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Directed graphs without short cycles

Jacob Fox∗ Peter Keevash † Benny Sudakov‡

Abstract

For a directed graph G without loops or parallel edges, let β(G) denote the size of the smallest

feedback arc set, i.e., the smallest subset X ⊂ E(G) such that G \X has no directed cycles. Let

γ(G) be the number of unordered pairs of vertices of G which are not adjacent. We prove that every

directed graph whose shortest directed cycle has length at least r ≥ 4 satisfies β(G) ≤ cγ(G)/r2,

where c is an absolute constant. This is tight up to the constant factor and extends a result of

Chudnovsky, Seymour, and Sullivan.

This result can be also used to answer a question of Yuster concerning almost given length cycles

in digraphs. We show that for any fixed 0 < θ < 1/2 and sufficiently large n, if G is a digraph

with n vertices and β(G) ≥ θn2, then for any 0 ≤ m ≤ θn− o(n) it contains a directed cycle whose

length is between m and m+ 6θ−1/2. Moreover, there is a constant C such that either G contains

directed cycles of every length between C and θn− o(n) or it is close to a digraph G′ with a simple

structure: every strong component of G′ is periodic. These results are also tight up to the constant

factors.

1 Introduction

A digraph (directed graph) G is a pair (VG, EG) where VG is a finite set of vertices and EG is a set

of ordered pairs (u, v) of vertices called edges. All digraphs we consider in this paper are simple, i.e.,

they do not have loops or parallel edges. A path of length r in G is a collection of distinct vertices

v1, . . . , vr together with edges (vi, vi+1) for 1 ≤ i ≤ r − 1. Moreover, if (vr, v1) is also an edge, then it

is an r-cycle.

The concept of cycle plays a fundamental role in graph theory, and there are numerous papers which

study cycles in graphs. In contrast, the literature on cycles in directed graphs is not so extensive. It

seems the main reason for this is that questions concerning cycles in directed graphs are often much

more challenging than the corresponding questions in graphs. An excellent example of this difficulty

is the well-known Caccetta-Häggkvist conjecture [4]. For r ≥ 2, we say that a digraph is r-free if it

does not contain a directed cycle of length at most r. The Caccetta-Häggkvist conjecture states that

every r-free digraph on n vertices has a vertex of outdegree less than n/r. This notorious conjecture
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is still open even for r = 3, and we refer the interested reader to the recent surveys [11, 14], which

discuss known results on this problem and other related open questions.

In approaching the Caccetta-Häggkvist conjecture it is natural to see what properties of an r-free

digraph one can prove. A feedback arc set in a digraph is a collection of edges whose removal makes

the digraph acyclic. For a digraph G, let β(G) denote the size of the smallest feedback arc set. This

parameter appears naturally in testing of electronic circuits and in efficient deadlock resolution (see,

e.g., [10, 12]). It is also known that it is NP-hard to compute the minimum size of a feedback arc set

even for tournaments [1, 5] (a tournament is an oriented complete graph). Let γ(G) be the number

of unordered pairs of vertices of G which are not adjacent. Chudnovsky, Seymour and Sullivan [7]

conjectured that if G is a 3-free digraph then β(G) is bounded from above by γ(G)/2. They proved

this conjecture in two special cases, when the digraph is the union of two cliques or is a circular interval

digraph. Moreover, for general 3-free digraphs G, they showed that β(G) ≤ γ(G).

Generalizing this conjecture, Sullivan [13] suggested that every r-free digraph G satisfies β(G) ≤

2γ(G)/(r+1)(r−2), and gave an example showing that this would be best possible. She posed an open

problem to prove that β(G) ≤ f(r)γ(G) for every r-free digraph G, for some function f(r) tending to

0 as r → ∞. Here we establish a stronger bound which shows that Sullivan’s conjecture is true up to

a constant factor. This extends the result of Chudnovsky, Seymour and Sullivan to general r.

Theorem 1.1 For r ≥ 3, every r-free digraph G satisfies β(G) ≤ 800γ(G)/r2.

The above result is tight up to a constant factor. Indeed, consider a blowup of an (r + 1)-cycle,

obtained by taking disjoint sets V1, · · · , Vr+1 of size n/(r+1) and all edges from Vi to Vi+1, 1 ≤ i ≤ r+1

(where Vr+2 = V1). This digraph on n vertices is clearly r-free, has γ(G) =
(n
2

)

− n2

r+1 ≥ n(n−2)
4 , and

β(G) ≥ n2

(r+1)2 . Indeed, G contains n2

(r+1)2 edge-disjoint cycles of length r + 1, and one needs to delete

at least one edge from each cycle to make G acyclic.

In order to prove Theorem 1.1, we obtain a bound on the edge expansion of r-free digraphs which

may be of independent interest. For vertex subsets S, T ⊂ VG, let eG(S, T ) be the number of edges

in G that go from S to T . The edge expansion µ(S) of a vertex subset S ⊂ VG with cardinality

|S| ≤ |VG|/2 is defined to be

1

|S|
min

{

eG(S, VG \ S), eG(VG \ S, S)
}

.

The edge expansion µ = µ(G) of G is the minimum of µ(S) over all vertex subsets S of G with

|S| ≤ |VG|/2. We show that r-free digraphs can not have large edge expansion.

Theorem 1.2 Suppose G is a digraph on n vertices, r ≥ 9 and µ = µ(G) ≥ 25n/r2. Then every

vertex of G is contained in a directed cycle of length at most r.

Using this result, it is easy to deduce the following corollary, which implies Theorem 1.1 in the

case G is not too dense.

Corollary 1.3 Every r-free digraph G on n vertices satisfies β(G) ≤ 25n2/r2.
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Corollary 1.3 will also enable us to answer the following question posed by Yuster [15]. Suppose

that a digraph G on n vertices is far from being acyclic, in that β(G) ≥ θn2. What lengths of directed

cycles can we find in G? Yuster [15] showed that for any θ > 0 there are constants K and η so that

for any m ∈ (0, ηn) there is a directed cycle whose length is between m and m+K. He gave examples

showing that one must have K ≥ θ−1/2 and η ≤ 4θ, and posed the problem of determining the correct

order of magnitude of these parameters as a function of θ. The following theorem, which is tight up

to constant factors for both K and η, answers Yuster’s question.

Theorem 1.4 For any 0 < δ, θ < 1 the following holds for n sufficiently large. Suppose G is a digraph

on n vertices with β(G) ≥ θn2. Then for any 0 ≤ m ≤ (1 − δ)θn there is m ≤ ℓ ≤ m+ (5 + δ)θ−1/2

such that G contains a directed cycle of length ℓ.

Moreover, we can show that G either contains directed cycles of all lengths between some constant

C and θn − o(n) or is highly structured in the following sense. Say that G is periodic if the length

of every directed cycle in G is divisible by some number p ≥ 2, and pseudoperiodic if every strong

component C is periodic (possibly with differing periods). A digraph is strong if, for every pair u, v

of vertices, there is a path from u to v and a path from v to u. A strong component of a digraph G

is a maximal strong subgraph of G. A pseudoperiodic digraph G is highly structured, as Theorem

10.5.1 of [3] shows that a strongly connected digraph with period p is contained in the blowup of a

p-cycle. Let λ(G) denote the minimum number of edges of G that need to be deleted from G to obtain

a pseudoperiodic digraph. Note that β(G) ≥ λ(G), as every acyclic digraph is pseudoperiodic.

Theorem 1.5 For any 0 < δ, θ < 1 there are numbers C and n0 so that the following holds for n ≥ n0.

If G is a digraph on n vertices with λ(G) ≥ θn2 then G contains a directed cycle of length ℓ for any

C ≤ ℓ ≤ (1− δ)θn.

The rest of this paper is organised as follows. In the next section we collect two simple lemmas

concerning nearly complete digraphs. We need these lemmas in Section 3 to prove Theorems 1.1, 1.2

and Corollary 1.3. In Section 4, we discuss Szemerédi’s Regularity Lemma for digraphs and some of

its consequences. We use these results together with Corollary 1.3 in Section 5 to prove Theorems 1.4

and 1.5. The final section contains some concluding remarks.

Notation. An oriented graph is a digraph which can be obtained from a simple undirected graph by

orienting its edges. Note that for r ≥ 2, every r-free digraph is an oriented graph, as two opposite edges

on the same pair of vertices form a 2-cycle. Suppose G is an oriented graph and S and T are subsets of

its vertex set VG. Let EG(S, T ) be the set of edges in G that go from S to T , so eG(S, T ) = |EG(S, T )|.

We drop the subscript G if there is no danger of confusion. Let G[S] denote the restriction of G to S,

in which the vertex set is S and the edges are all those edges of G with both endpoints in S, and let

G \ S = G[VG \ S] be the restriction of G to the complement of S. We use the notation 0 < α ≪ β to

mean that there is a increasing function f(x) so that the following argument is valid for 0 < α < f(β).

Throughout the paper, we systematically omit floor and ceiling signs whenever they are not crucial,

for the sake of clarity of presentation. We also do not make any serious attempt to optimize absolute

constants in our statements and proofs.
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2 Basic facts

We start with two simple lemmas concerning oriented graphs that are nearly complete. First we

prove a lemma which shows that such an oriented graph contains a vertex that has large indegree

and large outdegree. Consider an oriented graph G whose vertex set is partitioned VG = V1 ∪ V2

with |V1| = |V2| = n/2, such that all edges go from V1 to V2, and the restriction of G to each Vi is

regular with indegree and outdegree of every vertex equal to (1 − 2ǫ)n/4. The number of edges in G

is (1 − ǫ)n2/2 and no vertex has indegree and outdegree both more than (1 − 2ǫ)n/4. This example

demonstrates tightness of the following lemma.

Lemma 2.1 Let G be an oriented graph with n vertices and (1 − ǫ)n2/2 edges. Then G contains a

vertex with indegree and outdegree at least (1− 2ǫ)n/4.

Proof. Suppose for a contradiction that no vertex of G has indegree and outdegree at least (1−2ǫ)n/4.

Delete vertices one by one whose indegree and outdegree in the current oriented graph are both less

than (1−2ǫ)n/4. Let G′ be the oriented graph that remains and αn be the number of deleted vertices.

Then G′ has (1 − α)n vertices, at least (1 − ǫ)n2/2 − αn · 2(1 − 2ǫ)n/4 edges, and every vertex has

either indegree or outdegree at least (1 − 2ǫ)n/4, but not both. Partition VG′ = V1 ∪ V2, where V1

consists of those vertices of G′ that have indegree at least (1− 2ǫ)n/4. Since |V1|+ |V2| = (1−α)n we

have |V1||V2| ≤ (1− α)2n2/4, and so

e(V1) + e(V2) ≥ (1− ǫ)n2/2− (1− 2ǫ)αn2/2− |V1||V2| ≥ (1− 2ǫ+ 4αǫ− α2)n2/4.

We may assume without loss of generality that e(V1)/e(V2) ≥ |V1|/|V2| (the other case can be treated

similarly). In the first case,

e(V1) ≥
|V1|

|V1|+ |V2|
(e(V1) + e(V2)) ≥

|V1|

|V1|+ |V2|

(

1−2ǫ+4αǫ−α2
)n2

4
= |V1|

(

1−2ǫ+4αǫ−α2
) n

4(1− α)
.

Then the average outdegree of a vertex in V1 is at least (1− 2ǫ+ 4αǫ− α2) n
4(1−α) . It is easy to check

as a function of α this is increasing for α ∈ [0, 1) and is therefore minimized when α = 0. Therefore

the average outdegree of a vertex in V1 is at least (1− 2ǫ)n/4. Now we can choose a vertex in V1 with

outdegree at least the average, and then by definition of V1 it has both indegree and outdegree at least

(1− 2ǫ)n/4, a contradiction. ✷

We can use this lemma to find in a nearly complete oriented graph a vertex of very large total

degree and reasonably large indegree and outdegree.

Lemma 2.2 Let G be an oriented graph with n ≥ 20 vertices and γ = αn2 non-adjacent pairs, with

α ≤ 1/16. Then G has a vertex v of total degree at least (1− 4α)n and indegree and outdegree at least
n
10 .

Proof. Let V ′ be those vertices of G with total degree at least (1 − 4α)n. Then V \ V ′ is incident

to at least |V \ V ′|4αn/2 non-adjacent pairs, so (n − |V ′|)2αn ≤ γ = αn2, i.e., |V ′| ≥ n/2. Write

|V ′| = ωn. The number of edges in the restriction G[V ′] of G to V ′ is at least
(

|V ′|

2

)

−
(

γ − |V \ V ′|4αn/2
)

=
(

1− (4ω − 2)α/ω2 − 1/|V ′|
)

|V ′|2/2.
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Applying Lemma 2.1 to G[V ′], with ǫ = (4ω − 2)α/ω2 + 1/|V ′|, we find a vertex with indegree and

outdegree at least

(1− 2ǫ)|V ′|/4 =
(

1/4 − (2ω − 1)α/ω2
)

ωn− 1/2 ≥ n/8− 1/2 ≥ n/10,

where we use the fact that, for fixed α ≤ 1/16, the minimum of f(ω) = ω/4 + (1 − 2ω)α/ω for

ω ∈ [1/2, 1] occurs at ω = 1/2. Indeed, for ω ≥ 1/2, f ′(ω) = 1
4 − α

ω2 ≥ 0 and f(ω) is an increasing

function. ✷

3 Finding short cycles

We will prove Theorem 1.1 by proving that an r-free digraph can not have large edge expansion. Recall

that the edge expansion µ(S) of a set S of vertices of a digraph G with cardinality |S| ≤ |VG|/2 is

defined to be
1

|S|
min

{

e(S, VG \ S), e(VG \ S, S)
}

,

and the edge expansion µ = µ(G) of G is the minimum of µ(S) over all subsets S ⊂ VG with

|S| ≤ |VG|/2.

Consider a digraph G on n vertices and any vertex v of G. We say that a vertex w has outdistance

i from v if the length of the shortest directed path from v to w is i. (Indistance is similarly defined.)

Let Ni be the vertices at outdistance exactly i from v and Mi = ∪j≤iNi the vertices at outdistance at

most i from v. It follows from these definitions that any edge from Mi to VG \Mi is in fact an edge

from Ni to Ni+1. We deduce that

µ(Mi)|Mi| ≤ e(Mi, VG \Mi) = e(Ni, Ni+1) ≤ |Ni||Ni+1|.

Then the Arithmetic Mean - Geometric Mean Inequality gives

|Ni|+ |Ni+1| ≥ 2
√

µ(Mi)|Mi|. (1)

The first step of the proof of Theorem 1.1 is Theorem 1.2, which shows that large edge expansion

implies short cycles, and moreover we can find a short cycle through any specified vertex.

Proof of Theorem 1.2. Let v be any vertex of G. As before, let Ni be the vertices of outdistance

exactly i from v and Mi the vertices of outdistance at most i from v. Also, let ai = (|Ni|+ |Ni+1|)/µ

and bi =
∑

1≤j≤i aj. Then bi−1µ = 2|Mi| − |N1| − |Ni| ≤ 2|Mi|, so dividing both sides of inequality

(1) by µ and using µ(Mi) ≥ µ gives

ai = (|Ni|+ |Ni+1|)/µ ≥ 2

√

µ(Mi)

µ

|Mi|

µ
≥ 2

√

|Mi|/µ ≥
√

2bi−1.

Adding bi−1 to both sides we have bi ≥ bi−1 +
√

2bi−1. Note that b1 = a1 ≥ |N1|/µ ≥ 1, as otherwise

|N1| < µ and taking S = {v} we have µ(S) ≤ |N1| < µ, contradicting the definition of µ. Now we
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prove by induction that bi ≥
2
5 i

2. This is easy to check for i < 6 using a calculator and b1 ≥ 1. For

i ≥ 6, the induction step is

bi ≥ bi−1 +
√

2bi−1 ≥
2

5
(i− 1)2 +

√

4/5(i− 1) ≥
2

5
i2.

Applying this with i = ⌊r/2⌋ we have |Mi| ≥ µbi−1/2 ≥ µ(i − 1)2/5 > n/2, since µ ≥ 25n/r2 and

r ≥ 9. The same argument shows that there are more than n/2 vertices at indistance at most i from

v. Therefore there is a vertex at indistance and outdistance at most i from v, which gives a directed

cycle through v of length at most r. ✷

Next we deduce Corollary 1.3, which implies our main theorem in the case when G is not almost

complete.

Proof of Corollary 1.3. We suppose that G is r-free and prove that β(G) ≤ 25n2/r2.

First we deal with the case r ≤ 10. In any linear ordering of the vertices of G, deleting the forward

edges or the backwards edges makes the digraph acyclic. Since the number of edges in G is
(n
2

)

−γ(G)

we have β(G) ≤ 1
2(
(n
2

)

− γ(G)) < n2/4. Hence, β(G) < 25n2/r2 if r ≤ 10.

Next, for r ≥ 11 we use induction on n. Note that if n ≤ r then G is acyclic and β(G) = 0, so we

can assume that n > r. By Theorem 1.2 and definition of µ we can find a set S with |S| = s ≤ n/2

and µ(S) = µ < 25n/r2. Note that a digraph formed by taking the disjoint union of two acyclic

digraphs and adding some edges from the first acyclic digraph to the second acyclic digraph is acyclic.

Therefore, using the inequality n ≤ 2(n − s), we obtain

β(G) ≤ β(G[S]) + β(G \ S) + µs ≤ 25s2/r2 + 25(n − s)2/r2 + 25n/r2 · s ≤ 25n2/r2 . ✷

We need one more lemma before the proof of the main theorem, showing that an r-free oriented

graph has a linear-sized subset S with small edge expansion.

Lemma 3.1 Suppose r ≥ 15, 0 ≤ α ≤ 1/16 and G is an r-free oriented graph on n ≥ 20 vertices with

γ = αn2 non-adjacent pairs. Then there is S ⊂ V (G) with n/10 ≤ |S| ≤ n/2 and µ(S) < 1500α2n/r2.

Proof. By Lemma 2.2 there is a vertex v of total degree at least (1−4α)n and indegree and outdegree

at least n/10. As before, let Ni be the vertices of outdistance exactly i from v and Mi the vertices

of outdistance at most i from v. Since G is r-free there is no vertex at indistance and outdistance

at most ⌊r/2⌋ from v, so we can assume without loss of generality that |Mi| ≤ n/2 for all i ≤ ⌊r/2⌋.

Also, by choice of v we have |Mi| ≥ |N1| ≥ n/10, so we are done if we have µ(Mi) < 1500α2n/r2 for

some i ≤ ⌊r/2⌋. Suppose for a contradiction that this is not the case. Then equation (1) gives

|Ni|+ |Ni+1| ≥ 2
√

1500α2n/r2 · n/10 > 24αn/r.

Let s = ⌈ r−5
4 ⌉ ≥ r/6, so 2s + 1 ≤ r/2. The above inequality gives

|M2s+1| − |N1| = (|N2|+ |N3|) + · · ·+ (|N2s|+ |N2s+1|) > s · 24αn/r ≥ 4αn.

Let I1 denote the inneighbourhood of v. By choice of v we have |I1| + |N1| ≥ (1 − 4α)n, and so

|I1|+ |M2s+1| > n, and hence there is a vertex in both I1 and M1+2s. This gives a cycle of length at

most 2 + 2s ≤ r, contradiction. ✷

6



Proof of Theorem 1.1. We use induction on n to prove that every digraph G on n vertices satisfies

β(G) ≤ 800r−2(γ(G) − γ(G)2/n2). (2)

Note that the right hand side of (2) is at least 400γ(G)/r2 and at most 800γ(G)/r2 as 0 ≤ γ(G) ≤
(n
2

)

≤ n2/2. We can assume that γ(G) < n2/16, since otherwise we can apply Corollary 1.3 to get

β(G) ≤ 25n2/r2 ≤ 400γ(G)/r2. We can also assume that r ≥ 21, as otherwise r ≤ 20 and we can

use the result of Chudnovsky, Seymour, and Sullivan [7] that 3-free graphs G satisfy β(G) ≤ γ(G) ≤

400γ(G)/r2. Then we can assume that n ≥ 22, as otherwise n ≤ r, G is acyclic, and β(G) = 0.

Let S be the set given by Lemma 3.1, G1 = G[S], G2 = G \ S and ni = |V (Gi)|, γ = γ(G),

γi = γ(Gi) for i = 1, 2, so that n1 + n2 = n and γ+ := γ1 + γ2 ≤ γ. By choice of S we have

µ(S)|S| < 1600γ2n1/n
3r2. By deleting all edges from S to VG \ S or all edges from VG \ S to S, we

get by the induction hypothesis that

β(G) ≤ β(G1) + β(G2) + µ(S)|S| ≤ 800r−2(γ1 − γ21/n
2
1 + γ2 − γ22/n

2
2 + 2γ2n1/n

3).

Now the Cauchy-Schwartz inequality gives γ2+ = (n1 · γ1/n1 +n2 · γ2/n2)
2 ≤ (n2

1 +n2
2)(γ

2
1/n

2
1 + γ22/n

2
2)

so we have

β(G) ≤ 800r−2(γ+ − γ2+/(n
2
1 + n2

2) + 2γ2n1/n
3) ≤ 800r−2(γ − γ2/(n2

1 + n2
2) + 2γ2n1/n

3).

Here we used γ+ ≤ γ < n2/16 and n2
1 + n2

2 ≥
1
2(n1 + n2)

2 = n2/2, which give the inequality

γ −
γ2

n2
1 + n2

2

− γ+ +
γ2+

n2
1 + n2

2

= (γ − γ+)

(

1−
γ+ + γ

n2
1 + n2

2

)

≥ 0.

Now the desired bound on β(G) follows from the inequality γ2/(n2
1 + n2

2) − 2γ2n1/n
3 ≥ γ2/n2. Set

n1 = tn, where 1/10 ≤ t ≤ 1/2 by choice of S. It is required to show that f(t) = 1
1+2t−t2−(1−t)2 ≥ 0.

By computing f ′(t) = 2− 4t− 2
(1+2t)2

and f ′′(t) = 8
(1+2t)3

− 4, we see that for t ≥ 0, f ′′ is a decreasing

function and f ′′(0) > 0 > f ′′(1/2). Hence f ′ increases from f ′(0) = 0 to a maximum and then

decreases to f ′(1/2) < 0, being first nonnegative until some t0 < 1/2 and then negative afterwards.

Therefore, f increases from f(0) = 0 to a maximum f(t0) and then decreases to f(1/2) = 0 staying

nonnegative in the whole interval. This completes the proof. ✷

4 Regularity

For our second topic in the paper we will use the machinery of Szemerédi’s Regularity Lemma, which

we will now describe. We will be quite brief, so for more details and motivation we refer the reader

to the survey [9]. First we give some definitions. The density of a bipartite graph G = (A,B) with

vertex classes A and B is defined to be dG(A,B) := eG(A,B)
|A||B| . We write d(A,B) if this is unambiguous.

Given ǫ > 0, we say that G is ǫ-regular if for all subsets X ⊆ A and Y ⊆ B with |X| > ǫ|A| and

|Y | > ǫ|B| we have that |d(X,Y )− d(A,B)| < ǫ. Given d ∈ [0, 1] we say that G is (ǫ, d)-super-regular

if it is ǫ-regular and furthermore dG(a) ≥ (d− ǫ)|B| for all a ∈ A and dG(b) ≥ (d− ǫ)|A| for all b ∈ B.

If A and B are disjoint vertex subsets of a digraph G, we say that the pair (A,B)G is ǫ-regular if the

bipartite graph with vertex sets A and B and edge set EG(A,B) is ǫ-regular. Similarly, we say that
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(A,B)G is (ǫ, d)-super-regular if the bipartite graph with vertex sets A and B and edge set EG(A,B)

is (ǫ, d)-super-regular.

The Diregularity Lemma is a version of the Regularity Lemma for digraphs due to Alon and

Shapira [2] (with a similar proof to the undirected version of Szemerédi).

Lemma 4.1 (Diregularity Lemma) For every ǫ ∈ (0, 1) and M ′ > 0 there are numbers M and

n0 such that if G is a digraph on n ≥ n0 vertices, then there is a partition of the vertices of G into

V0, V1, · · · , Vk for some M ′ ≤ k ≤ M such that |V0| ≤ ǫn, |V1| = · · · = |Vk| and for all at but at most

ǫk2 ordered pairs 1 ≤ i < j ≤ k the underlying graph of EG(Vi, Vj) is ǫ-regular.

Given 0 ≤ d ≤ 1 we define the reduced digraph R with parameters (ǫ, d) to have vertex set

[k] = {1, · · · , k} and an edge ij if and only if the underlying graph of EG(Vi, Vj) is ǫ-regular with

density at least d. Note that if ǫ and d are small, M ′ is large, and G is a dense digraph, then most

edges of G belong to pairs EG(Vi, Vj) for some edge ij ∈ R. Indeed, the exceptions are at most ǫn2

edges incident to V0, at most n2/M ′ edges lying within some Vi, at most ǫn2 edges belonging to pairs

EG(Vi, Vj) that are not ǫ-regular, and at most dn2 edges belonging to EG(Vi, Vj) of density less than

d: this gives a total less than 2dn2 if say 1/M ′ < ǫ ≪ d. We also need the following path lemma.

Lemma 4.2 For every 0 < d < 1 there is ǫ0 > 0 so that the following holds for 0 < ǫ < ǫ0. Let

p, n be positive integers with p ≥ 4, U1, . . . , Up be pairwise disjoint sets of size n and suppose G is a

digraph on U1 ∪ · · · ∪ Up such that each (Ui, Ui+1)G is (ǫ, d)-super-regular. (Here, Up+1 := U1.) Take

any x ∈ U1 and any y ∈ Up. Then for any 1 ≤ ℓ ≤ n there is a path P in G of length pℓ, starting with

x and ending with y, in which for every vertex v ∈ Ui, the successor of v on P lies in Ui+1.

This lemma can be easily deduced from the blowup lemma of Komlós, Sarközy and Szemerédi

(despite p being arbitrary), as shown in [6]. For the sake of completeness and the convenience of

the reader we include the proof here. In fact, for our purposes it is sufficient to apply the result

with 1 ≤ ℓ ≤ (1 − ǫ)n; in that case it is not too hard to prove it directly with a random embedding

procedure, but we omit the details. Note also that by applying the lemma when yx is an edge we can

obtain a directed cycle of length pℓ for any 1 ≤ ℓ ≤ n.

The requirement that p ≥ 4 in Lemma 4.2 is necessary. Indeed, if p = 2 or p = 3, there may not

be a path of length p from x to y. It is not difficult to show using Lemma 4.2 that even in this case

we can find a path from x to y of length pℓ for all 2 ≤ ℓ ≤ n. It is even easier to show that we can

greedily find such paths for all 2 ≤ ℓ ≤ dn/2, and since this will be sufficient for our purposes, we

do so now. In the following argument, if i does not satisfy 1 ≤ i ≤ p, then we define Ui := Uj with

1 ≤ j ≤ p and i ≡ j (mod p). Since each pair (Ui, Ui+1)G is (ǫ, d)-super-regular, each vertex in Ui has

at least (d− ǫ)n outneighbours in Ui+1, and we can greedily find a path P ′ = v1 · · · vpℓ−3 with starting

point v1 = x and with each vi in Ui, as each such path only contains at most ℓ ≤ dn/2 vertices in

each Ui. Let X be the outneighbours of vpℓ−3 in Up−2 \ P ′ and let Y be the inneighbours of y in

Up−1 \ P
′, so |X| ≥ (d− ǫ)n− ℓ ≥ (d2 − ǫ)n ≥ ǫn and similarly |Y | ≥ ǫn. Since the pair (Up−2, Up−1)G

is (ǫ, d)-super-regular, then there is at least one edge (vpℓ−2, vpℓ−1) from X to Y and v1 · · · vpℓ with

vpℓ = y is the desired path P from x to y of length pℓ.

We start the proof of Lemma 4.2 by recalling the blowup lemma of Komlós, Sárközy and Szemerédi

[8].
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Lemma 4.3 Given a graph R of order k and parameters d,∆ > 0, there exists an η0 = η0(d,∆, k) > 0

such that whenever 0 < η ≤ η0, the following holds. Let V1, · · · , Vk be disjoint sets and let R∗ be the

graph on V1 ∪ · · · ∪ Vk obtained by replacing each edge ij of R by the complete bipartite graph between

Vi and Vj . Let G be a spanning subgraph of R∗ such that for each edge ij of R the bipartite subgraph

of G consisting of all edges between Vi and Vj is (η, d)-super-regular. Then G contains a copy of every

subgraph H of R∗ with maximum degree ∆(H) ≤ ∆. Moreover, this copy of H in G maps the vertices

of H to the same sets Vi as the copy of H in R∗, i.e., if h ∈ V (H) is mapped to Vi by the copy of H

in R∗, then it is also mapped to Vi by the copy of H in G.

From the blowup lemma, we can quickly deduce the following lemma.

Lemma 4.4 For every 0 < d < 1 there is ǫ0 > 0 so that the following holds for 0 < ǫ < ǫ0. Suppose

p ≥ 4, let U1, · · · , Up be pairwise disjoint sets of size n, for some n, and suppose G is a graph on

U1 ∪ · · · ∪ Up such that each pair (Ui, Ui+1), 1 ≤ i ≤ p − 1 is (ǫ, d)-super-regular. Let f : U1 → Up be

any bijective map. Then there are n vertex-disjoint paths from U1 to Up so that for every x ∈ U1 the

path starting from x ends at f(x) ∈ Up.

Proof. Choose a sequence 1 = i1 < i2 < · · · < it = p so that 3 ≤ ij − ij−1 ≤ 5 for 2 ≤ j ≤ t.

Let fj : Uij−1
→ Uij be any bijective maps with f = ft ◦ · · · ◦ f2. Let Gj be the graph obtained

from the restriction of G to Uij−1
∪ Uij−1+1 ∪ . . . ∪ Uij by identifying each vertex x ∈ Uij−1

with

fj(x) ∈ Uij . By Lemma 4.3 we can find n vertex-disjoint cycles in Gj of length ij − ij−1, provided

that ǫ0 < η(d, 2, ij − ij−1), which only depends on d as ij − ij−1 ≤ 5. These n cycles correspond to n

vertex-disjoint paths in G from Uij−1
to Uij , such that for every x ∈ Uij−1

, the path starting from x

ends at fj(x) ∈ Uij . By concatenating these paths, we get the desired n vertex-disjoint paths from U1

to Up so that for every x ∈ U1 the path starting from x ends at f(x) ∈ Up. ✷

Now we give the proof of Lemma 4.2.

Proof of Lemma 4.2. Suppose G is a digraph on U1 ∪ · · · ∪Up, where |Ui| = n, 1 ≤ i ≤ p, such that

each (Ui, Ui+1)G is (ǫ, d)-super-regular, with ǫ < ǫ0 given by Lemma 4.4. Suppose also x ∈ U1, y ∈ Up

and 1 ≤ ℓ ≤ n. We need to find a path P of length pℓ from x to y. First we apply the blowup lemma

to find a perfect matching from Up \ y to U1 \ x. We label U1 as {x1, · · · , xn} and Up as {y1, · · · , yn}

with x1 = x and y1 = y, so that the matching edges go from yi to xi for 2 ≤ i ≤ n. Then we apply

Lemma 4.4 to find n vertex-disjoint paths from U1 to Up so that the path Pi starting at xi ends at

yi+1 for 1 ≤ i ≤ ℓ−1 and the path Pℓ starting at xℓ ends at y1 = y (the other paths can be arbitrary).

Now our required path P is x1P1y2x2P2y3 · · · xℓPℓy1. ✷

We finish the section with two simple lemmas concerning super-regularity. The first lemma tells

us that large induced subgraphs of super-regular bipartite graphs are also super-regular.

Lemma 4.5 Let G be a bipartite graph with parts A and B that is (ǫ, d)-super-regular, ǫ < 1/2 ≤ α <

1, A′ ⊂ A and B′ ⊂ B with |A′|/|A|, |B′|/|B| ≥ α, and G′ be the induced subgraph of G with parts A′

and B′. Then G′ is (2ǫ, d − 1 + α)-super-regular.
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Proof. Super-regularity of G implies that each vertex a ∈ A′ ⊂ A satisfies dG(a) ≥ (d− ǫ)|B|. Hence,

dG′(a) ≥ dG(a)− (|B| − |B′|) ≥ (d− ǫ)|B| − (|B| − |B′|) ≥ (d− (1−α)− ǫ)|B| ≥ (d− (1−α)− ǫ)|B′|.

Likewise, each vertex b ∈ B′ satisfies dG′(b) ≥ (d− (1− α)− ǫ)|B′|.

Let X ⊂ A′ and Y ⊂ B′ with |X| > 2ǫ|A′| and |Y | > 2ǫ|B′|. Since 1/2 ≤ α ≤ |A′|/|A|, |B′|/|B| we

have |X| > ǫ|A| and |Y | > ǫ|B|. Now the pair (A,B)G is ǫ-regular, so |d(X,Y ) − d(A,B)| < ǫ, and

the triangle inequality gives

|d(X,Y )− d(A′, B′)| ≤ |d(X,Y )− d(A,B)|+ |d(A,B) − d(A′, B′)| < 2ǫ.

Hence, G′ is (2ǫ, d − 1 + α)-super-regular. ✷

For any bounded degree subgraph H of a reduced graph R, the next lemma allows us to make the

pairs (Vi, Vj)G corresponding to edges ij of H super-regular by deleting a few vertices from each Vi.

Lemma 4.6 Suppose R is the reduced digraph with parameters (ǫ, d) of a Szemerédi partition VG =

V0 ∪ V1 ∪ . . . ∪ Vk of a digraph G and H is a subdigraph of R with maximum total degree at most ∆,

where ∆ ≤ 1
2ǫ . Then for each i, 1 ≤ i ≤ k, there is Ui ⊂ Vi with |Ui| = (1−∆ǫ)|Vi| such that for each

edge ij of H, the pair (Ui, Uj)G is (2ǫ, d−∆ǫ)-super-regular.

Proof. For each edge ij of H, delete all vertices in Vi with less than (d− ǫ)|Vj | outneighbours in Vj

and all vertices in Vj with less than (d − ǫ)|Vi| inneighbours in Vi. For each edge ij of H, less than

ǫ|Vi| elements are deleted from Vi and less than ǫ|Vj | elements are deleted from Vj. Indeed, if the

subset S ⊂ Vi of vertices with less than (d− ǫ)|Vj | outneighbours in Vj has cardinality |S| ≥ ǫ|Vi|, then

dG(S, Vj) < d− ǫ, in contradiction to ij being an edge of the reduced graph R. Likewise, at most ǫ|Vj |

elements are deleted from Vj for each edge ij. Hence, in total, at most ∆ǫ|Vi| vertices are deleted from

each Vi. Delete further vertices from each Vi until the resulting subset Ui has cardinality (1−∆ǫ)|Vi|.

For each edge ij of H, each vertex in Ui has at least (d− ǫ)|Vj | outneighbours in Vj and hence at least

(d− ǫ)|Vj | − (|Vj | − |Uj |) = (d− (∆ + 1)ǫ)|Vj | ≥ (d− (∆ + 1)ǫ)|Uj |

outneighbours in Uj . Similarly, for each edge ij of H, each vertex in Vj has at least (d− (∆+ 1)ǫ)|Ui|

inneighbours in Ui. Letting α = |Ui|/|Vi| = 1 −∆ǫ, we have α ≥ 1/2. For each edge ij of H, since

(Vi, Vj)G is ǫ-regular, Lemma 4.5 implies that (Ui, Uj)G is 2ǫ-regular and hence is (2ǫ, d −∆ǫ)-super-

regular. ✷

5 Cycles of almost given length

Now we will apply the regularity lemma and Corollary 1.3 to answer the question of Yuster mentioned

in the introduction.

Proof of Theorem 1.4: Choose parameters 0 < 1/n0 ≪ 1/M ≪ ǫ ≪ d ≪ δ, θ and M ′ = ǫ−1.

SupposeG is a digraph on n ≥ n0 vertices with β(G) ≥ θn2. Note that θ < 1/2 as in any linear ordering
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of the vertices of G, deleting all the forward edges or all the backward edges yields an acyclic digraph.

Apply Lemma 4.1 to obtain a partition of the vertices of G into V0, V1, · · · , Vk for some M ′ ≤ k ≤ M

and let R be the reduced graph on [k] with parameters (ǫ, d). As noted in the previous section, there

are at most 2dn2 edges of G that do not belong to EG(Vi, Vj) for some edge ij ∈ R. We can make G

acyclic by deleting these edges and at most β(R)(n/k)2 edges corresponding to edges of R, so we must

have β(R) ≥ (θ − 2d)k2. Let S1, · · · , Sg be the strong components of R and suppose β(Si) = θi|Si|
2.

Then
∑g

i=1 |Si| = k and
∑g

i=1 θi|Si|
2 =

∑g
i=1 β(Si) = β(R) ≥ (θ−2d)k2. It follows that we can choose

some Sj with θj |Sj| ≥ (θ−2d)k (otherwise we would have
∑g

i=1 θi|Si|
2 < (θ−2d)k

∑

|Si| = (θ−2d)k2).

Next we restrict our attention to Sj and repeatedly delete any vertex with outdegree less than

θj|Sj | in Sj. We must arrive at some graph R0 on k0 ≤ |Sj| vertices with minimum outdegree at least

θj|Sj | ≥ (θ − 2d)k and β(R0) ≥ θj|Sj |k0. Indeed, otherwise we could make Sj acyclic by deleting less

than θj|Sj |k0 + (|Sj | − k0)θj|Sj | = θj |Sj|
2 edges, which is impossible. Let C = c1 · · · cp be a directed

cycle in R0 of length p ≥ (θ − 2d)k. It can be found by considering a longest directed path and using

the fact that the end of the path has at least (θ−2d)k outneighbours, which all lie on the path. Recall

that

β(Sj) = θj|Sj |
2 ≥ (θ − 2d)k|Sj | ≥ (θ − 2d)|Sj |

2.

By Corollary 1.3, if Sj is r-free, then (θ − 2d)|Sj |
2 ≤ β(Sj) ≤ 25|Sj |

2/r2, so

r ≤ 5(θ − 2d)−1/2 < (5 + δ)θ−1/2,

where we use d ≪ δ, θ. Therefore, there is a directed cycle C ′ = c′1 · · · c
′
r in Sj of length r for some

2 ≤ r ≤ (5 + δ)θ−1/2 (which may intersect C in an arbitrary fashion). Also, by strong connectivity of

Sj we can find a directed path Q1 from cp to c′r and a directed path Q2 from c′r to c1. Suppose that

the lengths of these paths are respectively q1 and q2. We note that q1, q2 ≤ k.

Let H denote the digraph with vertex set VSj
and edge set EC ∪EC′ ∪EQ1

∪EQ2
. Note that the

maximum total degree of H is at most 8 as each path and cycle has maximum total degree at most 2.

By Lemma 4.6, for each vertex i of Sj there is Ui ⊂ Vi with |Ui| = (1− 8ǫ)|Vi| such that for each edge

ij of H, the pair (Ui, Uj)G is (2ǫ, d− 8ǫ)-super-regular.

Suppose 0 ≤ m ≤ (1 − δ)θn is given. We give separate arguments depending on whether the

cycles we seek in G are short or long. First consider the case m < 3k. Choose ℓ divisible by r

with m ≤ ℓ < m + r. Then we can find a cycle of length ℓ within the classes Ui corresponding

to C ′, as noted after Lemma 4.2. (This argument holds as long as r ≥ 4 or ℓ ≥ 2r. If otherwise,

then ℓ = r ∈ {2, 3} and we can find a cycle of length 2r in G. This 2r-cycle completes this case

as m ≤ ℓ = r ≤ 2r ≤ 6 < 5θ−1/2, where we use θ < 1/2.) Now suppose m ≥ 3k and write

m = q1 + q2 + sp + t, with 0 ≤ t < p and 1 ≤ s < (1 − δ/2)n/k (since p ≥ (θ − 2d)k). The integer

t is indeed nonnegative since q1, q2, p ≤ k and m ≥ 3k. We can choose ℓ = q1 + q2 + sp + u where

u < p+ r is a multiple of r and m ≤ ℓ < m+ r. Say that a path P = v1 · · · ve in G corresponds to a

walk W = w1 · · ·we in R if every edge vivi+1, 1 ≤ i ≤ e − 1 of P goes from Uwi
to Uwi+1

. For ij an

edge of H, the pair (Ui, Uj)G is (2ǫ, d− 8ǫ)-super-regular, so any vertex in Ui has at least (d− 10ǫ)|Uj |

outneighbours in Uj. Therefore, we can greedily find

1. a directed path P1 in G corresponding to Q1 in R, starting at some y ∈ Ucp and ending at some

z ∈ Uc′r ,
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2. a directed path P2 in G corresponding to u/r copies of C ′ in R, starting at z and ending at some

other z′ ∈ Uc′r , and avoiding P1,

3. a directed path P3 in G corresponding to Q2 in R, starting at z′ and ending at some x ∈ Uc1 ,

avoiding P1 ∪ P2.

Let P be the path P1P2P3. Note that P has at most u/r + 2 vertices in each Ui. As we next find a

path from x to y disjoint from P \ {x, y}, we delete the vertices of P \ {x, y} and also at most u/r+2

vertices from each Ui so that they all still have the same size, letting U ′
i be the resulting subset of Ui.

Now

|U ′
i | ≥ |Ui| − (u/r + 2) ≥ (1− 8ǫ)|Vi| − (u/r + 2) > (1− d/2)|Vi| > (1− δ/2)(n/k) = s.

This also gives |U ′
i |/|Ui| > 1−d/2 for each vertex i of Sj. For each edge ij of H, (Ui, Uj) is (2ǫ, d−8ǫ)-

super-regular. Hence, Lemma 4.5 with α = 1− d/2 implies that (U ′
i , U

′
j) is (4ǫ, d/4) super-regular, as

d− 8ǫ− d/2 = d/2− 8ǫ ≥ d/4. Therefore, we can apply Lemma 4.2 with Ui = U ′
ci , 1 ≤ i ≤ p to obtain

a directed path from x to y of length sp. Combining this with the path P already found from y to x

gives a directed cycle of length ℓ, as required. ✷

For the proof of Theorem 1.5 we need the following two facts from elementary number theory.

Chinese Remainder Theorem. Suppose x1, · · · , xt are integers with greatest common factor 1.

Then any integer n can be expressed as n = a1x1 + · · ·+ atxt with integers a1, · · · , at.

Sylvester’s ‘coin problem’. Suppose x and y are coprime positive integers. Then every integer

n ≥ (x− 1)(y − 1) can be represented as n = ax+ by with a, b non-negative integers.

Proof of Theorem 1.5. It is straightforward to see that λ (similarly to β) is additive on strong

components, i.e., if a digraph G has strong components T1, . . . , Tg, then λ(G) =
∑g

i=1 λ(Ti). Also,

λ(G) ≤ β(G), since every acyclic digraph is pseudoperiodic. Therefore we start as in the proof of

Theorem 1.4 by applying Lemma 4.1 to obtain a partition of the vertices of G into V0, V1, · · · , Vk

for some M ′ ≤ k ≤ M and letting R be the reduced graph on [k] with parameters (ǫ, d). As before

G has at most 2dn2 edges not corresponding to edges of the reduced graph R, so we must have

λ(R) ≥ (θ − 2d)k2. Then, as in the proof of Theorem 1.4, we find a strong component Sj of R with

β(Sj) ≥ λ(Sj) = θj |Sj|
2 and θj|Sj| ≥ (θ − 2d)k, directed cycles C = c1 · · · cp and C ′ = c′1 · · · c

′
r in Sj

with p ≥ (θ − 2d)k and 2 ≤ r ≤ (5 + δ)θ−1/2, a directed path Q1 from cp to c′r of length q1 ≤ k and a

directed path Q2 from c′r to c1 of length q2 ≤ k.

Next we show how to construct a closed walk W in Sj starting and ending at c′r with length

l(W ) = w coprime to r. Since Sj is not f -periodic for any f ≥ 2, for each prime factor f of r

there is a directed cycle with length not divisible by f . Therefore we can choose cycles D1, · · · ,Dr

so that l(C ′), l(D1), · · · , l(Dr) have greatest common factor 1. Fix vertices di ∈ Di, 1 ≤ i ≤ r and

choose the following directed paths in Sj (which exist by strong connectivity): Q′
1 from c′r to d1 and

Q′′
1 from d1 to c′r, Q

′
i from di−1 to di and Q′′

i from di to di−1 for 2 ≤ i ≤ r. Let W ′ be the walk

Q′
1 · · ·Q

′
rQ

′′
r · · ·Q

′′
1. By the Chinese Remainder Theorem we can find integers a1, · · · , ar such that

l(W ′) + a1l(D1) + · · · arl(Dr) ≡ 1 mod r. By reducing mod r we can assume that 0 ≤ ai ≤ r − 1

for 1 ≤ i ≤ r. We let W be the walk obtained from W ′ by including ai copies of Di when di is first
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visited. That is, we obtain W by walking along W ′, and, for 1 ≤ i ≤ r, when we first reach di, before

we continue onto the next vertex, we first walk ai times around the cycle Di. Then l(W ) ≡ 1 mod

r is coprime to r. The walk W visits any vertex at most 2r2 times. Indeed, each of the 2r directed

paths Q′
i and Q′′

i visit each vertex at most once, and each time we go around cycle Di adds at most

one new visit to any vertex, so W visits each vertex at most 2r+ a1 + . . .+ ar ≤ 2r+ r2 ≤ 2r2 times.

As Sj has at most k vertices and visits each vertex at most 2r2 times, w = l(W ) ≤ 2r2k.

Let H be the digraph with vertex set VSj
and edge set EC∪EC′∪EW . Since W visits any vertex at

most 2r2 times, each vertex in W is in at most 4r2 edges of H. Therefore, H has maximum total degree

at most 4+4r2 ≤ 8r2. By Lemma 4.6, for each vertex i of Sj there is Ui ⊂ Vi with |Ui| = (1−8r2ǫ)|Vi|

such that for each edge ij of H, the pair (Ui, Uj)G is (2ǫ, d− 8r2ǫ)-super-regular.

Fix any ℓ with 500θ−3/2M ≤ ℓ ≤ (1 − δ)θn. We will show that G contains a directed cycle of

length ℓ. As 2 ≤ r < 6θ−1/2, p, q1, q2 ≤ k ≤ M and w ≤ 2r2k, we have

ℓ ≥ 500θ−3/2M ≥ 3k + 2r3k ≥ q1 + q2 + p+ rw.

Therefore, we can write ℓ = q1 + q2 + sp + u, with rw ≤ u < rw + p and 1 ≤ s < (1 − δ/2)n/k (the

last inequality uses p ≥ (θ − 2d)k). Since r, w are coprime, by the ‘coin problem’ result of Sylvester

we can write u = ar + bw with a, b non-negative integers. We have a ≤ u/r < w + p ≤ 2r2k + k and

b ≤ u/w < r + p ≤ 2k. For ij an edge of H, the pair (Ui, Uj)G is (2ǫ, d − 8r2ǫ)-super-regular, so any

vertex in Ui has at least (d− 10r2ǫ)|Uj | outneighbours in Uj . Therefore, we can greedily find

1. a directed path P1 in G corresponding to Q1 in R, starting at some y ∈ Ucp and ending at some

z ∈ Uc′r ,

2. a directed path P2 in G corresponding to a copies of C ′ in R, starting at z and ending at some

other z′ ∈ Uc′r , and avoiding P1,

3. a directed path P3 in G corresponding to b copies of W in R, starting at z′ and ending at some

other z′′ ∈ Uc′r , and avoiding P1 ∪ P2,

4. a directed path P4 in G corresponding to Q2 in R, starting at z′′ and ending at some x ∈ Uc1 ,

avoiding P1 ∪ P2 ∪ P3.

Let P be the path P1P2P3P4. As we walk along path P , for each i, the number of times Ui is visited

is at most once for P1, at most a times for P2, at most b · 2r2 times for P3, and at most once for P4.

Therefore, for each i,

|P ∩ Ui| ≤ 1 + a+ b · 2r2 + 1 ≤ 1 + 2r2k + k + 2k · 2r2 + 1 ≤ 10r2k.

We delete the vertices of P \ {x, y} as we next find a directed path from x to y that is disjoint

from P \ {x, y}. We further delete at most 10r2k vertices from each Ui so that they all still have the

same size, and let U ′
i be the resulting subset of Ui. Now

|U ′
i | ≥ |Ui| − 10r2k = (1 − 8r2ǫ)|Vi| − 10r2k > (1− d/2)|Vi| > (1− δ/2)(n/k) = s.

Then |U ′
i |/|Ui| > (1− d/2), and Lemma 4.5 with α = 1− d/2 implies that each pair (U ′

i , U
′
j)G with ij

an edge of H is (4ǫ, d/4)-super-regular, as d− 8r2ǫ− d/2 ≥ d/4. Therefore we can apply Lemma 4.2

with Ui = U ′
ci , 1 ≤ i ≤ p to obtain a directed path from x to y of length sp. Combining this with the

path P already found from y to x gives a directed cycle of length ℓ, as required. ✷
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6 Concluding remarks

• We have not presented the best possible constants that come from our methods, opting to give

reasonable constants that can be obtained with relatively clean proofs. With more work one can

replace the constant 25 in Theorem 1.2, and so in Corollary 1.3, by a constant that approaches 8

as r becomes large. However, Sullivan [13] conjectures that the correct constant is 2, and it would

be interesting to close this gap. The problems of estimating β and µ are roughly equivalent: we

used the bound on µ from Theorem 1.2 to establish the bound on β in Theorem 1.3. Conversely,

if we delete β(G) edges from G to make it acyclic, order the vertices so that all remaining edges

point in one direction and take S to be the first n/2 vertices in the ordering we see that

µ(G)(n/2) = µ(G)|S| ≤ µ(S)|S| = min(e(S, VG \ S), e(VG \ S, S)) ≤ β(G),

so a bound on β gives a bound on µ. However, these arguments may be too crude to give the

correct constants.

• Applying this better constant 8 (mentioned above) in Corollary 1.3 we can replace the constant

5 by 3 (say) in Theorem 1.4, so that the parameter K in Yuster’s question (the length of the

interval where we look for a cycle length) is determined up to a factor of 3. The parameter η

(the maximum length of a cycle as a proportion of n) is determined up to a factor of about 4

if the question is posed for oriented graphs, or a factor 2 if the question is posed for digraphs.

Indeed, Yuster shows that η ≤ 4θ for oriented graphs by taking 1/4θ copies of a random regular

tournament on 4θn vertices; for digraphs one can show η ≤ 2θ by taking 1/2θ copies of the

complete digraph on 2θn vertices. We can find longer cycles in a periodic digraph G on n

vertices with β(G) ≥ θn2, but θn is still the correct bound up to a constant of about 2, as may

be seen from the blowup of a 2-cycle with parts of size (1 + 2θ)θn and (1− (1 + 2θ)θ)n.

• If a digraph G is far from being acyclic but we can obtain a pseudoperiodic digraph G′ by

deleting few edges of G, then some strong component of G′ has small period. More precisely,

if β(G) ≥ θn2 and we can obtain a pseudoperiodic G′ by deleting at most δn2 edges from G

then some strong component of G′ must have period at most (θ− δ)−1/2. To see this, note that

β(G′) ≥ (θ−δ)n2, so some strong componentH ofG′ satisfies β(H) ≥ (θ−δ)m2, wherem = |VH |.

Since G′ is pseudoperiodic H is p-periodic, for some p, so is contained in the blowup of a p-cycle,

i.e. the vertex set of H can be partitioned as V (H) = V1 ∪ · · · ∪ Vp so that every edge goes from

Vi to Vi+1, for some 1 ≤ i ≤ p, writing Vp+1 = V1. (For a proof see Theorem 10.5.1 in [3].) Write

ti = |Vi|/m. Then there is some 1 ≤ i ≤ p for which titi+1 ≤ 1/p2. This can be seen from the

arithmetic-geometric mean inequality: we have 1 =
∑p

i=1 ti ≥ p
∏p

i=1 t
1/p
i = p

∏p
i=1(titi+1)

1/2p,

so
∏p

i=1 titi+1 ≤ (1/p2)p. It follows that β(H) ≤ (m/p)2, i.e. p ≤ (θ − δ)−1/2, as required.

• The dependence of C on θ which we get in Theorem 1.5 is quite poor since the proof uses

Szemerédi’s regularity lemma and the value of C depends on the number of parts in the regular

partition. It would be interesting to determine the right dependence of C on θ. One should

note that we obtained good constants in the proof of Theorem 1.4 despite using the regularity

lemma, so it may not be necessary to avoid its use.

14



References

[1] N. Alon, Ranking tournaments, SIAM J. Discrete Math. 20 (2006), 137–142.

[2] N. Alon and A. Shapira, Testing subgraphs in directed graphs, Journal of Computer and System

Sciences 69 (2004), 354–382.

[3] J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications, Springer, 2001.

[4] L. Caccetta and R. Häggkvist, On minimal digraphs with given girth, in: Proceedings of the Ninth

Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic

Univ., Boca Raton, Fla., 1978), pp. 181–187, Congress. Numer., XXI, Utilitas Math., Winnipeg,

Man., 1978.
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