Incidences in Three Dimensions and Distinct Distances in the Plane*

György Elekes ${ }^{\dagger} \quad$ Micha Sharir ${ }^{\ddagger}$

October 23, 2018

Abstract

We first describe a reduction from the problem of lower-bounding the number of distinct distances determined by a set S of s points in the plane to an incidence problem between points and a certain class of helices (or parabolas) in three dimensions. We offer conjectures involving the new setup, but are still unable to fully resolve them.

Instead, we adapt the recent new algebraic analysis technique of Guth and Katz 9, as further developed by Elekes et al. [6], to obtain sharp bounds on the number of incidences between these helices or parabolas and points in \mathbb{R}^{3}. Applying these bounds, we obtain, among several other results, the upper bound $O\left(s^{3}\right)$ on the number of rotations (rigid motions) which map (at least) three points of S to three other points of S. In fact, we show that the number of such rotations which map at least $k \geq 3$ points of S to k other points of S is close to $O\left(s^{3} / k^{12 / 7}\right)$.

One of our unresolved conjectures is that this number is $O\left(s^{3} / k^{2}\right)$, for $k \geq 2$. If true, it would imply the lower bound $\Omega(s / \log s)$ on the number of distinct distances in the plane.

[^0]
1 The infrastructure

The motivation for the study reported in this paper comes from the celebrated and long-standing problem, originally posed by Erdős [7] in 1946, of obtaining a sharp lower bound for the number of distinct distances guaranteed to exist in any set S of s points in the plane. Erdős has shown that a section of the integer lattice determines only $O(s / \sqrt{\log s})$ distinct distances, and conjectured this to be a lower bound for any planar point set. In spite of steady progress on this problem, reviewed next, Erdős's conjecture is still open.
L. Moser [13, Chung 4, and Chung et al. 55 proved that the number of distinct distances determined by s points in the plane is $\Omega\left(s^{2 / 3}\right), \Omega\left(s^{5 / 7}\right)$, and $\Omega\left(s^{4 / 5} / \operatorname{polylog}(s)\right)$, respectively. Székely [20] managed to get rid of the polylogarithmic factor, while Solymosi and Tóth [18] improved this bound to $\Omega\left(s^{6 / 7}\right)$. This was a real breakthrough. Their analysis was subsequently refined by Tardos [22] and then by Katz and Tardos [12], who obtained the current record of $\Omega\left(s^{(48-14 e) /(55-16 e)-\varepsilon}\right)$, for any $\varepsilon>0$, which is $\Omega\left(s^{0.8641}\right)$.

In this paper we transform the problem of distinct distances in the plane to an incidence problem between points and a certain kind of curves (helices or parabolas) in three dimensions. As we show, sharp upper bounds on the number of such incidences translate back to sharp lower bounds on the number of distinct distances. Incidence problems in three dimensions between points and curves have been studied in several recent works [2, 6, 17], and a major push in this direction has been made last year, with the breakthrough result of Guth and Katz [9], who have introduced methods from algebraic geometry for studying problems of this kind. This has been picked up by the authors [6, where worst-case tight bounds on the number of incidences between points and lines in three dimensions (under certain restrictions) have been obtained.

The present paper serves two purposes. First, it studies in detail the connection between the distinct distances problem and the corresponding 3-dimensional incidence problem. As it turns out, there is a lot of interesting geometric structure behind this reduction, and the paper develops it in detail. We offer several conjectures on the number of incidences, and show how, if true, they yield the almost tight worst-case lower bound $\Omega(s / \log s)$ on the number of distinct distances. Unfortunately, so far we have not succeeded in proving these conjectures. Nevertheless, we have made considerable progress on the incidence problem itself, which is the second purpose of the study in this paper. We show how to adapt the algebraic machinery of $[6,9,11,15$ to derive sharp bounds for the incidence problem. [6, $9,11,15$ to derive sharp bounds for the incidence problem. These bounds are very similar to, and in fact even better than the bounds obtained in [6] for point-line incidences, where they have been shown to be worst-case tight. However, they are not (yet) good enough to yield significant lower bounds for distinct distances. We believe that there is additional geometric structure in the particular problem studied here, which should enable one to further improve the bounds, but so far this remains elusive.

The paper is organized as follows. We first describe the reduction from the planar distinct distances problem to the 3 -dimensional incidence problem mentioned above. In doing so, we note and explore several additional geometric connections between the two problems (as manifested, e.g., in the analysis of special surfaces given below). We then present the tools from algebraic geometry that are needed to tackle the incidence problem; they are variants of the tools used in [6.9] adapted to the specific curves that we need to handle. We then go on to bound the number of incidences. We first bound the number of rotations in terms of the number of parabolas, and then bound the number of incidences themselves. The latter task is achieved in two steps. We first use a "purely algebraic" analysis, akin to those in [6, 9], to obtain a weaker bound, which we then refine in the
second step, using more traditional space decomposition techniques. The final bound is still not as good as we would like it to be, but it shows that the case studied in this paper "behaves better" than its counterpart involving lines.

Distinct distances and incidences with helices. We offer the following novel approach to the problem of distinct distances.
(H1) Notation. Let S be a set of s points in the plane with x distinct distances. Let K denote the set of all quadruples $\left(a, b, a^{\prime}, b^{\prime}\right) \in S^{4}$, such that the pairs (a, b) and $\left(a^{\prime}, b^{\prime}\right)$ are distinct (although the points themselves need not be) and $|a b|=\left|a^{\prime} b^{\prime}\right|>0$.

Let $\delta_{1}, \ldots, \delta_{x}$ denote the x distinct distances in S, and let $E_{i}=\left\{(a, b) \in S^{2}| | a b \mid=\delta_{i}\right\}$. We have

$$
|K|=2 \sum_{i=1}^{x}\binom{\left|E_{i}\right|}{2} \geq \sum_{i=1}^{x}\left(\left|E_{i}\right|-1\right)^{2} \geq \frac{1}{x}\left[\sum_{i=1}^{x}\left(\left|E_{i}\right|-1\right)\right]^{2}=\frac{[s(s-1)-x]^{2}}{x} .
$$

(H2) Rotations. We associate each $\left(a, b, a^{\prime}, b^{\prime}\right) \in K$ with a (unique) rotation (or, rather, a rigid, orientation-preserving transformation of the plane) τ, which maps a to a^{\prime} and b to b^{\prime}. A rotation τ, in complex notation, can be written as the transformation $z \mapsto p z+q$, where $p, q \in \mathbb{C}$ and $|p|=1$. Putting $p=e^{i \theta}, q=\xi+i \eta$, we can represent τ by the point $(\xi, \eta, \theta) \in \mathbb{R}^{3}$. In the planar context, θ is the counterclockwise angle of the rotation, and the center of rotation is $c=q /\left(1-e^{i \theta}\right)$, which is defined for $\theta \neq 0$; for $\theta=0, \tau$ is a pure translation.

The multiplicity $\mu(\tau)$ of a rotation τ (with respect to S) is defined as $|\tau(S) \cap S|=$ the number of pairs $(a, b) \in S^{2}$ such that $\tau(a)=b$. Clearly, one always has $\mu(\tau) \leq s$, and we will mostly consider only rotations satisfying $\mu(\tau) \geq 2$. As a matter of fact, the bulk of the paper will only consider rotations with multiplicity at least 3 . Rotations with multiplicity 2 are harder to analyze.

If $\mu(\tau)=k$ then S contains two congruent and equally oriented copies A, B of some k-element set, such that $\tau(A)=B$. Thus, studying multiplicities of rotations is closely related to analyzing repeated (congruent and equally oriented) patterns in a planar point set; see [3] for a review of many problems of this kind.

Anti-rotations. In this paper we will also consider anti-rotations, which are rigid, orientationreversing transformations of the plane. Any anti-rotation can be represented as a rotation, followed by a reflection about some fixed line, e.g., the x-axis (so, in complex notation, this can be written as $z \mapsto \overline{p z+q})$. Anti-rotations will be useful in certain steps of the analysis.
(H3) Bounding $|K|$. If $\mu(\tau)=k$ then τ contributes $\binom{k}{2}$ quadruples to K. Let N_{k} (resp., $N_{\geq k}$) denote the number of rotations with multiplicity exactly k (resp., at least k), for $k \geq 2$. Then

$$
|K|=\sum_{k=2}^{s}\binom{k}{2} N_{k}=\sum_{k=2}^{s}\binom{k}{2}\left(N_{\geq k}-N_{\geq k+1}\right)=N_{\geq 2}+\sum_{k \geq 3}(k-1) N_{\geq k} .
$$

(H4) The main conjecture.

Conjecture 1. For any $2 \leq k \leq s$, we have

$$
N_{\geq k}=O\left(s^{3} / k^{2}\right) .
$$

Suppose that the conjecture were true. Then we would have

$$
\frac{[s(s-1)-x]^{2}}{x} \leq|K|=O\left(s^{3}\right) \cdot\left[1+\sum_{k \geq 3} \frac{1}{k}\right]=O\left(s^{3} \log s\right),
$$

which would have implied that $x=\Omega(s / \log s)$. This would have almost settled the problem of obtaining a tight bound for the minimum number of distinct distances guaranteed to exist in any set of s points in the plane, since, as mentioned above, the upper bound for this quantity is $O(s / \sqrt{\log s})$ [7].

We note that Conjecture 1 is rather deep; even the simple instance $k=2$, asserting that there are only $O\left(s^{3}\right)$ rotations which map (at least) two points of S to two other points of S (at the same distance apart), seems quite difficult. In this paper we establish a variety of upper bounds on the number of rotations and on the sum of their multiplicities. In particular, these results provide a partial positive answer, showing that $N_{\geq 3}=O\left(s^{3}\right)$; that is, the number of rotations which map a (degenerate or non-degenerate) triangle determined by S to another congruent (and equally oriented) such triangle, is $O\left(s^{3}\right)$. Bounding N_{2} by $O\left(s^{3}\right)$ is still an open problem. See Section 5 for a simple proof of the weaker bound $N_{\geq 2}=O\left(s^{10 / 3}\right)$.

Lower bound. We next give a construction (suggested by Haim Kaplan) which shows:
Lemma 2. There exist sets S in the plane of arbitrarily large cardinality, which determine $\Theta\left(|S|^{3}\right)$ distinct rotations, each mapping a triple of points of S to another triple of points of S.

Proof: Consider the set $S=S_{1} \cup S_{2} \cup S_{3}$, where

$$
\begin{aligned}
S_{1} & =\{(i, 0) \mid i=1, \ldots, s\}, \\
S_{2} & =\{(i, 1) \mid i=1, \ldots, s\} \\
S_{3} & =\{(i / 2,1 / 2) \mid i=1, \ldots, 2 s\} .
\end{aligned}
$$

See Figure 1 .

Figure 1: A lower bound construction of $\Theta\left(|S|^{3}\right)$ rotations with multiplicity 3.

For each triple $a, b, c \in\{1, \ldots, s\}$ such that $a+b-c$ also belongs to $\{1, \ldots, s\}$, construct the rotation $\tau_{a, b, c}$ which maps $(a, 0)$ to $(b, 0)$ and $(c, 1)$ to $(a+b-c, 1)$. Since the distance between the
two source points is equal to the distance between their images, $\tau_{a, b, c}$ is well (and uniquely) defined. Moreover, $\tau_{a, b, c}$ maps the midpoint $((a+c) / 2,1 / 2)$ to the midpoint $((a+2 b-c) / 2,1 / 2)$.

We claim that the rotations $\tau_{a, b, c}$ are all distinct. Indeed, suppose that two such rotations, $\tau_{a, b, c}$ and $\tau_{a^{\prime}, b^{\prime}, c^{\prime}}$, for distinct triples $(a, b, c),\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$, coincide; call the common rotation τ. We can represent τ as the rigid transformation which first translates the plane horizontally by distance $b-a$, so that $(a, 0)$ is mapped to $(b, 0)$, and then rotates it around $(b, 0)$ by an appropriate angle $0<\theta<\pi$, so that $(c+b-a, 1)$ is mapped to $(a+b-c, 1)$. Suppose first that $a \neq a^{\prime}$. Since $\tau=\tau_{a, b, c}=\tau_{a^{\prime}, b^{\prime}, c^{\prime}}$, it maps $\left(a^{\prime}, 0\right)$ to $\left(a^{\prime}+b-a, 0\right)$ and then rotates this point by angle θ around $(b, 0)$, mapping it to a point outside the x-axis, contradicting the fact that $\tau_{a^{\prime}, b^{\prime}, c^{\prime}}$ maps $\left(a^{\prime}, 0\right)$ to $\left(b^{\prime}, 0\right)$. If $a^{\prime}=a$ then we also must have $b^{\prime}=b$, so $c^{\prime} \neq c$. But then it is impossible to turn, around $(b, 0)$, the shifted point $(c+b-a, 1)$ to $(a+b-c, 1)$ and the shifted point $\left(c^{\prime}+b-a, 1\right)$ to $\left(a+b-c^{\prime}, 1\right)$, by the same angle, a contradiction which shows that the two rotations are distinct.

Since there are $\Theta\left(s^{3}\right)$ triples (a, b, c) with the above properties, the claim follows.
Remarks. (1) A "weakness" of this construction is that all the rotations $\tau_{a, b, c}$ map a collinear triple of points of S to another collinear triple. (In the terminology to follow, these will be called flat rotations.) We do not know whether the number of rotations which map a non-collinear triple of points of S to another non-collinear triple can be $\Omega\left(|S|^{3}\right)$. We tend to conjecture that this is indeed the case.
(2) We do not know whether Conjecture 1 is worst-case tight (if true). That is, we do not know whether there exist sets S, with $s=|S|$ arbitrarily large, so that there are $\Omega\left(s^{3} / k^{2}\right)$ distinct rotations, each mapping at least k points of S to k other points of S.
(H5) Helices. To estimate $N_{\geq k}$, we reduce the problem of analyzing rotations and their interaction with S to an incidence problem in three dimensions, as follows.

With each pair $(a, b) \in S^{2}$, we associate the curve $h_{a, b}$, in a 3 -dimensional space parametrized by (ξ, η, θ), which is the locus of all rotations which map a to b. That is, the equation of $h_{a, b}$ is given by

$$
h_{a, b}=\left\{(\xi, \eta, \theta) \mid b=a e^{i \theta}+(\xi, \eta)\right\} .
$$

Putting $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right)$, this becomes

$$
\begin{align*}
& \xi=b_{1}-\left(a_{1} \cos \theta-a_{2} \sin \theta\right), \tag{1}\\
& \eta=b_{2}-\left(a_{1} \sin \theta+a_{2} \cos \theta\right) .
\end{align*}
$$

This is a helix in \mathbb{R}^{3}, having four degrees of freeedom, which we parametrize by $\left(a_{1}, a_{2}, b_{1}, b_{2}\right)$. It extends from the plane $\theta=0$ to the plane $\theta=2 \pi$; its two endpoints lie vertically above each other, and it completes exactly one revolution between them.
(H6) Helices, rotations, and incidences. Let P be a set of rotations, represented by points in \mathbb{R}^{3}, as above, and let H denote the set of all s^{2} helices $h_{a, b}$, for $(a, b) \in S^{2}$ (note that $a=b$ is permitted). Let $I(P, H)$ denote the number of incidences between P and H. Then we have

$$
I(P, H)=\sum_{\tau \in P} \mu(\tau) .
$$

Rotations τ with $\mu(\tau)=1$ are not interesting, because each of them only contributes 1 to the count $I(P, H)$, and we will mostly ignore them. For the same reason, rotations with $\mu(\tau)=2$ are
also not interesting for estimating $I(P, H)$, but they need to be included in the analysis of $N_{\geq 2}$. Unfortunately, as already noted, we do not yet have a good upper bound (i.e., cubic in s) on the number of such rotations.

(H7) Incidences and the second conjecture.

Conjecture 3. For any P and H as above, we have

$$
I(P, H)=O\left(|P|^{1 / 2}|H|^{3 / 4}+|P|+|H|\right) .
$$

Suppose that Conjecture 3 were true. Let $P_{\geq k}$ denote the set of all rotations with multiplicity at least k (with respect to S). We then have

$$
k N_{\geq k}=k\left|P_{\geq k}\right| \leq I\left(P_{\geq k}, H\right)=O\left(N_{\geq k}^{1 / 2}|H|^{3 / 4}+N_{\geq k}+|H|\right),
$$

from which we obtain

$$
N_{\geq k}=O\left(\frac{s^{3}}{k^{2}}+\frac{s^{2}}{k}\right)=O\left(\frac{s^{3}}{k^{2}}\right),
$$

thus establishing Conjecture $\mathbb{1}$, and therefore also the lower bound for x (the number of distinct distances) derived above from this conjecture.
Remark. Conjecture 3 can also be formulated for an arbitrary subset H of all possible helices.
Note that two helices $h_{a, b}$ and $h_{c, d}$ intersect in at most one point-this is the unique rotation which maps a to b and c to d (if it exists at all, namely if $|a c|=|b d|)$. Hence, combining this fact with a standard cutting-based decomposition technique, similar to what has been noted in [17], say, yields the weaker bound

$$
\begin{equation*}
I(P, H)=O\left(|P|^{2 / 3}|H|^{2 / 3}+|P|+|H|\right), \tag{2}
\end{equation*}
$$

which, alas, only yields the much weaker bound $N_{\geq k}=O\left(s^{4} / k^{3}\right)$, which is completely useless for deriving any lower bound on x. (We will use this bound, though, in Section 6.)
(H8) From helices to parabolas. The helices $h_{a, b}$ are non-algebraic curves, because of the use of the angle θ as a parameter. This can be easily remedied, in the following standard manner. Assume that θ ranges from $-\pi$ to π, and substitute, in the equations (1), $Z=\tan (\theta / 2), X=\xi\left(1+Z^{2}\right)$, and $Y=\eta\left(1+Z^{2}\right)$, to obtain

$$
\begin{align*}
X & =\left(a_{1}+b_{1}\right) Z^{2}+2 a_{2} Z+\left(b_{1}-a_{1}\right) \tag{3}\\
Y & =\left(a_{2}+b_{2}\right) Z^{2}-2 a_{1} Z+\left(b_{2}-a_{2}\right),
\end{align*}
$$

which are the equations of a planar parabola in the (X, Y, Z)-space. (The parabola degenerates to a line if $b=-a$, a situation that we will rule out by choosing an appropriate generic coordinate frame in the original $x y$-plane.) We denote the parabola corresponding to the helix $h_{a, b}$ as $h_{a, b}^{*}$, and refer to it as an h-parabola.
(H9) Joint and flat rotations. A rotation $\tau \in P$ is called a joint of H if τ is incident to at least three helices of H whose tangent lines at τ are non-coplanar. Otherwise, still assuming that τ is incident to at least three helices of H, τ is called flat.

Let $\tau=(\xi, \eta, \theta) \in P$ be a rotation, incident to three distinct helices $h_{a, b}, h_{c, d}, h_{e, f}$. From their equations, as given in (1), the directions of the tangents to these helices at τ are

$$
\begin{aligned}
& \left(a_{1} \sin \theta+a_{2} \cos \theta,-a_{1} \cos \theta+a_{2} \sin \theta, 1\right) \\
& \left(c_{1} \sin \theta+c_{2} \cos \theta,-c_{1} \cos \theta+c_{2} \sin \theta, 1\right) \\
& \left(e_{1} \sin \theta+e_{2} \cos \theta,-e_{1} \cos \theta+e_{2} \sin \theta, 1\right) .
\end{aligned}
$$

Put $p=\cos \theta$ and $q=\sin \theta$. Then the three tangents are coplanar if and only if

$$
\left|\begin{array}{lll}
a_{1} q+a_{2} p & -a_{1} p+a_{2} q & 1 \\
c_{1} q+c_{2} p & -c_{1} p+c_{2} q & 1 \\
e_{1} q+e_{2} p & -e_{1} p+e_{2} q & 1
\end{array}\right|=0 .
$$

Simplifying the determinant, and recalling that $p^{2}+q^{2}=1$, the condition is equivalent to

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & 1 \\
c_{1} & c_{2} & 1 \\
e_{1} & e_{2} & 1
\end{array}\right|=0 .
$$

In other words, the three helices $h_{a, b}, h_{c, d}, h_{e, f}$ form a joint at τ if and only if the three points a, c, e (and thus also b, d, f) are non-collinear. That is, we have shown:

Claim 4. A rotation τ is a joint of H if and only if τ maps a non-degenerate triangle determined by S to another (congruent and equally oriented) non-degenerate triangle determined by S. A rotation τ is a flat rotation if and only if τ maps at least three collinear points of S to another collinear triple of points of S, but does not map any point of S outside the line containing the triple to another point of S.

Remarks: (1) Note that if τ is a flat rotation, it maps the entire line containing the three source points to the line containing their images. Specifically (see also below), we can respectively parametrize points on these lines as $a_{0}+t u$, $b_{0}+t v$, for $t \in \mathbb{R}$, such that τ maps $a_{0}+t u$ to $b_{0}+t v$ for every t.
(2) For flat rotations, we also need to ensure, for technical reasons, that the three (or more) helices incident to a flat rotation τ are such that their tangents at τ are all distinct. This fortunately is always the case. Indeed, The preceding analysis is easily seen to imply that if $h_{a, b}$ and $h_{c, d}$ meet at τ then their tangents at τ coincide if and only if $a=c$. But then $h_{a, b}$ and $h_{a, d}$ cannot have a common point (rotation) unless $b=d$ too, i.e., they are the same helix; otherwise the common rotation would have to map a to the two distinct points b and d, an impossibility.
(H10) Special surfaces. In preparation for the forthcoming algebraic analysis, we need the following property of our helices.

Let τ be a flat rotation, with multiplicity $k \geq 3$, and let ℓ and ℓ^{\prime} be the corresponding lines in the plane, such that there exist k points $a_{1}, \ldots, a_{k} \in S \cap \ell$ and k points $b_{1}, \ldots, b_{k} \in S \cap \ell^{\prime}$, such that τ maps a_{i} to b_{i} for each i (and in particular maps ℓ to ℓ^{\prime}). By definition, τ is incident to the k helices $h_{a_{i}, b_{i}}$, for $i=1, \ldots, k$.

Let u and v denote unit vectors in the direction of ℓ and ℓ^{\prime}, respectively. Clearly, there exist two reference points $a \in \ell$ and $b \in \ell^{\prime}$, such that for each i there is a real number t_{i} such that $a_{i}=a+t_{i} u$ and $b_{i}=b+t_{i} v$. As a matter of fact, for each real t, τ maps $a+t u$ to $b+t v$, so it is incident to $h_{a+t u, b+t v}$. Note that a and b are not uniquely defined: we can take a to be any point on ℓ, and shift b accordingly along ℓ^{\prime}.

Let $H(a, b ; u, v)$ denote the set of these helices. Since a pair of helices can meet in at most one point, all the helices in $H(a, b ; u, v)$ pass through τ but are otherwise pairwise disjoint. Using the re-parametrization $(\xi, \eta, \theta) \mapsto(X, Y, Z)$, we denote by $\Sigma=\Sigma(a, b ; u, v)$ the surface which is the union of all the h-parabolas that are the images of the helices in $H(a, b ; u, v)$. We refer to such a surface Σ as a special surface.

An important comment is that most of the ongoing analysis also applies when only two helices are incident to τ; they suffice to determine the four parameters a, b, u, v that define the surface Σ.

We also remark that, although we started the definition of $\Sigma(a, b ; u, v)$ with a flat rotation τ, the definition only depends on the parameters a, b, u, and v (and even there we have, as just noted, one degree of freedom in choosing a and b). If τ is not flat it may determine many special surfaces, one for each line that contains two or more points of S which τ maps to other (also collinear) points of S. Also, as we will shortly see, the same surface can be obtained from a different set (in fact, many such sets) of parameters $a^{\prime}, b^{\prime}, u^{\prime}$, and v^{\prime} (or, alternatively, from different flat rotations τ^{\prime}). An "intrinsic" definition of special surfaces will be given shortly.

The surface Σ is a cubic algebraic surface, whose equation can be worked out as follows. The equation of the parabola $h_{a+t u, b+t v}^{*}$ corresponding to $h_{a+t u, b+t v}$ is

$$
\begin{aligned}
X & =\left(a_{1}+b_{1}+t\left(u_{1}+v_{1}\right)\right) Z^{2}+2\left(a_{2}+t u_{2}\right) Z+\left(b_{1}-a_{1}+t\left(v_{1}-u_{1}\right)\right) \\
Y & =\left(a_{2}+b_{2}+t\left(u_{2}+v_{2}\right)\right) Z^{2}-2\left(a_{1}+t u_{1}\right) Z+\left(b_{2}-a_{2}+t\left(v_{2}-u_{2}\right)\right) .
\end{aligned}
$$

We can view this as a parametrization of Σ using t and Z as parameters. We can simplify these equations as

$$
\begin{align*}
X & =t Q_{1}(Z)+Q_{3}(Z) \tag{4}\\
Y & =t Q_{2}(Z)+Q_{4}(Z),
\end{align*}
$$

where Q_{1}, \ldots, Q_{4} are quadratic polynomials in Z. Eliminating t from these equations gives us the first version of the equation of Σ, which is

$$
\begin{equation*}
Q_{2}(Z) X-Q_{1}(Z) Y+\left(Q_{1}(Z) Q_{4}(Z)-Q_{2}(Z) Q_{3}(Z)\right)=0 \tag{5}
\end{equation*}
$$

This is a quartic equation, although it is only linear in X and Y.
Note also that the cross-section of Σ by any plane $Z=$ const is a line, so Σ is a ruled surface.
We next reduce (5) to a cubic equation, as follows. Let $\left(X_{0}, Y_{0}, Z_{0}\right)$ denote the coordinates of τ in the XYZ-frame. We note that $Q_{1}\left(Z_{0}\right)=Q_{2}\left(Z_{0}\right)=0$. This can be worked out explicitly, or concluded by noting that $\left(X_{0}, Y_{0}, Z_{0}\right)$ is a common point of all our parabolas, so (X_{0}, Y_{0}, Z_{0}) cannot determine t, meaning that the coefficients $Q_{1}\left(Z_{0}\right)$ and $Q_{2}\left(Z_{0}\right)$ in (4) must both be zero.

Hence, each of the three polynomials Q_{2}, Q_{1}, and $Q_{1} Q_{4}-Q_{2} Q_{3}$, appearing in the left-hand side of (5), vanishes at Z_{0}, and is therefore divisible by $Z-Z_{0}$. Factoring $Z-Z_{0}$ out, we get a reduced equation for Σ, of the form

$$
\begin{equation*}
E_{2}(Z) X-E_{1}(Z) Y+\left(E_{1}(Z) Q_{4}(Z)-E_{2}(Z) Q_{3}(Z)\right)=0, \tag{6}
\end{equation*}
$$

where E_{1} and E_{2} are linear in Z. Recalling that

$$
\begin{aligned}
Q_{1}(Z) & =\left(u_{1}+v_{1}\right) Z^{2}+2 u_{2} Z+\left(v_{1}-u_{1}\right) \\
Q_{2}(Z) & =\left(u_{2}+v_{2}\right) Z^{2}-2 u_{1} Z+\left(v_{2}-u_{2}\right) \\
Q_{3}(Z) & =\left(a_{1}+b_{1}\right) Z^{2}+2 a_{2} Z+\left(b_{1}-a_{1}\right) \\
Q_{4}(Z) & =\left(a_{2}+b_{2}\right) Z^{2}-2 a_{1} Z+\left(b_{2}-a_{2}\right),
\end{aligned}
$$

an explicit calculation yields:

$$
\begin{aligned}
& E_{1}(Z)=\left(u_{1}+v_{1}\right)\left(Z+Z_{0}\right)+2 u_{2} \\
& E_{2}(Z)=\left(u_{2}+v_{2}\right)\left(Z+Z_{0}\right)-2 u_{1} .
\end{aligned}
$$

An additional explicit calculation shows that

$$
\begin{equation*}
E_{1}\left(Z_{0}\right)=2 v_{2} \quad \text { and } \quad E_{2}\left(Z_{0}\right)=-2 v_{1} . \tag{7}
\end{equation*}
$$

(To see, say, the first equality, we need to show that $\left(u_{1}+v_{1}\right) Z_{0}=v_{2}-u_{2}$. Writing $u=(\cos \alpha, \sin \alpha)$, $v=(\cos (\alpha+\theta), \sin (\alpha+\theta))$, where θ is the angle of rotation, and recalling that $Z_{0}=\tan \frac{\theta}{2}$, the claim follows by straightforward trigonometric manipulations.)

This allows us to rewrite

$$
\begin{align*}
& E_{1}(Z)=\left(u_{1}+v_{1}\right) Z+\left(u_{2}+v_{2}\right) \tag{8}\\
& E_{2}(Z)=\left(u_{2}+v_{2}\right) Z-\left(u_{1}+v_{1}\right) .
\end{align*}
$$

Hence, the "free" term in (6) is the cubic polynomial

$$
\begin{gathered}
E_{1}(Z) Q_{4}(Z)-E_{2}(Z) Q_{3}(Z)= \\
\left(\left(u_{1}+v_{1}\right) Z+\left(u_{2}+v_{2}\right)\right)\left(\left(a_{2}+b_{2}\right) Z^{2}-2 a_{1} Z+\left(b_{2}-a_{2}\right)\right)- \\
\left(\left(u_{2}+v_{2}\right) Z-\left(u_{1}+v_{1}\right)\right)\left(\left(a_{1}+b_{1}\right) Z^{2}+2 a_{2} Z+\left(b_{1}-a_{1}\right)\right)
\end{gathered}
$$

We refer to the cubic polynomial in the left-hand side of (6) as a special polynomial. Thus a special surface is the zero set of a special polynomial.
(H11) The geometry of special surfaces. Special surfaces pose a technical challenge to the analysis. Specifically, each special surface Σ captures a certain underlying pattern in the ground set S, which may result in many incidences between rotations and h-parabolas, all contained in Σ. The next step of the analysis studies this pattern in detail.

Consider first a simple instance of this situation, in which two special surfaces Σ, Σ^{\prime}, generated by two distinct flat rotations τ, τ^{\prime}, coincide. More precisely, there exist four parameters a, b, u, v such that τ maps the line $\ell_{1}=a+t u$ to the line $\ell_{2}=b+t v$ (so that points with the same parameter t are mapped to one another), and four other parameters $a^{\prime}, b^{\prime}, u^{\prime}, v^{\prime}$ such that τ^{\prime} maps (in a similar manner) the line $\ell_{1}^{\prime}=a^{\prime}+t u^{\prime}$ to the line $\ell_{2}^{\prime}=b^{\prime}+t v^{\prime}$, and $\Sigma(a, b ; u, v)=\Sigma\left(a^{\prime}, b^{\prime} ; u^{\prime}, v^{\prime}\right)$. Denote this common surface by Σ. Since the surfaces coincide, the coefficients $E_{1}(Z), E_{2}(Z)$ for (a, b, u, v) must be proportional to the coefficients $E_{1}^{\prime}(Z), E_{2}^{\prime}(Z)$ for ($\left.a^{\prime}, b^{\prime}, u^{\prime}, v^{\prime}\right)$. That is, we must have $u_{1}^{\prime}+v_{1}^{\prime}=\gamma\left(u_{1}+v_{1}\right)$ and $u_{2}^{\prime}+v_{2}^{\prime}=\gamma\left(u_{2}+v_{2}\right)$, for some real γ. In other words, $u^{\prime}+v^{\prime}=\gamma(u+v)$.

Figure 2: The configuration of $u, v, u^{\prime}, v^{\prime}$.

Since $u, v, u^{\prime}, v^{\prime}$ are unit vectors, the angle bisector between u and v must coincide with that between u^{\prime} and v^{\prime}, as depicted in Figure 2, Moreover, as is easily checked, if we let a_{0} be the intersection point of ℓ_{1} and ℓ_{1}^{\prime}, and let b_{0} be the intersection point of ℓ_{2} and ℓ_{2}^{\prime}, then both τ and τ^{\prime} map a_{0} to b_{0}, and $h_{a_{0}, b_{0}}^{*}$ is contained in Σ. (See Figure 3) Indeed, τ^{\prime} lies on some parabola $h_{p, q}^{*}$ through τ which is contained in Σ, and τ lies on some parabola $h_{p^{\prime}, q^{\prime}}^{*}$ through τ^{\prime} which is also contained in Σ. Since a pair of distinct h-parabolas meet in at most one point, the two parabolas must coincide, so $p=p^{\prime}$ and $q=q^{\prime}$. However, by construction, p lies on ℓ_{1} and p^{\prime} lies on ℓ_{1}^{\prime}, so this common point must be a_{0}, and, similarly, $q=q^{\prime}=b_{0}$, as claimed.

Figure 3: The structure of τ and τ^{\prime} on a common special surface Σ.

Since the preceding analysis applies to any pair of distinct rotations on a common special surface Σ, it follows that we can associate with Σ a common direction w and a common shift δ, so that for each $\tau \in \Sigma$ there exist two lines ℓ, ℓ^{\prime}, where τ maps ℓ to ℓ^{\prime}, so that the angle bisector between these lines is in direction w, and τ is the unique rigid motion, obtained by rotating ℓ to ℓ^{\prime} around their intersection point $\ell \cap \ell^{\prime}$, and then shifting ℓ^{\prime} along itself by a distance whose projection in direction w is δ. The fact that the shifts of any pair of rotations on Σ have the same w-component follows from the fact that they both map the intersection point a_{0} of their source lines to the intersection point b_{0} of their target lines; consult Figure 3,

Let Σ be a special surface, generated by $H(a, b ; u, v)$; that is, Σ is the union of all parabolas of the form $h_{a+t u, b+t v}^{*}$, for $t \in \mathbb{R}$. Let τ_{0} be the common rotation to all these parabolas, so it maps the line $\ell_{0}=\{a+t u \mid t \in \mathbb{R}\}$ to the line $\ell_{0}^{\prime}=\{b+t v \mid t \in \mathbb{R}\}$, so that every point $a+t u$ is mapped to $b+t v$.

Let $h_{c, d}^{*}$ be a parabola contained in Σ but not passing through τ_{0}. Take any pair of distinct rotations τ_{1}, τ_{2} on $h_{c, d}^{*}$. Then there exist two respective real numbers t_{1}, t_{2}, such that $\tau_{i} \in h_{a+t_{i} u, b+t_{i} v,}^{*}$, for $i=1,2$. Thus τ_{i} is the unique rotation which maps c to d and $a_{i}=a+t_{i} u$ to $b_{i}=b+t_{i} v$. In particular, we have $\left|a+t_{i} u-c\right|=\left|b+t_{i} v-d\right|$. This in turn implies that the triangles $a_{1} a_{2} c$ and $b_{1} b_{2} d$ are congruent; see Figure 4.

Figure 4: The geometric configuration corresponding to a parabola $h_{c, d}^{*}$ contained in Σ.

Given c, this determines d, up to a reflection about ℓ_{0}^{\prime}. We claim that d has to be on the "other side" of ℓ_{0}^{\prime}, namely, be such that the triangles $a_{1} a_{2} c$ and $b_{1} b_{2} d$ are oppositely oriented. Indeed, if they were equally oriented, then τ_{0} would have mapped c to d, and then $h_{c, d}^{*}$ would have passed through τ_{0}, contrary to assumption.

Now form the two sets

$$
\begin{align*}
& A=\left\{p \mid \text { there exists } q \in S \text { such that } h_{p, q}^{*} \subset \Sigma\right\} \tag{9}\\
& B=\left\{q \mid \text { there exists } p \in S \text { such that } h_{p, q}^{*} \subset \Sigma\right\}
\end{align*}
$$

The preceding discussion implies that A and B are congruent and oppositely oriented.
To recap, each rotation $\tau \in \Sigma$, incident to $k \geq 2$ parabolas contained in Σ, corresponds to a pair of lines ℓ, ℓ^{\prime} with the above properties, so that τ maps k points of $S \cap \ell$ (rather, of $A \cap \ell$) to k points of $S \cap \ell^{\prime}$ (that is, of $B \cap \ell^{\prime}$). If τ is flat, its entire multiplicity comes from points of S on ℓ (these are the points of $A \cap \ell$) which are mapped by τ to points of S on ℓ^{\prime} (these are points of $\left.B \cap \ell^{\prime}\right)$, and all the corresponding parabolas are contained in Σ. If τ is a joint then, for any other point $p \in S$ outside ℓ which is mapped by τ to a point $q \in S$ outside ℓ^{\prime}, the parabola $h_{p, q}^{*}$ is not contained in Σ, and crosses it transversally at the unique rotation τ.

Note also that any pair of parabolas $h_{c_{1}, d_{1}}^{*}$ and $h_{c_{2}, d_{2}}^{*}$ which are contained in Σ intersect, necessarily at the unique rotation which maps c_{1} to d_{1} and c_{2} to d_{2}. This holds because $\left|c_{1} c_{2}\right|=\left|d_{1} d_{2}\right|$, as follows from the preceding discussion.

Special surfaces are anti-rotations. Let Σ be a special surface, and let A, B be the subsets of S associated with Σ, as in (9). Then there exists a single anti-rotation which maps A to B. Conversely, any anti-rotation can be associated with a unique special surface in this manner. However, the number of incidences within a special surface may be larger than the incidence count of the anti-rotation with the appropriate variants of the h-parabolas: the former counts incidences
between the points of A (or of B) and the lines that they determine, while the latter only counts the size of A (or of B).

An alternative analysis. Recall the equation (6) of Σ

$$
E_{2}(Z) X-E_{1}(Z) Y+\left(E_{1}(Z) Q_{4}(Z)-E_{2}(Z) Q_{3}(Z)\right)=0
$$

where, writing $\lambda=u_{1}+v_{1}$ and $\mu=u_{2}+v_{2}$,

$$
\begin{aligned}
& E_{1}(Z)=\lambda Z+\mu \\
& E_{2}(Z)=\mu Z-\lambda .
\end{aligned}
$$

Now let $h_{a, b}^{*}$ be a parabola contained in Σ. Substituting the equations (3) of $h_{a, b}^{*}$ into the above equation, we get
$(\mu Z-\lambda)\left[\left(a_{1}+b_{1}\right) Z^{2}+2 a_{2} Z+\left(b_{1}-a_{1}\right)\right]-(\lambda Z+\mu)\left[\left(a_{2}+b_{2}\right) Z^{2}-2 a_{1} Z+\left(b_{2}-a_{2}\right)\right]+K(Z) \equiv 0$,
where $K(Z)=E_{1}(Z) Q_{4}(Z)-E_{2}(Z) Q_{3}(Z)$ is the "free" cubic term in the equation of Σ. A straightforward algebraic simplification of this equation yields

$$
\left(Z^{2}+1\right)\left[(\mu Z+\lambda) a_{1}-(\lambda Z-\mu) a_{2}+(\mu Z-\lambda) b_{1}-(\lambda Z+\mu) b_{2}\right]+K(Z) \equiv 0
$$

In particular (an interesting observation in itself, albeit obvious from the definition of X, Y, Z), $K(Z)$ must be divisible by $Z^{2}+1$, with the remainder being a linear function of Z. Eliminating this factor, we get

$$
\begin{aligned}
& \mu\left(a_{1}+b_{1}\right)-\lambda\left(a_{2}+b_{2}\right)=c_{1} \\
& \lambda\left(a_{1}-b_{1}\right)+\mu\left(a_{2}-b_{2}\right)=c_{2},
\end{aligned}
$$

for appropriate reals numbers c_{1}, c_{2}.
Now, writing $u=(\cos \alpha, \sin \alpha)$ and $v=(\cos (\alpha+\theta), \sin (\alpha+\theta))$, where θ is the angle of rotation, and observing that

$$
u+v=\left(u_{1}+v_{1}, u_{2}+v_{2}\right)=(\lambda, \mu)=\cos \frac{\theta}{2}\left(\cos \left(\alpha+\frac{\theta}{2}\right), \sin \left(\alpha+\frac{\theta}{2}\right)\right),
$$

the containment of $h_{a, b}^{*}$ in Σ is equivalent to the two conditions

$$
\begin{aligned}
(a+b) \cdot(u+v)^{T} & =c_{1}^{\prime} \\
(a-b) \cdot(u+v) & =c_{2}^{\prime}
\end{aligned}
$$

for appropriate parameters $c_{1}^{\prime}, c_{2}^{\prime}$. The geometric interpretation of the first condition is that the midpoint of $a b$ has to lie on a fixed line ℓ_{0} (whose direction, $\alpha+\frac{\theta}{2}$, is parallel to the angle bisector between the lines ℓ_{1}, ℓ_{2} (see Figure 3). The second condition means that $b-a$ has a fixed component in the direction of ℓ_{0}. In other words, $h_{a, b}^{*}$ is contained in Σ if and only if $b=\varphi(a)$, where φ is the anti-rotation obtained as a reflection about ℓ_{0} followed by a shift parallel to ℓ_{0}. This constitutes an alternative derivation of the characterization of Σ given above.
(H12) Special surfaces and parabolas. Finally, we study intersection patterns involving special surfaces. Let Σ be a special surface as above, and let Ξ be another (X, Y)-linear surface of the form $A(Z) X+B(Z) Y+C(Z)=0$. Then either Ξ coincides with Σ, or there is at most one parabola contained in both of them. Indeed, the intersection of Ξ and Σ is the curve satisfying

$$
\begin{aligned}
A(Z) X+B(Z) Y+C(Z) & =0 \\
E_{2}(Z) X-E_{1}(Z) Y+\left(E_{1}(Z) Q_{4}(Z)-E_{2}(Z) Q_{3}(Z)\right) & =0 .
\end{aligned}
$$

This is a linear system in X and Y. Suppose first that its determinant, $A(Z) E_{1}(Z)+B(Z) E_{2}(Z)$, does not vanish identically. Then, with the exception of finitely many values of Z, we get a unique solution of the form $X=F(Z), Y=G(Z)$, which can describe at most one parabola. If the determinant vanishes identically, then the equation of Ξ can be written as $E_{2}(Z) X-E_{1}(Z) Y+$ $D(Z)=0$, for an appropriate rational algebraic function $D(Z)$. If Ξ and Σ do intersect in a parabola, then we must have $D(Z) \equiv E_{1}(Z) Q_{4}(Z)-E_{2}(Z) Q_{3}(Z)$, so Ξ and Σ coincide.

As a corollary, we have:
Lemma 5. Let Ξ be an (X, Y)-linear surface of the above form, and let τ be a flat rotation contained in Ξ. Then either Ξ contains at least two of the parabolas incident to τ, and then it must coincide with the corresponding special surface Σ, or Ξ contains at most one of these parabolas, so at least two other parabolas cross Ξ at τ.

Lemma 6. A special surface can contain at most $s h$-parabolas.
Proof: Let Ξ be the given special surface. We claim that for each $a \in S$ there can be at most one point $b \in S$ such that $h_{a, b}^{*} \subset \Xi$. Indeed, suppose that there exist two such points $b_{1}, b_{2} \in S$. Since any pair of h-parabolas on Ξ intersect, $h_{a, b_{1}}^{*}$ and $h_{a, b_{2}}^{*}$ meet at a rotation τ, which maps a to both b_{1} and b_{2}, an impossibility which completes the proof.

Lemma 7. The number of containments between $n h$-parabolas and E special surfaces is

$$
O\left(E^{2 / 3} n^{2 / 3}+E+n\right)
$$

Proof: As argued above, a special surface Σ is characterized by an anti-rotation φ_{Σ} in the plane, specified by a line ℓ and a shift δ, such that $\varphi_{\Sigma}(a)$ is the point obtained by reflecting a about ℓ and then by shifting the reflected point parallel to ℓ by distance δ. Thus Σ has three degrees of freedom, and can be parametrized by (α, β, δ), where $y=\alpha x+\beta$ is the equation of ℓ and δ is the shift. We write $\Sigma(\alpha, \beta, \gamma)$ to denote the special surface parametrized by (α, β, γ).

By construction, a parabola $h_{a, b}^{*}$ is contained in Σ if and only if $\varphi_{\Sigma}(a)=b$.
We use the following parametric setup. We represent each special surface Σ by the corresponding triple (α, β, δ), and regard it as a point in parametric 3 -space. Each parabola $h_{a, b}^{*}$ is mapped to the locus $\tilde{h}_{a, b}$ of all (points representing) special surfaces containing $h_{a, b}^{*}$. This is a curve in the (α, β, δ)-space, given by the pair of scalar equations $\varphi_{\Sigma(\alpha, \beta, \delta)}(a)=b$. This is a low-degree algebraic curve, whose concrete equations can be worked out explicitly, but we skip over this step.

We thus have a system of E points and n such curves in 3 -space, and we wish to bound the number of incidences between them. We have the additional property, noted in Lemma [50 that two curves meet in at most one point. By projecting these points and curves onto some generic 2-plane, one can easily show that that the number of incidences, and thus the number of original containments, is at most $O\left(E^{2 / 3} n^{2 / 3}+E+n\right)$, as claimed.

Remark. If we represent each special surface by its corresponding anti-rotation, Lemma 7 simply bounds the number of incidences between E anti-rotations and n (appropriately transformed copies of) h-parabolas, and the bound noted in (2) holds here as well.

2 Tools from algebraic geometry

We begin by reviewing and extending the basic tools from algebraic geometry which have been used in [9] and in [6. However, we develop them here in the context of incidences between points and our h-parabolas, rather than the context of points and lines considered in the previous papers.

So let C be a set of $n \leq s^{2} h$-parabolas in \mathbb{R}^{3}. For each $h^{*} \in C$, we denote the plane containing h^{*} by $\pi_{h^{*}}$ and its equation as $L_{h^{*}}=0$, where $L_{h^{*}}$ is a linear polynomial. We represent h^{*} as the intersection curve of $L_{h^{*}}=0$ and $F_{h^{*}}=0$, where $F_{h^{*}}$ is one of the quadratic equations in (3) defining h^{*}, say the first one.

Note that all the parabolas of C cross every plane of the form $Z=$ const, each at a single point.
Recalling the definitions in (H9), and similar to the case of lines, we say that a point11 a is a joint of C if it is incident to three parabolas of C whose tangents at a are non-coplanar. Let $J=J_{C}$ denote the set of joints of C. We will also consider points a that are incident to three or more parabolas of C, so that the tangents to all these parabolas are coplanar, and refer to such points as flat points of C. We recall (see (H9)) that any pair of distinct h-parabolas which meet at a point have there distinct tangents.

First, we note that a trivariate polynomial p of degree d which vanishes at $2 d+1$ points that lie on a common parabola $h^{*} \in C$ must vanish identically on h^{*}. Indeed, these points are common roots of p and $F_{h^{*}}$, restricted to the plane $\pi_{h^{*}}$. By Bézout's theorem [16], either these restricted polynomials have a common factor, or they have at most $2 d$ roots. Since $F_{h^{*}}$ is irreducible, it must divide the restricted p, so p must vanish identically on h^{*}, as claimed.

Critical points and parabolas. A point a is critical (or singular) for a trivariate polynomial p if $p(a)=0$ and $\nabla p(a)=0$; any other point a in the zero set of p is called regular. A parabola h^{*} is critical if all its points are critical.

The following proposition is adapted from [6].
Proposition 8. Let $f(x, y, z)$ and $g(x, y, z)$ be two trivariate polynomials, of respective degrees k and m, so that there are $k m+1$ parabolas of C on which both f and g vanish identically. Then f and g have a common factor.

Proof. Assume that both $f(x, y, z)$ and $g(x, y, z)$ have a positive degree in x; this can always be enforced by an appropriate rotation of the coordinate frame. It is then an easy exercise to show that f and g have a common factor if and only if their resultant, when viewing them as polynomials in x, is identically 0 . Recall that the resultant is a polynomial in y and z. (The same holds when f and g have any number of variables, including x, in which case the resultant is a polynomial in the remaining variables.)

For any fixed value z_{0} of $z, f\left(x, y, z_{0}\right)$ and $g\left(x, y, z_{0}\right)$ have at least $k m+1$ common roots (at the intersection points of the $k m+1$ parabolas with $z=z_{0}$), so, by Bézout's Theorem [16], they

[^1]have a common factor. Therefore, the resultant, with respect to x, of $f\left(x, y, z_{0}\right)$ and $g\left(x, y, z_{0}\right)$ is identically 0 (as a polynomial in y). Since this is true for every value z_{0} of z, it follows that the resultant of $f(x, y, z)$ and $g(x, y, z)$, with respect to x, vanishes identically as a polynomial in y and z. Therefore, $f(x, y, z)$ and $g(x, y, z)$, as trivariate polynomials, have a common factor.

Proposition 9. Let C be as above. Then any trivariate square-free polynomial p of degree d can have at most $d(d-1)$ critical parabolas in C.

Proof: We prove the claim by induction on the degree d of p. The claim holds trivially for $d=1$, so assume that $d>1$.

Assume first that p is irreducible. Apply Proposition 8 to p and p_{x}, say. Both polynomials vanish identically on each critical parabola, and their respective degrees are d and $d-1$. If p had more than $d(d-1)$ critical parabolas then p and p_{x} would have a common factor, which is impossible since p is irreducible.

Suppose next that p is reducible (but square-free), and write $p=f g$, so that f and g are non-constant polynomials which have no common factor (since p is square-free, this can always be done). Denote the degrees of f and g by d_{f} and d_{g}, respectively; we have $d=d_{f}+d_{g}$.

Let h^{*} be a critical parabola for p. Then either $f \equiv 0$ on h^{*} or $g \equiv 0$ on h^{*} (or both). Moreover, since $\nabla p=f \nabla g+g \nabla f \equiv 0$ on h^{*}, it is easily checked that h^{*} must satisfy (at least) one of the following properties:
(i) $f \equiv g \equiv 0$ on h^{*}.
(ii) h^{*} is a critical parabola of f.
(iii) h^{*} is a critical parabola of g.

Indeed, if (i) does not hold, we have, without loss of generality, $f \equiv 0$ on h^{*}, but g vanishes only at finitely many points of h^{*}. On any other point a of h^{*} we then must have $\nabla f(a)=0$, which implies that ∇f is identically zero on h^{*}, so h^{*} is critical for f. This implies (ii); (iii) holds in the symmetric case where $g \equiv 0$ on h^{*} but f does not vanish identically on h^{*}.

By the induction hypothesis, the number of critical parabolas for f is at most $d_{f}\left(d_{f}-1\right)$, and the number of critical parabolas for g is at most $d_{g}\left(d_{g}-1\right)$. Consider the parabolas that satisfy (i) and intersect all of them by any of the planes $z=z_{0}$, as in the proof of Proposition 8, All the intersection points are roots of $f=0$ and $g=0$ on this plane, and, as follows from the proof of Proposition 8, these bivariate polynomials have no common factor (or, more precisely, they can have a common factor only at finitely many values of z). Hence, by Bézout's theorem, they have at most $d_{f} d_{g}$ common roots. Altogether, the number of critical parabolas for p is at most

$$
d_{f}\left(d_{f}-1\right)+d_{g}\left(d_{g}-1\right)+d_{f} d_{g}<d(d-1)
$$

Proposition 10. Let a be a regular point of p, so that $p \equiv 0$ on three parabolas of C passing through a. Then these parabolas must have coplanar tangents at a.

Proof: Any such tangent line must be contained in the tangent plane to $p=0$ at a.
Hence, a point a incident to three parabolas of C whose tangent lines at a are non-coplanar, so that $p \equiv 0$ on each of these parabolas, must be a critical point of p.

Proposition 11. Given a set S of m points in 3-space, there exists a nontrivial trivariate polynomial $p(x, y, z)$ which vanishes at all the points of S, of degree d, for any d satisfying $\binom{d+3}{3}>m$.

Proof: (See [6, 9].) A trivariate polynomial of degree d has $\binom{d+3}{3}$ monomials, and requiring it to vanish at m points yields these many homogeneous equations in the coefficients of these monomials. Such an underdetermined system always has a nontrivial solution.

Flat points and parabolas. Call a regular point τ of a trivariate polynomial p geometrically flat if it is incident to three distinct parabolas of C (with necessarily coplanar tangent lines at τ, no pair of which are collinear) on which p vanishes identically 2^{2}

Let τ be a geometrically flat point of p, and let $h_{1}^{*}, h_{2}^{*}, h_{3}^{*} \in C$ be three incident parabolas on which p vanishes. Let \mathbf{t}_{i} denote the tangent line to h_{i}^{*} at τ, and let v_{i} denote a unit vector in the direction of \mathbf{t}_{i}, for $i=1,2,3$.

The second-order Taylor expansion of p at τ has the form

$$
q(\tau+w)=p(\tau)+\nabla p(\tau) \cdot w+\frac{1}{2} w^{T} H_{p}(\tau) w=\nabla p(\tau) \cdot w+\frac{1}{2} w^{T} H_{p}(\tau) w
$$

for any vector w, where

$$
H_{p}(\tau)=\left(\begin{array}{lll}
p_{x x} & p_{x y} & p_{x z} \\
p_{x y} & p_{y y} & p_{y z} \\
p_{x z} & p_{y z} & p_{z z}
\end{array}\right)
$$

is the Hessian matrix of $p . q$ is a quadratic polynomial (in w) which approximates p up to third order terms for sufficiently small values of $|w|$.

Our goal is to construct, using this approximation and the fact that $p \equiv 0$ on three parabolas incident to τ, as above, a new polynomial, depending on p, which vanishes at τ, and use this vanishing as a characterization of flat points. To do so, we need to make the analysis more specific, and taylor it to the special form of h-parabolas.

Let τ be a flat point, and let a, b, u, v be the corresponding parameters in the $x y$-plane (so τ maps $a+t u$ to $b+t v$ for each $t \in \mathbb{R}$; cf. Remark (1) at the end of (H9)). Let $\Sigma=\Sigma(a, b ; u, v)$ be the corresponding special surface spanned by the parabolas $h_{a+t u, b+t v}^{*}$, for all t (here we vary t continuously, but only finitely many corresponding parabolas belong to C). Since τ is flat, there exist at least three parabolas $h_{a+t_{i} u, b+t_{i} v}^{*}, i=1,2,3$ (all belonging to C, contained in Σ, and passing through τ), such that $p \equiv 0$ on each of them.

Let q denote, as above, the quadratic polynomial which is the second-order Taylor expansion of p at τ. Let $h^{*}=h_{a+t u, b+t v}^{*}$ be one of the above parabolas on which p vanishes identically. For τ^{\prime} in the vicinity of $\tau, p\left(\tau^{\prime}\right)-q\left(\tau^{\prime}\right)=O\left(\left|\tau^{\prime}-\tau\right|^{3}\right)$, so, for points τ^{\prime} near τ on h^{*}, we have $q\left(\tau^{\prime}\right)=O\left(\left|\tau^{\prime}-\tau\right|^{3}\right)$.

Let us continue to consider only points τ^{\prime} on h^{*}. Let $\left(X_{0}, Y_{0}, Z_{0}\right)$ (resp., (X, Y, Z)) be the coordinates of τ (resp., τ^{\prime}). The equations of h^{*} (see (3)) are

$$
\begin{aligned}
X & =\left(a_{1}+b_{1}+t u_{1}+t v_{1}\right) Z^{2}+2\left(a_{2}+t u_{2}\right) Z+\left(b_{1}-a_{1}+t v_{1}-t u_{1}\right) \\
Y & =\left(a_{2}+b_{2}+t u_{2}+t v_{2}\right) Z^{2}-2\left(a_{1}+t u_{1}\right) Z+\left(b_{2}-a_{2}+t v_{2}-t u_{2}\right),
\end{aligned}
$$

[^2]so we have
\[

$$
\begin{aligned}
X-X_{0} & =\left(Z-Z_{0}\right)\left(\left(a_{1}+b_{1}+t u_{1}+t v_{1}\right)\left(Z+Z_{0}\right)+2\left(a_{2}+t u_{2}\right)\right) \\
Y-Y_{0} & =\left(Z-Z_{0}\right)\left(\left(a_{2}+b_{2}+t u_{2}+t v_{2}\right)\left(Z+Z_{0}\right)-2\left(a_{1}+t u_{1}\right)\right)
\end{aligned}
$$
\]

which we can further rewrite as

$$
\begin{aligned}
X-X_{0} & =2\left(Z-Z_{0}\right)\left(\left(a_{1}+b_{1}+t u_{1}+t v_{1}\right) Z_{0}+\left(a_{2}+t u_{2}\right)\right)+\left(Z-Z_{0}\right)^{2}\left(a_{1}+b_{1}+t u_{1}+t v_{1}\right) \\
Y-Y_{0} & =2\left(Z-Z_{0}\right)\left(\left(a_{2}+b_{2}+t u_{2}+t v_{2}\right) Z_{0}-\left(a_{1}+t u_{1}\right)\right)+\left(Z-Z_{0}\right)^{2}\left(a_{2}+b_{2}+t u_{2}+t v_{2}\right) .
\end{aligned}
$$

Let us simplify these equations as

$$
\begin{aligned}
X-X_{0} & =2\left(Z-Z_{0}\right) A(t)+\left(Z-Z_{0}\right)^{2} C(t) \\
Y-Y_{0} & =2\left(Z-Z_{0}\right) B(t)+\left(Z-Z_{0}\right)^{2} D(t),
\end{aligned}
$$

where $A(t), B(t), C(t)$, and $D(t)$ are all linear functions of t. If we substitute these equations into the equation of q, assume that Z is very close to Z_{0}, ignore terms which are at least cubic in $Z-Z_{0}$, and use the fact that $q\left(\tau^{\prime}\right)=O\left(\left|\tau^{\prime}-\tau\right|^{3}\right)$ for any τ^{\prime} on h^{*} sufficiently close to τ, we conclude that both the linear and the quadratic parts of $q\left(\tau^{\prime}\right)$ (in $Z-Z_{0}$) vanish identically. The linear part is

$$
\left(Z-Z_{0}\right) \nabla p(\tau) \cdot(2 A(t), 2 B(t), 1)
$$

and the quadratic part is

$$
\left(Z-Z_{0}\right)^{2}\left(\nabla p(\tau) \cdot(C(t), D(t), 0)+\frac{1}{2}(2 A(t), 2 B(t), 1)^{T} H_{p}(\tau)(2 A(t), 2 B(t), 1)\right) .
$$

Hence we have

$$
\begin{aligned}
\nabla p(\tau) \cdot(2 A(t), 2 B(t), 1) & =0, \\
\nabla p(\tau) \cdot(C(t), D(t), 0)+\frac{1}{2}(2 A(t), 2 B(t), 1)^{T} H_{p}(\tau)(2 A(t), 2 B(t), 1) & =0 .
\end{aligned}
$$

Note that both equations vanish for (at least) three distinct values of t. Since the first equation is linear in t and the second is quadratic in t, all the coefficients of both equations are identically zero. Let us restrict ourselves to the coefficient of the linear term in the first equation and of the quadratic term in the second one. Denote by α (resp., β) the coefficient of t in $A(t)$ (resp., $B(t)$). Then we have

$$
\begin{aligned}
\alpha p_{X}(\tau)+\beta p_{Y}(\tau) & =0 \\
\alpha^{2} p_{X X}(\tau)+2 \alpha \beta p_{X Y}(\tau)+\beta^{2} p_{Y Y}(\tau) & =0 .
\end{aligned}
$$

It is easily seen that α and β cannot both be zero (assuming a generic coordinate frame in the original $x y$-plane), so, eliminating them gives

$$
\begin{equation*}
p_{Y}^{2}(\tau) p_{X X}(\tau)-2 p_{X}(\tau) p_{Y}(\tau) p_{X Y}(\tau)+p_{X}^{2}(\tau) p_{Y Y}(\tau)=0 \tag{10}
\end{equation*}
$$

which is the constraint we were after.
In what follows, we refer to the left-hand side of (10) as $\Pi(p)$. That is,

$$
\Pi(p)=p_{Y}^{2} p_{X X}-2 p_{X} p_{Y} p_{X Y}+p_{X}^{2} p_{Y Y},
$$

and this polynomial has to vanish at τ.
We have thus shown:

Proposition 12. Let p be a trivariate polynomial. If τ is a regular geometrically flat point of p (with respect to three parabolas of C) then $\Pi(p)(\tau)=0$.

Remark. Note that the left-hand side of (10) is one of the three polynomials $\Pi_{i}(p)$ used in [6] to analyze flat points in a 3 -dimensional line arrangement. Specifically,

$$
\Pi(p)=\left(e_{3} \times \nabla p\right)^{T} H_{p}\left(e_{3} \times \nabla p\right),
$$

where e_{3} is the unit vector in the z-direction; the other two polynomials are defined analogously, using the other two coordinate vectors e_{1}, e_{2}. These polynomials form the second fundamental form of p; see [6, 9] for details.

In particular, if the degree of p is d then the degree of $\Pi(p)$ is at most $(d-1)+(d-1)+(d-2)=$ $3 d-4$.

In what follows, we call a point τ flat for p if $\Pi(p)(\tau)=0$. We will need the following technical lemma.

Lemma 13. Let p be an irreducible trivariate polynomial, with the properties that (i) $\Pi(p)(\tau)=0$ at each regular point τ of $p=0$, and (ii) $p \equiv 0$ on at least two distinct intersecting h-parabolas of C. Then p is a special polynomial.
(Note that the converse of the lemma is trivial, because the second-order derivatives $p_{X X}, p_{X Y}$, and $p_{Y Y}$ are all identically zero for a special polynomial p, and because of the way such polynomials are constructed.)
Proof: Fix $Z=Z_{0}$ and consider the restricted bivariate polynomial $\tilde{p}(X, Y)=p\left(X, Y, Z_{0}\right)$. Clearly, $\Pi(\tilde{p})=\Pi(p)$ on the plane $\pi_{0}: Z=Z_{0}$. Hence $\Pi(\tilde{p})=0$ at each regular point $\tau \in \pi_{0}$ of $p=0$, and thus at each regular point of \tilde{p}. (Note that a regular point of \tilde{p} is also a regular point of p, although the converse need not be true.) Note also that \tilde{p} is an irreducible polynomial, except possibly for finitely many values of Z_{0}.

As is well known [8, 14], the curvature of the plane curve $\tilde{p}(X, Y)=0$, at a regular point of \tilde{p}, is given by

$$
\kappa=\frac{\tilde{p}_{Y}^{2} \tilde{p}_{X X}-2 \tilde{p}_{X} \tilde{p}_{Y} \tilde{p}_{X Y}+\tilde{p}_{X}^{2} \tilde{p}_{Y Y}}{\left(\tilde{p}_{X}^{2}+\tilde{p}_{Y}^{2}\right)^{3 / 2}} .
$$

Hence this curve has zero curvature at every regular point of \tilde{p}, and thus, being the zero set of an irreducible polynomial, it must be a single line. In other words, p is linear in X and Y for every fixed Z, except for finitely many values, implying that its equation is of the form $p(X, Y, Z)=$ $A(Z) X+B(Z) Y+C(Z)$, where $A(Z), B(Z)$ and $C(Z)$ are univariate polynomials. We now exploit assumption (ii), denoting by Σ the unique special surface determined by (and containing) the two given h-parabolas. The analysis in (H12) then implies that Σ coincides with the zero set of p, so p is indeed a special polynomial, as claimed.

Call an h-parabola $h^{*} \in C$ flat for p if all the points of h^{*} are flat points of p (with the possible exception of a discrete subset). Arguing as in the case of critical points, if h^{*} contains more than $2(3 d-4)$ flat points then h^{*} is a flat parabola.

As in [6, [9, we next show that, in general, trivariate polynomials do not have too many flat parabolas. As before, we first establish this property for irreducible polynomials, and then extend the analysis to more general polynomials.

Proposition 14. Let p be an irreducible trivariate polynomial of degree d, which is not a special polynomial. Then p can have at most $3 d^{2}-4 d$ flat h-parabolas of C.

Proof: Suppose to the contrary that there are more than $3 d^{2}-4 d$ flat h-parabolas. As above, restrict p and $\Pi(p)$ to a fixed plane π_{0} of the form $Z=Z_{0}$. The number of common roots of p and $\Pi(p)$ on π_{0} exceeds the product of their degrees. Since this holds for every Z_{0}, Proposition 8 implies that they must have a common factor. Since p is irreducible, p must be a factor of $\Pi(p)$. This implies that all the (regular) points at which p vanishes are flat. Hence, by Lemma 13 must be a special polynomial, a contradiction which completes the proof of the asserted bound.
Proposition 15. Let p be any trivariate square-free polynomial of degree d with no special polynomial factors. Then p can have at most $d(3 d-4)$ flat h-parabolas in C.

Proof: If p is irreducible, the claim holds by Proposition 14. Otherwise, write $p=f g$ where f and g are non-constant polynomials with no common factors (and no special polynomial factors). Let d_{f} and d_{g} denote their respective degrees, so $d=d_{f}+d_{g}$.

Let τ be a regular flat point of p. Then either $f(\tau)=g(\tau)=0$, or only exactly one of $f(\tau)$, $g(\tau)$ vanishes. Hence, if h^{*} is a flat parabola for p then either both f and g vanish identically on h^{*} or exactly one of them vanishes identically on h^{*}, while the other has only finitely many zeroes on h^{*}.

Now, as already argued in the proof of Proposition [9, there are at most $d_{f} d_{g}$ parabolas of the former kind. To handle parabolas of the latter kind, consider a regular point τ of p at which $f=0$ but g is nonzero. A simple calculation yields:

$$
\begin{aligned}
p_{X} & =f_{X} g+f g_{X} \\
p_{Y} & =f_{Y} g+f g_{Y} \\
p_{X X} & =f_{X X} g+2 f_{X} g_{X}+f g_{X X} \\
p_{X Y} & =f_{X Y} g+f_{X} g_{Y}+f_{Y} g_{X}+f g_{Y Y} \\
p_{Y Y} & =f_{Y Y} g+2 f_{Y} g_{Y}+f g_{Y Y} .
\end{aligned}
$$

Hence, at τ we have

$$
\begin{aligned}
p_{X}(\tau) & =f_{X}(\tau) g(\tau) \\
p_{Y}(\tau) & =f_{Y}(\tau) g(\tau) \\
p_{X X}(\tau) & =f_{X X}(\tau) g(\tau)+2 f_{X}(\tau) g_{X}(\tau) \\
p_{X Y}(\tau) & =f_{X Y}(\tau) g(\tau)+f_{X}(\tau) g_{Y}(\tau)+f_{Y}(\tau) g_{X}(\tau) \\
p_{Y Y}(\tau) & =f_{Y Y}(\tau) g(\tau)+2 f_{Y}(\tau) g_{Y}(\tau),
\end{aligned}
$$

and therefore we have at τ, as is easily checked,

$$
\Pi(p)(\tau)=g^{3}(\tau) \Pi(f)(\tau)
$$

That is, a regular flat point for p, at which $f=0$ but g is nonzero, is a regular flat point for f, and a symmetric statement holds when $g=0$ but f is nonzero. Hence, any flat parabola of the latter kind is either a flat parabola for f or a flat parabola for g. Arguing by induction on the degree, the number of flat parabolas for p is thus at most

$$
3 d_{f}^{2}-4 d_{f}+3 d_{g}^{2}-4 d_{g}+d_{f} d_{g}<3 d^{2}-4 d
$$

and the lemma follows.

3 Joint and flat rotations in a set of h-parabolas in \mathbb{R}^{3}

In this section we extend the recent algebraic machinery of Guth and Katz [9], as further developed by Elekes et al. [6], using the algebraic tools set forth in the preceding section, to establish the bound $O\left(n^{3 / 2}\right)=O\left(s^{3}\right)$ on the number of rotations with multiplicity at least 3 in a collection of n h-parabolas.

Theorem 16. Let C be a set of at most $n h$-parabolas in \mathbb{R}^{3}, and let P be a set of m rotations, each of which is incident to at least three parabolas of C. Suppose further that no special surface contains more than q parabolas of C. Then $m=O\left(n^{3 / 2}+n q\right)$.

Remarks. (1) The recent results of [11, 15] imply that the number of joints in a set of $n h-$ parabolas is $O\left(n^{3 / 2}\right)$. The proofs in [11, 15] are much simpler than the proof given below, but they do not apply to flat points (rotations) as does Theorem 16. Since flat rotations are an integral part of the setup considered in this paper, we need to count them too, using the stronger Theorem 16 , Moreover, even if we were to consider only joint rotations, the analysis of their incidences with the h-parabolas will turn some of them into flat rotations (by pruning some of the parabolas), so, as in [6], we will need to face flat rotations, no matter what.
(2) By Lemma 6, we always have $q \leq s$, and we also have $n^{1 / 2} \leq s$, so the "worst-case" bound on m is $O(n s)$.
(3) Note that the parameter n in the statement of the theorem is arbitrary, not necessarily the maximum number s^{2}. When n attains its maximum possible value s^{2}, the bound becomes $m=$ $O\left(n^{3 / 2}\right)=O\left(s^{3}\right)$.

The proof of Theorem [16 uses the proof technique of [6], properly adapted to the present, somewhat more involved context of h-parabolas and rotations.
Proof. We first prove the theorem under the additional assumption that $q=n^{1 / 2}$. The proof proceeds by induction on n, and shows that $m \leq A n^{3 / 2}$, where A is a sufficiently large constant whose choice will be dictated by the forthcoming analysis. The statement holds for all $n \leq n_{0}$, for some constant n_{0}, if we choose A to be sufficiently large. Fix $n>n_{0}$, and suppose that the claim holds for all $n^{\prime}<n$. Let C and P be as in the statement of the theorem, with $|C|=n$, and suppose to the contrary that $|P|>A n^{3 / 2}$.

We first apply the following iterative pruning process to C. As long as there exists a parabola $h^{*} \in C$ incident to fewer than $c n^{1 / 2}$ rotations of P, for some constant $1 \leq c \ll A$ that we will fix later, we remove h^{*} from C, remove its incident rotations from P, and repeat this step with respect to the reduced set of rotations. In this process we delete at most $\mathrm{cn}^{3 / 2}$ rotations. We are thus left with a subset of at least $(A-c) n^{3 / 2}$ of the original parabolas, each incident to at least $c n^{1 / 2}$ surviving rotations, and each surviving rotation is incident to at least three surviving parabolas. For simplicity, continue to denote these sets as C and P.

Choose a random sample C^{s} of parabolas from C, by picking each parabola independently with probability t, where t is a small constant that we will fix later.

The expected number of parabolas that we choose is $t n_{1} \leq t n$, where n_{1} is the number of parabolas remaining after the pruning. We have $n_{1}=\Omega\left(n^{1 / 2}\right)$, because each surviving parabola is incident to at least $c n^{1 / 2}$ surviving rotations, each incident to at least two other surviving parabolas; since all these parabolas are distinct (recall that a pair of parabolas can meet in at most one rotation point), we have $n_{1} \geq 2 c n^{1 / 2}$. Hence, using Chernoff's bound, as in [6] (see, e.g., [1]), we obtain
that, with positive probability, (a) $\left|C^{s}\right| \leq 2 t n$. (b) Each parabola $h^{*} \in C$ contains at least $\frac{1}{2} c \operatorname{cn}^{1 / 2}$ rotations that lie on parabolas of C^{s}. (To see (b), take a parabola $h^{*} \in C$ and a rotation $\tau \in P \cap h^{*}$. Note that τ will be incident to a parabola of C^{s} with probability at least t, so the expected number of rotations in $P \cap h^{*}$ which lie on parabolas of C^{s} is at least $c t n^{1 / 2}$. This, combined with Chernoff's bound, implies (b).)

We assume that C^{s} does indeed satisfy (a) and (b), and then (recalling that $c \geq 1$) choose $n^{1 / 2}$ arbitrary rotations on each parabola in C^{s}, to obtain a set S of at most $2 t n^{3 / 2}$ rotations.

Applying Proposition 11, we obtain a nontrivial trivariate polynomial $p(X, Y, Z)$ which vanishes at all the rotations of S, whose degree is at most the smallest integer d satisfying $\binom{d+3}{3} \geq|S|+1$, so

$$
d \leq\left\lceil(6|S|)^{1 / 3}\right\rceil \leq(12 t)^{1 / 3} n^{1 / 2}+1 \leq 2(12 t)^{1 / 3} n^{1 / 2},
$$

for n (i.e., n_{0}) sufficiently large. Without loss of generality, we may assume that p is square-free - by removing repeated factors, we get a square-free polynomial which vanishes on the same set as the original p, with the same upper bound on its degree.

The polynomial p vanishes on $n^{1 / 2}$ points on each parabola in C^{s}. This number is larger than $2 d$, if we choose t sufficiently small so as to satisfy $4(12 t)^{1 / 3}<1$. Hence p vanishes identically on all these parabolas. Any other parabola of C meets at least $\frac{1}{2} c t n^{1 / 2}$ parabolas of C^{s}, at distinct points, and we can make this number also larger than $2 d$, with an appropriate choice of t and c (we need to ensure that $\left.c t>8(12 t)^{1 / 3}\right)$. Hence, p vanishes identically on each parabola of C.

We will also later need the property that each parabola of C contains at least $9 d$ points of P; that is, we require that $c n^{1 / 2}>9 d$, which will hold if $c>18(12 t)^{1 / 3}$.

To recap, the preceding paragraphs impose several inequalities on c and t, and a couple of additional similar inequalities will be imposed later on. All these inequalities are easy to satisfy by choosing $t<1$ to be a sufficiently small positive constant, and c a sufficiently large constant. (These choices will also affect the choice of A-see below.)

We note that p can have at most $d / 3$ special polynomial factors (since each of them is a cubic polynomial); i.e., p can vanish identically on at most $d / 3$ respective special surfaces Ξ_{1}, \ldots, Ξ_{k}, for $k \leq d / 3$. We factor out all these special polynomial factors from p, and let \tilde{p} denote the resulting polynomial, which is a square-free polynomial without any special polynomial factors, of degree at most d.

Consider one of the special surfaces Ξ_{i}, and let t_{i} denote the number of parabolas contained in Ξ_{i}. Then any rotation on Ξ_{i} is either an intersection point of (at least) two of these parabolas, or it lies on at most one of them. The number of rotations of the first kind is $O\left(t_{i}^{2}\right)$. Any rotation τ of the second kind is incident to at least one parabola of C which crosses Ξ_{i} transversally at τ. We note that each h-parabola h^{*} can cross Ξ_{i} in at most three points. Indeed, substituting the equations of h^{*} into the equation $E_{2}(Z) X-E_{1}(Z) Y+K(Z)=0$ of Ξ_{i} (see (6)) yields a cubic equation in Z, with at most three roots. Hence, the number of rotations of the second kind is $O(n)$, and the overall number of rotations on Ξ_{i} is $O\left(t_{i}^{2}+n\right)=O(n)$, since we have assumed in the present version of the proof that $t_{i} \leq n^{1 / 2}$.

Summing the bounds over all surfaces Ξ_{i}, we conclude that altogether they contain $O(n d)$ rotations, which we bound by $b n^{3 / 2}$, for some absolute constant b.

We remove all these vanishing special surfaces, together with the rotations and the parabolas which are fully contained in them, and let $C_{1} \subseteq C$ and $P_{1} \subseteq P$ denote, respectively, the set of those parabolas of C (rotations of P) which are not contained in any of the vanishing surfaces Ξ_{i}.

Note that there are still at least three parabolas of C_{1} incident to any remaining rotation in P_{1}, since none of the rotations of P_{1} lie in any surface Ξ_{i}, so all parabolas incident to such a rotation are still in C_{1}.

Clearly, \tilde{p} vanishes identically on every $h^{*} \in C_{1}$. Furthermore, every $h^{*} \in C_{1}$ contains at most d points in the surfaces Ξ_{i}, because, as just argued, it crosses each surface Ξ_{i} in at most three points.

Note that this also holds for every parabola h^{*} in $C \backslash C_{1}$, if we only count intersections of h^{*} with surfaces Ξ_{i} which do not fully contain h^{*}.

Hence, each $h^{*} \in C_{1}$ contains at least $8 d$ rotations of P_{1}. Since each of these rotations is incident to at least three parabolas in C_{1}, each of these rotations is either critical or geometrically flat for \tilde{p}.

Consider a parabola $h^{*} \in C_{1}$. If h^{*} contains more than $2 d$ critical rotations then h^{*} is a critical parabola for \tilde{p}. By Proposition [9, the number of such parabolas is at most $d(d-1)$. Any other parabola $h^{*} \in C_{1}$ contains more than $6 d$ geometrically flat points and hence h^{*} must be a flat parabola for \tilde{p}. By Proposition [15, the number of such parabolas is at most $d(3 d-4)$. Summing up we obtain

$$
\left|C_{1}\right| \leq d(d-1)+d(3 d-4)<4 d^{2} .
$$

We require that $4 d^{2}<n / 2$; that is, $32(12 t)^{2 / 3}<1$, which can be guaranteed by choosing t sufficiently small.

We next want to apply the induction hypothesis to C_{1}, with the parameter $4 d^{2}$ (which dominates the size of C_{1}). For this, we first need to argue that each special surface contains at most $\left(4 d^{2}\right)^{1 / 2}=$ $2 d$ parabolas of C_{1}. Indeed, let Ξ be a special surface. Using (6), eliminate, say, Y from the equation of Ξ and substitute the resulting expression into the equation of \tilde{p}, to obtain a bivariate polynomial $\tilde{p}_{0}(X, Z)$. Let h^{*} be a parabola of C_{1} contained in Ξ. We represent h^{*} by its X-equation of the form $X=Q(Z)$, and observe that $\tilde{p}_{0}(X, Z)$ vanishes on the zero set of $X-Q(Z)$. Hence \tilde{p}_{0} must be divisible by $X-Q(Z)$. Note that, in a generic coordinate frame in the $x y$-plane, two different parabolas cannot have the same equation $X=Q(Z)$, because this equation uniquely determines a_{1}, b_{1}, and a_{2}, and then, in a generic frame, b_{2} is also uniquely determined. Note also that the degree of \tilde{p}_{0} is at most $3 d$, and that the degree of each factor $X-Q(Z)$ is 2 , implying that Σ can contain at most $3 d / 2$ parabolas of C_{1}.

An important observation, which we will use in the proof of general version of the theorem, is that the argument just given does not use the assumed bound on the number of h-parabolas contained in a special surface, but, rather, establishes this bound "from scratch" for the subproblem involving P_{1} and C_{1}. That is, even if the original problem does not satisfy the extra assumption in the restricted version, the subproblems that it generates always do satisfy it.

Hence, the maximum number of parabolas of C_{1} contained in a special surface is at most $3 d / 2 \leq\left(4 d^{2}\right)^{1 / 2}$, so, by the induction hypothesis, the number of points in P_{1} is at most

$$
A\left(4 d^{2}\right)^{3 / 2} \leq \frac{A}{2^{3 / 2}} n^{3 / 2}
$$

Adding up the bounds on the number of points on parabolas removed during the pruning process and on the special surfaces Ξ_{i} (which correspond to the special polynomial factors of p), we obtain

$$
|P| \leq \frac{A}{2^{3 / 2}} n^{3 / 2}+(b+c) n^{3 / 2} \leq A n^{3 / 2}
$$

with an appropriate, final choice of t, c, and A. This contradicts the assumption that $|P|>A n^{3 / 2}$, and thus establishes the induction step for n, and, consequently, completes the proof of the restricted version of the theorem.

Proof of the general version: The proof proceeds almost exactly as the proof of the restricted version, except for the analysis of the number of rotations on the special surfaces Ξ_{i}. As noted above, we encounter this difference only once, in handling the original problem: When we apply the induction step, we always fall into the restricted setup.

By assumption, each special surface Ξ_{i} contains at most $q h$-parabolas. We modify the preceding analysis, so that each parabola is considered only once. That is, we iterate over the special surfaces in some order. When handling a surface Ξ_{i}, we consider only those h-parabolas that are not contained in any previously processed surface, and bound the number of rotations that they contain. Then we remove these parabolas and rotations from further considerations and go to the next surface.

As argued above, a special surface Ξ_{i} containing t_{i} (surviving) parabolas contains at most $O\left(t_{i}^{2}+\right.$ n) rotations which lie on these parabolas (and on no previously processed parabola). Summing these bounds over all special surfaces, and using the fact that $t_{i} \leq q$ for each i, we get an overall bound $O\left(n d+q \sum_{i} t_{i}\right)=O\left(n^{3 / 2}+n q\right)$, as asserted.

We summarize the remarks following Theorem [16, combined with Lemma 2, in the following corollary.

Corollary 17. Let S be a set of s points in the plane. Then there are at most $O\left(s^{3}\right)$ rotations which map some (degenerate or non-degenerate) triangle spanned by S to another (congruent and equally oriented) such triangle. This bound is tight in the worst case.

In the following section we will continue to adapt the analysis of [6] to obtain bounds on the number of incidences between helices (h-parabolas) and rotations with multiplicity ≥ 3, and, consequently, obtain bounds on $\left|P_{\geq k}\right|$, for any $k \geq 3$.

4 Incidences between parabolas and rotations

In this section we further adapt the machinery of [6] to derive an upper bound on the number of incidences between m rotations and $n h$-parabolas in \mathbb{R}^{3}, where each rotation is incident to at least three parabolas (i.e., has multiplicity ≥ 3).

Theorem 18. For an underlying ground set S of s points in the plane, let C be a set of at most $n \leq s^{2} h$-parabolas defined on S, and let P be a set of m rotations with multiplicity at least 3 (with respect to S). Then

$$
I(P, C)=O\left(m^{1 / 3} n+m^{2 / 3} n^{1 / 3} s^{1 / 3}\right)
$$

Remark. As easily checked, the first term dominates the second term when $m \leq n^{2} / s$, and the second term dominates when $n^{2} / s<m \leq n s$. In particular, the first term dominates when $n=s^{2}$, because we have $m=O\left(s^{3}\right)=O\left(n^{2} / \mathrm{s}\right)$
Proof: The proof of Theorem 18 proceeds in two steps. We first establish a bound which is independent of m, and then apply it to obtain the m-dependent bound asserted in the theorem.

For the first step, we have:

Theorem 19. Let C be a set of at most $n \leq s^{2} h$-parabolas defined on S, and let P be a set of rotations with multiplicity at least 3 with respect to S, such that no special surface contains more than $n^{1 / 2}$ parabolas of C. Then the number of incidences between P and C is $O\left(n^{3 / 2}\right)$.

Proof. Write $I=I(P, C)$ for short, and put $m=|P|$. We will establish the upper bound $I \leq B n^{3 / 2}$, for some sufficiently large absolute constant B, whose specific choice will be dictated by the various steps of the proof. Suppose then to the contrary that $I>B n^{3 / 2}$ for the given C and P.

For $h^{*} \in C$, let $\nu\left(h^{*}\right)$ denote the number of rotations incident to h^{*}. We refer to $\nu\left(h^{*}\right)$ as the multiplicity of h^{*}. We have $\sum_{h^{*} \in C} \nu\left(h^{*}\right)=I$. The average multiplicity of a parabola h^{*} is I / n.

We begin by applying the following pruning process. Put $\nu=I /(6 n)$. As long as there exists a parabola $h^{*} \in C$ whose multiplicity is smaller than ν, we remove h^{*} from C, but do not remove any rotation incident to h^{*}. We keep repeating this step (without changing ν), until each of the surviving parabolas has multiplicity at least ν. Moreover, if, during the pruning process, some rotation τ loses $\lfloor\mu(\tau) / 2\rfloor$ incident parabolas, we remove τ from P. This decreases the multiplicity of some parabolas, and we use the new multiplicities in the test for pruning further parabolas, but we keep using the original threshold ν.

When we delete a parabola h^{*}, we lose at most ν incidences with surviving rotations. When a rotation τ is removed, the number of current incidences with τ is smaller than or equal to twice the number of incidences with τ that have already been removed. Hence, the total number of incidences that were lost during the pruning process is a most $3 n \nu=I / 2$. Thus, we are left with a subset P_{1} of the rotations and with a subset C_{1} of the parabolas, so that each $h^{*} \in C_{1}$ is incident to at least $\nu=I /(6 n)$ rotations of P_{1}, and each rotation $\tau \in P_{1}$ is incident to at least three parabolas of C_{1} (the latter is an immediate consequence of the rule for pruning a rotation). Moreover, we have $I\left(P_{1}, C_{1}\right) \geq I / 2$. It therefore suffices to bound $I\left(P_{1}, C_{1}\right)$.

Let $n_{1}=\left|C_{1}\right|$. Since at least three parabolas in C_{1} are incident to each rotation in P_{1}, it follows that each parabola in C_{1} is incident to at most $n_{1} / 2$ rotations of P_{1}, and therefore $I\left(P_{1}, C_{1}\right) \leq n_{1}^{2} / 2$. Combining this with the fact that $I\left(P_{1}, C_{1}\right) \geq I / 2$, we get that $n_{1} \geq B^{1 / 2} n^{3 / 4}$.

We fix the following parameters

$$
x=\frac{n_{1}}{n^{1 / 2}} \quad \text { and } \quad t=\delta \frac{n_{1}}{n},
$$

for an appropriate absolute constant $\delta<1$, whose value will be fixed shortly. Clearly, $t<1$, and we can also ensure that $x<\nu$, i.e., that $I>6 n_{1} n^{1 / 2}$, by choosing $B>6$. Furthermore, since $n_{1} \geq B^{1 / 2} n^{3 / 4}$ we have $x \geq B^{1 / 2} n^{1 / 4}$.

We construct a random sample C_{1}^{s} of parabolas of C_{1} by choosing each parabola independently at random with probability t; the expected size of C_{1}^{s} is $t n_{1}$. Now take x (arbitrary) rotations of P_{1} on each parabola of C_{1}^{s} (which can always be done since $x<\nu$), to form a sample S of rotations in P_{1}, of expected size at most $t x n_{1}$.

For any parabola $h^{*} \in C_{1}$, the expected number of rotations of $P_{1} \cap h^{*}$ which lie on parabolas of C_{1}^{s} is at least $t \nu$ (each of the at least ν rotations $a \in P_{1} \cap h^{*}$ is incident to at least one other parabola of C_{1}, and the probability of this parabola to be chosen in C_{1}^{s} is t). We assume that B is large enough so that $t \nu=\delta \frac{n_{1}}{n} \frac{I}{6 n} \geq \frac{\delta B}{6} \frac{n_{1}}{n^{1 / 2}}$ is larger than $2 x$ (it suffices to choose $B>12 / \delta$). Since $t \nu>2 x=\Omega\left(n^{1 / 4}\right)$, and the expected size of C_{1}^{s} is $t n_{1}=\frac{\delta n_{1}^{2}}{n} \geq B \delta n^{1 / 2}$, we can use Chernoff's bound, to show that there exists a sample C_{1}^{s} such that (i) $\left|C_{1}^{s}\right| \leq 2 t n_{1}$, and (ii) each parabola
$h^{*} \in C_{1}$ contains at least $\frac{1}{2} t \nu>x$ rotations of P_{1} which lie on parabolas of C_{1}^{s}. In what follows, we assume that C_{1}^{s} satisfies these properties. In this case, we have $|S| \leq 2 t x n_{1}$.

Now construct, using Proposition 11, a nontrivial suqare-free trivariate polynomial p which vanishes on S, of smallest degree d satisfying $\binom{d+3}{3} \geq|S|+1$, so

$$
\begin{aligned}
d & \leq\left\lceil(6|S|)^{1 / 3}\right\rceil \leq\left(12 t x n_{1}\right)^{1 / 3}+1=(12 \delta)^{1 / 3} \frac{n_{1}}{n^{1 / 2}}+1 \\
& \leq 2(12 \delta)^{1 / 3} \frac{n_{1}}{n^{1 / 2}}
\end{aligned}
$$

for n sufficiently large (for small values of n we ensure the bound by choosing B sufficiently large, as before).

We will choose $\delta<1 / 6144$, so $x>4 d$.
As above, and without loss of generality, we may assume that p is square-free: factoring out repeated factors only lowers the degree of p and does not change its zero set.

The following properties hold: (a) Since $x>2 d, p$ vanishes at more than $2 d$ rotations on each parabola of C_{1}^{s}, and therefore, as already argued, it vanishes identically on each of these parabolas. (b) Each parabola $h^{*} \in C_{1}$ contains at least $\frac{1}{2} t \nu>x>2 d$ rotations which lie on parabolas of C_{1}^{s}. Since, as just argued, p vanishes at these rotations, it must vanish identically on h^{*}. Thus, $p \equiv 0$ on every parabola of C_{1}.

Before proceeding, we enforce the inequality $d^{2}<\frac{1}{8} n_{1}$ which will hold if we choose δ so that $(12 \delta)^{2 / 3}<1 / 32$. Similarly, an appropriate choice of δ (or B) also ensures that $\nu>9 d$.

We next consider all the special polynomial factors of p, and factor them out, to obtain a square-free polynomial \tilde{p}, of degree at most d, with no special polynomial factors. As in the previous analysis, p can have at most $d / 3$ special polynomial factors, so it can vanish identically on at most $d / 3$ special surfaces Ξ_{1}, \ldots, Ξ_{k}, for $k \leq d / 3$. Let $C_{2} \subseteq C_{1}$ denote the set of those parabolas of C_{1} which are not contained in any of the vanishing surfaces Ξ_{i}. For each parabola $h^{*} \in C_{2}, \tilde{p}$ vanishes identically on h^{*}, and (as argued above) at most d rotations in $P_{1} \cap h^{*}$ lie in the surfaces Ξ_{i}. Hence, h^{*} contains at least $8 d$ remaining rotations, each of which is either critical or flat for \tilde{p}, because each such point is incident to at least three parabolas (necessarily of C_{2}) on which $\tilde{p} \equiv 0$.

Hence, either at least $2 d$ of these rotations are critical, and then h^{*} is a critical parabola for \tilde{p}, or at least $6 d$ of these rotations are flat, and then h^{*} is a flat parabola for \tilde{p}. Applying Propositions 9 and 15, the overall number of parabolas in C_{2} is therefore at most

$$
d(d-1)+d(3 d-4)<4 d^{2}<\frac{1}{2} n_{1}
$$

On the other hand, by assumption, each vanishing special surface Ξ_{i} contains at most $n^{1 / 2}$ parabolas of C, so the number of parabolas contained in the special vanishing surfaces is at most $n^{1 / 2} d<$ $\frac{1}{4} n^{1 / 2} x \leq \frac{1}{4} n_{1}$, with our choice of δ.

Hence, the overall number of parabolas in C_{1} is smaller than $\frac{1}{2} n_{1}+\frac{1}{4} n_{1}<n_{1}$, a contradiction that completes the proof of Theorem 19 .

Proof of Theorem 18. Write $I=I(P, C)$ for short. Set $\nu=c m^{1 / 3}$ and $\mu=c n / \mathrm{m}^{2 / 3}$, for some sufficiently large constant c whose value will be determined later, and apply the following pruning process. As long as there exists a parabola $h^{*} \in C$ whose multiplicity is smaller than ν, we remove h^{*} from C, but do not remove any rotation incident to h^{*}. Similarly, as long as there exists a rotation $\tau \in P$ whose multiplicity is smaller than μ, we remove τ from P. Of course, these
removals may reduce the multiplicity of some surviving rotations or parabolas, making additional rotations and parabolas eligible for removal. We keep repeating this step (without changing the initial thresholds ν and μ), until each of the surviving parabolas has multiplicity at least ν and each of the surviving rotations has multiplicity at least μ. We may assume that $\mu \geq 3$, by choosing c suficiently large and using Theorem 16(i).

When we delete a parabola h^{*}, we lose at most ν incidences with surviving rotations. When a rotation τ is removed, we lose at most μ incidences with surviving parabolas. All in all, we lose at most $n \nu+m \mu=2 \mathrm{~cm}^{1 / 3} n$ incidences, and are left with a subset P_{1} of P and with a subset C_{1} of C, so that each parabola of C_{1} is incident to at least ν rotations of P_{1}, and each rotation of P_{1} is incident to at least μ parabolas of C_{1} (these subsets might be empty). Put $n_{1}=\left|C_{1}\right|$ and $m_{1}=\left|P_{1}\right|$. We have $I \leq I\left(P_{1}, C_{1}\right)+2 \mathrm{~cm}^{1 / 3} n$, so it remains to bound $I\left(P_{1}, C_{1}\right)$, which we do as follows.

We fix some sufficiently small positive parameter $t<1$, and construct a random sample $P_{1}^{s} \subset P_{1}$ by choosing each rotation of P_{1} independently with probability t. The expected size of P_{1}^{s} is $m_{1} t$, and the expected number of points of P_{1}^{s} on any parabola of C_{1} is at least $\nu t=\mathrm{ctm}^{1 / 3}$. Chernoff's bound implies that, with positive probability, $\left|P_{1}^{s}\right| \leq 2 m_{1} t$, and $\left|P_{1}^{s} \cap h^{*}\right| \geq \frac{1}{2} c t m^{1 / 3}$ for every $h^{*} \in C_{1}$. We can therefore assume that P_{1}^{s} satisfies all these inequalities. (For the bound to apply, m_{1} (and m) must be at least some sufficiently large constant; if this is not the case, we turn the trivial bound $m_{1} n$ (or $m n$) on I into the bound $O\left(m_{1}^{1 / 3} n\right.$) (or $O\left(m^{1 / 3} n\right)$) by choosing the constant of proportionality sufficiently large.)

Construct, using Proposition 11, a nontrivial square-free trivariate polynomial p which vanishes on P_{1}^{s}, whose degree is at most the smallest integer d satisfying $\binom{d+3}{3} \geq 2 t m_{1}+1$, so

$$
d \leq\left\lceil\left(12 t m_{1}\right)^{1 / 3}\right\rceil \leq 3 t^{1 / 3} m_{1}^{1 / 3}
$$

assuming (as above) that m_{1} is sufficiently large.
Choosing c to be large enough, we may assume that $\nu t>18 d$. (This will hold if we ensure that $c t>54 t^{1 / 3}$.) This implies that p vanishes at more than $9 d$ points on each parabola $h^{*} \in C_{1}$, and therefore it vanishes identically on each of these parabolas.

As in the previous analysis, we factor out the special polynomial factors of p, obtaining a squarefree polynomial \tilde{p}, of degree at most d, with no special polynomial factors. Let Ξ_{1}, \ldots, Ξ_{k} denote the special surfaces on which p vanishes identically (the zero sets of the special polynomial factors of p), for some $k \leq d / 3$.

Let $C_{2} \subseteq C_{1}$ (resp., $P_{2} \subseteq P_{1}$) denote the set of those parabolas of C_{1} (resp., rotations of P_{1}) which are not contained in any of the vanishing surfaces Ξ_{i}. Put $C_{2}^{\prime}=C_{1} \backslash C_{2}$ and $P_{2}^{\prime}=P_{1} \backslash P_{2}$.

For each parabola $h^{*} \in C_{2}, \tilde{p}$ vanishes identically on h^{*}, and, as argued in the proof of Theorem 16, at most d rotations of $P_{1} \cap h^{*}$ lie in the surfaces Ξ_{i}. Hence, h^{*} contains more than $8 d$ rotations of P_{2}, and, arguing as in the preceding proof, each of these rotations is either critical or flat for \tilde{p}. Hence, either more than $2 d$ of these rotations are critical, and then h^{*} is a critical parabola for \tilde{p}, or more than $6 d$ of these rotations are flat, and then h^{*} is a flat parabola for \tilde{p}. Applying Propositions 9 and 15, the overall number of parabolas in C_{2} is therefore at most

$$
d(d-1)+d(3 d-4)<4 d^{2}
$$

We now apply Theorem 19 to C_{2} and P_{2}, with the bound $4 d^{2}$ on the size of C_{2}. The conditions of this theorem hold for these sets: Clearly, each rotation in P_{2} is incident to at least three parabolas of C_{2}. For the other condition, we argue exactly as in the proof of Theorem 16, to conclude that
any special surface can contain at most $3 d / 2$ parabolas of C_{1}, establishing the second condition of Theorem 19, This theorem then implies that the number of incidences between P_{2} and C_{2}, which is also equal to the number of incidences between P_{2} and C_{1}, is

$$
I\left(P_{2}, C_{1}\right)=I\left(P_{2}, C_{2}\right)=O\left(\left(4 d^{2}\right)^{3 / 2}\right)=O\left(d^{3}\right)=O(m) .
$$

Moreover, since each parabola of C_{2} contains at least eight times more rotations of P_{2} than of P_{2}^{\prime}, this bound also applies to the number of incidences between P_{2}^{\prime} and C_{2}.

It therefore remains to bound the number of incidences between P_{2}^{\prime} and C_{2}^{\prime}, namely, between the rotations and parabolas contained in the vanishing special surfaces Ξ_{i}. To do so, we iterate over the surfaces, say, in the order Ξ_{1}, \ldots, Ξ_{k}. For each surface Ξ_{i} in turn, we process the rotations and parabolas contained in Ξ_{i} and then remove them from further processing on subsequent surfaces.

Let us then consider a special surface Ξ_{i}. Let m_{i} and n_{i} denote respectively the number of rotations and parabolas contained in Ξ_{i}, which were not yet removed when processing previous surfaces. The number of incidences between these rotations and parabolas can be bounded by the classical Szemerédi-Trotter incidence bound [21] (see also (2)), which is $O\left(m_{i}^{2 / 3} n_{i}^{2 / 3}+m_{i}+n_{i}\right)$. Summing these bounds over all the special surfaces Ξ_{i}, and using Hölder's inequality and the fact, established in Lemma 6, that $n_{i} \leq s$, we get an overall bound of

$$
\begin{gathered}
O\left(\sum_{i}\left(m_{i}^{2 / 3} n_{i}^{2 / 3}+m_{i}+n_{i}\right)\right)= \\
O\left(s^{1 / 3} \sum_{i} m_{i}^{2 / 3} n_{i}^{1 / 3}+\sum_{i}\left(m_{i}+n_{i}\right)\right)=O\left(m^{2 / 3} n^{1 / 3} s^{1 / 3}+m+n\right),
\end{gathered}
$$

where we use the facts that $\sum_{i} m_{i} \leq m$ and $\sum_{i} n_{i} \leq n$, which follow since in this analysis each parabola and rotation is processed at most once. The two linear terms satisfy $n=O\left(m^{1 / 3} n\right)$ (the bound obtained in the pruning process), and $m=O\left(m^{2 / 3} n^{1 / 3} s^{1 / 3}\right)$ since $m=O(n s)$; see Remark (2) following Theorem 16

We are not done yet, because each rotation of P_{2}^{\prime} is processed only once, within the first surface Ξ_{i} containing it. This, however, can be handled as in [6]. That is, let τ be a rotation which was processed within the first surface Ξ_{i} containing it. Suppose that τ also lies on some later surface Ξ_{j}, with $j>i$, and let h^{*} be a parabola contained in Ξ_{j}, which has not been removed yet; in particular, h^{*} is not contained in Ξ_{i}, and thus meets it transversally, so the incidence between h^{*} and τ can be regarded as one of the transversal incidences in Ξ_{i}, which we have been ignoring so far. To count them, we simply recall that each parabola, whether of C_{2}^{\prime} or of C_{2}, has at most three transversal intersections with a surface Ξ_{i} (see the proof of Theorem 16), for a total of at most d crossings with all the vanishing surfaces. Since each of these parabolas contains at least $9 d$ rotations of P_{1}, those "transversal incidences" are only a fraction of the total number of incidences, and we simply ignore them altogether.

To recap, we obtain the following bound on the number of incidences between P_{1} and C_{1} :

$$
I\left(P_{1}, C_{1}\right)=O\left(m+m^{1 / 3} n+m^{2 / 3} n^{1 / 3} s^{1 / 3}\right)=O\left(m^{1 / 3} n+m^{2 / 3} n^{1 / 3} s^{1 / 3}\right)
$$

Adding the bound $2 \mathrm{~cm}^{1 / 3} n$ on the incidences lost during the pruning process, we get the asserted bound.

It is interesting to note that the proof technique also yields the following result.

Corollary 20. Let C be a set of $n h$-parabolas and P a set of points in 3-space which satisfy the conditions of Theorem [18(i). Then, for any $k \geq 1$, the number $M_{\geq k}$ of points of P incident to at least k parabolas of C satisfies

$$
M_{\geq k}= \begin{cases}O\left(\frac{n s}{k^{3}}\right) & \text { for } k \leq s^{2 / 3} / n^{1 / 3} \\ O\left(\frac{n^{3 / 2}}{k^{3 / 2}}\right) & \text { for } s^{2 / 3} / n^{1 / 3} \leq k \leq n^{1 / 3} \\ O\left(\frac{n^{2}}{k^{3}}+\frac{n}{k}\right) & \text { for } k>n^{1 / 3}\end{cases}
$$

Proof: Write $m=M_{\geq k}$ for short. We clearly have $I(P, C) \geq k m$. Theorem 18 then implies $k m=O\left(m^{1 / 3} n+m^{2 / 3} n^{1 / 3} s^{1 / 3}\right)$, from which the first two bounds follow. If $k>n^{1 / 3}$ we use the other bound (in (22)), to obtain $k m=O\left(m^{2 / 3} n^{2 / 3}+m+n\right)$, which implies that $m=O\left(n^{2} / k^{3}+n / k\right)$ (which is in fact an equivalent statement of the classical Szemerédi-Trotter bound).

5 Further improvements

In this section we further improve the bound in Theorem 18(and Corollary 20) using more standard space decomposition techniques. We show:

Theorem 21. The number of incidences between m arbitrary rotations and $n h$-parabolas, defined for a planar ground set with s points, is

$$
O^{*}\left(m^{5 / 12} n^{5 / 6} s^{1 / 12}+m^{2 / 3} n^{1 / 3} s^{1 / 3}+n\right),
$$

where the $O^{*}(\cdot)$ notation hides polylogarithmic factors. In particular, when all $n=s^{2} h$-parabolas are considered, the bound is

$$
O^{*}\left(m^{5 / 12} s^{7 / 4}+s^{2}\right)
$$

Proof: We dualize the problem as follows. We map each parabola $h_{a, b}^{*}$ to the point $\hat{h}_{a, b}=(a, b)=$ $\left(a_{1}, a_{2}, b_{1}, b_{2}\right)$ in \mathbb{R}^{4}. Each rotation τ is mapped to a 2-plane $\hat{\tau}$, which is the locus of all points \hat{h} such that τ is incident to h^{*}. This is indeed a 2-plane, because the equations of τ, either (11) in the (ξ, η, θ)-frame, or (3) in the (X, Y, Z)-frame, are a pair of linear (independent) equations in $\left(a_{1}, a_{2}, b_{1}, b_{2}\right)$.

So in this new setup we have n points and $m 2$-planes in 4 -space, and we wish to bound the number of incidences between these points and 2-planes. We note that any pair of these 2-planes intersect in at most one point. (The corresponding statement in the primal setup is that two rotations can be incident to at most one common h-parabola.)

To bound the number of incidences, we first project the points and 2 -planes onto the 3 -space $b_{2}=0$. We claim that, with a generic choice of the coordinate frame in the original $x y$-plane, the projected points remain distinct. Indeed, a point $\left(a_{1}, a_{2}, b_{1}, b_{2}\right)$, dual to an h-parabola $h_{a, b}^{*}$, is projected to the point (a_{1}, a_{2}, b_{1}), so the projected point uniquely determines a, and also b, because we may assume that no two points of S have the same x-coordinate b_{1}. Hence the projected points are all distinct.

This is not necessarily the case for the 2 -planes. Indeed, consider a 2 -plane $\hat{\tau}$. Its projection onto the $a_{1} a_{2} b_{1}$-space is the plane satisfying the first equation of (3), say, namely

$$
X=\left(a_{1}+b_{1}\right) Z^{2}+2 a_{2} Z+\left(b_{1}-a_{1}\right) .
$$

It is easily checked that this equation uniquely determines the X and Z components of τ, leaving Y (i.e., the shift along the y-direction that τ makes after its initial pure rotation) undetermined. Thus it is possible that several distinct rotations, all with the same X and Z components, are projected to the same 2-plane. This has the potential danger that the projection loses incidences, when several 2 -planes, incident to a common point $\hat{\tau}$, get projected into the same plane, so that, instead of several incidences with $\hat{\tau}$ in 4 -space, we get only one incidence in the projection. Nevertheless, this bad situation cannot arise. This follows from the easy observation that two distinct rotations with the same X and Z components cannot both map a point (a_{1}, a_{2}) into the same point $\left(b_{1}, b_{2}\right)$.

To recap, after the projection we get n points and at most m planes in \mathbb{R}^{3}, and our goal is to bound the number of incidences between them. More precisely, we want to bound only the number of original incidences. We note that each such incidence appears as an incidence in the projection, but not necessarily the other way around. We recall that, in general, the number of incidences between n points and m planes in 3 -space can be $m n$ in the worst case, because of the possibility that many points lie on a common line and many planes pass through that line. This situation can also arise in our setup, but we will apply a careful analysis to show that the number of original incidences that project to such a degenerate configuration is much smaller.

We proceed as follows. We fix a parameter r, to be determined shortly, and construct the following decomposition of 3 -space. First, we note that the projected points (a_{1}, a_{2}, b_{1}) have only s distinct a_{1}-coordinates, which are the x-coordinates of the points of S. Similarly, they have only s distinct b_{1}-coordinates. We partition the 3 -space by a set R_{1} of r planes orthogonal to the a_{1}-axis, so that within each resulting slab the projected points have at most s / r distinct a_{1}-coordinates. We construct a similar collection R_{2} of r planes orthogonal to the b_{1}-axis, so that within each resulting slab the projected points have at most s / r distinct b_{1}-coordinates. We then choose a random sample R_{0} of r of the projected planes. We take the set $R=R_{0} \cup R_{1} \cup R_{2}$ of $3 r$ planes, construct their arrangement, and decompose each of its cells into simplices. We obtain $O\left(r^{3}\right)$ simplices, and the construction and the standard ε-net theory [10] imply that, with high probability, the following properties hold for every simplex σ of the partition: (i) σ is crossed by at most $O\left(\frac{m}{r} \log r\right)$ projected 2-planes; (ii) the projected points that fall into σ have at most s / r distinct a_{1}-coordinates and at most s / r distinct b_{1}-coordinates. Further refining the simplices, if necessary, we can also assume that (iii) each simplex contains at most n / r^{3} projected points.

Property (ii) is crucial. It asserts that the number of points of S which induce the parabolas whose dual points project into a fixed simplex is at most $2 s / r$; more precisely, there are only s / r "source" points of S and only s / r "target" points, so that each of these parabolas is of the form $h_{a, b}^{*}$, where a is one of the s / r source points and b is one of the s / r target points. (Note, by the way, that the number of parabolas, n / r^{3}, in volved in a subproblem is much smaller than the maximum possible value $(s / r)^{2}$, when $r \gg 1$.)

We now apply Theorem 18 to each simplex σ; that is, to the set C_{σ} of those parabolas whose (projected) dual points lie in σ, and to the set P_{σ} of those rotations whose (projected) dual 2-planes cross σ. Put $m_{\sigma}=\left|P_{\sigma}\right|$ and $n_{\sigma}=\left|C_{\sigma}\right|$. We note that some rotations in P_{σ} may be incident to no more than two parabolas in C_{σ}; these rotations contribute $O\left(m_{\sigma}\right)=O\left(\frac{m}{r} \log r\right)$ to the overall
incidence bound. By Theorem [18 we thus have ${ }^{3}$

$$
I\left(P_{\sigma}, C_{\sigma}\right)=O\left(m_{\sigma}^{1 / 3} n_{\sigma}+m_{\sigma}^{2 / 3} n_{\sigma}^{1 / 3}(s / r)^{1 / 3}+m_{\sigma}\right)
$$

Summing these bounds over all cells σ, we get an overall bound of

$$
\begin{aligned}
\sum_{\sigma} I\left(P_{\sigma}, C_{\sigma}\right)=O^{*} & \left(r^{3} \cdot\left((m / r)^{1 / 3} n / r^{3}+(m / r)^{2 / 3}\left(n / r^{3}\right)^{1 / 3}(s / r)^{1 / 3}+m / r\right)\right)= \\
& O^{*}\left(m^{1 / 3} n / r^{1 / 3}+r m^{2 / 3} n^{1 / 3} s^{1 / 3}+m r^{2}\right)
\end{aligned}
$$

where, as above, $O^{*}(\cdot)$ hides polylogarithmic factors.
We also have to add to the bound incidences involving points, which are projections dual to parabolas, which lie on the boundaries of the cells of the cutting. Let $q=\left(a_{1}, a_{2}, b_{1}\right)$, the projection of a (unique) point $\hat{h}_{a, b}$ be such a point. Let f denote the face whose relative interior contains q. If f is a 2-face of some simplex σ, we can associate q with σ : except for the single plane containing f, any other plane incident to q must cross σ, and we can count the incidence within the subproblem of σ. The uncounted incidences, at most one per parabola, add up to at most n.

If f is a vertex (so $q=f$) then any plane through f either bounds or crosses some adjacent simplex, so the total number of such incidences is $O^{*}\left(r^{3} \cdot(m / r)\right)=O^{*}\left(m r^{2}\right)$.

The harder situation is when f is an edge. Again, if a plane crosses f at q, we can count this incidence within any adjacent simplex, arguing as in the case where f is a 2 -face. The difficult case is when the plane contains f, and we handle it as follows.

It is simpler to consider f as a full line of intersection of two sampled planes, rather than a single edge. (The decomposition, though, has also other edges, obtained in the decomposition of arrangement cells into simplices; these edges require a slightly different treatment, given below.) Let q_{1}, \ldots, q_{t} be the projected dual points that lie on f, and let $h_{a_{i}, b_{i}}^{*}$ denote the parabola corresponding to q_{i}, for $i=1, \ldots, t$. Consider the rotations τ whose dual 2 -planes project to planes containing f. Rotations τ of this kind which are incident to just one of the parabolas $h_{a_{i}, b_{i}}^{*}$ are easy to handle, because the number of incidences involving these rotations is at most m (for the fixed line f), for a total of $O^{*}\left(m r^{2}\right)$.

Consider then those rotations τ which are incident to at least two of the parabolas $h_{a_{i}, b_{i}}^{*}$. Since the points $\left(a_{i 1}, a_{i 2}, b_{i 1}\right)$ lie on a common line, it follows that the points a_{i} are also collinear in the original $x y$-plane, lying on a common line ℓ_{0}. The points b_{i} are not necessarily collinear, but they have the property that, for any pair of indices $i \neq j$, the ratio $\left(b_{j 1}-b_{i 1}\right) /\left(a_{j 1}-a_{i 1}\right)$ is fixed. See Figure 5

Now if τ is incident to two parabolas $h_{a_{i}, b_{i}}^{*}, h_{a_{j}, b_{j}}^{*}$, then τ maps a_{i} to b_{i} and a_{j} to b_{j}. In particular, $\left|a_{i} a_{j}\right|=\left|b_{i} b_{j}\right|$. This, and the fact that $\left(b_{j 1}-b_{i 1}\right) /\left(a_{j 1}-a_{i 1}\right)$ is fixed, imply that τ maps ℓ_{0} to the line through b_{i} and b_{j}, and that the slope of this line has a fixed absolute value λ. Hence, considering, with no loss of generality, only lines of the latter kind with positive slope, we can partition $\left\{q_{1}, \ldots, q_{t}\right\}$ into equivalence classes, so that, for each class, all the corresponding points b_{i} lie on a common line of slope λ. Moreover, there is at most one rotation that is incident to at least two parabolas from the same class (and no rotation can be incident to two parabolas from different classes). Thus the total number of incidences of this kind, for the fixed f, is at most t. Summing over all lines f, we get a total of $O(n)$ such incidences.

[^3]

Figure 5: Many projected dual points lying on a common line: The situation in the $x y$-plane.

In the preceding analysis we considered only intersection lines between sampled planes, but, as noted, the cutting has additional edges, interior to cells of the arrangement. We handle such edges in almost the same way as above. That is, we consider such an edge e, and argue, exactly as above, that the number of original incidences involving points on e and planes that contain e is proportional to the number n_{e} of points on e plus the number m_{e} of planes containing e. (Incidences involving planes that cross e are also handled exactly as above, wih the same resulting bound.) The sum $\sum_{e} n_{e}$ is still at most n. For the other sum $\sum_{e} m_{e}$, we note that the number of edges e is $O\left(r^{3}\right)$ (instead of $O\left(r^{2}\right)$ in the preceding analysis), but each edge e can be contained in at most $O\left(\frac{m}{r} \log r\right)$ planes, as follows easily from the ε-net theory (this holds with high probability, but we may assume that our sample does indeed have this property). Hence, we have $\sum_{e} m_{e}=O^{*}\left(r^{3} \cdot(m / r)\right)=O^{*}\left(m r^{2}\right)$, the same bound as above.

Altogether, the number of incidences is thus

$$
O^{*}\left(m^{1 / 3} n / r^{1 / 3}+m r^{2}+r m^{2 / 3} n^{1 / 3} s^{1 / 3}+n\right) .
$$

We now choose

$$
r=\left(\frac{n^{2 / 3}}{m^{1 / 3} s^{1 / 3}}\right)^{3 / 4}=\frac{n^{1 / 2}}{m^{1 / 4} s^{1 / 4}}
$$

This choice of r makes the first and third terms in the incidence bound equal to each other, and they both dominate the second term, as is easily verified, using the fact that $n \leq s^{2}$.

Note also that $1 \leq r \leq m$ when

$$
\frac{n^{2 / 5}}{s^{1 / 5}} \leq m \leq \frac{n^{2}}{s} .
$$

Assume first that m lies in this range. Then the incidence bound becomes

$$
O\left(m^{5 / 12} n^{5 / 6} s^{1 / 12}+n\right)
$$

When $m>n^{2} / s$, we use $r=1$ and get the bound

$$
O\left(m^{1 / 3} n+m^{2 / 3} n^{1 / 3} s^{1 / 3}+m\right)
$$

Since $n^{2} / s<m \leq n s$, the second term dominates the two other terms, and the bound is thus $O\left(m^{2 / 3} n^{1 / 3} s^{1 / 3}\right)$.

Finally, when $m<n^{2 / 5} / s^{1 / 5}$, we use the Szemerédi-Trotter bound in (2), which is easily seen to yield the bound $O(n)$. Adding all these bounds, the theorem follows.

Using this bound, we can strengthen Corollary 20, as follows.

Corollary 22. Let C be a set of $n h$-parabolas and P a set of rotations, with respect to a planar ground set S of s points. Then, for any $k \geq 3$, the number $M_{\geq k}$ of rotations of P incident to at least k parabolas of C satisfies

$$
M_{\geq k}=O^{*}\left(\frac{n^{10 / 7} s^{1 / 7}}{k^{12 / 7}}+\frac{n s}{k^{3}}+\frac{n}{k}\right) .
$$

For $n=s^{2}$, the bound becomes

$$
M_{\geq k}=O^{*}\left(\frac{s^{3}}{k^{12 / 7}}\right) .
$$

Proof: The proof is similar to the proof of Corollary 20, and we omit its routine details.

6 Conclusion

In this paper we have reduced the problem of obtaining a near-linear lower bound for the number of distinct distances in the plane to a problem involving incidences between points and a special class of parabolas (or helices) in three dimensions. We have made significant progress in obtaining upper bounds for the number of such incidences, but we are still short of tightening these bounds to meet the conjectures on these bounds made in the introduction.

To see how far we still have to go, consider the bound in Corollary 22, for the case $n=s^{2}$, which then becomes $O^{*}\left(s^{3} / k^{12 / 7}\right)$. (Here $M_{\geq k}$ coincides with $N_{\geq k}$ as defined in (H3).) Moreover, we also have the Szemerédi-Trotter bound $O\left(s^{4} / k^{3}\right)$, which is smaller than the previous bound for $k \geq s^{7 / 9}$. Substituting these bounds in the analysis of (H3) and (H4), we get

$$
\begin{gathered}
\frac{[s(s-1)-x]^{2}}{x} \leq|K|=N_{\geq 2}+\sum_{k \geq 3}(k-1) N_{\geq k}= \\
N_{\geq 2}+O\left(s^{3}\right) \cdot\left[1+\sum_{k=3}^{s^{7 / 9}} \frac{1}{k^{5 / 7}}+\sum_{k>s^{7 / 9}} \frac{s^{4}}{k^{3}}\right]=N_{\geq 2}+O\left(s^{29 / 9}\right) .
\end{gathered}
$$

It is fairly easy to show that $N_{\geq 2}$ is $O\left(s^{10 / 3}\right)$, by noting that $N_{\geq 2}$ can be upper bounded by $O\left(\sum_{i}\left|E_{i}\right|^{2}\right)$, where E_{i} is as defined in (H1). Using the upper bound $\left|E_{i}\right|=O\left(s^{4 / 3}\right)$ [19], we get

$$
N_{\geq 2}=O\left(\sum_{i}\left|E_{i}\right|^{2}\right)=O\left(s^{4 / 3}\right) \cdot O\left(\sum_{i}\left|E_{i}\right|\right)=O\left(s^{10 / 3}\right) .
$$

Thus, at the moment, $N_{\geq 2}$ is the bottleneck in the above bound, and we only get the (weak) lower bound $\Omega\left(s^{2 / 3}\right)$ on the number of distinct distances. Showing that $N_{\geq 2}=O\left(s^{29 / 9}\right)$ too (hopefully, a rather modest goal) would improve the lower bound to $\Omega\left(s^{7 / 9}\right)$, still a rather weak lower bound.

Nevertheless, we feel that the reduction to incidences in three dimensions is fruitful, because
(i) It sheds new light on the geometry of planar point sets, related to the distinct distances problem.
(ii) It gave us a new, and considerably more involved setup in which the new algebraic technique of Guth and Katz could be applied. As such, the analysis in this paper might prove useful for
obtaining improved incidence bounds for points and other classes of curves in three dimensions. The case of points and circles is an immediate next challenge.

Another comment is in order. Our work can be regarded as a special variant of the complex version of the Szemerédi-Trotter theorem on point-line incidences [21]. In the complex plane, the equation of a line (in complex notation) is $w=p z+q$. Interpreting this equation as a transformation of the real plane, we get a homothetic map, i.e., a rigid motion followed by a scaling. We can therefore rephrase the complex version of the Szemerédi-Trotter theorem as follows. We are given a set P of m pairs of points in the (real) plane, and a set M of n homothetic maps, and we seek an upper bound on the number of times a map $\tau \in M$ and a pair $(a, b) \in P$ "coincide", in the sense that $\tau(a)=b$. In our work we only consider "complex lines" whose "slope" p has absolute value 1 (these are our rotations), and the set P is simply $S \times S$.

The main open problems raised by this work are:
(a) Obtain a cubic upper bound for the number of rotations which map only two points of the given ground planar set S to another pair of points of S. Any upper bound smaller than $O\left(s^{3.1358}\right)$ would already be a significant step towards improving the current lower bound of $\Omega\left(s^{0.8641}\right)$ on distinct distances [12].
(b) Improve further the upper bound on the number of incidences between rotations and h-parabolas. Ideally, establish Conjectures 1 and 2.

Homage and Acknowledgments

The bulk of the paper was written after the passing away of György Elekes in September 2008. However, the initial infrastructure, including the transformation of the distinct distances problem to an incidence problem in three dimensions, and many other steps, is due to him. As a matter of fact, it was already discovered by Elekes about 10 years ago, and lay dormant since then, mainly because of the lack of effective tools for tackling the incidence problem. These tools became available with the breakthrough result of Guth and Katz [9] in December 2008, and have made this paper possible. Thanks are due to Márton Elekes, who was a driving force in restarting the research on this problem.

Many thanks are due to Haim Kaplan, for many hours of helpful discussions concerning the work in this paper. As mentioned, the construction in Lemma 2 is due to him.

Finally, thanks are also due to Jozsef Solymosi for some helpful comments on the technique used in the paper.

References

[1] N. Alon and J. Spencer, The Probabilistic Method, Wiley-Interscience, New York, 1992.
[2] B. Aronov, V. Koltun, and M. Sharir, Incidences between points and circles in three and higher dimensions, Discrete Comput. Geom. 33 (2005), 185-206.
[3] P. Brass, W. Moser, and J. Pach, Research Problems in Discrete Geometry, Springer Verlag, New York, 2005.
[4] F.R.K. Chung, The number of different distances determined by n points in the plane. J. Combin. Theory Ser. A 36 (1984), 342-354.
[5] F.R.K. Chung, E. Szemerédi, and W.T. Trotter, The number of different distances determined by a set of points in the Euclidean plane, Discrete Comput. Geom. 7 (1992), 1-11.
[6] Gy. Elekes, H. Kaplan, and M. Sharir, On lines, joints, and incidences in three dimensions, manuscript, March 2009; arXiv:0905.1583.
[7] P. Erdős, On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248-250.
[8] A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, i2nd Ed., CRC Press, Boca Raton, FL, 1997.
[9] L. Guth and N. H. Katz, Algebraic methods in discrete analogs of the Kakeya problem, arXiv:0812.1043v1, 4 Dec 2008.
[10] D. Haussler and E. Welzl, Epsilon nets and simplex range queries, Diecrete Comput. Geom. 2 (1987), 127-151.
[11] H. Kaplan, M. Sharir, and E. Shustin, On lines and joints, Discrete Comput. Geom., in press. Also in arXiv:0906.0558, posted June 2, 2009.
[12] N. H. Katz and G. Tardos, A new entropy inequality for the Erdős distance problem, in Towards a Theory of Geometric Graphs, J. Pach, Ed., Contemporary Math., Vol. 342, Amer. Math. Soc. Press, Providence, RI, 2004, pp. 119-126.
[13] L. Moser, On the different distances determined by n points, Amer. Math. Monthly 59 (1952), 85-91.
[14] A. Pressley, Elementary Differential Geometry, Springer Undergraduate Mathematics Series, Springer Verlag, London, 2001.
[15] R. Quilodrán, The joints problem in \mathbb{R}^{n}, arXiv:0906.0555, posted June 2, 2009.
[16] I. R. Shafarevich, Basic Algebraic Geometry, Springer Verlag, Berlin, 1977.
[17] M. Sharir and E. Welzl, Point-line incidences in space, Combinat. Probab. Comput. 13 (2004), 203-220.
[18] J. Solymosi and Cs.D. Tóth, On a question of Bourgain about geometric incidences, Combinat. Probab. Comput. 17 (2008), 619-625.
[19] J. Spencer, E. Szemerédi, and W.T. Trotter, Unit distances in the Euclidean plane, in: Graph Theory and Combinatorics (B. Bollobás, ed.), Academic Press, New York, 1984, 293-303.
[20] L. Székely, Crossing numbers and hard Erdős problems in discrete geometry, Combinatorics, Probability and Computing 6 (1997), 353-358.
[21] E. Szemerédi and W.T. Trotter, Extremal problems in discrete geometry, Combinatorica 3 (1983), 381-392.
[22] G. Tardos, On distinct sums and distinct distances, Advances in Mathematics 180 (2003), 275-289.

[^0]: *Work by Micha Sharir has been supported by NSF Grants CCF-05-14079 and CCF-08-30272, by grant 2006/194 from the U.S.-Israeli Binational Science Foundation, by grants 155/05 and 338/09 from the Israel Science Fund, and by the Hermann Minkowski-MINERVA Center for Geometry at Tel Aviv University.
 ${ }^{\dagger}$ Department of Computer Science, Eötvös University, Budapest.
 ${ }^{\ddagger}$ School of Computer Science, Tel Aviv University, Tel Aviv 69978 Israel and Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA; michas@post.tau.ac.il.

[^1]: ${ }^{1}$ Recall that points in 3 -space represent rotations in the plane. Later on we will mostly refer to them as rotations, but in the more abstract algebraic treatment in this section we prefer to call them points.

[^2]: ${ }^{2}$ Compare this definition with the one in [6] (see also [9), where a geometrically flat point was defined there as a point incident to at least three vanishing lines, all coplanar.

[^3]: ${ }^{3}$ Here we cannot argue, as we did earlier, that the term m_{σ} is subsumed by the other terms, because of the possibility that some of the m_{σ} rotations are incident to only one or two parabolas in a subproblem.

