number of edges in the restriction $G\left[V^{\prime}\right]$ of G to V^{\prime} is at least

$$
\binom{\left|V^{\prime}\right|}{2}-\left(\gamma-\left|V \backslash V^{\prime}\right| 4 \alpha n / 2\right)=\left(1-(4 \omega-2) \alpha / \omega^{2}-1 /\left|V^{\prime}\right|\right)\left|V^{\prime}\right|^{2} / 2
$$

Applying Lemma 2.1 to $G\left[V^{\prime}\right]$, with $\epsilon=(4 \omega-2) \alpha / \omega^{2}+1 /\left|V^{\prime}\right|$, we find a vertex with indegree and outdegree at least

$$
(1-2 \epsilon)\left|V^{\prime}\right| / 4=\left(1 / 4-(2 \omega-1) \alpha / \omega^{2}\right) \omega n-1 / 2 \geq n / 8-1 / 2 \geq n / 10,
$$

where we use the fact that, for fixed $\alpha \leq 1 / 16$, the minimum of $f(\omega)=\omega / 4+(1-2 \omega) \alpha / \omega$ for $\omega \in[1 / 2,1]$ occurs at $\omega=1 / 2$. Indeed, for $\omega \geq 1 / 2, f^{\prime}(\omega)=\frac{1}{4}-\frac{\alpha}{\omega^{2}} \geq 0$ and $f(\omega)$ is an increasing function.

3 Finding short cycles

We will prove Theorem 1.1 by proving that an r-free digraph can not have large edge expansion. Recall that the edge expansion $\mu(S)$ of a set S of vertices of a digraph G with cardinality $|S| \leq\left|V_{G}\right| / 2$ is defined to be

$$
\frac{1}{|S|} \min \left\{e\left(S, V_{G} \backslash S\right), e\left(V_{G} \backslash S, S\right)\right\}
$$

and the edge expansion $\mu=\mu(G)$ of G is the minimum of $\mu(S)$ over all subsets $S \subset V_{G}$ with $|S| \leq\left|V_{G}\right| / 2$.

Consider a digraph G on n vertices and any vertex v of G. We say that a vertex w has outdistance i from v if the length of the shortest directed path from v to w is i. (Indistance is similarly defined.) Let N_{i} be the vertices at outdistance exactly i from v and $M_{i}=\cup_{j \leq i} N_{i}$ the vertices at outdistance at most i from v. It follows from these definitions that any edge from M_{i} to $V_{G} \backslash M_{i}$ is in fact an edge from N_{i} to N_{i+1}. We deduce that

$$
\mu\left(M_{i}\right)\left|M_{i}\right| \leq e\left(M_{i}, V_{G} \backslash M_{i}\right)=e\left(N_{i}, N_{i+1}\right) \leq\left|N_{i}\right|\left|N_{i+1}\right| .
$$

Then the Arithmetic Mean - Geometric Mean Inequality gives

$$
\begin{equation*}
\left|N_{i}\right|+\left|N_{i+1}\right| \geq 2 \sqrt{\mu\left(M_{i}\right)\left|M_{i}\right|} . \tag{1}
\end{equation*}
$$

The first step of the proof of Theorem 1.1 is Theorem 1.2, which shows that large edge expansion implies short cycles, and moreover we can find a short cycle through any specified vertex.
Proof of Theorem 1.2, Let v be any vertex of G. As before, let N_{i} be the vertices of outdistance exactly i from v and M_{i} the vertices of outdistance at most i from v. Also, let $a_{i}=\left(\left|N_{i}\right|+\left|N_{i+1}\right|\right) / \mu$ and $b_{i}=\sum_{1 \leq j \leq i} a_{j}$. Then $b_{i-1} \mu=2\left|M_{i}\right|-\left|N_{1}\right|-\left|N_{i}\right| \leq 2\left|M_{i}\right|$, so dividing both sides of inequality (11) by μ and using $\mu\left(M_{i}\right) \geq \mu$ gives

$$
a_{i}=\left(\left|N_{i}\right|+\left|N_{i+1}\right|\right) / \mu \geq 2 \sqrt{\frac{\mu\left(M_{i}\right)}{\mu} \frac{\left|M_{i}\right|}{\mu}} \geq 2 \sqrt{\left|M_{i}\right| / \mu} \geq \sqrt{2 b_{i-1}} .
$$

Adding b_{i-1} to both sides we have $b_{i} \geq b_{i-1}+\sqrt{2 b_{i-1}}$. Note that $b_{1}=a_{1} \geq\left|N_{1}\right| / \mu \geq 1$, as otherwise $\left|N_{1}\right|<\mu$ and taking $S=\{v\}$ we have $\mu(S) \leq\left|N_{1}\right|<\mu$, contradicting the definition of μ. Now we
prove by induction that $b_{i} \geq \frac{2}{5} i^{2}$. This is easy to check for $i<6$ using a calculator and $b_{1} \geq 1$. For $i \geq 6$, the induction step is

$$
b_{i} \geq b_{i-1}+\sqrt{2 b_{i-1}} \geq \frac{2}{5}(i-1)^{2}+\sqrt{4 / 5}(i-1) \geq \frac{2}{5} i^{2}
$$

Applying this with $i=\lfloor r / 2\rfloor$ we have $\left|M_{i}\right| \geq \mu b_{i-1} / 2 \geq \mu(i-1)^{2} / 5>n / 2$, since $\mu \geq 25 n / r^{2}$ and $r \geq 9$. The same argument shows that there are more than $n / 2$ vertices at indistance at most i from v. Therefore there is a vertex at indistance and outdistance at most i from v, which gives a directed cycle through v of length at most r.

Next we deduce Corollary [1.3, which implies our main theorem in the case when G is not almost complete.
Proof of Corollary 1.3. We suppose that G is r-free and prove that $\beta(G) \leq 25 n^{2} / r^{2}$.
First we deal with the case $r \leq 10$. In any linear ordering of the vertices of G, deleting the forward edges or the backwards edges makes the digraph acyclic. Since the number of edges in G is $\binom{n}{2}-\gamma(G)$ we have $\left.\beta(G) \leq \frac{1}{2}\binom{n}{2}-\gamma(G)\right)<n^{2} / 4$. Hence, $\beta(G)<25 n^{2} / r^{2}$ if $r \leq 10$.

Next, for $r \geq 11$ we use induction on n. Note that if $n \leq r$ then G is acyclic and $\beta(G)=0$, so we can assume that $n>r$. By Theorem 1.2 and definition of μ we can find a set S with $|S|=s \leq n / 2$ and $\mu(S)=\mu<25 n / r^{2}$. Note that a digraph formed by taking the disjoint union of two acyclic digraphs and adding some edges from the first acyclic digraph to the second acyclic digraph is acyclic. Therefore, using the inequality $n \leq 2(n-s)$, we obtain

$$
\beta(G) \leq \beta(G[S])+\beta(G \backslash S)+\mu s \leq 25 s^{2} / r^{2}+25(n-s)^{2} / r^{2}+25 n / r^{2} \cdot s \leq 25 n^{2} / r^{2}
$$

We need one more lemma before the proof of the main theorem, showing that an r-free oriented graph has a linear-sized subset S with small edge expansion.

Lemma 3.1 Suppose $r \geq 15,0 \leq \alpha \leq 1 / 16$ and G is an r-free oriented graph on $n \geq 20$ vertices with $\gamma=\alpha n^{2}$ non-adjacent pairs. Then there is $S \subset V(G)$ with $n / 10 \leq|S| \leq n / 2$ and $\mu(S)<1500 \alpha^{2} n / r^{2}$.

Proof. By Lemma 2.2 there is a vertex v of total degree at least $(1-4 \alpha) n$ and indegree and outdegree at least $n / 10$. As before, let N_{i} be the vertices of outdistance exactly i from v and M_{i} the vertices of outdistance at most i from v. Since G is r-free there is no vertex at indistance and outdistance at most $\lfloor r / 2\rfloor$ from v, so we can assume without loss of generality that $\left|M_{i}\right| \leq n / 2$ for all $i \leq\lfloor r / 2\rfloor$. Also, by choice of v we have $\left|M_{i}\right| \geq\left|N_{1}\right| \geq n / 10$, so we are done if we have $\mu\left(M_{i}\right)<1500 \alpha^{2} n / r^{2}$ for some $i \leq\lfloor r / 2\rfloor$. Suppose for a contradiction that this is not the case. Then equation (1) gives

$$
\left|N_{i}\right|+\left|N_{i+1}\right| \geq 2 \sqrt{1500 \alpha^{2} n / r^{2} \cdot n / 10}>24 \alpha n / r
$$

Let $s=\left\lceil\frac{r-5}{4}\right\rceil \geq r / 6$, so $2 s+1 \leq r / 2$. The above inequality gives

$$
\left|M_{2 s+1}\right|-\left|N_{1}\right|=\left(\left|N_{2}\right|+\left|N_{3}\right|\right)+\cdots+\left(\left|N_{2 s}\right|+\left|N_{2 s+1}\right|\right)>s \cdot 24 \alpha n / r \geq 4 \alpha n .
$$

Let I_{1} denote the inneighbourhood of v. By choice of v we have $\left|I_{1}\right|+\left|N_{1}\right| \geq(1-4 \alpha) n$, and so $\left|I_{1}\right|+\left|M_{2 s+1}\right|>n$, and hence there is a vertex in both I_{1} and $M_{1+2 s}$. This gives a cycle of length at most $2+2 s \leq r$, contradiction.

Proof of Theorem 1.1. We use induction on n to prove that every digraph G on n vertices satisfies

$$
\begin{equation*}
\beta(G) \leq 800 r^{-2}\left(\gamma(G)-\gamma(G)^{2} / n^{2}\right) \tag{2}
\end{equation*}
$$

Note that the right hand side of (21) is at least $400 \gamma(G) / r^{2}$ and at most $800 \gamma(G) / r^{2}$ as $0 \leq \gamma(G) \leq$ $\binom{n}{2} \leq n^{2} / 2$. We can assume that $\gamma(G)<n^{2} / 16$, since otherwise we can apply Corollary 1.3 to get $\beta(G) \leq 25 n^{2} / r^{2} \leq 400 \gamma(G) / r^{2}$. We can also assume that $r \geq 21$, as otherwise $r \leq 20$ and we can use the result of Chudnovsky, Seymour, and Sullivan [7] that 3-free graphs G satisfy $\beta(G) \leq \gamma(G) \leq$ $400 \gamma(G) / r^{2}$. Then we can assume that $n \geq 22$, as otherwise $n \leq r, G$ is acyclic, and $\beta(G)=0$.

Let S be the set given by Lemma [3.1, $G_{1}=G[S], G_{2}=G \backslash S$ and $n_{i}=\left|V\left(G_{i}\right)\right|, \gamma=\gamma(G)$, $\gamma_{i}=\gamma\left(G_{i}\right)$ for $i=1,2$, so that $n_{1}+n_{2}=n$ and $\gamma_{+}:=\gamma_{1}+\gamma_{2} \leq \gamma$. By choice of S we have $\mu(S)|S|<1600 \gamma^{2} n_{1} / n^{3} r^{2}$. By deleting all edges from S to $V_{G} \backslash S$ or all edges from $V_{G} \backslash S$ to S, we get by the induction hypothesis that

$$
\beta(G) \leq \beta\left(G_{1}\right)+\beta\left(G_{2}\right)+\mu(S)|S| \leq 800 r^{-2}\left(\gamma_{1}-\gamma_{1}^{2} / n_{1}^{2}+\gamma_{2}-\gamma_{2}^{2} / n_{2}^{2}+2 \gamma^{2} n_{1} / n^{3}\right)
$$

Now the Cauchy-Schwartz inequality gives $\gamma_{+}^{2}=\left(n_{1} \cdot \gamma_{1} / n_{1}+n_{2} \cdot \gamma_{2} / n_{2}\right)^{2} \leq\left(n_{1}^{2}+n_{2}^{2}\right)\left(\gamma_{1}^{2} / n_{1}^{2}+\gamma_{2}^{2} / n_{2}^{2}\right)$ so we have

$$
\beta(G) \leq 800 r^{-2}\left(\gamma_{+}-\gamma_{+}^{2} /\left(n_{1}^{2}+n_{2}^{2}\right)+2 \gamma^{2} n_{1} / n^{3}\right) \leq 800 r^{-2}\left(\gamma-\gamma^{2} /\left(n_{1}^{2}+n_{2}^{2}\right)+2 \gamma^{2} n_{1} / n^{3}\right) .
$$

Here we used $\gamma_{+} \leq \gamma<n^{2} / 16$ and $n_{1}^{2}+n_{2}^{2} \geq \frac{1}{2}\left(n_{1}+n_{2}\right)^{2}=n^{2} / 2$, which give the inequality

$$
\gamma-\frac{\gamma^{2}}{n_{1}^{2}+n_{2}^{2}}-\gamma_{+}+\frac{\gamma_{+}^{2}}{n_{1}^{2}+n_{2}^{2}}=\left(\gamma-\gamma_{+}\right)\left(1-\frac{\gamma_{+}+\gamma}{n_{1}^{2}+n_{2}^{2}}\right) \geq 0
$$

Now the desired bound on $\beta(G)$ follows from the inequality $\gamma^{2} /\left(n_{1}^{2}+n_{2}^{2}\right)-2 \gamma^{2} n_{1} / n^{3} \geq \gamma^{2} / n^{2}$. Set $n_{1}=t n$, where $1 / 10 \leq t \leq 1 / 2$ by choice of S. It is required to show that $f(t)=\frac{1}{1+2 t}-t^{2}-(1-t)^{2} \geq 0$. By computing $f^{\prime}(t)=2-4 t-\frac{2}{(1+2 t)^{2}}$ and $f^{\prime \prime}(t)=\frac{8}{(1+2 t)^{3}}-4$, we see that for $t \geq 0, f^{\prime \prime}$ is a decreasing function and $f^{\prime \prime}(0)>0>f^{\prime \prime}(1 / 2)$. Hence f^{\prime} increases from $f^{\prime}(0)=0$ to a maximum and then decreases to $f^{\prime}(1 / 2)<0$, being first nonnegative until some $t_{0}<1 / 2$ and then negative afterwards. Therefore, f increases from $f(0)=0$ to a maximum $f\left(t_{0}\right)$ and then decreases to $f(1 / 2)=0$ staying nonnegative in the whole interval. This completes the proof.

4 Regularity

For our second topic in the paper we will use the machinery of Szemerédi's Regularity Lemma, which we will now describe. We will be quite brief, so for more details and motivation we refer the reader to the survey [9]. First we give some definitions. The density of a bipartite graph $G=(A, B)$ with vertex classes A and B is defined to be $d_{G}(A, B):=\frac{e_{G}(A, B)}{|A| B \mid}$. We write $d(A, B)$ if this is unambiguous. Given $\epsilon>0$, we say that G is ϵ-regular if for all subsets $X \subseteq A$ and $Y \subseteq B$ with $|X|>\epsilon|A|$ and $|Y|>\epsilon|B|$ we have that $|d(X, Y)-d(A, B)|<\epsilon$. Given $d \in[0,1]$ we say that G is (ϵ, d)-super-regular if it is ϵ-regular and furthermore $d_{G}(a) \geq(d-\epsilon)|B|$ for all $a \in A$ and $d_{G}(b) \geq(d-\epsilon)|A|$ for all $b \in B$. If A and B are disjoint vertex subsets of a digraph G, we say that the pair $(A, B)_{G}$ is ϵ-regular if the bipartite graph with vertex sets A and B and edge set $E_{G}(A, B)$ is ϵ-regular. Similarly, we say that
$(A, B)_{G}$ is (ϵ, d)-super-regular if the bipartite graph with vertex sets A and B and edge set $E_{G}(A, B)$ is (ϵ, d)-super-regular.

The Diregularity Lemma is a version of the Regularity Lemma for digraphs due to Alon and Shapira [2] (with a similar proof to the undirected version of Szemerédi).

Lemma 4.1 (Diregularity Lemma) For every $\epsilon \in(0,1)$ and $M^{\prime}>0$ there are numbers M and n_{0} such that if G is a digraph on $n \geq n_{0}$ vertices, then there is a partition of the vertices of G into $V_{0}, V_{1}, \cdots, V_{k}$ for some $M^{\prime} \leq k \leq M$ such that $\left|V_{0}\right| \leq \epsilon n,\left|V_{1}\right|=\cdots=\left|V_{k}\right|$ and for all at but at most ϵk^{2} ordered pairs $1 \leq i<j \leq k$ the underlying graph of $E_{G}\left(V_{i}, V_{j}\right)$ is ϵ-regular.

Given $0 \leq d \leq 1$ we define the reduced digraph R with parameters (ϵ, d) to have vertex set $[k]=\{1, \cdots, k\}$ and an edge $i j$ if and only if the underlying graph of $E_{G}\left(V_{i}, V_{j}\right)$ is ϵ-regular with density at least d. Note that if ϵ and d are small, M^{\prime} is large, and G is a dense digraph, then most edges of G belong to pairs $E_{G}\left(V_{i}, V_{j}\right)$ for some edge $i j \in R$. Indeed, the exceptions are at most ϵn^{2} edges incident to V_{0}, at most n^{2} / M^{\prime} edges lying within some V_{i}, at most ϵn^{2} edges belonging to pairs $E_{G}\left(V_{i}, V_{j}\right)$ that are not ϵ-regular, and at most $d n^{2}$ edges belonging to $E_{G}\left(V_{i}, V_{j}\right)$ of density less than d : this gives a total less than $2 d n^{2}$ if say $1 / M^{\prime}<\epsilon \ll d$. We also need the following path lemma.

Lemma 4.2 For every $0<d<1$ there is $\epsilon_{0}>0$ so that the following holds for $0<\epsilon<\epsilon_{0}$. Let p, n be positive integers with $p \geq 4, U_{1}, \ldots, U_{p}$ be pairwise disjoint sets of size n and suppose G is a digraph on $U_{1} \cup \cdots \cup U_{p}$ such that each $\left(U_{i}, U_{i+1}\right)_{G}$ is (ϵ, d)-super-regular. (Here, $U_{p+1}:=U_{1}$.) Take any $x \in U_{1}$ and any $y \in U_{p}$. Then for any $1 \leq \ell \leq n$ there is a path P in G of length $p \ell$, starting with x and ending with y, in which for every vertex $v \in U_{i}$, the successor of v on P lies in U_{i+1}.

This lemma can be easily deduced from the blowup lemma of Komlós, Sarközy and Szemerédi (despite p being arbitrary), as shown in [6]. For the sake of completeness and the convenience of the reader we include the proof here. In fact, for our purposes it is sufficient to apply the result with $1 \leq \ell \leq(1-\epsilon) n$; in that case it is not too hard to prove it directly with a random embedding procedure, but we omit the details. Note also that by applying the lemma when $y x$ is an edge we can obtain a directed cycle of length $p \ell$ for any $1 \leq \ell \leq n$.

The requirement that $p \geq 4$ in Lemma 4.2 is necessary. Indeed, if $p=2$ or $p=3$, there may not be a path of length p from x to y. It is not difficult to show using Lemma 4.2 that even in this case we can find a path from x to y of length $p \ell$ for all $2 \leq \ell \leq n$. It is even easier to show that we can greedily find such paths for all $2 \leq \ell \leq d n / 2$, and since this will be sufficient for our purposes, we do so now. In the following argument, if i does not satisfy $1 \leq i \leq p$, then we define $U_{i}:=U_{j}$ with $1 \leq j \leq p$ and $i \equiv j(\bmod p)$. Since each pair $\left(U_{i}, U_{i+1}\right)_{G}$ is (ϵ, d)-super-regular, each vertex in U_{i} has at least $(d-\epsilon) n$ outneighbours in U_{i+1}, and we can greedily find a path $P^{\prime}=v_{1} \cdots v_{p \ell-3}$ with starting point $v_{1}=x$ and with each v_{i} in U_{i}, as each such path only contains at most $\ell \leq d n / 2$ vertices in each U_{i}. Let X be the outneighbours of $v_{p \ell-3}$ in $U_{p-2} \backslash P^{\prime}$ and let Y be the inneighbours of y in $U_{p-1} \backslash P^{\prime}$, so $|X| \geq(d-\epsilon) n-\ell \geq\left(\frac{d}{2}-\epsilon\right) n \geq \epsilon n$ and similarly $|Y| \geq \epsilon n$. Since the pair $\left(U_{p-2}, U_{p-1}\right)_{G}$ is (ϵ, d)-super-regular, then there is at least one edge $\left(v_{p \ell-2}, v_{p \ell-1}\right)$ from X to Y and $v_{1} \cdots v_{p \ell}$ with $v_{p \ell}=y$ is the desired path P from x to y of length $p \ell$.

We start the proof of Lemma 4.2 by recalling the blowup lemma of Komlós, Sárközy and Szemerédi [8].

Lemma 4.3 Given a graph R of order k and parameters $d, \Delta>0$, there exists an $\eta_{0}=\eta_{0}(d, \Delta, k)>0$ such that whenever $0<\eta \leq \eta_{0}$, the following holds. Let V_{1}, \cdots, V_{k} be disjoint sets and let R^{*} be the graph on $V_{1} \cup \cdots \cup V_{k}$ obtained by replacing each edge ij of R by the complete bipartite graph between V_{i} and V_{j}. Let G be a spanning subgraph of R^{*} such that for each edge ij of R the bipartite subgraph of G consisting of all edges between V_{i} and V_{j} is (η, d)-super-regular. Then G contains a copy of every subgraph H of R^{*} with maximum degree $\Delta(H) \leq \Delta$. Moreover, this copy of H in G maps the vertices of H to the same sets V_{i} as the copy of H in R^{*}, i.e., if $h \in V(H)$ is mapped to V_{i} by the copy of H in R^{*}, then it is also mapped to V_{i} by the copy of H in G.

From the blowup lemma, we can quickly deduce the following lemma.

Lemma 4.4 For every $0<d<1$ there is $\epsilon_{0}>0$ so that the following holds for $0<\epsilon<\epsilon_{0}$. Suppose $p \geq 4$, let U_{1}, \cdots, U_{p} be pairwise disjoint sets of size n, for some n, and suppose G is a graph on $U_{1} \cup \cdots \cup U_{p}$ such that each pair $\left(U_{i}, U_{i+1}\right), 1 \leq i \leq p-1$ is (ϵ, d)-super-regular. Let $f: U_{1} \rightarrow U_{p}$ be any bijective map. Then there are n vertex-disjoint paths from U_{1} to U_{p} so that for every $x \in U_{1}$ the path starting from x ends at $f(x) \in U_{p}$.

Proof. Choose a sequence $1=i_{1}<i_{2}<\cdots<i_{t}=p$ so that $3 \leq i_{j}-i_{j-1} \leq 5$ for $2 \leq j \leq t$. Let $f_{j}: U_{i_{j-1}} \rightarrow U_{i_{j}}$ be any bijective maps with $f=f_{t} \circ \cdots \circ f_{2}$. Let G_{j} be the graph obtained from the restriction of G to $U_{i_{j-1}} \cup U_{i_{j-1}+1} \cup \ldots \cup U_{i_{j}}$ by identifying each vertex $x \in U_{i_{j-1}}$ with $f_{j}(x) \in U_{i_{j}}$. By Lemma 4.3 we can find n vertex-disjoint cycles in G_{j} of length $i_{j}-i_{j-1}$, provided that $\epsilon_{0}<\eta\left(d, 2, i_{j}-i_{j-1}\right)$, which only depends on d as $i_{j}-i_{j-1} \leq 5$. These n cycles correspond to n vertex-disjoint paths in G from $U_{i_{j-1}}$ to $U_{i_{j}}$, such that for every $x \in U_{i_{j-1}}$, the path starting from x ends at $f_{j}(x) \in U_{i_{j}}$. By concatenating these paths, we get the desired n vertex-disjoint paths from U_{1} to U_{p} so that for every $x \in U_{1}$ the path starting from x ends at $f(x) \in U_{p}$.

Now we give the proof of Lemma 4.2,
Proof of Lemma 4.2. Suppose G is a digraph on $U_{1} \cup \cdots \cup U_{p}$, where $\left|U_{i}\right|=n, 1 \leq i \leq p$, such that each $\left(U_{i}, U_{i+1}\right)_{G}$ is (ϵ, d)-super-regular, with $\epsilon<\epsilon_{0}$ given by Lemma 4.4. Suppose also $x \in U_{1}, y \in U_{p}$ and $1 \leq \ell \leq n$. We need to find a path P of length $p \ell$ from x to y. First we apply the blowup lemma to find a perfect matching from $U_{p} \backslash y$ to $U_{1} \backslash x$. We label U_{1} as $\left\{x_{1}, \cdots, x_{n}\right\}$ and U_{p} as $\left\{y_{1}, \cdots, y_{n}\right\}$ with $x_{1}=x$ and $y_{1}=y$, so that the matching edges go from y_{i} to x_{i} for $2 \leq i \leq n$. Then we apply Lemma 4.4 to find n vertex-disjoint paths from U_{1} to U_{p} so that the path P_{i} starting at x_{i} ends at y_{i+1} for $1 \leq i \leq \ell-1$ and the path P_{ℓ} starting at x_{ℓ} ends at $y_{1}=y$ (the other paths can be arbitrary). Now our required path P is $x_{1} P_{1} y_{2} x_{2} P_{2} y_{3} \cdots x_{\ell} P_{\ell} y_{1}$.

We finish the section with two simple lemmas concerning super-regularity. The first lemma tells us that large induced subgraphs of super-regular bipartite graphs are also super-regular.

Lemma 4.5 Let G be a bipartite graph with parts A and B that is (ϵ, d)-super-regular, $\epsilon<1 / 2 \leq \alpha<$ 1, $A^{\prime} \subset A$ and $B^{\prime} \subset B$ with $\left|A^{\prime}\right| /|A|,\left|B^{\prime}\right|| | B \mid \geq \alpha$, and G^{\prime} be the induced subgraph of G with parts A^{\prime} and B^{\prime}. Then G^{\prime} is $(2 \epsilon, d-1+\alpha)$-super-regular.

Proof. Super-regularity of G implies that each vertex $a \in A^{\prime} \subset A$ satisfies $d_{G}(a) \geq(d-\epsilon)|B|$. Hence,
$d_{G^{\prime}}(a) \geq d_{G}(a)-\left(|B|-\left|B^{\prime}\right|\right) \geq(d-\epsilon)|B|-\left(|B|-\left|B^{\prime}\right|\right) \geq(d-(1-\alpha)-\epsilon)|B| \geq(d-(1-\alpha)-\epsilon)\left|B^{\prime}\right|$.
Likewise, each vertex $b \in B^{\prime}$ satisfies $d_{G^{\prime}}(b) \geq(d-(1-\alpha)-\epsilon)\left|B^{\prime}\right|$.
Let $X \subset A^{\prime}$ and $Y \subset B^{\prime}$ with $|X|>2 \epsilon\left|A^{\prime}\right|$ and $|Y|>2 \epsilon\left|B^{\prime}\right|$. Since $1 / 2 \leq \alpha \leq\left|A^{\prime}\right| /|A|,\left|B^{\prime}\right| /|B|$ we have $|X|>\epsilon|A|$ and $|Y|>\epsilon|B|$. Now the pair $(A, B)_{G}$ is ϵ-regular, so $|d(X, Y)-d(A, B)|<\epsilon$, and the triangle inequality gives

$$
\left|d(X, Y)-d\left(A^{\prime}, B^{\prime}\right)\right| \leq|d(X, Y)-d(A, B)|+\left|d(A, B)-d\left(A^{\prime}, B^{\prime}\right)\right|<2 \epsilon
$$

Hence, G^{\prime} is $(2 \epsilon, d-1+\alpha)$-super-regular.
For any bounded degree subgraph H of a reduced graph R, the next lemma allows us to make the pairs $\left(V_{i}, V_{j}\right)_{G}$ corresponding to edges $i j$ of H super-regular by deleting a few vertices from each V_{i}.

Lemma 4.6 Suppose R is the reduced digraph with parameters (ϵ, d) of a Szemerédi partition $V_{G}=$ $V_{0} \cup V_{1} \cup \ldots \cup V_{k}$ of a digraph G and H is a subdigraph of R with maximum total degree at most Δ, where $\Delta \leq \frac{1}{2 \epsilon}$. Then for each $i, 1 \leq i \leq k$, there is $U_{i} \subset V_{i}$ with $\left|U_{i}\right|=(1-\Delta \epsilon)\left|V_{i}\right|$ such that for each edge $i j$ of H, the pair $\left(U_{i}, U_{j}\right)_{G}$ is $(2 \epsilon, d-\Delta \epsilon)$-super-regular.

Proof. For each edge $i j$ of H, delete all vertices in V_{i} with less than $(d-\epsilon)\left|V_{j}\right|$ outneighbours in V_{j} and all vertices in V_{j} with less than $(d-\epsilon)\left|V_{i}\right|$ inneighbours in V_{i}. For each edge $i j$ of H, less than $\epsilon\left|V_{i}\right|$ elements are deleted from V_{i} and less than $\epsilon\left|V_{j}\right|$ elements are deleted from V_{j}. Indeed, if the subset $S \subset V_{i}$ of vertices with less than $(d-\epsilon)\left|V_{j}\right|$ outneighbours in V_{j} has cardinality $|S| \geq \epsilon\left|V_{i}\right|$, then $d_{G}\left(S, V_{j}\right)<d-\epsilon$, in contradiction to $i j$ being an edge of the reduced graph R. Likewise, at most $\epsilon\left|V_{j}\right|$ elements are deleted from V_{j} for each edge $i j$. Hence, in total, at most $\Delta \epsilon\left|V_{i}\right|$ vertices are deleted from each V_{i}. Delete further vertices from each V_{i} until the resulting subset U_{i} has cardinality $(1-\Delta \epsilon)\left|V_{i}\right|$. For each edge $i j$ of H, each vertex in U_{i} has at least $(d-\epsilon)\left|V_{j}\right|$ outneighbours in V_{j} and hence at least

$$
(d-\epsilon)\left|V_{j}\right|-\left(\left|V_{j}\right|-\left|U_{j}\right|\right)=(d-(\Delta+1) \epsilon)\left|V_{j}\right| \geq(d-(\Delta+1) \epsilon)\left|U_{j}\right|
$$

outneighbours in U_{j}. Similarly, for each edge $i j$ of H, each vertex in V_{j} has at least $(d-(\Delta+1) \epsilon)\left|U_{i}\right|$ inneighbours in U_{i}. Letting $\alpha=\left|U_{i}\right| /\left|V_{i}\right|=1-\Delta \epsilon$, we have $\alpha \geq 1 / 2$. For each edge $i j$ of H, since $\left(V_{i}, V_{j}\right)_{G}$ is ϵ-regular, Lemma 4.5 implies that $\left(U_{i}, U_{j}\right)_{G}$ is 2ϵ-regular and hence is $(2 \epsilon, d-\Delta \epsilon$)-superregular.

5 Cycles of almost given length

Now we will apply the regularity lemma and Corollary 1.3 to answer the question of Yuster mentioned in the introduction.

Proof of Theorem 1.4; Choose parameters $0<1 / n_{0} \ll 1 / M \ll \epsilon \ll d \ll \delta, \theta$ and $M^{\prime}=\epsilon^{-1}$. Suppose G is a digraph on $n \geq n_{0}$ vertices with $\beta(G) \geq \theta n^{2}$. Note that $\theta<1 / 2$ as in any linear ordering
of the vertices of G, deleting all the forward edges or all the backward edges yields an acyclic digraph. Apply Lemma 4.1 to obtain a partition of the vertices of G into $V_{0}, V_{1}, \cdots, V_{k}$ for some $M^{\prime} \leq k \leq M$ and let R be the reduced graph on $[k]$ with parameters (ϵ, d). As noted in the previous section, there are at most $2 d n^{2}$ edges of G that do not belong to $E_{G}\left(V_{i}, V_{j}\right)$ for some edge $i j \in R$. We can make G acyclic by deleting these edges and at most $\beta(R)(n / k)^{2}$ edges corresponding to edges of R, so we must have $\beta(R) \geq(\theta-2 d) k^{2}$. Let S_{1}, \cdots, S_{g} be the strong components of R and suppose $\beta\left(S_{i}\right)=\theta_{i}\left|S_{i}\right|^{2}$. Then $\sum_{i=1}^{g}\left|S_{i}\right|=k$ and $\sum_{i=1}^{g} \theta_{i}\left|S_{i}\right|^{2}=\sum_{i=1}^{g} \beta\left(S_{i}\right)=\beta(R) \geq(\theta-2 d) k^{2}$. It follows that we can choose some S_{j} with $\theta_{j}\left|S_{j}\right| \geq(\theta-2 d) k$ (otherwise we would have $\sum_{i=1}^{g} \theta_{i}\left|S_{i}\right|^{2}<(\theta-2 d) k \sum\left|S_{i}\right|=(\theta-2 d) k^{2}$).

Next we restrict our attention to S_{j} and repeatedly delete any vertex with outdegree less than $\theta_{j}\left|S_{j}\right|$ in S_{j}. We must arrive at some graph R_{0} on $k_{0} \leq\left|S_{j}\right|$ vertices with minimum outdegree at least $\theta_{j}\left|S_{j}\right| \geq(\theta-2 d) k$ and $\beta\left(R_{0}\right) \geq \theta_{j}\left|S_{j}\right| k_{0}$. Indeed, otherwise we could make S_{j} acyclic by deleting less than $\theta_{j}\left|S_{j}\right| k_{0}+\left(\left|S_{j}\right|-k_{0}\right) \theta_{j}\left|S_{j}\right|=\theta_{j}\left|S_{j}\right|^{2}$ edges, which is impossible. Let $C=c_{1} \cdots c_{p}$ be a directed cycle in R_{0} of length $p \geq(\theta-2 d) k$. It can be found by considering a longest directed path and using the fact that the end of the path has at least $(\theta-2 d) k$ outneighbours, which all lie on the path. Recall that

$$
\beta\left(S_{j}\right)=\theta_{j}\left|S_{j}\right|^{2} \geq(\theta-2 d) k\left|S_{j}\right| \geq(\theta-2 d)\left|S_{j}\right|^{2} .
$$

By Corollary 1.3, if S_{j} is r-free, then $(\theta-2 d)\left|S_{j}\right|^{2} \leq \beta\left(S_{j}\right) \leq 25\left|S_{j}\right|^{2} / r^{2}$, so

$$
r \leq 5(\theta-2 d)^{-1 / 2}<(5+\delta) \theta^{-1 / 2}
$$

where we use $d \ll \delta, \theta$. Therefore, there is a directed cycle $C^{\prime}=c_{1}^{\prime} \cdots c_{r}^{\prime}$ in S_{j} of length r for some $2 \leq r \leq(5+\delta) \theta^{-1 / 2}$ (which may intersect C in an arbitrary fashion). Also, by strong connectivity of S_{j} we can find a directed path Q_{1} from c_{p} to c_{r}^{\prime} and a directed path Q_{2} from c_{r}^{\prime} to c_{1}. Suppose that the lengths of these paths are respectively q_{1} and q_{2}. We note that $q_{1}, q_{2} \leq k$.

Let H denote the digraph with vertex set $V_{S_{j}}$ and edge set $E_{C} \cup E_{C^{\prime}} \cup E_{Q_{1}} \cup E_{Q_{2}}$. Note that the maximum total degree of H is at most 8 as each path and cycle has maximum total degree at most 2 . By Lemma 4.6, for each vertex i of S_{j} there is $U_{i} \subset V_{i}$ with $\left|U_{i}\right|=(1-8 \epsilon)\left|V_{i}\right|$ such that for each edge $i j$ of H, the pair $\left(U_{i}, U_{j}\right)_{G}$ is $(2 \epsilon, d-8 \epsilon)$-super-regular.

Suppose $0 \leq m \leq(1-\delta) \theta n$ is given. We give separate arguments depending on whether the cycles we seek in G are short or long. First consider the case $m<3 k$. Choose ℓ divisible by r with $m \leq \ell<m+r$. Then we can find a cycle of length ℓ within the classes U_{i} corresponding to C^{\prime}, as noted after Lemma 4.2. (This argument holds as long as $r \geq 4$ or $\ell \geq 2 r$. If otherwise, then $\ell=r \in\{2,3\}$ and we can find a cycle of length $2 r$ in G. This $2 r$-cycle completes this case as $m \leq \ell=r \leq 2 r \leq 6<5 \theta^{-1 / 2}$, where we use $\theta<1 / 2$.) Now suppose $m \geq 3 k$ and write $m=q_{1}+q_{2}+s p+t$, with $0 \leq t<p$ and $1 \leq s<(1-\delta / 2) n / k$ (since $p \geq(\theta-2 d) k$). The integer t is indeed nonnegative since $q_{1}, q_{2}, p \leq k$ and $m \geq 3 k$. We can choose $\ell=q_{1}+q_{2}+s p+u$ where $u<p+r$ is a multiple of r and $m \leq \ell<m+r$. Say that a path $P=v_{1} \cdots v_{e}$ in G corresponds to a walk $W=w_{1} \cdots w_{e}$ in R if every edge $v_{i} v_{i+1}, 1 \leq i \leq e-1$ of P goes from $U_{w_{i}}$ to $U_{w_{i+1}}$. For $i j$ an edge of H, the pair $\left(U_{i}, U_{j}\right)_{G}$ is $(2 \epsilon, d-8 \epsilon)$-super-regular, so any vertex in U_{i} has at least $(d-10 \epsilon)\left|U_{j}\right|$ outneighbours in U_{j}. Therefore, we can greedily find

1. a directed path P_{1} in G corresponding to Q_{1} in R, starting at some $y \in U_{c_{p}}$ and ending at some $z \in U_{c_{r}^{\prime}}$,
2. a directed path P_{2} in G corresponding to u / r copies of C^{\prime} in R, starting at z and ending at some other $z^{\prime} \in U_{c_{r}^{\prime}}$, and avoiding P_{1},
3. a directed path P_{3} in G corresponding to Q_{2} in R, starting at z^{\prime} and ending at some $x \in U_{c_{1}}$, avoiding $P_{1} \cup P_{2}$.

Let P be the path $P_{1} P_{2} P_{3}$. Note that P has at most $u / r+2$ vertices in each U_{i}. As we next find a path from x to y disjoint from $P \backslash\{x, y\}$, we delete the vertices of $P \backslash\{x, y\}$ and also at most $u / r+2$ vertices from each U_{i} so that they all still have the same size, letting U_{i}^{\prime} be the resulting subset of U_{i}. Now

$$
\left|U_{i}^{\prime}\right| \geq\left|U_{i}\right|-(u / r+2) \geq(1-8 \epsilon)\left|V_{i}\right|-(u / r+2)>(1-d / 2)\left|V_{i}\right|>(1-\delta / 2)(n / k)=s .
$$

This also gives $\left|U_{i}^{\prime}\right| /\left|U_{i}\right|>1-d / 2$ for each vertex i of S_{j}. For each edge $i j$ of $H,\left(U_{i}, U_{j}\right)$ is $(2 \epsilon, d-8 \epsilon)-$ super-regular. Hence, Lemma 4.5 with $\alpha=1-d / 2$ implies that $\left(U_{i}^{\prime}, U_{j}^{\prime}\right)$ is $(4 \epsilon, d / 4)$ super-regular, as $d-8 \epsilon-d / 2=d / 2-8 \epsilon \geq d / 4$. Therefore, we can apply Lemma 4.2 with $U_{i}=U_{c_{i}}^{\prime}, 1 \leq i \leq p$ to obtain a directed path from x to y of length $s p$. Combining this with the path P already found from y to x gives a directed cycle of length ℓ, as required.

For the proof of Theorem 1.5 we need the following two facts from elementary number theory.
Chinese Remainder Theorem. Suppose x_{1}, \cdots, x_{t} are integers with greatest common factor 1 . Then any integer n can be expressed as $n=a_{1} x_{1}+\cdots+a_{t} x_{t}$ with integers a_{1}, \cdots, a_{t}.

Sylvester's 'coin problem'. Suppose x and y are coprime positive integers. Then every integer $n \geq(x-1)(y-1)$ can be represented as $n=a x+b y$ with a, b non-negative integers.

Proof of Theorem 1.5. It is straightforward to see that λ (similarly to β) is additive on strong components, i.e., if a digraph G has strong components T_{1}, \ldots, T_{g}, then $\lambda(G)=\sum_{i=1}^{g} \lambda\left(T_{i}\right)$. Also, $\lambda(G) \leq \beta(G)$, since every acyclic digraph is pseudoperiodic. Therefore we start as in the proof of Theorem 1.4 by applying Lemma 4.1 to obtain a partition of the vertices of G into $V_{0}, V_{1}, \cdots, V_{k}$ for some $M^{\prime} \leq k \leq M$ and letting R be the reduced graph on $[k]$ with parameters (ϵ, d). As before G has at most $2 d n^{2}$ edges not corresponding to edges of the reduced graph R, so we must have $\lambda(R) \geq(\theta-2 d) k^{2}$. Then, as in the proof of Theorem 1.4, we find a strong component S_{j} of R with $\beta\left(S_{j}\right) \geq \lambda\left(S_{j}\right)=\theta_{j}\left|S_{j}\right|^{2}$ and $\theta_{j}\left|S_{j}\right| \geq(\theta-2 d) k$, directed cycles $C=c_{1} \cdots c_{p}$ and $C^{\prime}=c_{1}^{\prime} \cdots c_{r}^{\prime}$ in S_{j} with $p \geq(\theta-2 d) k$ and $2 \leq r \leq(5+\delta) \theta^{-1 / 2}$, a directed path Q_{1} from c_{p} to c_{r}^{\prime} of length $q_{1} \leq k$ and a directed path Q_{2} from c_{r}^{\prime} to c_{1} of length $q_{2} \leq k$.

Next we show how to construct a closed walk W in S_{j} starting and ending at c_{r}^{\prime} with length $l(W)=w$ coprime to r. Since S_{j} is not f-periodic for any $f \geq 2$, for each prime factor f of r there is a directed cycle with length not divisible by f. Therefore we can choose cycles D_{1}, \cdots, D_{r} so that $l\left(C^{\prime}\right), l\left(D_{1}\right), \cdots, l\left(D_{r}\right)$ have greatest common factor 1 . Fix vertices $d_{i} \in D_{i}, 1 \leq i \leq r$ and choose the following directed paths in S_{j} (which exist by strong connectivity): Q_{1}^{\prime} from c_{r}^{\prime} to d_{1} and $Q_{1}^{\prime \prime}$ from d_{1} to $c_{r}^{\prime}, Q_{i}^{\prime}$ from d_{i-1} to d_{i} and $Q_{i}^{\prime \prime}$ from d_{i} to d_{i-1} for $2 \leq i \leq r$. Let W^{\prime} be the walk $Q_{1}^{\prime} \cdots Q_{r}^{\prime} Q_{r}^{\prime \prime} \cdots Q_{1}^{\prime \prime}$. By the Chinese Remainder Theorem we can find integers a_{1}, \cdots, a_{r} such that $l\left(W^{\prime}\right)+a_{1} l\left(D_{1}\right)+\cdots a_{r} l\left(D_{r}\right) \equiv 1 \bmod r$. By reducing $\bmod r$ we can assume that $0 \leq a_{i} \leq r-1$ for $1 \leq i \leq r$. We let W be the walk obtained from W^{\prime} by including a_{i} copies of D_{i} when d_{i} is first
visited. That is, we obtain W by walking along W^{\prime}, and, for $1 \leq i \leq r$, when we first reach d_{i}, before we continue onto the next vertex, we first walk a_{i} times around the cycle D_{i}. Then $l(W) \equiv 1 \bmod$ r is coprime to r. The walk W visits any vertex at most $2 r^{2}$ times. Indeed, each of the $2 r$ directed paths Q_{i}^{\prime} and $Q_{i}^{\prime \prime}$ visit each vertex at most once, and each time we go around cycle D_{i} adds at most one new visit to any vertex, so W visits each vertex at most $2 r+a_{1}+\ldots+a_{r} \leq 2 r+r^{2} \leq 2 r^{2}$ times. As S_{j} has at most k vertices and visits each vertex at most $2 r^{2}$ times, $w=l(W) \leq 2 r^{2} k$.

Let H be the digraph with vertex set $V_{S_{j}}$ and edge set $E_{C} \cup E_{C^{\prime}} \cup E_{W}$. Since W visits any vertex at most $2 r^{2}$ times, each vertex in W is in at most $4 r^{2}$ edges of H. Therefore, H has maximum total degree at most $4+4 r^{2} \leq 8 r^{2}$. By Lemma 4.6, for each vertex i of S_{j} there is $U_{i} \subset V_{i}$ with $\left|U_{i}\right|=\left(1-8 r^{2} \epsilon\right)\left|V_{i}\right|$ such that for each edge $i j$ of H, the pair $\left(U_{i}, U_{j}\right)_{G}$ is $\left(2 \epsilon, d-8 r^{2} \epsilon\right)$-super-regular.

Fix any ℓ with $500 \theta^{-3 / 2} M \leq \ell \leq(1-\delta) \theta n$. We will show that G contains a directed cycle of length ℓ. As $2 \leq r<6 \theta^{-1 / 2}, p, q_{1}, q_{2} \leq k \leq M$ and $w \leq 2 r^{2} k$, we have

$$
\ell \geq 500 \theta^{-3 / 2} M \geq 3 k+2 r^{3} k \geq q_{1}+q_{2}+p+r w
$$

Therefore, we can write $\ell=q_{1}+q_{2}+s p+u$, with $r w \leq u<r w+p$ and $1 \leq s<(1-\delta / 2) n / k$ (the last inequality uses $p \geq(\theta-2 d) k)$. Since r, w are coprime, by the 'coin problem' result of Sylvester we can write $u=a r+b w$ with a, b non-negative integers. We have $a \leq u / r<w+p \leq 2 r^{2} k+k$ and $b \leq u / w<r+p \leq 2 k$. For $i j$ an edge of H, the pair $\left(U_{i}, U_{j}\right)_{G}$ is $\left(2 \epsilon, d-8 r^{2} \epsilon\right)$-super-regular, so any vertex in U_{i} has at least $\left(d-10 r^{2} \epsilon\right)\left|U_{j}\right|$ outneighbours in U_{j}. Therefore, we can greedily find

1. a directed path P_{1} in G corresponding to Q_{1} in R, starting at some $y \in U_{c_{p}}$ and ending at some $z \in U_{c_{r}^{\prime}}$,
2. a directed path P_{2} in G corresponding to a copies of C^{\prime} in R, starting at z and ending at some other $z^{\prime} \in U_{c_{r}^{\prime}}$, and avoiding P_{1},
3. a directed path P_{3} in G corresponding to b copies of W in R, starting at z^{\prime} and ending at some other $z^{\prime \prime} \in U_{c_{r}^{\prime}}$, and avoiding $P_{1} \cup P_{2}$,
4. a directed path P_{4} in G corresponding to Q_{2} in R, starting at $z^{\prime \prime}$ and ending at some $x \in U_{c_{1}}$, avoiding $P_{1} \cup P_{2} \cup P_{3}$.

Let P be the path $P_{1} P_{2} P_{3} P_{4}$. As we walk along path P, for each i, the number of times U_{i} is visited is at most once for P_{1}, at most a times for P_{2}, at most $b \cdot 2 r^{2}$ times for P_{3}, and at most once for P_{4}. Therefore, for each i,

$$
\left|P \cap U_{i}\right| \leq 1+a+b \cdot 2 r^{2}+1 \leq 1+2 r^{2} k+k+2 k \cdot 2 r^{2}+1 \leq 10 r^{2} k .
$$

We delete the vertices of $P \backslash\{x, y\}$ as we next find a directed path from x to y that is disjoint from $P \backslash\{x, y\}$. We further delete at most $10 r^{2} k$ vertices from each U_{i} so that they all still have the same size, and let U_{i}^{\prime} be the resulting subset of U_{i}. Now

$$
\left|U_{i}^{\prime}\right| \geq\left|U_{i}\right|-10 r^{2} k=\left(1-8 r^{2} \epsilon\right)\left|V_{i}\right|-10 r^{2} k>(1-d / 2)\left|V_{i}\right|>(1-\delta / 2)(n / k)=s .
$$

Then $\left|U_{i}^{\prime}\right| /\left|U_{i}\right|>(1-d / 2)$, and Lemma 4.5 with $\alpha=1-d / 2$ implies that each pair $\left(U_{i}^{\prime}, U_{j}^{\prime}\right)_{G}$ with $i j$ an edge of H is $(4 \epsilon, d / 4)$-super-regular, as $d-8 r^{2} \epsilon-d / 2 \geq d / 4$. Therefore we can apply Lemma 4.2 with $U_{i}=U_{c_{i}}^{\prime}, 1 \leq i \leq p$ to obtain a directed path from x to y of length $s p$. Combining this with the path P already found from y to x gives a directed cycle of length ℓ, as required.

6 Concluding remarks

- We have not presented the best possible constants that come from our methods, opting to give reasonable constants that can be obtained with relatively clean proofs. With more work one can replace the constant 25 in Theorem 1.2, and so in Corollary 1.3, by a constant that approaches 8 as r becomes large. However, Sullivan [13] conjectures that the correct constant is 2, and it would be interesting to close this gap. The problems of estimating β and μ are roughly equivalent: we used the bound on μ from Theorem 1.2 to establish the bound on β in Theorem 1.3, Conversely, if we delete $\beta(G)$ edges from G to make it acyclic, order the vertices so that all remaining edges point in one direction and take S to be the first $n / 2$ vertices in the ordering we see that

$$
\mu(G)(n / 2)=\mu(G)|S| \leq \mu(S)|S|=\min \left(e\left(S, V_{G} \backslash S\right), e\left(V_{G} \backslash S, S\right)\right) \leq \beta(G),
$$

so a bound on β gives a bound on μ. However, these arguments may be too crude to give the correct constants.

- Applying this better constant 8 (mentioned above) in Corollary 1.3 we can replace the constant 5 by 3 (say) in Theorem 1.4, so that the parameter K in Yuster's question (the length of the interval where we look for a cycle length) is determined up to a factor of 3. The parameter η (the maximum length of a cycle as a proportion of n) is determined up to a factor of about 4 if the question is posed for oriented graphs, or a factor 2 if the question is posed for digraphs. Indeed, Yuster shows that $\eta \leq 4 \theta$ for oriented graphs by taking $1 / 4 \theta$ copies of a random regular tournament on $4 \theta n$ vertices; for digraphs one can show $\eta \leq 2 \theta$ by taking $1 / 2 \theta$ copies of the complete digraph on $2 \theta n$ vertices. We can find longer cycles in a periodic digraph G on n vertices with $\beta(G) \geq \theta n^{2}$, but θn is still the correct bound up to a constant of about 2 , as may be seen from the blowup of a 2 -cycle with parts of size $(1+2 \theta) \theta n$ and $(1-(1+2 \theta) \theta) n$.
- If a digraph G is far from being acyclic but we can obtain a pseudoperiodic digraph G^{\prime} by deleting few edges of G, then some strong component of G^{\prime} has small period. More precisely, if $\beta(G) \geq \theta n^{2}$ and we can obtain a pseudoperiodic G^{\prime} by deleting at most δn^{2} edges from G then some strong component of G^{\prime} must have period at most $(\theta-\delta)^{-1 / 2}$. To see this, note that $\beta\left(G^{\prime}\right) \geq(\theta-\delta) n^{2}$, so some strong component H of G^{\prime} satisfies $\beta(H) \geq(\theta-\delta) m^{2}$, where $m=\left|V_{H}\right|$. Since G^{\prime} is pseudoperiodic H is p-periodic, for some p, so is contained in the blowup of a p-cycle, i.e. the vertex set of H can be partitioned as $V(H)=V_{1} \cup \cdots \cup V_{p}$ so that every edge goes from V_{i} to V_{i+1}, for some $1 \leq i \leq p$, writing $V_{p+1}=V_{1}$. (For a proof see Theorem 10.5.1 in [3].) Write $t_{i}=\left|V_{i}\right| / m$. Then there is some $1 \leq i \leq p$ for which $t_{i} t_{i+1} \leq 1 / p^{2}$. This can be seen from the arithmetic-geometric mean inequality: we have $1=\sum_{i=1}^{p} t_{i} \geq p \prod_{i=1}^{p} t_{i}^{1 / p}=p \prod_{i=1}^{p}\left(t_{i} t_{i+1}\right)^{1 / 2 p}$, so $\prod_{i=1}^{p} t_{i} t_{i+1} \leq\left(1 / p^{2}\right)^{p}$. It follows that $\beta(H) \leq(m / p)^{2}$, i.e. $p \leq(\theta-\delta)^{-1 / 2}$, as required.
- The dependence of C on θ which we get in Theorem 1.5 is quite poor since the proof uses Szemerédi's regularity lemma and the value of C depends on the number of parts in the regular partition. It would be interesting to determine the right dependence of C on θ. One should note that we obtained good constants in the proof of Theorem 1.4 despite using the regularity lemma, so it may not be necessary to avoid its use.

References

[1] N. Alon, Ranking tournaments, SIAM J. Discrete Math. 20 (2006), 137-142.
[2] N. Alon and A. Shapira, Testing subgraphs in directed graphs, Journal of Computer and System Sciences 69 (2004), 354-382.
[3] J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications, Springer, 2001.
[4] L. Caccetta and R. Häggkvist, On minimal digraphs with given girth, in: Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1978), pp. 181-187, Congress. Numer., XXI, Utilitas Math., Winnipeg, Man., 1978.
[5] P. Charbit, S. Thomassé and A. Yeo, The minimum feedback arc set problem is NP-hard for tournaments, Combin. Probab. Comput. 16 (2007), 1-4.
[6] D. Christofides, P. Keevash, D. Kühn and D. Osthus, Finding Hamilton cycles in robustly expanding digraphs, submitted.
[7] M. Chudnovsky, P. Seymour and B. Sullivan, Cycles in Dense Digraphs, Combinatorica 28 (2008), 1-18.
[8] J. Komlós, G. N. Sárközy and E. Szemerédi, Blow-up lemma, Combinatorica 17 (1997), 109-123.
[9] J. Komlós and M. Simonovits, Szemerédi's Regularity Lemma and its applications in graph theory, Bolyai Society Mathematical Studies 2, Combinatorics, Paul Erdős is Eighty (Vol. 2) (D. Miklós, V. T. Sós and T. Szőnyi eds.), Budapest (1996), 295-352.
[10] C. E. Leiserson and J. B. Saxe, Retiming Synchronous Circuitry, Algorithmica 6 (1991), 5-35.
[11] M. B. Nathanson, The Caccetta-Häggkvist conjecture and additive number theory, AIM Preprint 2006-10, www.aimath.org/preprints.html.
[12] A. C. Shaw, The Logical Design of Operating Systems, Prentice-Hall, Englewood Cliffs, NJ, 1974.
[13] B. Sullivan, Extremal Problems in Digraphs, Ph.D. thesis, Princeton University, May 2008.
[14] B. Sullivan, A Summary of Results and Problems Related to the Caccetta-Häggkvist Conjecture", AIM Preprint 2006-13, www.aimath.org/preprints.html.
[15] R. Yuster, Almost given length cycles in digraphs, Graphs and Combinatorics 24 (2008), 59-65.

[^0]: *Department of Mathematics, Princeton, Princeton, NJ 08544. Email: jacobfox@math.princeton.edu. Research supported by an NSF Graduate Research Fellowship and a Princeton Centennial Fellowship.
 ${ }^{\dagger}$ School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK. Email: p.keevash@qmul.ac.uk. Research supported in part by NSF grant DMS-0555755.
 ${ }^{\ddagger}$ Department of Mathematics, UCLA, Los Angeles, 90095. E-mail: bsudakov@math.ucla.edu. Research supported in part by NSF CAREER award DMS-0546523, and a USA-Israeli BSF grant.

