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Series-Parallel Graphs

• Series-parallel extension of a tree or forest

Series-extension:

Parallel-extension:



Series-Parallel Graphs

• Ex(K4) ... no K4 as a minor

• Treewidth ≤ 2



Series-Parallel Graphs

Theorem 1 [D.+Giménez+Noy]

Gn ... random vertex labelled SP-graph with n vertices

∆n ... maximum degree of Gn

=⇒ ∆n

logn
→ c in probability and E∆n ∼ c logn .



Series-Parallel Graphs

Remark 1. A corresponding result holds for 2-connected and con-

nected SP-graphs:

c ≈ 3.679771 for 2-connected SP-graphs,

c ≈ 3.482774 for connected and all SP-graphs.

Remark 2. pk ... (limiting) probability that a random vertex in a

random SP-graph has degree k.

q−1 ... radius of convergence of p(w) =
∑
k≥1

pkw
k.

=⇒ c =
1

log(1/q)
.



Series-Parallel Graphs

Heuristically: ∆n concentrated around level k0 which satisfies npk0 ≈ 1 .

• pk has “geometric” behaviour: log pk ∼ k log q (for 0 < q < 1)

=⇒ ∆n ∼ c logn, c =
1

log(1/q)

(E.g. plane trees)

• pk has “Poisson” behaviour: pk ∼ ake−a/k!

=⇒ ∆n ∼
logn

log logn

(E.g. labelled trees)



Historic Remarks

• Gao + Wormald: precise distribution of maximum degree in planar

maps and triangulations.

• McDiarmid + Reed: c logn < ∆n < C logn whp for random planar

graphs.

• Bernasconi + Panagiotou + Steger: concentration results for de-

gree distribution (uniform up to k ≤ C logn)

+ conjecture for max-degree of SP-graphs.



Maximum Degree

Relation to number of vertices of given degree

X
(k)
n ... number of vertices of degree k in Gn.

X
(>k)
n = X

(k+1)
n + X

(k+2)
n + · · · ... number of vertices of degree

> k.

∆n ... maximum degree:

∆n > k ⇐⇒ X
(>k)
n > 0

P{∆n > k} = P{X(>k)
n > 0}



Maximum Degree

First moment method

Y ... a discrete random variable on non-negative integers.

=⇒ P{Y > 0} ≤ min{1,EY }

Second moment method

Y is a non-negative random variable with finite second moment.

=⇒ P{Y > 0} ≥
(EY )2

E (Y 2)



Maximum Degree

First and second moment method

(
EX(>k)

n

)2

E (X(>k)
n )2

≤ P{∆n > k} ≤ min{1,EX(>k)
n }

X
(>k)
n ... number of vertices of degree > k.



Maximum Degree

First moments

pn,k ... probability that a random vertex in Gn has degree k

EX(k)
n = npn,k

=⇒ EX(>k)
n = E

∑
`>k

X
(`)
n

 = n
∑
`>k

pn,`.

Precise asymptotics for pn,k are needed that are uniform in n and k.



Maximum Degree

Second moments

pn,k,` ... probability that two different randomly selected vertices

in Gn have degrees k and `.

E
(
X

(k)
n X

(`)
n

)
= n(n− 1) pn,k,` (k 6= `)

=⇒ E (X(>k)
n )2 = E

∑
j>k

X
(j)
n

2

= n
∑
`>k

pn,` + n(n− 1)
∑

`1,`2>k

pn,`1,`1.

Precise asymptotics for pn,k,` are needed that are uniform in n, k, and

`.



Maximum Degree

Bounds for the distribution of ∆n

n2

( ∑
`>k

pn,`

)2

n
∑
`>k

pn,` + n(n− 1)
∑

`1,`2>k
pn,`1,`1

≤ P{∆n > k} ≤ min

1, n
∑
`>k

pn,`

 .

“Master Theorem” Suppose that

pn,k ∼ c kαqk

pn,k,` ∼ pn,kpn,` ∼ c2 (k`)αqk+`

=⇒ ∆n

logn
→

1

log(1/q)
in probability



Maximum Degree

Remark 1 More precisely we need

pn,k ∼ c kαqk uniformly for k ≤ C logn

and

pn,k = O(qk) uniformly for all n, k ≥ 0

for some q and q with 0 < q ≤ q < 1

(and similar conditions for pn,k,`).

Remark 2 (Thanks to Kosta Panagiotou)

The relations for pn,k,` can be replaced by proper estimates for the

covariance of X(k)
n X

(`)
n . For example, if Gn has many small blocks

whp then the degrees of two independently chosen vertices will be

almost independent since they will be in different blocks whp.



Series-Parallel Graphs

Generating functions

bn,m ... number of 2-connected labelled series-parallel graphs with

n vertices and m edges, bn =
∑
m bn,m

B(x, y) =
∑
n,m

bn,m
xn

n!
ym

cn,m ... number of connected labelled series-parallel graphs with n

vertices and m edges, cn =
∑
m cn,m

C(x, y) =
∑
n,m

cn,m
xn

n!
ym

gn,m ... number of labelled series-parallel graphs with n vertices and

m edges, gn =
∑
m gn,m

G(x, y) =
∑
n,m

gn,m
xn

n!
ym



Series-Parallel Graphs

Generating functions

G(x, y) = eC(x,y)

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

))
,

∂B(x, y)

∂y
=
x2

2

1 +D(x, y)

1 + y
=
x2

2
eS(x,y)

D(x, y) = (1 + y)eS(x,y) − 1,

S(x, y) = (D(x, y)− S(x, y))xD(x, y).



Series-Parallel Graphs

Series-parallel networks: series-parallel extension of an edge

Series-extension:

Parallel-extension:

0 8
There are always two poles (0,∞) coming from the original two ver-
tices.



Series-Parallel Graphs

Series-parallel networks

Parallel decomposition of a Series-parallel network:

0 8

Series decomposition of a series-parallel network

0 8



Series-Parallel Graphs

Series-parallel networks

dn,m ... number of SP-networks with n+ 2 vertices and m edges

sn,m ... number of series SP-networks n+ 2 vertices and m edges

D(x, y) =
∑
n,m

dn,m
xn

n!
ym, S(x, y) =

∑
n,m

sn,m
xn

n!
ym,

D(x, y) = eS(x,y) − 1 + yeS(x,y)

= (1 + y)eS(x,y) − 1,

S(x, y) = (D(x, y)− S(x, y))xD(x, y)



Series-Parallel Graphs

2-connected SP-graphs

A SP-network network with non-adjacent poles (which is counted by

eS(x,y)) is obtained by distinguishing, orienting and then deleting any

edge of an arbitrary 2-connected series-parallel graph:

∂B(x, y)

∂y
=
x2

2
eS(x,y)

=
x2

2

1 +D(x, y)

1 + y



Series-Parallel Graphs

Connected SP-graphs

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

)) B° B°

B°

xC°
xC°

xC°xC°

xC°
xC°

xC°

All SP-graphs

G(x, y) = eC(x,y)

G

C

C
C

C
C



Series-Parallel Graphs

Asymptotic enumeration

bn = b · ρ−n1 n−
5
2n!

(
1 +O

(
1

n

))
,

cn = c · ρ−n2 n−
5
2n!

(
1 +O

(
1

n

))
,

gn = g · ρ−n2 n−
5
2n!

(
1 +O

(
1

n

))
,

ρ1 = 0.1280038...,

ρ2 = 0.11021...,

b = 0.0010131...,

c = 0.0067912...,

g = 0.0076388...



Series-Parallel Graphs

Asymptotic enumeration

D(x, y) = (1 + y) exp

(
xD(x, y)2

1 + xD(x, y)

)
− 1 = Φ(x, y,D(x, y))

=⇒ D(x, y) = g(x, y)− h(x, y)

√
1−

x

ρ(y)
,

with ρ(1) = ρ1 = 0.12800....



Series-Parallel Graphs

Asymptotic enumeration

=⇒ ∂B(x, y)

∂y
=
x2

2

1 +D(x, y)

1 + y

= g2(x, y)− h2(x, y)

√
1−

x

ρ(y)

!!!! =⇒ B(x, y) = g3(x, y) + h3(x, y)

(
1−

x

ρ(y)

)3
2

=⇒ bn ∼ b · ρ(1)−nn−
5
2n!



Series-Parallel Graphs

Asymptotic enumeration (C′ := ∂
∂xC)

C′(x, y) = eB
′(xC′(x,y),y), v(x, y) = xC′(x, y), Φ(x, y, v) = xeB

′(v,y)

=⇒ v(x, y) = Φ(x, y, v(x, y))

=⇒ v(x, y) = xC′(x, y) = g4(x, y)− h4(x, y)

√
1−

x

ρ2(y)

with ρ2(1) = 0.11021.... (Note that v(ρ) = 0.1279695... < ρ1 !!!)

=⇒ C(x, y) = g5(x, y) + h5(x, y)

(
1−

x

ρ2(y)

)3
2
.

=⇒ cn ∼ c ρ−n2 n−
5
2n!



Series-Parallel Graphs

Asymptotic enumeration

C(x, y) = g5(x, y) + h5(x, y)

(
1−

x

ρ(y)

)3
2

=⇒ G(x, y) = eC(x,y) = g6(x, y) + h6(x, y)

(
1−

x

ρ2(y)

)3
2
.

=⇒ gn ∼ g · ρ−n2 n−
5
2n!



Root Degree

Random vertex versus root vertex

Gn ... random vertex labelled SP-graph with n vertices

G•n ... random vertex labelled SP-graph with n vertices, where one

vertex is distinguished (= root)

pn,k = probability that a random vertex in Gn has degree k

= probability that the root in G•n has degree k



Root Degree

Generating functions

b•n,k ... number of rooted 2-connected labelled series-parallel graphs

with n vertices and root-degree k.

B•(x,w) =
∑
n,k

b•n,k
xn

n!
wk

c•n,k ... number of rooted connected labelled series-parallel graphs

with n vertices and root-degree k.

C•(x,w) =
∑
n,k

c•n,k
xn

n!
wk

g•n,k ... number of rooted labelled series-parallel graphs with n ver-

tices and root-degree k.

G•(x,w) =
∑
n,k

gn,k
xn

n!
wk



Root Degree

Computation of pn,k

pn,k =
g•n,k
ngn

=
[xnwk]G•(x,w)

[xn]G•(x,1)



Root Degree

Generating functions

G•(x,w) = C•(x,w)eC(x),

C•(x,w) = eB
•(xC′(x),w),

w
∂

∂w
B•(x,w) =

∑
k≥1

kBk(x)w
k = xweS

•(x,w),

D•(x,w) = (1 + w)eS
•(x,w) − 1,

S•(x,w) = (D•(x,w)− S•(x,w))xD(x,1).



Root Degree

Series-parallel networks

d•n,k ... number of SP-networks with n+2 vertices, where the first pole

has degree k

s•n,m ... number of series SP-networks n+ 2 vertices, where the first

pole has degree k

D•(x, y) =
∑
n,k

d•n,k
xn

n!
wk, S•(x, y) =

∑
n,k

s•n,k
xn

n!
wk,

D•(x,w) = (1 + w)eS
•(x,w) − 1,

S•(x,w) = (D•(x,w)− S•(x,w))xD(x,1)



Root Degree

2-connected SP-graphs

A SP-network network with non-adjacent poles (which is counted by

eS
•(x,w)) is obtained by distinguishing, orienting and then deleting any

edge of an arbitrary 2-connected series-parallel graph:

w
∂

∂w
B•(x,w) =

∑
k≥1

kBk(x)w
k = xeS

•(x,w),

=
1 +D•(x,w)

1 + w



Root Degree

Connected SP-graphs

C•(x,w) = eB
•(xC′(x),w)

B° B°

B°

xC°
xC°

xC°xC°

xC°
xC°

xC°

All SP-graphs

G•(x,w) = C•(x,w)eC(x)

G

C

C
C

C
C



Degree Distribution

Theorem 2 [D.+Giménez+Noy]

Let pn,k be the probability that a random vertex in a random 2-

connected, connected or unrestricted series-parallel graph with n ver-

tices has degree k. Then the limit

pk := lim
n→∞ pn,k

exists. The probability generating function

p(w) =
∑
k≥1

pkw
k

can be computed explicitly and we have asymptotically

pk ∼ c qk k−
3
2.



Degree Distribution

For 2-connected series-parallel graphs the series p(w) =
∑
k≥1

pkw
k is

given by:

p(w) =
B1(1, w)

B1(1,1)
,

where B1(y, w) is given by the following procedure ...



Degree Distribution

E0(y)3

E0(y)− 1
=

(
log

1 + E0(y)

1 +R(y)
− E0(y)

)2

,

R(y) =

√
1− 1/E0(y)− 1

E0(y)
,

E1(y) = −
(

2R(y)E0(y)2(1 +R(y)E0(y))2

(2R(y)E0(y) +R(y)2E0(y)2)2 + 2R(y)(1 +R(y)E0(y))

)1

2

,

D0(y, w) = (1 + yw)e
R(y)E0(y)

1+R(y)E0(y)
D0(y,w) − 1,

D1(y, w) =
(1 +D0(y, w))R(y)E1(y)D0(y,w)

1+R(y)E0(y)

1− (1 +D0(y, w))R(y)E0(y)D0(y,w)
1+R(y)E0(y)

,

B0(y, w) =
R(y)D0(y, w)

1 +R(y)E0(y)
−
R(y)2E0(y)D0(y, w)2

2(1 +R(y)E0(y))
,

B1(y, w) =
R(y)D1(y, w)

1 +R(y)E0(y)
−
R(y)2E0(y)D0(y, w)D1(y, w)

1 +R(y)E0(y)

−
R(y)2E1(y)D0(y, w)(1 +D0(y, w)/2)

(1 +R(y)E0(y))2
.



Degree Distribution

Remark 3 [D.+Giménez+Noy] X(k)
n satisfies a central limit theorem

with

EX(k)
n ∼ µkn and VX(k)

n ∼ σ2
kn.

Remark. µk = pk.



Asymptotic Analysis

We know

pk = lim
n→∞ pn,k ∼ c qk k−

3
2

We need (uniformly for k ≤ C logn)

pn,k ∼ c qk k−
3
2.

The goal is to extend Theorem 2 to a bivariate asymptotics.



Asymptotic Analysis

Series-parallel networks

D(x,1) = 2exp

(
xD(x,1)2

1 + xD(x,1)

)
− 1 = Φ(x,D(x,1))

=⇒ D(x,1) = g1(x)− h1(x)

√
1−

x

ρ1
,

with ρ1 = 0.12800....

[Repetition of the previous case with y = 1].



Asymptotic Analysis

Series-parallel networks

D•(x,w) = 2exp

(
xD(x,1)D•(x,w)

1 + xD•(x,w)

)
− 1 = Φ(x,w,D(x,1), D•(x,w))

=⇒ D•(x,w) = g2(x,w,D(x,1))− h2(x,w,D(x,1))

√
1−

w

ρ(x,D(x,1))
,

with

ρ(x,D(x,1)) = g(x)− h(x)

√
1−

x

ρ1



Asymptotic Analysis

2-connected SP-graphs

=⇒ ∂B•(x,w)

∂w
=

1 +D•(x,w)

1 + w
D•(x,w)

= g3(x,w,D(x,1))− h3(x,w,D(x,1))

√
1−

w

ρ(x,D(x,1))

=⇒ B•(x,w) = g4(x,w,D(x,1)) + h4(x,w,D(x,1))

(
1−

w

ρ(x,D(x,1))

)3
2

= G(x,w) +H(x,w) (1− y(x)w)
3
2

with

y(x) = ρ(x,D(x,1))−1 = g(x)− h(x)
√

1− x/ρ1,

G(x,w) = g4(x,w,D(x,1)) = G1(x,w)−G2(x,w)
√

1− x/ρ1,

H(x,w) = h4(x,w,D(x,1)) = H1(x,w)−H2(x,w)
√

1− x/ρ1.



Asymptotic Analysis

Connected SP-graphs

=⇒ C•(x,w) = eB
•(xC′(x),w)

= G(x,w) +H(x,w) (1− y(x)w)
3
2

with

y(x) = y(xC′(x)) = g(x)− h(x)
√

1− x/ρ2,

G(x,w) = G1(x,w)−G2(x,w)
√

1− x/ρ2,

H(x,w) = H1(x,w)−H2(x,w)
√

1− x/ρ2.



Asymptotic Analysis

Lemma 1

f(x,w) =
∑

n,k≥0

fn,kx
nwk

= G(x,w) +H(x,w) (1− y(x)w)
3
2 ,

where

y(x) = g(x)− h(x)
√

1− x/x0,

G(x,w) = G1(x,w)−G2(x,w)
√

1− x/x0,

H(x,w) = H1(x,w)−H2(x,w)
√

1− x/x0.

with analytic functions g, h,G1, G2, H1, H2
(+ some technical conditions)

=⇒ fn,k =
3h(x0)H(x0,0,1/g(x0))

8π
g(x0)

k−1x−n0 k−
3
2n−

3
2

(
1 +O

(
1

k

))
uniformly for k ≤ C logn (for any constant C > 0) and

fn,k = O

(
(g(x0) + ε)kρ−nn−

3
2

)
.



Asymptotic Analysis

Application

B•(x,w) = G(x,w) +H(x,w) (1− y(x)w)
3
2 ,

=⇒
b•n,k
n!

∼ c1 q
k x−n0 k−

3
2 n−

3
2.

with q = g(x0) < 1.

bn

n!
∼ bx−n0 n−

5
2 (from above)

=⇒ pn,k =
b•n,k
nbn

∼ c qk k−
3
2



Double Rooting

Generating Functions

G••(x,w, t) = eC(x)G•(x,w)G•(x, t) + eC(x)C••(x,w, t),

C••(x,w, t) =
x

(xC′(x))′
∂

∂x
C•(x,w)

∂

∂x
C•(x, t)

+B••(xC′(x), w, t)C•(x,w)C•(x, t),

w
∂

∂w
B••(x,w, t) = wteS1(x,w,t) + weS(x,w)S2(x,w, t),

D1(x,w, t) = (1 + wt)eS1(x,w,t) − 1,

S1(x,w, t) = x(D•(x,w)− S•(x,w))D•(x, t),

D2(x,w, t) = (1 + wt)eS2(x,w,t),

S2(x,w, t) = x(D2(x,w, t)− S2(x,w, t))D(x,1)

+ x(D1(x,w, t)− S1(x,w, t))D
•(x, t)

+ x(D•(x,w)− S•(x,w))D2(x,1, t).



Asymptotic Analysis

B••(x,w, t) =
G(x,w, t) +H(x,w, t)W + I(x,w, t)T + J(x,w, t)WT√

1− x/ρ1

with the abbeviations

W =
√

1− y(x)w and T =
√

1− y(x)t

and with

y(x)g(x)− h(x)
√

1− x/ρ1,

G(x,w, t) = G1(x,w, t)−G2(x,w, t)
√

1− x/ρ1,

H(x,w, t) = H1(x,w, t)−H2(x,w, t)
√

1− x/ρ1,

I(x,w, t) = I1(x,w, t)− I2(x,w, t)
√

1− x/ρ1,

J(x,w, t) = J1(x,w, t)− J2(x,w, t)
√

1− x/ρ1.

The analytic behaviour of C••(x,w, t) is of the same kind.



Asymptotic Analysis

Lemma 2

f(x,w, t) =
∑
n,k,`

fn,k,`x
nwkt`

=
G(x,w, t) +H(x,w, t)W + I(x,w, t)T + J(x,w, t)WT√

1− x/x0
,

with the abbeviations W =
√

1− y(x)w and T =
√

1− y(x)t, wher

y(x)g(x)− h(x)
√

1− x/x0,

G(x,w, t) = G1(x,w, t)−G2(x,w, t)
√

1− x/x0,

H(x,w, t) = H1(x,w, t)−H2(x,w, t)
√

1− x/x0,

I(x,w, t) = I1(x,w, t)− I2(x,w, t)
√

1− x/x0,

J(x,w, t) = J1(x,w, t)− J2(x,w, t)
√

1− x/x0

with analytic functions g, h,G1, G2, H1, H2, I1, I2, J1, J2
(+ some technical conditions)



Asymptotic Analysis

Lemma 2 (cont.)

=⇒ fn,k,` ∼
J
(
x0,0,

1
g(x0)

, 1
g(x0)

)
4π3/2

g(x0)
k+`x−n0 (k`)−

3
2n−

1
2

uniformly for k, ` ≤ C logn (for any constant C > 0) and

fn,k,` = O

(
(g(x0) + ε)k+`x−n0 n−

1
2

)
.

uniformly for all n, k, ` ≥ 0 for every ε > 0.

Remark This proves pn,k,` ∼ c2qk+`(k`)−
3
2.



Proof of Lemma 1

1. Singularity Analysis

(following Flajolet-Odlyzko)

Suppose that

y(x) = (1− x/x0)
−α .

Then

yn = [xn]y(x) = (−1)n
(−α
n

)
xn0 =

nα−1

Γ(α)
xn0 +O

(
nα−2xn0

)
.



Proof of Lemma 1

1. Singularity Analysis

Cauchy’s formula:

(−1)n
(−α
n

)
xn0 =

1

2πi

∫
γ
(1− x/x0)

−α x−n−1 dx.

γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4:

γ1 =

{
x = x0

(
1−

i+ (logn)2 − t

n

)
: 0 ≤ t ≤ (logn)2

}
,

γ2 =
{
x = x0

(
1−

1

n
e−iφ

)
: −

π

2
≤ φ ≤

π

2

}
,

γ3 =
{
x = x0

(
1 +

i+ t

n

)
: 0 ≤ t ≤ (logn)2

}
,

and γ4 is a circular arc centred at the origin and making γ a closed

curve.



1. Singularity Analysis

Path of integration

g

x0

H



1. Singularity Analysis

Substitution for x ∈ γ1 ∪ γ2 ∪ γ3:

x/x0 = 1 +
t

n
=⇒ x−n−1 = e−t

(
1 +O

(
t2

n

))

With Hankel’s integral representation for 1/Γ(α)

1

2πi

∫
γ1∪γ2∪γ3

(1− x/x0)
−αx−n−1 dx =

nα−1xn0
2πi

∫
H
(−t)−αe−t dt

+
nα−2xn0

2πi

∫
H
(−t)−αe−t · O

(
t2
)
dt

= nα−1 1

Γ(α)
xn0 +O

(
nα−2xn0

)
.

H = {t | |t| = 1,<t ≤ 0} ∪ {t |0 < <t ≤ log2 n,=t = ±1}:

H



1. Singularity Analysis

Remark

x ∈ γ1 ∪ γ2 ∪ γ3 =⇒ 1

n
≤
∣∣∣∣∣1− x

x0

∣∣∣∣∣ ≤ (logn)2

n



Asymptotic Analysis

Lemma 1 (the same as before)

f(x,w) =
∑

n,k≥0

fn,kx
nwk

= G(x,w) +H(x,w) (1− y(x)w)
3
2 ,

where

y(x) = g(x)− h(x)
√

1− x/x0,

G(x,w) = G1(x,w)−G2(x,w)
√

1− x/x0,

H(x,w) = H1(x,w)−H2(x,w)
√

1− x/x0.

with analytic functions g, h,G1, G2, H1, H2
(+ some technical conditions)

=⇒ fn,k =
3h(x0)H(x0,0,1/g(x0))

8π
g(x0)

k−1x−n0 k−
3
2n−

3
2

(
1 +O

(
1

k

))
uniformly for k ≤ C logn (for any constant C > 0) and

fn,k = O

(
(g(x0) + ε)kρ−nn−

3
2

)
.



Proof of Lemma 1

2. Cauchy’s formula

fn,k =
1

(2πi)2

∫
γ

∫
Γ

f(x,w)

xn+1wk+1
dx dw

Integration with respect to x: γ = γ1 ∪ γ2 ∪ γ3 ∪ γ4, where

γ1 =

{
x = x0

(
1−

i+ (logn)2 − t

n

)
: 0 ≤ t ≤ (logn)2

}
,

γ2 =
{
x = x0

(
1−

1

n
e−iφ

)
: −

π

2
≤ φ ≤

π

2

}
,

γ3 =
{
x = x0

(
1 +

i+ t

n

)
: 0 ≤ t ≤ (logn)2

}
,

and γ4 is a circular arc centred at the origin and making γ a closed

curve.



2. Cauchy’s formula

Integration with respect to w: Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, where

Γ1 =

{
w = w0

(
1−

i+ (log k)2 − r

k

)
: 0 ≤ s ≤ (log k)2

}
,

Γ2 =
{
w = w0

(
1−

1

k
e−iψ

)
: −

π

2
≤ ψ ≤

π

2

}
,

Γ3 =
{
w = w0

(
1 +

i+ s

w

)
: 0 ≤ s ≤ (log k)2

}
,

and Γ4 is a circular arc centred at the origin and making Γ a closed
curve.
(w0 = 1/g(x0))

g

x0

G

w0



2. Cauchy’s formula

Remark

x ∈ γ1 ∪ γ2 ∪ γ3 and w ∈ Γ1 ∪ Γ2 ∪ Γ3:

1

n
≤
∣∣∣∣∣1− x

x0

∣∣∣∣∣ ≤ (logn)2

n
and

1

k
≤
∣∣∣∣∣1− w

w0

∣∣∣∣∣ ≤ (log k)2

k

For k ≤ C logn we thus have

X =

√
1−

x

x0
is much smaller than W = 1−

w

w0



Proof of Lemma 1

3. Local expansion around the singularity

y(x) = g(x)− h(x)
√

1− x/x0

= g(x0)− h(x0)X +O(X2)

w = w0 + w − w0 = w0(1−W )

1− y(x)w = W + h(x0)w0X +O(X2)

(1− y(x)w)
3
2 =

(
W + h(x0)w0X +O(X2)

)3/2
= W3/2

(
1 +

(3/2)h(x0)w0X

W
+O

(
X2

W

))

= W3/2 +
3

2
h(x0)w0 XW1/2 +O

(
X2W1/2

)



3. Local expansion around the singularity

XW1/2 =

(
1−

x

x0

)1
2
(
1−

w

w0

)1
2

... Cauchy integration provides the asymptotic leading term

1

4π
x−n0 w−k0 n−

3
2 k−

3
2



Random Planar Graphs

Conjecture for maximum degree ∆n

∆n

logn
→

1

log(1/q)
in probability

and

E∆n ∼
logn

log(1/q)

where q = 0.6734506... appear in the asymptotics of pk ∼ c k−
1
2qk;

1/ log(1/q) = 2.529464248...



Random Planar Graphs

Degree Distribution

Theorem [D.+Giménez+Noy]

Let pn,k be the probability that a random vertex in a random planar

graph Rn has degree k. Then the limit

pk := lim
n→∞ pn,k

exists. The probability generating function

p(w) =
∑
k≥1

pkw
k

can be explicitly computed; pk ∼ c k−
1
2qk for some c > 0 and 0 < q < 1.

p1 p2 p3 p4 p5 p6

0.0367284 0.1625794 0.2354360 0.1867737 0.1295023 0.0861805



Random Planar Graphs

Counting Generating Functions

G(x, y) = exp (C(x, y)) ,

∂C(x, y)

∂x
= exp

(
∂B

∂x

(
x
∂C(x, y)

∂x
, y

))
,

∂B(x, y)

∂y
=
x2

2

1 +D(x, y)

1 + y
,

M(x,D)

2x2D
= log

(
1 +D

1 + y

)
−

xD2

1 + xD
,

M(x, y) = x2y2
(

1

1 + xy
+

1

1 + y
− 1−

(1 + U)2(1 + V )2

(1 + U + V )3

)
,

U = xy(1 + V )2,

V = y(1 + U)2.



Random Planar Graphs

Asymptotic enumeration of planar graphs

bn = b · ρ−n1 n−
7
2n!

(
1 +O

(
1

n

))
,

cn = c · ρ−n2 n−
7
2n!

(
1 +O

(
1

n

))
,

gn = g · ρ−n2 n−
7
2n!

(
1 +O

(
1

n

))

ρ1 = 0.03819...,

ρ2 = 0.03672841...,

b = 0.3704247487... · 10−5,

c = 0.4104361100... · 10−5,

g = 0.4260938569... · 10−5



Random Planar Graphs

Generating functions for the degree distribution of planar graphs

C• = ∂C
∂x ... GF, where one vertex is marked

w ... additional variable that counts the degree of the marked vertex

Generating functions:

G•(x, y, w) all rooted planar graphs

C•(x, y, w) connected rooted planar graphs

B•(x, y, w) 2-connected rooted planar graphs

T •(x, y, w) 3-connected rooted planar graphs



Random Planar Graphs

G•(x, y, w) = exp (C(x, y,1))C•(x, y, w),

C•(x, y, w) = exp
(
B•

(
xC•(x, y,1), y, w

))
,

w
∂B•(x, y, w)

∂w
= xyw exp

(
S(x, y, w) +

1

x2D(x, y, w)
T •

(
x,D(x, y,1),

D(x, y, w)

D(x, y,1)

))

D(x, y, w) = (1 + yw) exp

(
S(x, y, w) +

1

x2D(x, y, w)
×

× T •
(
x,D(x, y,1),

D(x, y, w)

D(x, y,1)

))
− 1

S(x, y, w) = xD(x, y,1) (D(x, y, w)− S(x, y, w)) ,

T •(x, y, w) =
x2y2w2

2

(
1

1 + wy
+

1

1 + xy
− 1−

−
(u+ 1)2

(
−w1(u, v, w) + (u− w+ 1)

√
w2(u, v, w)

)
2w(vw+ u2 + 2u+ 1)(1 + u+ v)3

 ,
u(x, y) = xy(1 + v(x, y))2, v(x, y) = y(1 + u(x, y))2.



Degree Distribution

with polynomials w1 = w1(u, v, w) and w2 = w2(u, v, w) given by

w1 =− uvw2 + w(1 + 4v+ 3uv2 + 5v2 + u2 + 2u+ 2v3 + 3u2v+ 7uv)

+ (u+ 1)2(u+ 2v+ 1 + v2),

w2 =u2v2w2 − 2wuv(2u2v+ 6uv+ 2v3 + 3uv2 + 5v2 + u2 + 2u+ 4v+ 1)

+ (u+ 1)2(u+ 2v+ 1 + v2)2.



Random Planar Graphs

Singular structure of B•(x,1, w)

∂B•(x,1, w)

∂w
= K(X,W ) +

√
L(X,W )

X =

√
1−

x

x0
, W = 1−

w

w0

L(X,W ) = X3h1(W ) +X2Wh2(X,W ) + 0 +W3h4(W )



Random Planar Graphs

Lemma 1.2

f(x,w) =
∑

n,k≥0

fn,kx
nwk

= K(X,W ) +
√
L(X,W ) ,

where X =
√

1− x/x0 and W = 1− w/w0 and

L(X,W ) = X3h1(W ) +X2Wh2(X,W ) + 0 +W3h4(W )

with analytic functions K,h1, h2, h4

(+ some technical conditions)

=⇒ fn,k = c x−n0 w−k0 k
1
2n−

5
2

(
1 +O

(
1

k

))



Random Planar Graphs

Work in progress...

• Generating functions for double rooting

• Singular structure of generating functions

• Lemma 2.2



Thank You for Your Attention!


