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Abstract

We show that a set A ⊂ {0, 1}n with edge-boundary of size at most

|A|(log
2
(2n/|A|) + ǫ)

can be made into a subcube by at most (2ǫ/ log
2
(1/ǫ))|A| additions and

deletions, provided ǫ is less than an absolute constant.
We deduce that if A ⊂ {0, 1}n has size 2t for some t ∈ N, and A cannot

be made into a subcube by fewer than δ|A| additions and deletions, then
the edge-boundary of A has size at least

|A| log
2
(2n/|A|) + |A|δ log

2
(1/δ) = 2t(n− t+ δ log

2
(1/δ)),

provided δ is less than an absolute constant. This is sharp whenever
δ = 1/2j for some j ∈ {1, 2, . . . , t}.

1 Introduction

We work in the n-dimensional discrete cube {0, 1}n, the set of all 0-1 vectors
of length n. This may be identified with P([n]), the set of all subsets of [n] =
{1, 2, . . . , n}, by identifying a set x ⊂ [n] with its characteristic vector χx in the
usual way. A d-dimensional subcube of {0, 1}n is a set of the form

{x ∈ {0, 1}n : xi1 = a1, xi2 = a2, . . . , xin−d
= an−d},

where i1 < i2 < . . . < in−d are coordinates, and a1, a2, . . . and an−d are fixed
elements of {0, 1}. The coordinates i1, i2, . . . , in−d are called the fixed coordi-
nates; the other coordinates are called the moving coordinates, and n − d is
called the codimension of the subcube.

Consider the graph Qn with vertex-set {0, 1}n, where we join two 0-1 vectors
if they differ in exactly one coordinate; this graph is called the n-dimensional

hypercube. Given a set A ⊂ {0, 1}n, the edge-boundary of A is defined to be the
set of all edges of Qn joining a point in A to a point not in A. We write ∂A for
the edge-boundary of A.

∗St John’s College, Cambridge, UK.
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For 1 ≤ k ≤ 2n, let Cn,k be the first k elements of the binary ordering on
P([n]), defined by

x < y ⇔ max(x∆y) ∈ y.

The edge-isoperimetric inequality of Harper [6], Lindsey [12], Bernstein [2]
and Hart [7] states that among all subsets of {0, 1}n of size k, Cn,k has the
smallest possible edge-boundary.

A slightly weaker form is as follows:

|∂A| ≥ |A| log2(2
n/|A|) ∀A ⊂ {0, 1}n; (1)

equality holds if and only if A is a subcube. We call |∂A|/|A| the average out-

degree of A; (1) says that the average out-degree of A is at least log2(2
n/|A|)

(which is the average out-degree of a subcube of size |A|, when |A| is a power
of 2). Writing p = |A|/2n for the measure of the set A, we may rewrite (1) as:

|∂A| ≥ 2np log2(1/p) ∀A ⊂ {0, 1}n.

Hence, if |A| = 2n−1, |∂A| ≥ 2n−1, and equality holds only if A is a
codimension-1 subcube, in which case the edge-boundary consists of all the
edges in one direction.

It is natural to ask whether it is always possible to find a direction in which
there are many boundary edges. For i ∈ [n], we write

A+
i = {x \ {i} : x ∈ A, i ∈ x} ⊂ P([n] \ {i}),

and
A−

i = {x ∈ A : i /∈ x} ⊂ P([n] \ {i});

A+
i and A−

i are called the upper and lower i-sections of A, respectively. We
write

∂iA = |A+
i ∆A

−
i |

for the number of edges of the boundary of A in direction i. The influence of
the coordinate i on the set A is defined to be

βi = |A+
i ∆A

−
i |/2

n−1,

i.e. the fraction of direction-i edges of Qn which belong to ∂A. This is simply
the probability that if S ⊂ P([n]) is chosen uniformly at random, A contains
exactly one of S and S∆{i}.

Clearly, we have
∑n

i=1 βi = |∂A|/2n−1. The quantity
∑n

i=1 βi is sometimes
called the total influence.

Ben-Or and Linial [1] conjectured that for any set A ⊂ {0, 1}n with |A| =

2n−1, there exists a coordinate with influence at least Ω( log2
n

n ). This was proved
by Kahn, Kalai and Linial; it follows from the celebrated KKL Theorem:
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Theorem 1 (Kahn, Kalai, Linial [9]). If A ⊂ {0, 1}n with measure p, then

n
∑

i=1

β2
i ≥ Cp2(1− p)2(lnn)2/n,

where C > 0 is an absolute constant.

Corollary 2. If A ⊂ {0, 1}n with measure p, then there exists a coordinate

i ∈ [n] with
βi ≥ C′p(1− p)(lnn)/n,

where C′ > 0 is an absolute constant.

Corollary 2 is sharp up to the value of the absolute constant C′, as can be
seen from the ‘tribes’ construction of Ben-Or and Linial [1]. Let n = kl, and
split [n] into l ‘tribes’ of size k. Let A be the set of all 0-1 vectors which are
identically 0 on at least one tribe. Observe that

|A| = (1− (1 − 2−k)l)2n,

|∂A| = n2n−k(1− 2−k)l−1,

and
βi = 2−(k−1)(1− 2−k)l−1 ∀i ∈ [n].

Let k = 2j for some j ∈ N, and let l = 2k/k, so that n = 2k = 22
j

; then

1− p = (1− 2−k)l = (1− 2−k)2
k/k = 1− 1/k +O(1/k2),

and

βi =
2(1− p)

n(1− 2−k)
=

2(1− 1/k +O(1/k2))

n
∀i ∈ [n],

so

βi
p(1− p) ln(n)/n

=
2(1− 1/k +O(1/k2))

(1/k −O(1/k2)(1 −O(1/k))k ln 2
=

2

ln 2
(1 +O(1/k)).

The best possible values of the constants C and C′ (in Theorem 1 and Corollary
2 respectively) remain unknown. Falik and Samorodnitsky [3] have shown that
one can take C = 4, and therefore C′ = 2.

Kahn, Kalai and Linial’s proof of Theorem 1 is one of the first instances of
Fourier analysis on {0, 1}n being used to prove a purely combinatorial result;
Fourier analysis has since become a very important tool in both probabilistic
and extremal combinatorics. More recently, Falik and Samorodnitsky [3] gave
an entirely combinatorial proof of Theorem 1; a similar proof was found inde-
pendently by Rossignol [13].

In [4], Friedgut considers the problem of determining the structure of subsets
of {0, 1}n with edge-boundary of size at most K2n−1, or equivalently, with total
influence at most K, where K is a constant (or a slowly-growing function of n).
Using the Fourier-analytic machinery of [9], Friedgut proved the following.
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Theorem 3 (Friedgut’s ‘Junta’ theorem). Let A ⊂ {0, 1}n, and suppose that

|∂A| ≤ K2n−1. Then there exists B ⊂ {0, 1}n such that |A∆B| ≤ ǫ2n, and B
is a ⌊2C0K/ǫ⌋-junta, where C0 is an absolute constant.

Here, if B ⊂ {0, 1}n, and j ∈ N, we say that B is a j-junta if there exists a
set of coordinates J ⊂ [n] such that |J | ≤ j, and the event {x ∈ B} depends only

upon the values (xj)j∈J . The condition in italics is of course equivalent to saying
that B is a union of subcubes which all have J as their set of fixed coordinates,
or that the characteristic function of B depends only upon the cooordinates in
J .

Freidgut’s theorem is sharp up to the value of the absolute constant C0, as
can be seen by taking the set A to be a product of a subcube of codimension
⌊log2(1/(6ǫ))⌋, with a set defined by the ‘tribes’ construction above.

In [3], Falik and Samorodnitsky use influence-based methods to obtain sev-
eral other results on subsets of {0, 1}n with small edge-boundary.

In this paper, we will investigate the structure of subsets A ⊂ {0, 1}n whose
the edge-boundary has size somewhat closer to |A| log2(2

n/|A|). In particular,
we will try to determine how small the edge-boundary must be, to guarantee
that A is close in structure to a single subcube. This question has already been
investigated by several researchers. Using the techniques of Fourier analysis,
Friedgut, Kalai and Naor [5] proved that if A ⊂ {0, 1}n with |A| = 2n−1 and
|∂A| ≤ 2n−1(1+ǫ), then A can be made into a codimension-1 subcube by at most
Kǫ2n−1 additions and deletions, where K is an absolute constant. Bollobás,
Leader and Riordan [11] conjectured that for any N ∈ N, there exists a constant
KN depending on N such that any A ⊂ {0, 1}n with |A| = 2n−N and

|∂A| ≤ (1 + ǫ)|A| log2(2
n/|A|)

can be made into a codimension-N subcube by at most KNǫ2
n−N additions and

deletions. They proved this for N = 2 and N = 3, also using the techniques of
Fourier analysis. We remark that KN must necessarily depend on N . Indeed,
as was observed by Samorodnitsky [14], a variant of the ‘tribes’ construction of
Ben-Or and Linial provides an example of a (small) set A satisfying

|∂A| ≤ (1 + ǫ)|A| log2(2
n/|A|),

and yet requiring at least (1 − o(1))|A| additions and deletions to make it into
a subcube. As above, let n = kl, split [n] into l ‘tribes’ of size k, and let A be
the set of all 0-1 vectors which are identically 0 on at least one tribe. Fix an
integer s. Let k = 2j, and let l = 2k/2

s

/k = 22
j−s−j , so that n = 2k/2

s

= 22
j−s

.
Let j → ∞. Then

1− p = (1− 2−k)l = 1− l2−k +O((l2−k)2) ≥ 1− l2−k,

so
p ≤ l2−k,

and therefore

log2(1/p) ≥ k − log2 l = (1− 2−s)k + log2 k.

4



Note that

|∂A| = n2n−k(1− 2−k)l−1 =
n2n−k(1− p)

1− 2−k
= n2n−k(1 +O(l2−k)).

Hence,

|∂A|

|A| log2(2
n/|A|)

≤
n2n−k(1 +O(l2−k))

(l2−k(1−O(l2−k)))((1 − 2−s)k + log2 k)2
n

=
kl(1 +O(l2−k))

l((1− 2−s)k + log2 k)

=
1 +O(l2−k)

1− 2−s + (log2 k)/k

<
1

1− 2−s
,

provided j is sufficiently large depending on s. For any ǫ > 0, this can clearly
be made ≤ 1+ ǫ by choosing s to be sufficiently large depending on ǫ. However,
A is a union of l codimension-k subcubes with disjoint sets of fixed coordinates,
and therefore requires at least (1 − o(1))|A| additions and deletions to make it
into a subcube.

Samorodnitsky [14] conjectured that given any δ > 0, there exists an a > 0
such that any A ⊂ {0, 1}n with

|∂A| ≤ (1 + a/n)|A| log2(2
n/|A|)

can be made into a subcube by at most δ|A| additions and deletions. Making
use of a result of Keevash [10] on the structure of r-uniform hypergraphs with
small shadows, he proved that any A ⊂ {0, 1}n with

|∂A| ≤ (1 + n−4)|A| log2(2
n/|A|)

can be made into a subcube by at most o(|A|) additions and deletions.
It turns out that the correct condition to ensure that A is close to a subcube

is that |∂A|/|A|, the average out-degree of A, is close to log2(2
n/|A|). Our first

main result (Theorem 8) implies that if A ⊂ {0, 1}n has edge-boundary of size
at most

|A|(log2(2
n/|A|) + ǫ), (2)

where ǫ is less than an absolute constant, then it can be made into a subcube
by at most

(1 +O(1/ log2(1/ǫ)))
ǫ

log2(1/ǫ)
|A| ≤

2ǫ

log2(1/ǫ)
|A|

additions and deletions. This proves the above conjecture of Bollobás, Leader
and Riordan, and also that of Samorodnitsky.
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We then prove Theorem 9, which states that if A ⊂ {0, 1}n has size 2t for
some t ∈ N, and edge-boundary of size at most

|A|(log2(2
n/|A|) + ǫ) = 2t(n− t+ ǫ),

where ǫ is less than an absolute constant, then it can be made into a t-dimensional
subcube by at most δ1(ǫ)|A| additions and deletions, where δ1(ǫ) is the unique
root of

x log2(1/x) = ǫ

in (0, 1/e). It follows that if A ⊂ {0, 1}n has size 2t for some t ∈ N, and cannot
be made into a subcube by fewer than δ|A| additions and deletions, then

|∂A| ≥ |A| log2(2
n/|A|) + |A|δ log2(1/δ) = 2t(n− t+ δ log2(1/δ)),

provided δ is less than an absolute constant. This is sharp whenever δ = 1/2j

for some j ∈ {1, 2, . . . , t}.
Our first aim is to prove a ‘rough’ stability result (Theorem 7), stating that

if A is ‘almost isoperimetric’, in the sense that the average out-degree of ∂A is
not too far above log2(2

n/|A|), then A can be made into a subcube by a small
number of additions and deletions. Influence-based methods play a crucial role
in our proof. Indeed, it will turn out that a set A ⊂ {0, 1}n satisfying (2) must
have each influence either very small or very large. We will use the following
theorem of Talagrand [16]:

Theorem 4 (Talagrand). Suppose A ⊂ {0, 1}n with measure

|A|

2n
= p;

then its influences satisfy:

n
∑

i=1

βi/ log2(1/βi) ≥ Kp(1− p),

where K > 0 is an absolute constant.

This implies that if all the influences are small, the edge-boundary must be
very large. This will help to show that there must be a coordinate, i say, of very
large influence. It will follow that one of the i-sections of A is very small. An
inductive argument will enable us to complete the proof.

2 Main results

We first prove a sequence of results on the rough structure of subsets of {0, 1}n

with small edge-boundary. If A ⊂ {0, 1}n, and i ∈ [n], we define

γi =
min{|A+

i |, |A
−
i |}

|A|
.
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(Observe that we always have γi ≤ 1/2.) We first show that if A ⊂ {0, 1}n has
small edge-boundary, then for each i ∈ [n], either one of the i-sections of A is
very small, or else the upper and lower i-sections of A have very similar sizes.

Lemma 5. Let A ⊂ {0, 1}n with

|∂A| = |A|(log2(2
n/|A|) + ǫ0). (3)

Then for each i ∈ [n], either

1. γi ≤ ǫ0/(5(log2 5− 2)), or

2. 1/2− ǫ0 < γi ≤ 1/2.

Proof. Let A ⊂ {0, 1}n satisfying the hypothesis of the lemma. Write

p =
|A|

2n

for the measure of A; then

|∂A| = 2np(log2(1/p) + ǫ0).

Fix i ∈ [n]. Without loss of generality, we may assume that |A+
i | ≤ |A−

i |, so

γi =
|A+

i |

|A|
.

Write γ = γi. Let

p+ =
|A+

i |

2n−1
, p− =

|A−
i |

2n−1
;

note that
p+ = 2γp, p− = 2(1− γ)p.

Define ǫ+, ǫ− by

|∂A+
i | = |A+

i |(log2(2
n−1/|A+

i |) + ǫ+), |∂A−
i | = |A−

i |(log2(2
n−1/|A−

i |) + ǫ−).

Observe that

|∂A| = |∂A+
i |+ |∂A−

i |+ |A+
i ∆A

−
i |

= |A+
i |(log2(2

n−1/|A+
i |) + ǫ+) + |A−

i |(log2(2
n−1/|A−|) + ǫ−) + |A+

i ∆A
−
i |

= γ|A| log2(2
n/(2γ|A|)) + (1− γ)|A|(log2(2

n/(2(1− γ)|A|) + ǫ+|A+
i |+ ǫ−|A−

i |

+|A+
i ∆A

−
i |

= |A| log2(2
n/|A|)− (1−H2(γ))|A| + ǫ+|A+

i |+ ǫ−|A−
i |+ |A+

i ∆A
−
i | (4)

≥ |A| log2(2
n/|A|)− (1−H2(γ))|A| + ǫ+|A+

i |+ ǫ−|A−
i |+

∣

∣|A+
i | − |A−

i |
∣

∣

= |A| log2(2
n/|A|)− (1−H2(γ))|A| + ǫ+|A+

i |+ ǫ−|A−
i |+ (1− 2γ)|A|

= |A| log2(2
n/|A|) + (H2(γ)− 2γ)|A|+ ǫ+|A+

i |+ ǫ−|A−
i |

= |A| log2(2
n/|A|) + F (γ)|A|+ ǫ+|A+

i |+ ǫ−|A−
i |,
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where H2 : [0, 1] → R denotes the binary entropy function,

H2(γ) := γ log2(1/γ) + (1− γ) log2(1/(1− γ)),

and
F (γ) := H2(γ)− 2γ.

Hence, (3) implies that

γǫ+ + (1− γ)ǫ− + F (γ) ≤ ǫ0. (5)

Therefore, crudely,
F (γ) ≤ ǫ0.

The function F is concave on [0, 1/2], and attains its maximum at γ = 1/5,
where it takes the value log2 5− 2. Hence, for γ ≤ 1/5,

F (γ) ≥ 5(log2 5− 2)γ,

whereas for 1/5 ≤ γ ≤ 1/2,

F (1/2− η) ≥ 10
3 (log2 5− 2)η > η.

Hence, for each i ∈ [n], either

1. γi ≤ ǫ0/(5(log2 5− 2)), or

2. 1/2− ǫ0 < γi ≤ 1/2,

proving the lemma.

Remark 1. We can of course rephrase the conclusion of Lemma 5 in terms of
influences. Let A ⊂ {0, 1}n satisfying (7). Observe that if case 1 occurs for
i ∈ [n], then

βi ≥ (1− 2γi)|A|/2
n−1 = 2(1− 2γi)p ≥ 2

(

1− 2
ǫ0

5(log2 5− 2)

)

p, (6)

—the ith influence is ‘large’.
If, on the other hand, case 2 occurs, then by (4), we have

|A+
i ∆A

−
i | ≤ |∂A| − |A| log2(2

n/|A|) + (1−H2(γi))|A| = (ǫ0 + 1−H2(γi))|A|.

Since H2 is concave, with H2(1/2) = 1, we have

1−H2(1/2− η) ≤ 2η (0 ≤ η ≤ 1/2),

and therefore
|A+

i ∆A
−
i | < 3ǫ0|A|,

i.e.
βi < 6ǫ0p,

—the ith influence is ‘small’.
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We now show that if the edge-boundary of A is sufficiently small, then case
1 in Lemma 5 must occur for some i ∈ [n].

Lemma 6. There exists an absolute constant c > 0 such that the following

holds. If ǫ ≤ c, and A ⊂ {0, 1}n with measure

|A|

2n
≤ 1− ǫ,

and

|∂A| ≤ |A|(log2(2
n/|A|) + ǫ); (7)

then case 1 must occur for some i ∈ [n], i.e. γi ≤ ǫ/(5(log2 5 − 2)) for some

i ∈ [n].

Proof. We can easily prove the lemma for sets with measure p ∈ [1/2, 7/8].
Suppose A ⊂ {0, 1}n has measure p ∈ [1/2, 7/8] and satisfies (7). Suppose for a
contradiction that case 2 occurs for every i ∈ [n]. Then by Remark 1, βi < 6ǫp
for every i ∈ [n], and therefore by Theorem 4,

n
∑

i=1

βi > Kp(1− p) log2

(

1

6ǫp

)

.

The right-hand side is at least

2p(log2(1/p) + ǫ)

provided

K
8 log2

(

1

6ǫ

)

≥ 2(1 + ǫ),

which holds for all ǫ ≤ c := 2−32K/6. This contradicts (7), proving the lemma
for p ∈ [1/2, 7/8].

Now observe that any set A ⊂ {0, 1}n with measure p ∈ [7/8, 1− ǫ] has

|∂A| > |A|(log2(2
n/|A|) + ǫ), (8)

To see this, just apply the edge-isoperimetric inequality (1) to Ac:

|∂A| = |∂(Ac)| ≥ 2n(1 − p) log2(1/(1− p)).

It is easily checked that

2n(1 − p) log2(1/(1− p)) > 2np(log2(1/p) + 1− p) ∀p ≥ 7/8,

so (8) holds for all p ∈ [7/8, 1 − ǫ]. Hence, any set A ⊂ {0, 1}n satisfying (7)
must have measure p ≤ 7/8.

It remains to prove the lemma for all sets of measure p ≤ 1/2. Suppose A
has measure p ≤ 1/2 and satisfies (7). Suppose for a contradiction that case 2
occurs for every i ∈ [n].

9



Fix any i ∈ [n]. Without loss of generality, we may assume that |A+
i | ≤ |A−

i |,
so that

γi =
|A+

i |

|A|
.

Write γ = γi. Define ǫ+ and ǫ− as in the proof of Lemma 5. By (5), we have

γǫ+ + (1 − γ)ǫ− + F (γ) ≤ ǫ.

Hence, crudely,
γǫ+ + (1− γ)ǫ− ≤ ǫ,

so either ǫ+ ≤ ǫ or ǫ− ≤ ǫ.
If ǫ+ ≤ ǫ, then let A′ = A+

i . The set A
′ is a subset of P([n]\ {i}) of measure

p′ := 2γp ∈ ((1− 2ǫ)p, p) ⊂ [0, 1/2], satisfying the conditions of the lemma.
If ǫ− ≤ ǫ, then let A′ = A−

i ; the set A′ is a subset of P([n] \ {i}) of measure
p′ := 2(1 − γ)p < 2(1/2 + ǫ)p ≤ 1/2 + ǫ < 7/8, satisfying the conditions of the
lemma.

If A′ has case 1 occurring for some j, then by (6),

β′
j ≥ 2

(

1− 2
ǫ

5(log2 5− 2)

)

p′

≥ 2

(

1− 2
ǫ

5(log2 5− 2)

)

(1− 2ǫ)p

> 2(1− 2ǫ)2p,

and therefore
βj > (1− 2ǫ)2p > 6ǫp,

contradicting our assumption that A has case 2 occurring for every i ∈ [n].
Therefore, A′ also has case 2 occurring for every coordinate. Hence, it must
have measure p′ < 1/2, by the above argument for sets of measure in [1/2, 7/8].
Repeat the same argument for A′, and continue; we obtain a sequence of set
systems (A(l)) on ground sets of sizes n− l, all with measure < 1/2, satisfying
the conditions of the lemma, and with case 2 occurring for every coordinate.
Stop at the minimum M such that A(M) = ∅; clearly, M ≤ n− 1. Then A(M−1)

has one of its j-sections empty for some j, so case 1 must occur for this j, a
contradiction. This proves the lemma.

We can now prove a rough stability result for subsets of {0, 1}n with small
edge-boundary:

Theorem 7. There exists an absolute constant c > 0 such that if A ⊂ {0, 1}n

with

|∂A| ≤ |A| log2(2
n/|A|) + ǫ|A|,

for some ǫ ≤ c, then
|A∆C|/|A| < 3ǫ

for some subcube C.
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Proof. Let c be the constant in Lemma 6. Let A ⊂ {0, 1}n be such that

|∂A| ≤ |A| log2(2
n/|A|) + ǫ|A|,

for some ǫ ≤ c. Let ǫ0 ≤ ǫ be such that

|∂A| = |A|(log2(2
n/|A|) + ǫ0).

By Lemma 6, there exists i ∈ [n] with case 1 occurring, i.e. with

γi ≤ ǫ/(5(log2 5− 2)).

Without loss of generality, we may assume that i = n, and that |A+
n | ≤ |A−

n |.
In keeping with our earlier notation, we write γ = γn = |A+

n |/|A|.
To avoid confusion, we now write B(0) = A, p(0) = p, ǫ(0) = ǫ0, and γ

(0) = γ.
Let B(1) = A−

n ⊂ P([n− 1]), let p(1) = p−n , and let ǫ(1) = ǫ−n .
By (5), we have

(1− γ(0))ǫ(1) + F (γ(0)) ≤ ǫ(0).

Since F (γ(0)) ≥ 5(log2 5− 2)γ(0), we have

(1 − γ(0))ǫ(1) + 5(log2 5− 2)γ(0) ≤ ǫ(0);

it follows that ǫ(1) ≤ ǫ ≤ c. Hence, B(1) ⊂ P([n−1]) also satisfies the hypothesis
of Theorem 7 (with n replaced by n− 1). Its measure p(1) satisfies

p(1) = 2(1− γ(0))p(0)

≥ 2

(

1−
ǫ(0)

5(log2 5− 2)

)

p(0)

> 2(1− ǫ(0))p(0)

≥ 2(1− c)p(0).

Repeat the same argument for B(1). We obtain a sequence of set systems
(B(k)) on ground sets of sizes n − k, satisfying the hypotheses of Theorem 7
with ǫ replaced by ǫ(k) ≤ ǫ0 ≤ c, with measures p(k) satisfying

p(k+1) > 2(1− ǫ(k))p(k) ∀k ≥ 0,

and with
(1 − γ(k))ǫ(k+1) + F (γ(k)) ≤ ǫ(k) ∀k ≥ 0. (9)

Without loss of generality, we may assume that B(k) ⊂ P([n− k]).
We may continue this process until we produce a set system B(N) at stage

N , for which p(N) > 1 − ǫ0, at which point we can no longer apply Lemma 6.

11



We must now show that A is close to P([n−N ]). Observe that

|A \B(N)| =

N−1
∑

k=0

γ(k)p(k)2n−k

=

N−1
∑

k=0

2k





∏

j<k

(1− γ(j))



 γ(k)p02
n−k

=

N−1
∑

k=0





∏

j<k

(1− γ(j))



 γ(k)p02
n

=

N−1
∑

k=0





∏

j<k

(1− γ(j))



 γ(k)|A|.

By repeatedly applying the inequality (9), we obtain

N−1
∑

k=0





∏

j<k

(1− γ(j))



F (γ(k)) +





N−1
∏

j=0

(1− γ(j))



 ǫN ≤ ǫ0,

so certainly,
N−1
∑

k=0





∏

j<k

(1− γ(j))



F (γ(k)) ≤ ǫ0.

Since F (γ(k)) ≥ 5(log2 5− 2)γ(k) (0 ≤ k ≤ N − 1), it follows that

N−1
∑

k=0





∏

j<k

(1− γ(j))



 γ(k) ≤
ǫ0

5(log2 5− 2)
.

Hence,

|A \B(N)| ≤
ǫ0

5(log2 5− 2)
|A| < ǫ0|A|.

Let C = P([n−N ]), a codimension-N subcube. Then

|A \ C| = |A \B(N)| < ǫ0|A|. (10)

Since p(N) > 1− ǫ0, we have

|C \A| < ǫ0|C|. (11)

Hence,

|C| <
1

1− ǫ0
|A|,

and therefore
|C \A| <

ǫ0
1− ǫ0

|A| < 2ǫ0|A|.
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Combining this with (10) yields:

|A∆C| < 3ǫ0|A|, (12)

proving Theorem 7.

We may use this rough stability result to obtain a more precise one:

Theorem 8. There exists an absolute constant c > 0 such that if A ⊂ {0, 1}n

with

|∂A| ≤ |A| log2(2
n/|A|) + ǫ|A|,

for some ǫ ≤ c, then
|A∆C| < δ0(ǫ)|A|

for some subcube C, where δ0(ǫ) is the smallest positive solution of

x log2(1/x)− 3x = ǫ.

Proof. Write
|∂A| = |A|(log2(2

n/|A|) + ǫ0), (13)

where 0 ≤ ǫ0 ≤ ǫ. Choose a subcube C such that |A∆C| is minimal, and let
δ = |A∆C|/|A|. By Theorem 7, δ < 3ǫ0 ≤ 3c < 1/2.

Without loss of generality, we may assume that C = P([n −N ]). Let B =
C \A and let D = A \ C; then

|B|+ |D| < 3ǫ0|A|.

Since every point of D is adjacent to at most one point of C, the number of
edges in ∂A between points of A ∩ C and points of {0, 1}n \ C is at least

N(2n−N − |B|)− |D|.

The number of edges in ∂A between points of C is at least

|B| log2(2
n−N/|B|).

Finally, the number of edges of the cube in ∂D is at least

|D| log2(2
n/|D|),

and the number of edges of the cube between points in D and points in C is at
most |D|, so the number of edges of the cube between points of D and points
of ({0, 1}n \ C) \A is at least

|D|(log2(2
n/|D|)− 1).
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It follows that

|∂A| ≥ N(2n−N − |B|)− |D|+ |B| log2(2
n−N/|B|) + |D|(log2(2

n/|D|)− 1)

= N2n−N + (log2(2
n−N/|B|)−N)|B|+ (log2(2

n/|D|)− 2)|D|

= N(|A| − |D|+ |B|) + (log2(2
n−N/|B|)−N)|B|

+(log2(2
n/|D|)− 2)|D|

= N |A|+ |B|(log2(2
n/|B|)−N) + |D|(log2(2

n/|D|)−N − 2). (14)

Write |B| = φ|A| and |D| = ψ|A|. Then δ = ψ + φ. Note that

N = log2

(

2n

|A| − |D|+ |B|

)

= log2

(

2n

|A|

)

− log2(1− ψ + φ).

Hence, we obtain:

|∂A| ≥ |A| log2(2
n/|A|)− |A| log2(1− ψ + φ)

+φ|A|(log2(1/φ) + log2(1− ψ + φ))

+ψ|A|(log2(1/ψ)− 2 + log2(1− ψ + φ))

= |A| log2(2
n/|A|) +

|A|(φ log2(1/φ) + ψ log2(1/ψ)− 2ψ + (ψ + φ− 1) log2(1− ψ + φ))

> |A| log2(2
n/|A|) + |A|(ψ log2(1/ψ) + φ log2(1/φ)− 3ψ − 3φ),

where the last inequality follows from the fact that ψ, φ < 1/2. Observe that
the function

h : (0, 1] → R;

x 7→ x log2(1/x)

is concave, and therefore

ψ log2(1/ψ) + φ log2(1/φ) ≥ (ψ + φ) log2(1/(ψ + φ)).

We obtain:

|∂A| > |A| log2(2
n/|A|) + |A|((ψ + φ) log2(1/(ψ + φ))− 3(ψ + φ)).

Hence, by (13),

(ψ + φ) log2(1/(ψ + φ)) − 3(ψ + φ) < ǫ0,

i.e.,
δ(log2(1/δ)− 3) < ǫ0.

It is easy to check that the function

g : (0, 1] → R;

x 7→ x log2(1/x)− 3x
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is strictly increasing between 0 and 2−(3+1/ ln(2)); provided 3c ≤ 2−(3+1/ ln(2)),
it follows that δ < δ0(ǫ), where δ0(ǫ) is the smallest positive solution of

x log2(1/x)− 3x = ǫ,

proving Theorem 8.

Remark 2. Observe that

δ0(ǫ) = (1 +O(1/ log2(1/ǫ)))
ǫ

log2(1/ǫ)
≤

2ǫ

log2(1/ǫ)
.

Similarly, we may obtain an exact stability result for set systems whose size
is a power of 2:

Theorem 9. There exists an absolute constant c > 0 such that if A ⊂ {0, 1}n

with size |A| = 2n−N for some N ∈ N, and with edge-boundary

|∂A| ≤ |A| log2(2
n/|A|) + ǫ|A|,

where ǫ ≤ c, then there exists a codimension-N subcube C such that

|A∆C| ≤ δ1(ǫ)|A|,

where δ1(ǫ) is the unique root of the equation

x log2(1/x) = ǫ

in (0, 1/e).

Proof. Write
|∂A| = |A|(log2(2

n/|A|) + ǫ0). (15)

where 0 ≤ ǫ0 ≤ ǫ. Choose a subcube C such that |A∆C| is minimal, and let
δ = |A∆C|/|A|. By Theorem 7, δ < 3ǫ0 ≤ 3c < 1/2.

Suppose C has codimension N ′. Note that if N 6= N ′, then |A| and |C|
would differ by a factor of at least 2, so

|A∆C|/|A| ≥ ||A| − |C||/|A| ≥ 1/2,

a contradiction. Hence, N ′ = N , i.e. |C| = |A|.
Let B = C \A; then |A \ C| = |C \A| = |B|. From (14), we have

|∂A| ≥ |A| log2(2
n/|A|) + |B|(log2(2

n/|B|)−N) + |B|(log2(2
n/|B|)−N − 2)

= |A| log2(2
n/|A|) + 2|B| log2(2

n/|B|)− 2|B| log2(2
n/|A|)− 2|B|

= |A| log2(2
n/|A|) + |A|δ log2(1/δ).

It follows that
δ log2(1/δ) ≤ ǫ.
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Observe that the function

h : (0, 1] → R;

x 7→ x log2(1/x)

has

h′(x) = −
1

ln 2
(1 + lnx)

and is therefore strictly increasing between 0 and 1/e, where it attains its max-
imum of 1/(e ln 2), and strictly decreasing between 1/e and 1. Since δ < 3ǫ ≤
3c < 1/e, it follows that δ ≤ δ1(ǫ), where δ1(ǫ) is the unique root of the equation

x log2(1/x) = ǫ

in (0, 1/e), proving the theorem.

The following is an immediate consequence of Theorem 9:

Corollary 10. If A ⊂ {0, 1}n has size 2t for some t ∈ N, and cannot be made

into a subcube by fewer than δ|A| additions and deletions, then its edge-boundary

satisfies

|∂A| ≥ |A| log2(2
n/|A|)+|A|max{δ log2(1/δ), c} = 2t(n−t+max{δ log2(1/δ), c}),

where c > 0 is an absolute constant. There exists an absolute constant c′ > 0
such that if δ ≤ c′, then

|∂A| ≥ |A| log2(2
n/|A|) + |A|δ log2(1/δ) = 2t(n− t+ δ log2(1/δ)).

Remark 3. Observe that all we need from Theorem 7 to prove Theorem 9 is
that

δ = |A∆C|/|A| < 1/e.

If we just knew that δ < 1/2, we could still deduce from the above argument
that δ log2(1/δ) ≤ ǫ.

Remark 4. Observe that Theorem 9 is best possible, apart from the restriction
ǫ ≤ c. To see this, let C = P([n − N ]), a codimension-N -subcube, where
1 ≤ N ≤ n − 1. Let 2 ≤ M ≤ n − N , and delete from C the codimension-
(N +M) subcube

B = {x ∪ {n−N} : x ∈ P([n−N −M ])}.

Now add on the codimension-(N +M) subcube

D = {x ∪ {n} : x ∈ P([n−N −M ])}.

The resulting family A = (C \B) ∪D has

|A∆C|/|A| = 2−(M−1) ≤ 1/2;
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it is easy to check that all other subcubes C′ 6= C have

|A∆C′| > |A∆C|.

Hence,

δ := min{|A∆C′| : C′ is a subcube}/|A| = |A∆C|/|A| = 2−(M−1).

Observe that we have equality in (14) for A, and therefore

|∂A| = |A| log2(2
n/|A|) + |A|δ log2(1/δ).

3 Conclusion and Open Problems

Consider the function

f(δ) = inf{
|∂A| − |A| log2(2

n/|A|)

|A|
: n ∈ N, A ⊂ {0, 1}n,

|A| is a power of 2, |A∆C| ≥ δ|A| for all subcubes C}.

We have shown that f(δ) = max(δ log2(1/δ), c) when δ = 1/2j for some j ∈ N,
where c > 0 is an absolute constant, implying that f(2−j) = j2−j for j ∈ N

sufficiently large. We conjecture that the restriction on j could be removed:

Conjecture 11. For any j ∈ N,

f(2−j) = j2−j .

As observed above, the function

h : (0, 1] → R;

x 7→ x log2(1/x)

is strictly decreasing between 1/e and 1, whereas f is clearly an non-decreasing
function of δ. It would be interesting to determine the behaviour of f(δ) for
1/2 < δ ≤ 1.

We also conjecture that Talagrand’s Theorem (Theorem 4) holds with K =
2. This was independently conjectured by Samorodnitsky [14]. It would be best
possible, as can be seen by taking A to be a t-dimensional subcube; then n− t
influences are 2−(n−t−1), and the rest are zero, so

n
∑

i=0

βi/ log2(1/βi) =
(n− t)2−(n−t−1)

n− t− 1
.

Hence,

1

p(1− p)

n
∑

i=0

βi/ log2(1/βi) =
2(n− t)

(n− t− 1)(1− 2−(n−t))
→ 2 as n→ ∞.
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Knowing this would obviously weaken the upper bound on ǫ required to
prove Theorem 7, though it would not result in a proof of Conjecture 11.

It would be interesting to determine the structure of subsets A ⊂ {0, 1}n

satisfying
|∂A| ≤ L|A| log2(2

n/|A|) (16)

for L a fixed positive constant. It is easy to check that

k log2(2
n/k) ≤ |∂Cn,k| ≤ 2k log2(2

n/k) ∀k ≤ 2n−1,

so when |A| ≤ 2n−1, condition (16) is equivalent to saying that the edge-
boundary of A is within a constant factor of the minimum. Regarding this
case, Kahn and Kalai [8] make the following conjecture.

Conjecture 12 (Kahn, Kalai). For any L > 0, there exist L′ > 0 and δ > 0
such that the following holds. If A ⊂ {0, 1}n is monotone increasing, with

measure p = |A|
2n ≤ 1/2, and with edge-boundary satisfying

|∂A| ≤ L|A| log2(2
n/|A|),

then there exists a subcube C ⊂ {0, 1}n with codimension at most L′ log2(1/p)
and all fixed coordinates equal to 1, such that

|A ∩ C|

|C|
≥ (1 + δ)p.

We believe Conjecture 12 to be true for non-monotone sets as well, if one
allows the subcube C to have fixed 0’s as well as fixed 1’s:

Conjecture 13. For any L > 0, there exist L′ > 0 and δ > 0 such that the

following holds. If A ⊂ {0, 1}n has measure p = |A|
2n ≤ 1/2 and has edge-

boundary satisfying

|∂A| ≤ L|A| log2(2
n/|A|),

then there exists a subcube C ⊂ {0, 1}n with codimension at most L′ log2(1/p),
such that

|A ∩ C|

|C|
≥ (1 + δ)p.
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