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Abstract

We introduce two graph polynomials and discuss their properties.
One is a polynomial of two variables whose investigation is motivated
by the performance analysis of the Bethe approximation of the Ising
partition function. The other is a polynomial of one variable that
is obtained by the specialization of the first one. It is shown that
these polynomials satisfy deletion-contraction relations and are new
examples of the V-function, which was introduced by Tutte (1947,
Proc. Cambridge Philos. Soc. 43, 26-40). For these polynomials,
we discuss the interpretations of special values and then obtain the
bound on the number of sub-coregraphs, i.e., spanning subgraphs with
no vertices of degree one. It is proved that the polynomial of one
variable is equal to the monomer-dimer partition function with weights
parameterized by that variable. The properties of the coefficients and
the possible region of zeros are also discussed for this polynomial.

1 Introduction and terminologies

1.1 Introduction

The aim of this paper is to introduce two new graph polynomials and study
their properties. The first one is a two-variable polynomial denoted by
θG(β, γ) and the second one is a one-variable polynomial denoted by ωG(β),
which is obtained as a specialization of θG.

Partition functions studied in statistical physics have been a source of
various graph polynomials. For example, the partition functions of the q-
state Potts model and the bivariated random-cluster model of Fortuin and
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Kasteleyn provide graph polynomials. They are known to be equivalent to
the Tutte polynomial [4]. Another example is the monomer-dimer partition
function with uniform monomer and dimer weights, which is essentially the
matching polynomial [15].

The polynomial θG comes from the problem of computing the Ising par-
tition function defined as

Z(G;J ,h) :=
∑

x1,...,xN=±1

exp
(

∑

e∈E
e=ij

Jexixj +
∑

i∈V
hixi

)

, (1)

where Je and hi denote coupling constants and local external fields, respec-
tively, and G = (V,E) is the underlying graph. In general, the partition
function is computationally intractable and the Bethe approximation is a
popular method for its approximation [2]. The approximation ratio, which
evaluates the performance of this method, depends on the structure of the
underlying graph. In particular, if the graph is a tree, the ratio is equal to
one, i.e., the Bethe approximation gives the exact value of the partition func-
tion. In principle, the approximation becomes more difficult as the nullity
increases. In [30], it is shown that the ratio is described by a multivari-
ate polynomial ΘG(β,γ). We derive the graph polynomial θG(β, γ) as its
two-variable version.

The polynomial ωG(β) is obtained from θG(β, γ) by specializing γ =
2
√
−1 and eliminating a factor (1 − β)|E|−|V |. We show that the poly-

nomial coincides with the monomer-dimer partition function with weights
parametrized by β. In particular, for regular graphs, ω−polynomials are
equal to the matching polynomials up to transformations.

We discuss the properties of θG and ωG from the viewpoint of graph
polynomials. The most important feature of these graph polynomials is the
deletion-contraction relation:

θG(β, γ) = (1− β)θG\e(β, γ) + βθG/e(β, γ),

ωG(β) = ωG\e(β) + βωG/e(β),

holds whenever e ∈ E is not a loop. Note that the graph G\e is obtained
from G by the deletion of the edge e, and the graph G/e is the result of the
contraction of e. Furthermore, these polynomials are multiplicative:

θG1∪G2 = θG1θG2 and ωG1∪G2 = ωG1ωG2 ,

where G1 ∪ G2 is the disjoint union of G1 and G2. Graph invariants that
satisfy the deletion-contraction relation and the multiplicative law have been
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studied by Tutte [27] as the V-function. Our graph polynomials θG and ωG

are essentially examples of V-functions.
Graph polynomials that satisfy deletion-contraction relations arise from

a wide range of problems [4, 11]. Most of them are known to be equivalent
to the Tutte polynomial or to be obtained by its specialization, and thus,
they have reduction formulae even for loops. Our new graph polynomials
do not have such reduction formulae for loops and are essentially different
from the Tutte polynomial.

There have been few researches on specific V-functions except for those
on the Tutte polynomial. The Tutte polynomial has attracted interest be-
cause of its rich mathematical properties such as matroid invariance and
connections to links [31, 4]. These properties are not shared by general
V-functions. As described in this paper, our new V-functions also possess
special properties, and thus, their investigation should be fruitful.

The remainder of this paper is organized as follows. In Section 1.2,
the definitions and notations on graphs are described. Sections 2, 3, and
4 deal with the investigation of the θ-polynomial: the definition and basic
properties of the θ-polynomial are presented in Section 2, the motivation
for the definition is presented in Section 3, and the special values of θG are
discussed in Section 4. Section 5 deals with the investigation of ωG including
a study on the special value, β = 1.

1.2 Basic terminologies and definitions

Let G = (V,E) be a finite graph, where V is the set of vertices and E,
the set of undirected edges. In this paper, a graph implies a multigraph, in
which loops and multiple edges are allowed. A subset s of E is identified
with the spanning subgraph (V, s) of G unless otherwise stated.

The notation e = ij is used to indicate that vertices i and j are the
endpoints of e. The number of ends of edges connecting to a vertex i is
called the degree of i and denoted by di.

The number of connected components of G is denoted by k(G). The
nullity and the rank of G are defined by n(G) := |E| − |V | + k(G) and
r(G) := |V | − k(G), respectively.

For an edge e ∈ E, the graph G\e is obtained by deleting e and G/e
is obtained by contracting e. If e is a loop, G/e is the same as G\e. The
disjoint union of graphs G1 and G2 is denoted by G1 ∪G2. The graph with
a single vertex and n loops is called the bouquet graph and denoted by Bn.

The core of a graph G is obtained by a process of clipping vertices of
degree one step-by-step [24]. This graph is denoted by core(G). For example,
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the core of a forest F is the graph of k(F ) vertices without edges. A graph G
is called a coregraph if G = core(G). In other words, a graph is a coregraph
if and only if the degree of each vertex is not equal to one. Note that the
core of a graph is also called the 2-core [21] and can be generalized to the
notion of the k-core [3, 22].

2 Two-variable graph polynomial θ

2.1 Definition

First, we present the definition of a graph polynomial. For the definition,
we define a set of polynomials {fn(x)}∞n=0 inductively by the relations

f0(x) = 1, f1(x) = 0, and fn+1(x) = xfn(x) + fn−1(x). (2)

Therefore, for instance, f2(x) = 1, f3(x) = x, and so on. Note that these
polynomials are transformations of the Chebyshev polynomials of the second
kind: fn+2(2

√
−1z) = (

√
−1)nUn(z), where Un(cos θ) =

sin((n+1)θ)
sin θ .

Definition 1. For a given graph G,

θG(β, γ) :=
∑

s⊂E

β|s|
∏

i∈V
fdi(s)(γ) ∈ Z[β, γ], (3)

where di(s) is the degree of the vertex i in s.

In Eq. (3), there exists a summation over all subsets of E. Recall that an
edge set s is identified with the spanning subgraph (V, s). Since f1(x) = 0,
the subgraph s contributes to the summation only if s does not have a vertex
of degree one. Therefore, the summation is regarded as the summation over
all coregraphs of the forms (V, s); we call these sub-coregraphs. In relevant
papers, such subgraphs are called generalized loops [8, 9] or closed subgraphs
[18, 19].

The following facts are immediate from the definition.

Proposition 1.

(a) θG1∪G2(β, γ) = θG1(β, γ)θG2(β, γ).

(b) θBn(β, γ) =
∑n

k=0

(

n
k

)

f2k(γ)β
k.

(c) θG(β, γ) = θcore(G)(β, γ).
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Figure 1: Graph X1 and X2

Example 1. For a tree T , θT (β, γ) = 1. For a cycle graph Cn having
n vertices and n edges, θCn(β, γ) = 1 + βn. For the complete graph K4,
θK4(β, γ) = 1 + 4β3 + 3β4 + 6β5γ2 + β6γ4. For the graph X1, as shown in
Figure 1, θX1(β, γ) = 1 + 3β2 + β3γ2. For the graph X2, as also shown in
Figure 1, θX2(β, γ) = 1 + 2β + β2 + β3γ2.

2.2 Deletion-contraction relation and expression as Tutte’s

V-function

2.2.1 Deletion-contraction relation

We prove the most important property of the graph polynomial, θ, called
the deletion-contraction relation. The following formula of fn(x) plays an
important role in the proof of this relation.

Lemma 1. ∀n,m ∈ N,

fn+m−2(x) = fn(x)fm(x) + fn−1(x)fm−1(x).

Proof. Easily proved by induction using Eq.(2).

Theorem 1 (Deletion-contraction relation). For a non-loop edge e ∈ E,

θG(β, γ) = (1− β)θG\e(β, γ) + βθG/e(β, γ).

Proof. Classify subgraph s in the sum of Eq. (3) depending on whether s
includes e or not. The former subgraph s ∋ e = ij yields −βθG\e + βθG/e,
where Lemma 1 is used with n = di and m = dj. The latter subgraph s 6∋ e
yields θG\e.

2.2.2 Relation to Tutte’s V-function

In 1947 [27], Tutte defined a class of graph invariants called the V-function.
The definition is as follows.
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Definition 2. Let G be the set of isomorphism classes of finite undirected
graphs, with loops and multiple edges allowed. Let R be a commutative
ring. A map V : G → R is called a V-function if it satisfies the following two
conditions:

(i) V(G) = V(G\e) + V(G/e) if e ∈ E is not a loop,

(ii) V(G1 ∪G2) = V(G1)V(G2).

Our graph invariant θ is essentially an example of a V-function. In the
definition of V-functions, the coefficients of the deletion-contraction relation
are 1, whereas those of θ are (1− β) and β. However, if we modify θ to

θ̂G(β, γ) := (1− β)−|E|+|V |β−|V |θG(β, γ),

we obtain a V-function θ̂ : G → Z[β, γ, β−1, (1− β)−1].
In Theorem 10 of [5], Bollobás et al. have constructed non-isomorphic

k-connected graphs that are not distinguished by deletion-contraction in-
variants. The result implies that these graphs have the same θ-polynomial.

2.2.3 Alternative expression of θ-polynomial

By successive applications of the conditions of V-function, we can reduce the
value at any graph to the values at bouquet graphs. Therefore, we can say
that a V-function is completely determined by its boundary condition, i.e.,
the values at the bouquet graphs. Conversely, Tutte showed in [27] that for
an arbitrary boundary condition, there exists a V-function that satisfies it.
More explicitly, the V-function satisfying a boundary condition {V(Bn)}n=0

is given by

V(G) =
∑

s⊂E

∏

n=0

zin(s)n , (4)

where zn :=
∑n

j=0

(n
j

)

(−1)n+jV(Bj) and in(s) is the number of connected
components of the subgraph s with nullity n.

Note that another expansion called the spanning forest expansion of
V(G) is described in Section 5 of [5].

In the case of θ, Eq. (4) derives the following expression. Although this
theorem is a trivial consequence of Theorem 3 proved more directly later,
we present a proof of Theorem 2 to clarify the relation to Eq. (4).

Theorem 2.

θG(β, γ) =
∑

s⊂E

∏

n=0

θBn(1, γ)
in(s)β|s|(1− β)|E|−|s|. (5)
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Proof. It is sufficient to verify that

θ̂G(β, γ) =
∑

s⊂E

∏

n=0

θBn(1, γ)
in(s)β|s|−|V |(1− β)|V |−|s|. (6)

By comparing the coefficients of xk in (1− 1−x
1−β )

n = (1−β)−n(−β+x)n, we
have

n
∑

j=k

(−1)j+n

(

n

j

)(

j

k

)

(1− β)−j =

(

n

k

)

βn−k(1− β)−n (7)

for every 0 ≤ k ≤ n. Using this equality and Proposition 1.(b), we see that

zn =

n
∑

j=0

(

n

j

)

(−1)n+j θ̂Bj
(β, γ) = θBn(1, γ)β

n−1(1− β)1−n.

Therefore, Eq. (4) reduces to Eq. (6).

Formulae (3) and (5) are both represented in the sum of the subsets of
edges; however, the terms of a subset are different. Generally, a V-function
does not have a representation corresponding to Eq. (3); this representation
is utilized in the remainderr of the paper and makes the θ-polynomial worthy
of investigation among all V-functions.

2.2.4 Comparison with Tutte polynomial

The most famous example of a V-function is the Tutte polynomial (multi-
plied with a trivial factor). The Tutte polynomial is defined by

TG(x, y) :=
∑

s⊂E

(x− 1)r(G)−r(s)(y − 1)n(s). (8)

It satisfies a deletion-contraction relation

TG(x, y) =











xTG\e(x, y) if e is a bridge,

yTG\e(x, y) if e is a loop,

TG\e(x, y) + TG/e(x, y) otherwise.

It is easy to see that T̂G(x, y) := (x − 1)k(G)TG(x, y) is a V-function to
Z[x, y]. For bouquet graphs, T̂Bn(x, y) = (x− 1)yn. In the case of the Tutte
polynomial, Eq. (4) derives Eq. (8).
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Moreover, the Tutte polynomial T is known to be matroidal, i.e., if G1

and G2 give the same cycle matroid, then TG1 = TG2 holds [31]. Because
Bn+m and Bn ∪Bm give the same cycle matroid, the relation

TBn+m
= TBnTBm (9)

is a consequence of the invariance. Strictly speaking, T̂ is not matroidal;
however, it satisfies Eq. (9) up to the easy factor and is almost matroidal.

The V-functions θ̂ and T̂ are essentially different. One intuitive under-
standing is that θ̂Bn , shown in Proposition 1.(b), do not satisfy Eq. (9) even
if multiplied with an appropriate factor. (If we set γ = 0, this is not the
case. See Proposition 2.) In the following remark, we formally state the
difference irrespective of transforms between (β, γ) and (x, y).

Remark. For any field K, inclusions φ1 : Z[β, γ, β
−1, (1−β)−1] →֒ K, and

φ2 : Z[x, y] →֒ K, we have

φ1 ◦ θ̂ 6= φ2 ◦ T̂ .

Proof. It is easy to see that φ2(T̂Bn)/φ2(T̂B0) = φ2(y)
n and φ1(θ̂Bn)/φ1(θ̂B0) =

φ1(1−β)−nφ1(
∑n

k=0

(n
k

)

f2k(γ)β
k). If φ1◦θ̂ = φ2◦T̂ , then an :=

∑n
k=0

(n
k

)

f2k(γ
′)β′k

= zn for some z ∈ K, where γ′ = φ1(γ) and β′ = φ1(β). The equa-
tion a21 = a2 gives γ′2β′2 = 0. This is a contradiction because β 6= 0 and
γ 6= 0.

3 Motivation for definition

In this section, we explain the motivation for considering the graph polyno-
mial θG, that is, the relation to the Ising partition function and its Bethe
approximation.

3.1 Definition of weighted graph version of θ-polynomial

We consider the multi-variable version of θG by attaching weights to the
vertices and edges of G by γ = (γi)i∈V and β = (βe)e∈E respectively. Such
a graph is called a weighted graph. We assume that the weights are real
numbers.

Definition 3. Let β = (βe)e∈E and γ = (γi)i∈V be the weights of G.

ΘG(β,γ) :=
∑

s⊂E

∏

e∈s
βe
∏

i∈V
fdi(s)(γi).
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If all vertex and edge weights are set to be the same, ΘG(β,γ) reduces
to θG(β, γ). It is trivial by definition that

ΘG1∪G2(β,γ) = ΘG1(β,γ)ΘG2(β,γ), (10)

ΘB0(β,γ) = 1, (11)

ΘG(β,γ) = Θcore(G)(β,γ). (12)

In this definition, ΘG is represented in the form of the edge states sum;
however, it is also possible to represent it in the following form of a vertex
state sum. This formula is important to show the relation to the Bethe
approximation of the Ising partition function because the partition function
is also given in the form of a vertex state sum.

Lemma 2.

ΘG(β, (ξi − ξ−1
i )i∈V ) =

∑

x1,...,xN=±1

∏

e∈E
e=ij

(1 + xixjβeξ
−xi

i ξ
−xj

j )
∏

i∈V

ξxi

i

ξi + ξ−1
i

.

(13)

Proof. From Eq. (2), we can easily verify by induction that

fn(ξ − ξ−1) =
ξn−1 − (−ξ)−n+1

ξ + ξ−1
.

If we expand the product with respect to E in the right-hand side of Eq. (13),
it is equal to

∑

s⊂E

∏

e∈s
βe
∏

i∈V

∑

xi=±1

(−xi)di(s)ξ
(1−di(s))xi

i

ξi + ξ−1
i

.

Then, the assertion follows immediately.

3.2 Relation to Bethe approximation

We demonstrate that the value ΘG describes the discrepancy between the
true partition function of the Ising model and its Bethe approximation. A
more detailed discussion of the same is found in [30].

The Bethe approximation is a method used for approximating partition
functions of various statistical mechanical models [2]. Here, we state it
for the case of the Ising partition function. Recall that the Ising partition

function on G for given J = (Je)e∈E and h = (hi)i∈V is defined by Eq. (1).
We write ψij(xi, xj) = exp(Jijxixj) and ψi(xi) = exp(hixi).
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Definition 4. A set of functions {be(xi, xj)}e∈E and {bi(xi)}i∈V is called a
belief [33] if it satisfies

∑

xi

be(xi, xj) = bi(xi) for all i ∈ V, xi ∈ {±1}, and e = ij ∈ E, (14)

∑

xi,xj

be(xi, xj) = 1 for all e = ij ∈ E, (15)

∏

e∈E

be(xi, xj)

bi(xi)bj(xj)

∏

i∈V
bi(xi) ∝

∏

e∈E
ψe(xi, xj)

∏

i∈V
ψi(xi). (16)

Then, the Bethe approximation of the partition function ZB is defined by the
proportionality constant of Eq. (16): ZB

∏

e∈E
be
bibj

∏

i∈V bi =
∏

e∈E ψe
∏

i∈V ψi.

For given J and h, we can obtain a belief by an algorithm called belief

propagation [20, 33]. In practical situations, the algorithm stops in a rea-
sonable time. Therefore, the Bethe approximation of the partition function
is used in many applications [17].

We show that ΘG(β,γ) is equal to Z/ZB . We choose variables βe and
ξi to parameterize {be(xi, xj)}e∈E and {bi(xi)}i∈V , which satisfy Eqs. (14)
and (15):

be(xi, xj) =
1

(ξi + ξ−1
i )(ξj + ξ−1

j )
(ξxi

i ξ
xj

j + βexixj),

bi(xi) =
ξxi

i

ξi + ξ−1
i

.

From the definition of ZB and Lemma 2, we see that

Z

ZB
=
∑

x

∏

e∈E

be(xi, xj)

bi(xi)bj(xj)

∏

i∈V
bi(xi)

=
∑

x1,...,xN=±1

∏

e∈E
e=ij

(1 + xixjβeξ
−xi

i ξ
−xj

j )
∏

i∈V

ξxi

i

ξi + ξ−1
i

= ΘG(β,γ),

where γi := ξi − ξ−1
i . This equation implies that the approximation ratio is

captured by the value of ΘG. If the graph is a tree, we see from Eq. (11)
and (12) that ΘG = 1, i.e., the Bethe approximation gives the exact value
of the partition function. If the weights β and γ are sufficiently small, we
see that ΘG ≈ 1, i.e., the Bethe approximation is a good approximation.
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The definition of ΘG implies that we can expand the approximation ratio
by the sum of sub-coregraphs [8, 9, 30]. This expansion often improves the
approximation if we sum up some of the terms [14].

3.3 Transform of Ising partition function

In the following, we give the explicit transform from (β,γ) to (J ,h).
We can always choose Ai, Be, h

′

i, he,i, and Je to satisfy

ξxi

i

ξi + ξ−1
i

= A−1
i exp(h

′

ixi),

1 + xixjβeξ
−xi

i ξ
−xj

j = B−1
e exp(Jexixj + he,ixi + he,jxj).

Therefore, setting hi := h
′

i +
∑

e�i he,i, we have

Z(G;J ,h) =
∏

i∈V
Ai

∏

e∈E
Be ΘG(β, (ξi − ξ−1

i )i∈V ). (17)

This fact shows that ΘG(β,γ) gives the Ising partition function with (J ,h),
which is computed from (β,γ) as above.

If ξi = 1, or γi = 0 for all i ∈ V , Eq. (17) reduces to the well-known
expansion given by van der Waerden [28, 31],

Z(G;J , 0) = 2|V | ∏

e∈E
cosh(Je)

∑

s∈E

∏

e∈s
tanh(Je), (18)

where E is the set of Eulerian subgraphs, i.e., subgraphs in which all vertex
degrees are even. This fact is deduced from fn(0) = 1 if n is even and
fn(0) = 0 if n is odd.

It is well known by statistical physicists that Eq. (18) can be extended
to the following expression [10]:

Z(G;J ,h) = 2|V | ∏

e∈E
cosh(Je)

∑

s⊂E

∏

e∈s
tanh(Je)

∏

i∈Ve(s)

cosh(hi)
∏

i∈Vo(s)

sinh(hi),

(19)
where Ve(s) (resp. Vo(s)) is the set of vertices of even (resp. odd) degree in
s. Although both Eqs. (17) and (19) are extensions of Eq. (18) and give edge
subset expansions, they are different. An obvious difference is that only the
sub-coregraphs contribute to the expansion in Eq. (17).

Based on Eq. (17), we can say that the graph polynomial θG(β, γ) is a
transformed Ising partition function with uniform coupling constants and
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non-uniform external fields. In contrast, a bivariate graph polynomial in-
vestigated in [1] is based on Eq. (19). This polynomial corresponds to the
Ising partition function with uniform coupling constants and external fields.
A similar type of expression is also considered in [16].

3.4 Additional remarks on weighted graph version

In this subsection, we present additional remarks on ΘG by comparing it
with θG. The deletion-contraction relation given by Theorem 1 is generalized
to weighted graphs as follows. If the weights (β,γ) on G satisfy γi = γj for
a non-loop edge e = ij, the weights on G\e and G/e are naturally induced
and denoted by (β′,γ ′) and (β′′,γ ′′), respectively. On G/e, the weight on
the new vertex, which is the fusion of i and j, is set to be γi. Under these
conditions, we have

ΘG(β,γ) = (1− βe)ΘG\e(β
′,γ ′) + βeΘG/e(β

′′,γ′′), (20)

which is proved in the same manner as Theorem 1.
If we set all vertex weights γi to be equal, the generalization of Theorem

2 holds. We write ΘG(β, (γi = γ)i∈V ) by ΘG(β, γ) for simplicity.

Theorem 3.

ΘG(β, γ) =
∑

s⊂E

∏

n=0

θBn(1, γ)
in(s)

∏

e∈s
βe

∏

e∈E\s
(1− βe). (21)

Proof. In this proof, the right-hand side of Eq. (21) is denoted by Θ̃G(β, γ).
First, we check that ΘG and Θ̃G are equal at the bouquet graphs.

Θ̃Bn(β, γ) =
∑

s⊂E

θB|s|
(1, γ)

∏

e∈s
βe

∏

e∈E\s
(1− βe)

=
∑

s⊂E

|s|
∑

k=0

(|s|
k

)

f2k(γ)
∏

e∈s
βe
∑

t⊂E\s

∏

e∈t
(−βe)

=
∑

u⊂E

∑

s⊂u

|s|
∑

k=0

(|s|
k

)

f2k(γ)(−1)|u|−|s|∏

e∈u
βe

=
∑

u⊂E

|u|
∑

l=0

l
∑

k=0

(|u|
l

)(

l

k

)

f2k(γ)(−1)|u|−l
∏

e∈u
βe.

12



Using the equality
∑n

j=k

(

n
j

)(

j
k

)

(−1)n+j = δn,k, which is obtained at β = 0
of Eq. (7), we have

Θ̃Bn(β, γ) =
∑

u⊂E

f2|u|(γ)
∏

e∈u
βe = ΘBn(β, γ).

Second, we see that Θ̃G(β, γ) satisfies the deletion-contraction relation

Θ̃G(β, γ) = (1− βe)Θ̃G\e(β
′, γ) + βeΘ̃G/e(β

′′, γ)

for all non-loop edges e, because the subsets including e amount to βeΘ̃G/e(β, γ)

and the other subsets amount to (1− βe)Θ̃G\e(β, γ).
By applying this form of deletion-contraction relations to both ΘG and

Θ̃G, we can reduce the values at G to those of disjoint unions of bouquet
graphs. Therefore, we conclude that Θ̃G = ΘG.

A coloured graph is a graph with a map from the edges to a set of
colours. If it is the set of real numbers, the term “weighted” is preferred. We
can generalize the definition of V-functions to coloured graphs by allowing
the coefficients of the deletion-contraction relation to depend on colours.
Since ΘG(β, γ) satisfies Eqs. (10) and (20), it is a V-function of (edge)
weighted graphs. An expansion similar to Theorem 3 holds for any coloured
V-function because the proof only uses Eqs. (10) and (20).

With regard to the Tutte polynomial, numerous works have focused on
its extensions to edge-weighted or coloured versions. In [6], the “universal”
Tutte polynomial is constructed on coloured graphs by generalizing the or-
dinary Tutte polynomial to the greatest extent possible. The “universal”
Tutte polynomial derives other extensions of the Tutte polynomial such as
the dichromatic polynomial for edge-weighted graphs given by Traldi [26]
and the random-cluster model by given by Fortuin and Kasteleyn [12].

Our extension, ΘG(β, γ), for weighted graphs resembles the random-
cluster model defined by

RG(β, κ) =
∑

s⊂E

κk(s)
∏

e∈s
βe

∏

e∈E\s
(1− βe)

because of Eq. (21). The random-cluster model satisfies a deletion-contraction
relation of the form

RG(β, κ) = (1− βe)RG\e(β
′, κ) + βeRG/e(β

′′, κ) for all e ∈ E.

Note that this relation holds for loops in contrast to ΘG(β, γ) as RG(β, κ)
is an extension of the Tutte polynomial. This difference arises from that of
the coefficients of subgraphs s: κk(s) and

∏

θBn(1, γ)
in(s).

13



4 Additional properties of θ and its implications

4.1 Special values

4.1.1 γ = 0 case

As suggested in Section 2.2.4, if we set γ = 0, the polynomial θG(β, 0) is
included in the Tutte polynomial.

Proposition 2.

θG(β, 0) = (1− β)n(G)βr(G)TG

( 1

β
,
1 + β

1− β

)

.

Proof. From Proposition 1.(b) and f2k(0) = 1, we have

θ̂Bn(β, 0) = (1− β)1−nβ−1
n
∑

k=0

(

n

k

)

βk = (1− β)1−nβ−1(1 + β)n.

We also have T̂Bn(
1
β ,

1+β
1−β ) = (β−1 − 1)(1+β

1−β )
n. Therefore, θ̂Bn(β, 0) =

T̂Bn(
1
β ,

1+β
1−β ). Because V-functions are determined by the values at the bou-

quet graphs, θ̂G(β, 0) = T̂G(
1
β ,

1+β
1−β ) holds for any graph G.

This result is natural from the viewpoint of the Ising partition function.
The Tutte polynomial is equivalent to the partition function of the q-Potts
model [4]; if we set q = 2, it becomes the Ising partition function (with
uniform coupling constants J and without external fields). In terms of
the Tutte polynomial, such points correspond to the parameters (x, y) =
( 1β ,

1+β
1−β ), and thus, TG(

1
β ,

1+β
1−β ) is essentially the Ising partition function of

that type. On the other hand, as discussed in Section 3.3, θG(β, 0) is also
essentially equal to the Ising partition function of that type. Therefore they
must be equal up to some easy factor.

We can say that the Tutte polynomial is an extension of the Ising parti-
tion function (with uniform coupling constants and without external fields)
to the q-state model whereas the θ-polynomial is an extension of it to a
model with specific forms of local external fields.

4.1.2 β = 1 case

At β = 1, θG(1, γ) is determined by the nullity and the number of connected
components of the graph.

14



Lemma 3. For a connected graph G,

θG(1, ξ − ξ−1) = ξ1−n(G)(ξ + ξ−1)n(G)−1 + ξn(G)−1(ξ + ξ−1)n(G)−1. (22)

Proof. We use the right-hand side of Lemma 2, which gives an alternative
representation of θG. If xi 6= xj, then 1+ xixjξ

−xiξ−xj = 0. Thus, only two
terms of x1 = · · · = xN = 1 and x1 = · · · = xN = −1 contribute to the sum,
because G is connected.

If ξ = 1+
√
5

2 , then ξ − ξ−1 = 1. From Eq. (22), we see that

θG(1, 1) =

(

5−
√
5

2

)n(G)−1

+

(

5 +
√
5

2

)n(G)−1

. (23)

Setting ξ = 1, we also deduce from Eq. (22) that

θG(1, 0) = 2n(G). (24)

4.2 Number of sub-coregraphs

4.2.1 Bounds

For a given graph G, let C(G) := {s; s ⊂ E, (V, s) is a coregraph.} be the set
of sub-coregraphs of G. In the following theorem, the values (23) and (24)
are used to bound the number of sub-coregraphs.

Although the following upper bound is proved in [30], here, we present
both the proofs of the bounds for completeness.

Theorem 4. For a connected graph G,

2n(G) ≤ |C(G)| ≤
(

5−
√
5

2

)n(G)−1

+

(

5 +
√
5

2

)n(G)−1

. (25)

The lower bound is attained if and only if core(G) is a subdivision of a

bouquet graph, and the upper bound is attained if and only if core(G) is a

subdivision of a 3-regular graph or G is a tree.

Note that a subdivision of a graph G is a graph that is obtained by
adding vertices of degree 2 on edges.

Proof. It is sufficient to consider the case in which G is a coregraph and
does not have vertices of degree 2, because the operations of taking core
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and subdivision do not essentially change the nullity and the set of sub-
coregraphs.

From the definition of Eq. (3), we can write

θG(1, γ) =
∑

s∈C
w(s; γ),

where w(s; γ) =
∏

i∈V fdi(s)(γ). For all s ∈ C, we claim that

w(s; 0) ≤ 1 ≤ w(s; 1). (26)

The left inequality of Eq. (26) is immediate from the fact that fn(0) = 1
if n is even and fn(0) = 0 if n is odd. The equality holds if and only if
all vertices have even degree in s. Because fn(1) > 1 for all n > 4 and
f2(1) = f3(1) = 1, we have w(s; 1) ≥ 1. The equality holds if and only if
di(s) ≤ 3 for all i ∈ V . Then, the inequalities in Eq. (25) are proved. The
upper bound is attained if and only if G is a 3-regular graph or B0. For the
equality condition of the lower bound, it is sufficient to prove the following
claim.

Claim. Let G be a connected graph, and assume that the degree of every

vertex is at least 3 and di(s) is even for every i ∈ V and s ∈ C. Then, G is

a bouquet graph.

If G is not a bouquet graph, there exists a non-loop edge e = i0j0. Then,
E and E \e are sub-coregraphs of G. Thus, di0(E) or di0(E \e) = di0(E)−1
is odd. This is a contradiction.

4.2.2 Number of sub-coregraphs in 3-regular graphs

If the core of a graph is a subdivision of a 3-regular graph, we obtain more
information on the number of specific types of sub-coregraphs.

We can rewrite Lemma 3 as follows.

Lemma 4. Let G be connected and not a tree. Then, we have

θG(1, γ) =

n(G)−1
∑

l=0

Cn(G),lγ
2l,

where Cn,l :=
∑n

k=l+1

(

n
k

)(

k+l−1
2l

)

for 1 ≤ l ≤ n− 1 and Cn,0 := 2n.
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Proof. First, we note that for k ≥ 1,

f2k(γ) =

k−1
∑

l=0

(

k + l − 1

2l

)

γ2l and f2k+1(γ) =

k−1
∑

l=0

(

k + l

2l + 1

)

γ2l+1.

This is easily proved inductively using Eq. (2). Then, Lemma 3 gives

θG(1, γ) = θBn(G)
(1, γ) =

n(G)
∑

k=1

(

n(G)

k

)

f2k(γ) + f0(γ)

=

n(G)−1
∑

l=0

n(G)
∑

k=l+1

(

n(G)

k

)(

k + l − 1

2l

)

γ2l + 1

=

n(G)−1
∑

l=0

Cn(G),lγ
2l.

Theorem 5. Let G be a connected graph and not a tree. If every vertex of

the core(G) has a degree of at most 3, then

Cn(G),l = |{s ∈ C(G); s has 2l vertices of degree 3.}|

for 0 ≤ l ≤ n(G)− 1.

Proof. For a sub-coregraph s,
∏

i∈V fdi(s)(γ) = γ2l if and only if s has 2l
vertices of degree 3.

5 One-variable graph polynomial ω

In this section, we define the second graph polynomial ω by setting γ =
2
√
−1. Using Eq. (2), it is easy to verify that fn(2

√
−1) = (

√
−1)n(1 − n).

Therefore,

θG(β, 2
√
−1) =

∑

s⊂E

(−β)|s|
∏

i∈V
(1− di(s)). (27)

An interesting point of this specialization is the relation to the monomer-
dimer partition function with the specific form of monomer-dimer weights,
as described in Section 5.2.
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5.1 Definition and basic properties

From Eq. (22), θG(1, 2
√
−1) = 0 unless all the nullities of connected compo-

nents of G are less than 2. The following theorem asserts that θG(β, 2
√
−1)

can be divided by (1− β)|E|−|V |. We define ωG by dividing that factor.

Theorem 6.

ωG(β) :=
θG(β, 2

√
−1)

(1− β)|E|−|V | ∈ Z[β].

In Eq. (27), θG(β, 2
√
−1) is given in the summation over all sub-coregraphs

and each term is not necessarily divisible by (1−β)|E|−|V |; however, if we use
the representation in Theorem 2, each summand is divisible by the factor,
as shown in the following theorem. Theorem 6 is a trivial consequence of
Theorem 7.

Theorem 7.

ωG(β) =
∑

s⊂E

β|s|
∏

n=0

hn(β)
in(s),

where h0(β) := (1− β), h1(β) := 2, and hn(β) := 0 for n ≥ 2.

Proof. From (b) of Proposition 1 and fm(2
√
−1) = (

√
−1)m(1−m), we have

θBn(1, 2
√
−1) =

n
∑

k=0

(

n

k

)

(−1)k(1− 2k) =











1 if n = 0

2 if n = 1

0 if n ≥ 2.

Theorem 2 gives

ωG(β) =
∑

s⊂E

∏

n=0

θBn(1, 2
√
−1)in(s)β|s|(1− β)|V |−|s|

=
∑

s⊂E

∏

n=0

[(1− β)1−nθBn(1, 2
√
−1)]in(s)β|s|.

Then, the assertion is proved.

Example 2.

For a tree T , ωT (β) = 1− β. For the cycle graph Cn, ωCn(β) = 1+ βn. For
the complete graph K4, ωK4(β) = 1+2β+3β2+8β3+16β4. For the graphs
shown in Figure 1, ωX1(β) = 1 + β + 4β2 and ωX2(β) = 1 + 3β + 4β2.

We list the basic properties of ω below.
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Proposition 3.

(a) ωG1∪G2(β) = ωG1(β)ωG2(β).

(b) ωG(β) = ωG\e(β) + βωG/e(β) if e ∈ E is not a loop.

(c) ωBn(β) = 1 + (2n− 1)β.

(d) ωG(β) = ωcore(G)(β).

(e) ωG(β) is a polynomial of degree |Vcore(G)|. The leading coefficient is
∏

i∈Vcore(G)
(di − 1) and the constant term is 1.

(f) Let G(m) be the graph obtained by subdividing each edge to m edges.

Then,

ωG(m)(β) = (1 + β + · · · + βm−1)|E|−|V |ωG(β
m).

Proof. Assertions (a−e) are easy. (f) is proved by |EG| − |VG| = |EG(m) | −
|VG(m) | and θG(m)(β, 2

√
−1) = θG(β

m, 2
√
−1).

Proposition 4. If G does not have connected components of nullity 0, then
the coefficients of ωG(β) are non-negative.

Proof. We prove this assertion by induction on the number of edges. Assume
that every connected component is not a tree. If G has only one edge, then
G = B1 and the coefficients are non-negative. Let G have M(≥ 2) edges
and assume that the assertion holds for graphs with at most M − 1 edges.
It is sufficient to consider the case in which G is a connected coregraph
because of Proposition 3.(a) and (d). If all edges of G are loops, G = Bn

for some n ≥ 2 and the coefficients are non-negative. If G = CM , the
coefficients are also non-negative, as in the case of Example 2. Otherwise,
we reduce ωG to graphs with nullity not less than 1 by applying the deletion-
contraction relation and see that the coefficients of ωG\e and ωG/e are both
non-negative.

5.2 Relation to monomer-dimer partition function

In the next theorem, we prove that the polynomial ωG(β) is the monomer-
dimer partition function with a specific form of weights.

A matching of G is a set of edges such that no two edges occupy the same
vertex. It is also called a dimer arrangement in statistical physics [15]. We
use both terminologies. The number of edges in a matching D is denoted
by |D|. If a matching D consists of k edges, then it is called a k-matching.
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The vertices covered by the edges in D are denoted by [D]. The set of all
matchings of G is denoted by D.

The monomer-dimer partition function with edge weights µ = (µe)e∈E
and vertex weights λ = (λi)i∈V is defined as

ΞG(µ,λ) :=
∑

D∈D

∏

e∈D
µe

∏

i∈V \[D]

λi.

We write ΞG(µ,λ) if all weights µe are set to the same µ.

Theorem 8. Let λi := 1 + (di − 1)β; then,

ωG(β) = ΞG(−β,λ).

Proof. We show that ΞG(−β,λ) satisfies the deletion-contraction relation
and the boundary condition of the form in Proposition 3.(c). For the bouquet
graph Bn, D = φ is the only possible dimer arrangement, and thus,

ΞBn(−β,λ) = 1 + (2n− 1)β = ωBn(β).

For a non-loop edge e = i0j0, we show that the deletion-contraction relation
is satisfied. A dimer arrangement D ∈ D is classified into the following five
types: (a) D includes e, (b) D does not include e and D covers both i0 and
j0, (c) D covers i0 but not j0, (d) D covers j0 but not i0, and (e) D covers
neither i0 nor j0. According to this classification, ΞG(−β,λ) is a sum of the
five terms A,B,C,D, and E. We see that

C =
∑

D∈D
[D]∋i0,[D] 6∋j0

(−β)|D| ∏

i∈V \[D]

λi

=
∑

D∈D
[D]∋i0,[D] 6∋j0

(−β)|D|(1 + (dj0 − 2)β)
∏

i∈V \[D]
i6=j0

λi

+ β
∑

D∈D
[D]∋i0,[D] 6∋j0

(−β)|D| ∏

i∈V \[D]
i6=j0

λi

=: C1 + βC2.
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In the same manner, D = D1 + βD2. Similarly,

E =
∑

D∈D
[D] 6∋i0,[D] 6∋j0

(−β)|D|λi0λj0
∏

i∈V \[D]
i6=i0,j0

λi

=
∑

D∈D
[D] 6∋i0,[D] 6∋j0

(−β)|D|(1 + (di0 − 2)β)(1 + (dj0 − 2)β)
∏

i∈V \[D]
i6=i0,j0

λi

+ β
∑

D∈D
[D] 6∋i0,[D] 6∋j0

(−β)|D|(2 + (di0 + dj0 − 3)β)
∏

i∈V \[D]
i6=i0,j0

λi

=: E1 + βE2.

We can straightforwardly check that

ΞG\e(−β,λ′) = B + C1 +D1 + E1

and
βΞG/e(−β,λ′′) = A+ βC2 + βD2 + βE2, (28)

where λ′ and λ′′ are defined by the degrees of G\e and G/e, respectively.
Note that C2+D2 in Eq. (28) corresponds to dimer arrangements in G/e that
cover the new vertex formed by the contraction. This shows the deletion-
contraction relation.

Let pG(k) be the number of k-matchings of G. The matching polynomial

αG is defined by

αG(x) =

⌊ |V |
2

⌋
∑

k=0

(−1)kpG(k)x
|V |−2k.

The matching polynomial is essentially the monomer-dimer partition func-
tion with uniform weights; if we set all vertex weights as λ and all edge
weights as µ, we have

ΞG(µ, λ) = αG

( λ√−µ
)√−µ|V |

.

Therefore, for a (q + 1)-regular graph G, Theorem 8 implies

ωG(u
2) = αG

( 1

u
+ qu

)

u|V |. (29)

In [18], Nagle derives a sub-coregraph expansion of the monomer-dimer par-
tition function with uniform weights, or matching polynomials, on regular
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graphs. With a transformation of the variables, his expansion theorem is
essentially equivalent to Eq. (29); Theorem 8 gives an extension of the ex-
pansion to non-regular graphs.

As an immediate consequence of Eq. (29), we remark on the symmetry
of the coefficients of ωG for regular graphs.

Corollary 1. Let G be a (q+1)−regular graph (q ≥ 1) with N vertices and

wk be the k-th coefficient of ωG(β). Then, we have

wN−k = wkq
N−2k for 0 ≤ k ≤ N.

5.3 Zeros of ωG(β)

Physicists are interested in the complex zeros of partition functions, because
it restricts the occurrence of phase transitions, i.e., discontinuity of physical
quantities with respect to parameters such as temperature. In the limit of
infinite size of graphs, the analyticity of the scaled log partition function on
a complex domain is guaranteed if there exist no zeros in the domain and
some additional conditions hold. (See [32, 23].) For the monomer-dimer
partition function, Heilman and Lieb [15] show the following result.

Theorem 9 ([15] Theorem 4.6). If µe ≥ 0 for all e ∈ E and Re(λj) > 0 for

all j ∈ V , then ΞG(µ,λ) 6= 0. The same statement is true if Re(λj) < 0 for

all j ∈ V .

Because our polynomial ωG(β) is a monomer-dimer partition function,
we obtain a bound of the region of complex zeros.

Corollary 2. Let G be a graph and let dm and dM be the minimum and

maximum degree in core(G), respectively, and assume that dm ≥ 2. If β ∈ C

satisfies ωG(β) = 0, then

1

dM − 1
≤ |β| ≤ 1

dm − 1
.

Proof. Without loss of generality, we assume that G is a coregraph. Let
β = |β|eiθ satisfy ωG(β) = 0, where 0 ≤ θ < 2π and i is the imaginary
unit. Because ωG(0) = 1 and the coefficients of ωG(β) are not negative from
Proposition 4, we have β 6= 0 and θ 6= 0. We see that

ωG(β) = ΞG(−β,λ) = ΞG(|β|, ie−iθ/2λ)(ie−iθ/2)−|V |,

where λj = 1 + (dj − 1)β and Re(ie−iθ/2λj) = (1 − (dj − 1)|β|) sin θ
2 . From

Theorem 9, the assertion follows.
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In particular, if the graph is a (q + 1)-regular graph, the roots lie on a
circle of radius 1/q, which is also directly seen by Eq. (29) by combining the
well-known result on the roots of matching polynomials [15]: the zeros of
matching polynomials are on the real interval (−2

√
q, 2

√
q).

5.4 Determinant sum formula

Let T := {C ⊂ E; di(C) = 0 or 2 for all i ∈ V } be the set of unions of
vertex-disjoint cycles. In this subsection, an element C ∈ T is identified
with the subgraph (VC , C), where VC := {i ∈ V ; di(C) 6= 0}. A graph G \C
is given by deleting all the vertices in VC and the edges of G that are incident
with them.

In this subsection, we aim to prove Theorem 10, in which we represent
ωG as a sum of determinants. This theorem is similar to the expansion of
the matching polynomial by characteristic polynomials [13]:

αG(x) =
∑

C∈T
2k(C) det[xI −AG\C ], (30)

where AG\C is the adjacency matrix of G \ C and k(C), the number of
connected components of C.

Theorem 10.

ωG(u
2) =

∑

C∈T
2k(C) det

(

[I − uAG + u2(DG − I)]
∣

∣

∣

G\C

)

u|C|, (31)

where DG is the degree matrix defined by (DG)i,j := diδi,j and ·
∣

∣

G\C denotes

the restriction to the principal minor indexed by the vertices of G \ C.

Proof. For the proof, we use the result of Chernyak and Chertkov [7]. For
given weights µ = (µe)e∈E and λ = (λi)i∈V , a |V | × |V | matrix H is defined
by

H := diag(λ)−
∑

e∈E

√−µeAe,

where Ae = Ei,j+Ej,i for e = ij and Ei,j is the matrix base. In our notation,
their result implies

ΞG(µ,λ) =
∑

C∈T
2k(C) detH|G\C

∏

e∈C

√−µe.

If we set λi = 1 + (di − 1)u2 and
√−µe = u, then the assertion follows.
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For regular graphs, Eqs. (30) and (31) are equivalent because of Eq. (29).
The matrix (I − uAG + u2(DG − I)) is well known for its appearance

in the Ihara formula of the graph zeta function [25]. The result in [29]
shows that the Bethe free energy and the graph zeta function are intimately
related although mathematical relations between the result and Theorem 10
are unknown.

5.5 Values at β = 1

The value of ωG(1) is interpreted as the number of a set constructed from G.
For the following theorem, recall that G(2) is obtained by adding a vertex on
each edge in G = (V,E). The vertices of G(2) := (V (2), E(2)) are classified
into VO and VA, where VO is the set of original vertices and VA is that of
newly added ones. The set of matchings on G(2) is denoted by DG(2) .

Theorem 11.

ωG(1) = |{D ∈ DG(2) ; [D] ⊃ VO}|.

Proof. From Theorem 7, we have

ωG(1) =
∑

s⊂E,s=G1∪···∪Gk(s)
n(Gj )=1 for j=1...k(s)

2k(s), (32)

where Gj is a connected component of (V, s). We construct a map F from
{D ∈ DG(2) ; [D] ⊃ VO} to s ⊂ E as

F (D) := {e ∈ E; the half of e is covered by an edge in D}.

Then, the nullity of each connected component of F (D) is 1 and |F−1(s)| =
2k(s).

Example 3. For the graph X3 in Figure 2, ωX3(1) = ωC3(1) = 2. The
corresponding arrangements are also shown in Figure 2.

Finally, we remark on the relations between the results on ωG(1) obtained
in this paper. From Proposition 3, ωG(1) satisfies

ωG(1) = ωG\e(1) + ωG/e(1) if e ∈ E is not a loop.

This relation can be directly observed from the interpretation of Theorem
11. Theorem 8 gives

ωG(1) =
∑

D∈D
(−1)|D| ∏

i∈V \[D]

di,
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Figure 2: Graph X3 and possible arrangements on X
(2)
3 .

which can be proved from Theorem 11 with the inclusion-exclusion principle.
Theorem 10 gives

ωG(1) =
∑

C∈T
2k(C) det [DG −AG]

∣

∣

∣

G\C
.

We can directly prove this formula from Theorem 11 using a type of matrix-
tree theorem.
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