## THE MAXIMUM DEGREE OF SERIES PARALLEL GRAPHS

Michael Drmota*<br>joint work with Omer Giménez and Marc Noy<br>Institut für Diskrete Mathematik und Geometrie<br>TU Wien<br>michael.drmota@tuwien.ac.at<br>http://www.dmg.tuwien.ac.at/drmota/<br>* supported by the Austrian Science Foundation FWF, grant S9600.

## Series-Parallel Graphs



- Series-parallel extension of a tree or forest

Series-extension:


Parallel-extension:


## Series-Parallel Graphs



- $\operatorname{Ex}\left(K_{4}\right) \ldots$ no $K_{4}$ as a minor
- Treewidth $\leq 2$


## Series-Parallel Graphs

Theorem 1 [D.+Giménez+Noy]
$G_{n} \ldots$ random vertex labelled SP-graph with $n$ vertices
$\Delta_{n} \ldots$ maximum degree of $G_{n}$

$$
\Longrightarrow \quad \frac{\Delta_{n}}{\log n} \rightarrow c \quad \text { in probability } \quad \text { and } \quad \mathbb{E} \Delta_{n} \sim c \log n .
$$

## Series-Parallel Graphs

Remark 1. A corresponding result holds for 2-connected and connected SP-graphs:

$$
\begin{array}{ll}
c \approx 3.679771 & \text { for 2-connected SP-graphs } \\
c \approx 3.482774 & \text { for connected and all SP-graphs. }
\end{array}
$$

Remark 2. $p_{k} \ldots$ (limiting) probability that a random vertex in a random SP-graph has degree $k$.
$q^{-1} \ldots$ radius of convergence of $p(w)=\sum_{k \geq 1} p_{k} w^{k}$.

$$
\Longrightarrow \quad c=\frac{1}{\log (1 / q)} .
$$

## Series-Parallel Graphs

Heuristically: $\Delta_{n}$ concentrated around level $k_{0}$ which satisfies $n p_{k_{0}} \approx 1$.

- $p_{k}$ has "geometric" behaviour: $\log p_{k} \sim k \log q($ for $0<q<1)$

$$
\Longrightarrow \quad \Delta_{n} \sim c \log n, \quad c=\frac{1}{\log (1 / q)}
$$

(E.g. plane trees)

- $p_{k}$ has "Poisson" behaviour: $p_{k} \sim a^{k} e^{-a} / k$ !

$$
\Longrightarrow \quad \Delta_{n} \sim \frac{\log n}{\log \log n}
$$

(E.g. labelled trees)

## Historic Remarks

- Gao + Wormald: precise distribution of maximum degree in planar maps and triangulations.
- McDiarmid + Reed: $c \log n<\Delta_{n}<C \log n$ whp for random planar graphs.
- Bernasconi + Panagiotou + Steger: concentration results for degree distribution (uniform up to $k \leq C \log n$ ) + conjecture for max-degree of SP-graphs.


## Maximum Degree

Relation to number of vertices of given degree
$X_{n}^{(k)} \ldots$ number of vertices of degree $k$ in $G_{n}$.
$X_{n}^{(>k)}=X_{n}^{(k+1)}+X_{n}^{(k+2)}+\cdots \ldots$ number of vertices of degree $>k$.
$\Delta_{n} \ldots$ maximum degree:

$$
\Delta_{n}>k \Longleftrightarrow X_{n}^{(>k)}>0
$$

$$
\mathbb{P}\left\{\Delta_{n}>k\right\}=\mathbb{P}\left\{X_{n}^{(>k)}>0\right\}
$$

## Maximum Degree

First moment method
$Y \ldots$ a discrete random variable on non-negative integers.

$$
\Longrightarrow \quad \mathbb{P}\{Y>0\} \leq \min \{1, \mathbb{E} Y\}
$$

Second moment method
$Y$ is a non-negative random variable with finite second moment.

$$
\Longrightarrow \quad \mathbb{P}\{Y>0\} \geq \frac{(\mathbb{E} Y)^{2}}{\mathbb{E}\left(Y^{2}\right)}
$$

## Maximum Degree

First and second moment method

$$
\frac{\left(\mathbb{E} X_{n}^{(>k)}\right)^{2}}{\mathbb{E}\left(X_{n}^{(>k)}\right)^{2}} \leq \mathbb{P}\left\{\Delta_{n}>k\right\} \leq \min \left\{1, \mathbb{E} X_{n}^{(>k)}\right\}
$$

$X_{n}^{(>k)} \ldots$ number of vertices of degree $>k$.

## Maximum Degree

First moments
$p_{n, k} \ldots$ probability that a random vertex in $G_{n}$ has degree $k$

$$
\begin{gathered}
\mathbb{E} X_{n}^{(k)}=n p_{n, k} \\
\Longrightarrow \mathbb{E} X_{n}^{(>k)}=\mathbb{E}\left(\sum_{\ell>k} X_{n}^{(\ell)}\right)=n \sum_{\ell>k} p_{n, \ell}
\end{gathered}
$$

Precise asymptotics for $p_{n, k}$ are needed that are uniform in $n$ and $k$.

## Maximum Degree

## Second moments

$p_{n, k, \ell} \ldots$ probability that two different randomly selected vertices in $G_{n}$ have degrees $k$ and $\ell$.

$$
\mathbb{E}\left(X_{n}^{(k)} X_{n}^{(\ell)}\right)=n(n-1) p_{n, k, \ell} \quad(k \neq \ell)
$$

$\Longrightarrow \mathbb{E}\left(X_{n}^{(>k)}\right)^{2}=\mathbb{E}\left(\sum_{j>k} X_{n}^{(j)}\right)^{2}=n \sum_{\ell>k} p_{n, \ell}+n(n-1) \sum_{\ell_{1}, \ell_{2}>k} p_{n, \ell_{1}, \ell_{1}}$.

Precise asymptotics for $p_{n, k, \ell}$ are needed that are uniform in $n, k$, and $\ell$.

## Maximum Degree

Bounds for the distribution of $\Delta_{n}$

$$
\frac{n^{2}\left(\sum_{\ell>k} p_{n, \ell}\right)^{2}}{n \sum_{\ell>k} p_{n, \ell}+n(n-1) \sum_{\ell_{1}, \ell_{2}>k} p_{n, \ell_{1}, \ell_{1}}} \leq \mathbb{P}\left\{\Delta_{n}>k\right\} \leq \min \left\{1, n \sum_{\ell>k} p_{n, \ell}\right\}
$$

"Master Theorem" Suppose that

$$
\begin{aligned}
p_{n, k} & \sim c k^{\alpha} q^{k} \\
p_{n, k, \ell} & \sim p_{n, k} p_{n, \ell} \sim c^{2}(k \ell)^{\alpha} q^{k+\ell} \\
\Longrightarrow \quad \frac{\Delta_{n}}{\log n} & \rightarrow \frac{1}{\log (1 / q)} \quad \text { in probability }
\end{aligned}
$$

## Maximum Degree

Remark 1 More precisely we need

$$
p_{n, k} \sim c k^{\alpha} q^{k} \quad \text { uniformly for } k \leq C \log n
$$

and

$$
p_{n, k}=O\left(\bar{q}^{k}\right) \quad \text { uniformly for all } n, k \geq 0
$$

for some $q$ and $\bar{q}$ with $0<q \leq \bar{q}<1$ (and similar conditions for $p_{n, k, \ell}$ ).

Remark 2 (Thanks to Kosta Panagiotou)
The relations for $p_{n, k, \ell}$ can be replaced by proper estimates for the covariance of $X_{n}^{(k)} X_{n}^{(\ell)}$. For example, if $G_{n}$ has many small blocks whp then the degrees of two independently chosen vertices will be almost independent since they will be in different blocks whp.

## Series-Parallel Graphs

## Generating functions

$b_{n, m} \ldots$ number of 2-connected labelled series-parallel graphs with $n$ vertices and $m$ edges, $b_{n}=\sum_{m} b_{n, m}$

$$
B(x, y)=\sum_{n, m} b_{n, m} \frac{x^{n}}{n!} y^{m}
$$

$c_{n, m} \ldots$ number of connected labelled series-parallel graphs with $n$ vertices and $m$ edges, $c_{n}=\sum_{m} c_{n, m}$

$$
C(x, y)=\sum_{n, m} c_{n, m} \frac{x^{n}}{n!} y^{m}
$$

$g_{n, m} \ldots$ number of labelled series-parallel graphs with $n$ vertices and $m$ edges, $g_{n}=\sum_{m} g_{n, m}$

$$
G(x, y)=\sum_{n, m} g_{n, m} \frac{x^{n}}{n!} y^{m}
$$

## Series-Parallel Graphs

## Generating functions

$$
\begin{aligned}
G(x, y) & =e^{C(x, y)} \\
\frac{\partial C(x, y)}{\partial x} & =\exp \left(\frac{\partial B}{\partial x}\left(x \frac{\partial C(x, y)}{\partial x}, y\right)\right) \\
\frac{\partial B(x, y)}{\partial y} & =\frac{x^{2}}{2} \frac{1+D(x, y)}{1+y}=\frac{x^{2}}{2} e^{S(x, y)} \\
D(x, y) & =(1+y) e^{S(x, y)}-1 \\
S(x, y) & =(D(x, y)-S(x, y)) x D(x, y)
\end{aligned}
$$

## Series-Parallel Graphs

Series-parallel networks: series-parallel extension of an edge Series-extension:


Parallel-extension:


There are always two poles $(0, \infty)$ coming from the original two vertices.

## Series-Parallel Graphs

## Series-parallel networks

Parallel decomposition of a Series-parallel network:


Series decomposition of a series-parallel network


## Series-Parallel Graphs

## Series-parallel networks

$d_{n, m} \ldots$ number of SP-networks with $n+2$ vertices and $m$ edges
$s_{n, m} \ldots$ number of series SP-networks $n+2$ vertices and $m$ edges

$$
D(x, y)=\sum_{n, m} d_{n, m} \frac{x^{n}}{n!} y^{m}, \quad S(x, y)=\sum_{n, m} s_{n, m} \frac{x^{n}}{n!} y^{m},
$$

$$
\begin{aligned}
D(x, y) & =e^{S(x, y)}-1+y e^{S(x, y)} \\
& =(1+y) e^{S(x, y)}-1 \\
S(x, y) & =(D(x, y)-S(x, y)) x D(x, y)
\end{aligned}
$$

## Series-Parallel Graphs

## 2-connected SP-graphs

A SP-network network with non-adjacent poles (which is counted by $\left.e^{S(x, y)}\right)$ is obtained by distinguishing, orienting and then deleting any edge of an arbitrary 2 -connected series-parallel graph:

$$
\begin{aligned}
\frac{\partial B(x, y)}{\partial y} & =\frac{x^{2}}{2} e^{S(x, y)} \\
& =\frac{x^{2}}{2} \frac{1+D(x, y)}{1+y}
\end{aligned}
$$

## Series-Parallel Graphs

Connected SP-graphs

$$
\frac{\partial C(x, y)}{\partial x}=\exp \left(\frac{\partial B}{\partial x}\left(x \frac{\partial C(x, y)}{\partial x}, y\right)\right)
$$



All SP-graphs


$$
G(x, y)=e^{C(x, y)}
$$

## Series-Parallel Graphs

Asymptotic enumeration

$$
\begin{aligned}
b_{n} & =b \cdot \rho_{1}^{-n} n^{-\frac{5}{2}} n!\left(1+O\left(\frac{1}{n}\right)\right) \\
c_{n} & =c \cdot \rho_{2}^{-n} n^{-\frac{5}{2}} n!\left(1+O\left(\frac{1}{n}\right)\right) \\
g_{n} & =g \cdot \rho_{2}^{-n} n^{-\frac{5}{2}} n!\left(1+O\left(\frac{1}{n}\right)\right), \\
\rho_{1} & =0.1280038 \ldots \\
\rho_{2} & =0.11021 \ldots \\
b & =0.0010131 \ldots \\
c & =0.0067912 \ldots \\
g & =0.0076388 \ldots
\end{aligned}
$$

## Series-Parallel Graphs

## Asymptotic enumeration

$$
\begin{aligned}
& \qquad \begin{aligned}
D(x, y) & =(1+y) \exp \left(\frac{x D(x, y)^{2}}{1+x D(x, y)}\right)-1=\Phi(x, y, D(x, y)) \\
& \Longrightarrow D(x, y)=g(x, y)-h(x, y) \sqrt{1-\frac{x}{\rho(y)}} \\
\text { with } \rho(1)=\rho_{1} & =0.12800 \ldots
\end{aligned}
\end{aligned}
$$

## Series-Parallel Graphs

## Asymptotic enumeration

$$
\begin{aligned}
& \Longrightarrow \frac{\partial B(x, y)}{\partial y}=\frac{x^{2}}{2} \frac{1+D(x, y)}{1+y} \\
&=g_{2}(x, y)-h_{2}(x, y) \sqrt{1-\frac{x}{\rho(y)}} \\
&!!!!\Longrightarrow B(x, y)=g_{3}(x, y)+h_{3}(x, y)\left(1-\frac{x}{\rho(y)}\right)^{\frac{3}{2}} \\
& \Longrightarrow \quad b_{n} \sim b \cdot \rho(1)^{-n} n^{-\frac{5}{2}} n!
\end{aligned}
$$

## Series-Parallel Graphs

Asymptotic enumeration ( $C^{\prime}:=\frac{\partial}{\partial x} C$ )

$$
\begin{aligned}
C^{\prime}(x, y) & =e^{B^{\prime}\left(x C^{\prime}(x, y), y\right)}, v(x, y)=x C^{\prime}(x, y), \Phi(x, y, v)=x e^{B^{\prime}(v, y)} \\
& \Longrightarrow v(x, y)=\Phi(x, y, v(x, y)) \\
& \Longrightarrow v(x, y)=x C^{\prime}(x, y)=g_{4}(x, y)-h_{4}(x, y) \sqrt{1-\frac{x}{\rho_{2}(y)}}
\end{aligned}
$$

with $\rho_{2}(1)=0.11021 \ldots .\left(\right.$ Note that $\left.v(\rho)=0.1279695 \ldots<\rho_{1}!!!\right)$

$$
\Longrightarrow \quad C(x, y)=g_{5}(x, y)+h_{5}(x, y)\left(1-\frac{x}{\rho_{2}(y)}\right)^{\frac{3}{2}}
$$

$$
\Longrightarrow \quad c_{n} \sim c \rho_{2}^{-n} n^{-\frac{5}{2}} n!
$$

## Series-Parallel Graphs

## Asymptotic enumeration

$$
\begin{gathered}
C(x, y)=g_{5}(x, y)+h_{5}(x, y)\left(1-\frac{x}{\rho(y)}\right)^{\frac{3}{2}} \\
\Longrightarrow \quad G(x, y)=e^{C(x, y)}=g_{6}(x, y)+h_{6}(x, y)\left(1-\frac{x}{\rho_{2}(y)}\right)^{\frac{3}{2}} \\
\Longrightarrow \quad g_{n} \sim g \cdot \rho_{2}^{-n} n^{-\frac{5}{2}} n!
\end{gathered}
$$

## Root Degree

Random vertex versus root vertex
$G_{n} \ldots$ random vertex labelled SP-graph with $n$ vertices
$G_{n}^{\bullet} \ldots$ random vertex labelled SP-graph with $n$ vertices, where one vertex is distinguished (= root)
$p_{n, k}=$ probability that a random vertex in $G_{n}$ has degree $k$ $=$ probability that the root in $G_{n}^{\bullet}$ has degree $k$

## Root Degree

## Generating functions

$b_{n, k}^{\bullet} \ldots$ number of rooted 2-connected labelled series-parallel graphs with $n$ vertices and root-degree $k$.

$$
B^{\bullet}(x, w)=\sum_{n, k} b_{n, k}^{\bullet} \frac{x^{n}}{n!} w^{k}
$$

$c_{n, k}^{\bullet} \ldots$ number of rooted connected labelled series-parallel graphs with $n$ vertices and root-degree $k$.

$$
C^{\bullet}(x, w)=\sum_{n, k} c_{n, k}^{\bullet} \frac{x^{n}}{n!} w^{k}
$$

$g_{n, k}^{\bullet} \ldots$ number of rooted labelled series-parallel graphs with $n$ vertices and root-degree $k$.

$$
G^{\bullet}(x, w)=\sum_{n, k} g_{n, k} \frac{x^{n}}{n!} w^{k}
$$

## Root Degree

Computation of $p_{n, k}$

$$
p_{n, k}=\frac{g_{n, k}^{\bullet}}{n g_{n}}=\frac{\left[x^{n} w^{k}\right] G^{\bullet}(x, w)}{\left[x^{n}\right] G^{\bullet}(x, 1)}
$$

## Root Degree

## Generating functions

$$
\begin{aligned}
G^{\bullet}(x, w) & =C^{\bullet}(x, w) e^{C(x)} \\
C^{\bullet}(x, w) & =e^{B^{\bullet}\left(x C^{\prime}(x), w\right)} \\
w \frac{\partial}{\partial w} B^{\bullet}(x, w) & =\sum_{k \geq 1} k B_{k}(x) w^{k}=x w e^{S^{\bullet}(x, w)} \\
D^{\bullet}(x, w) & =(1+w) e^{S^{\bullet}(x, w)}-1 \\
S^{\bullet}(x, w) & =\left(D^{\bullet}(x, w)-S^{\bullet}(x, w)\right) x D(x, 1)
\end{aligned}
$$

## Root Degree

## Series-parallel networks

$d_{n, k}^{\bullet} \ldots$ number of SP-networks with $n+2$ vertices, where the first pole has degree $k$
$s_{n, m}^{\bullet} \ldots$ number of series SP-networks $n+2$ vertices, where the first pole has degree $k$

$$
D^{\bullet}(x, y)=\sum_{n, k} d_{n, k}^{\bullet} \frac{x^{n}}{n!} w^{k}, \quad S^{\bullet}(x, y)=\sum_{n, k} s_{n, k}^{\bullet} \frac{x^{n}}{n!} w^{k}
$$

$$
\begin{aligned}
D^{\bullet}(x, w) & =(1+w) e^{S^{\bullet}(x, w)}-1 \\
S^{\bullet}(x, w) & =\left(D^{\bullet}(x, w)-S^{\bullet}(x, w)\right) x D(x, 1)
\end{aligned}
$$

## Root Degree

## 2-connected SP-graphs

A SP-network network with non-adjacent poles (which is counted by $e^{S^{\bullet}(x, w)}$ ) is obtained by distinguishing, orienting and then deleting any edge of an arbitrary 2 -connected series-parallel graph:

$$
\begin{aligned}
w \frac{\partial}{\partial w} B^{\bullet}(x, w)=\sum_{k \geq 1} k B_{k}(x) w^{k} & =x e^{S^{\bullet}(x, w)} \\
& =\frac{1+D^{\bullet}(x, w)}{1+w}
\end{aligned}
$$

## Root Degree

Connected SP-graphs

$$
C^{\bullet}(x, w)=e^{B^{\bullet}\left(x C^{\prime}(x), w\right)}
$$



All SP-graphs


$$
G^{\bullet}(x, w)=C^{\bullet}(x, w) e^{C(x)}
$$

## Degree Distribution

## Theorem 2 [D.+Giménez+Noy]

Let $p_{n, k}$ be the probability that a random vertex in a random 2connected, connected or unrestricted series-parallel graph with $n$ vertices has degree $k$. Then the limit

$$
p_{k}:=\lim _{n \rightarrow \infty} p_{n, k}
$$

exists. The probability generating function

$$
p(w)=\sum_{k \geq 1} p_{k} w^{k}
$$

can be computed explicitly and we have asymptotically

$$
p_{k} \sim c q^{k} k^{-\frac{3}{2}}
$$

## Degree Distribution

For 2-connected series-parallel graphs the series $p(w)=\sum_{k \geq 1} p_{k} w^{k}$ is given by:

$$
p(w)=\frac{B_{1}(1, w)}{B_{1}(1,1)}
$$

where $B_{1}(y, w)$ is given by the following procedure ...

## Degree Distribution

$$
\begin{aligned}
\frac{E_{0}(y)^{3}}{E_{0}(y)-1} & =\left(\log \frac{1+E_{0}(y)}{1+R(y)}-E_{0}(y)\right)^{2}, \\
R(y) & =\frac{\sqrt{1-1 / E_{0}(y)}-1}{E_{0}(y)}, \\
E_{1}(y) & =-\left(\frac{2 R(y) E_{0}(y)^{2}\left(1+R(y) E_{0}(y)\right)^{2}}{\left(2 R(y) E_{0}(y)+R(y)^{2} E_{0}(y)^{2}\right)^{2}+2 R(y)\left(1+R(y) E_{0}(y)\right)}\right)^{\frac{1}{2}}, \\
D_{0}(y, w) & =(1+y w), \frac{R(t) E_{0}(w)}{1+R(t) e_{0}(w)} D_{0}(y, w)-1, \\
D_{1}(y, w) & =\frac{\left(1+D_{0}(y, w)\right) \frac{\left.R(y) E_{1}(y)\right)(y, w)}{1+R(y) E_{0}(y)}}{1-\left(1+D_{0}(y, w)\right) \frac{R(y) E_{0}(y) D_{0}(y, w)}{1+R(y) E_{0}(y)}}, \\
B_{0}(y, w) & =\frac{R(y) D_{0}(y, w)}{1+R(y) E_{0}(y)}-\frac{R(y)^{2} E_{0}(y) D_{0}(y, w)^{2}}{2\left(1+R(y) E_{0}(y)\right)}, \\
B_{1}(y, w) & =\frac{R(y) D_{1}(y, w)}{1+R(y) E_{0}(y)}-\frac{R(y)^{2} E_{0}(y) D_{0}(y, w) D_{1}(y, w)}{1+R(y) E_{0}(y)} \\
& -\frac{R(y)^{2} E_{1}(y) D_{0}(y, w)\left(1+D_{0}(y, w) / 2\right)}{\left(1+R(y) E_{0}(y)\right)^{2}} .
\end{aligned}
$$

## Degree Distribution

Remark 3 [D.+Giménez+Noy] $X_{n}^{(k)}$ satisfies a central limit theorem with

$$
\mathbb{E} X_{n}^{(k)} \sim \mu_{k} n \quad \text { and } \quad \mathbb{V} X_{n}^{(k)} \sim \sigma_{k}^{2} n .
$$

Remark. $\mu_{k}=p_{k}$.

## Asymptotic Analysis

We know

$$
p_{k}=\lim _{n \rightarrow \infty} p_{n, k} \sim c q^{k} k^{-\frac{3}{2}}
$$

We need (uniformly for $k \leq C \log n$ )

$$
p_{n, k} \sim c q^{k} k^{-\frac{3}{2}}
$$

The goal is to extend Theorem 2 to a bivariate asymptotics.

## Asymptotic Analysis

## Series-parallel networks

$$
\begin{aligned}
D(x, 1) & =2 \exp \left(\frac{x D(x, 1)^{2}}{1+x D(x, 1)}\right)-1=\Phi(x, D(x, 1)) \\
& \Longrightarrow D(x, 1)=g_{1}(x)-h_{1}(x) \sqrt{1-\frac{x}{\rho_{1}}}
\end{aligned}
$$

with $\rho_{1}=0.12800 \ldots$
[Repetition of the previous case with $y=1$ ].

## Asymptotic Analysis

## Series-parallel networks

$$
\begin{aligned}
& D^{\bullet}(x, w)=2 \exp \left(\frac{x D(x, 1) D^{\bullet}(x, w)}{1+x D^{\bullet}(x, w)}\right)-1=\Phi\left(x, w, D(x, 1), D^{\bullet}(x, w)\right) \\
& \Longrightarrow \quad D^{\bullet}(x, w)=g_{2}(x, w, D(x, 1))-h_{2}(x, w, D(x, 1)) \sqrt{1-\frac{w}{\rho(x, D(x, 1))}},
\end{aligned}
$$

with

$$
\rho(x, D(x, 1))=\bar{g}(x)-\bar{h}(x) \sqrt{1-\frac{x}{\rho_{1}}}
$$

## Asymptotic Analysis

## 2-connected SP-graphs

$$
\begin{aligned}
\Longrightarrow \quad \frac{\partial B^{\bullet}(x, w)}{\partial w} & =\frac{1+D^{\bullet}(x, w)}{1+w} D^{\bullet}(x, w) \\
& =g_{3}(x, w, D(x, 1))-h_{3}(x, w, D(x, 1)) \sqrt{1-\frac{w}{\rho(x, D(x, 1))}} \\
\Longrightarrow \quad B^{\bullet}(x, w) & =g_{4}(x, w, D(x, 1))+h_{4}(x, w, D(x, 1))\left(1-\frac{w}{\rho(x, D(x, 1))}\right)^{\frac{3}{2}} \\
& =G(x, w)+H(x, w)(1-y(x) w)^{\frac{3}{2}}
\end{aligned}
$$

with

$$
\begin{aligned}
y(x) & =\rho(x, D(x, 1))^{-1}=g(x)-h(x) \sqrt{1-x / \rho_{1}} \\
G(x, w) & =g_{4}(x, w, D(x, 1))=G_{1}(x, w)-G_{2}(x, w) \sqrt{1-x / \rho_{1}} \\
H(x, w) & =h_{4}(x, w, D(x, 1))=H_{1}(x, w)-H_{2}(x, w) \sqrt{1-x / \rho_{1}}
\end{aligned}
$$

## Asymptotic Analysis

Connected SP-graphs

$$
\begin{aligned}
\Longrightarrow C^{\bullet}(x, w) & =e^{B^{\bullet}\left(x C^{\prime}(x), w\right)} \\
& =\bar{G}(x, w)+\bar{H}(x, w)(1-\bar{y}(x) w)^{\frac{3}{2}}
\end{aligned}
$$

with

$$
\begin{aligned}
\bar{y}(x) & =y\left(x C^{\prime}(x)\right)=\bar{g}(x)-\bar{h}(x) \sqrt{1-x / \rho_{2}} \\
\bar{G}(x, w) & =\bar{G}_{1}(x, w)-\bar{G}_{2}(x, w) \sqrt{1-x / \rho_{2}} \\
\bar{H}(x, w) & =\bar{H}_{1}(x, w)-\bar{H}_{2}(x, w) \sqrt{1-x / \rho_{2}}
\end{aligned}
$$

## Asymptotic Analysis

## Lemma 1

$$
\begin{aligned}
f(x, w) & =\sum_{n, k \geq 0} f_{n, k} x^{n} w^{k} \\
& =G(x, w)+H(x, w)(1-y(x) w)^{\frac{3}{2}}
\end{aligned}
$$

where

$$
\begin{aligned}
y(x) & =g(x)-h(x) \sqrt{1-x / x_{0}} \\
G(x, w) & =G_{1}(x, w)-G_{2}(x, w) \sqrt{1-x / x_{0}} \\
H(x, w) & =H_{1}(x, w)-H_{2}(x, w) \sqrt{1-x / x_{0}}
\end{aligned}
$$

with analytic functions $g, h, G_{1}, G_{2}, H_{1}, H_{2}$
( + some technical conditions)
$\Longrightarrow f_{n, k}=\frac{3 h\left(x_{0}\right) H\left(x_{0}, 0,1 / g\left(x_{0}\right)\right)}{8 \pi} g\left(x_{0}\right)^{k-1} x_{0}^{-n} k^{-\frac{3}{2}} n^{-\frac{3}{2}}\left(1+O\left(\frac{1}{k}\right)\right)$
uniformly for $k \leq C \log n$ (for any constant $C>0$ ) and

$$
f_{n, k}=O\left(\left(g\left(x_{0}\right)+\varepsilon\right)^{k} \rho^{-n} n^{-\frac{3}{2}}\right)
$$

## Asymptotic Analysis

## Application

$$
\begin{aligned}
B^{\bullet}(x, w) & =G(x, w)+H(x, w)(1-y(x) w)^{\frac{3}{2}} \\
& \Longrightarrow \frac{b_{n, k}^{\bullet}}{n!} \sim c_{1} q^{k} x_{0}^{-n} k^{-\frac{3}{2}} n^{-\frac{3}{2}}
\end{aligned}
$$

with $q=g\left(x_{0}\right)<1$.

$$
\begin{aligned}
& \frac{b_{n}}{n!} \sim b x_{0}^{-n} n^{-\frac{5}{2}} \quad(\text { from above }) \\
& \Longrightarrow \quad p_{n, k}=\frac{b_{n, k}^{\bullet}}{n b_{n}} \sim c q^{k} k^{-\frac{3}{2}}
\end{aligned}
$$

## Double Rooting

## Generating Functions

$$
\begin{aligned}
G^{\bullet \bullet}(x, w, t) & =e^{C(x)} G^{\bullet}(x, w) G^{\bullet}(x, t)+e^{C(x)} C^{\bullet \bullet}(x, w, t) \\
C^{\bullet \bullet}(x, w, t) & =\frac{x}{\left(x C^{\prime}(x)\right)^{\prime}} \frac{\partial}{\partial x} C^{\bullet}(x, w) \frac{\partial}{\partial x} C^{\bullet}(x, t) \\
& +B^{\bullet \bullet}\left(x C^{\prime}(x), w, t\right) C^{\bullet}(x, w) C^{\bullet}(x, t), \\
w \frac{\partial}{\partial w} B^{\bullet \bullet}(x, w, t) & \left.=w t e^{S_{1}(x, w, t}\right)+w e^{S(x, w)} S_{2}(x, w, t), \\
D_{1}(x, w, t) & =(1+w t) e^{S_{1}(x, w, t)}-1, \\
S_{1}(x, w, t) & =x\left(D^{\bullet}(x, w)-S^{\bullet}(x, w)\right) D^{\bullet}(x, t) \\
D_{2}(x, w, t) & =(1+w t) e^{S_{2}(x, w, t)} \\
S_{2}(x, w, t) & =x\left(D_{2}(x, w, t)-S_{2}(x, w, t)\right) D(x, 1) \\
& +x\left(D_{1}(x, w, t)-S_{1}(x, w, t)\right) D^{\bullet}(x, t) \\
& +x\left(D^{\bullet}(x, w)-S^{\bullet}(x, w)\right) D_{2}(x, 1, t)
\end{aligned}
$$

## Asymptotic Analysis

$$
B^{\bullet \bullet}(x, w, t)=\frac{G(x, w, t)+H(x, w, t) W+I(x, w, t) T+J(x, w, t) W T}{\sqrt{1-x / \rho_{1}}}
$$

with the abbeviations

$$
W=\sqrt{1-y(x) w} \quad \text { and } \quad T=\sqrt{1-y(x) t}
$$

and with

$$
\begin{aligned}
& y(x) g(x)-h(x) \sqrt{1-x / \rho_{1}}, \\
& G(x, w, t)=G_{1}(x, w, t)-G_{2}(x, w, t) \sqrt{1-x / \rho_{1}}, \\
& H(x, w, t)=H_{1}(x, w, t)-H_{2}(x, w, t) \sqrt{1-x / \rho_{1}}, \\
& I(x, w, t)=I_{1}(x, w, t)-I_{2}(x, w, t) \sqrt{1-x / \rho_{1}}, \\
& J(x, w, t)=J_{1}(x, w, t)-J_{2}(x, w, t) \sqrt{1-x / \rho_{1}} .
\end{aligned}
$$

The analytic behaviour of $C^{\bullet \bullet}(x, w, t)$ is of the same kind.

## Asymptotic Analysis

## Lemma 2

$$
\begin{aligned}
f(x, w, t) & =\sum_{n, k, \ell} f_{n, k, \ell} x^{n} w^{k} t^{\ell} \\
& =\frac{G(x, w, t)+H(x, w, t) W+I(x, w, t) T+J(x, w, t) W T}{\sqrt{1-x / x_{0}}}
\end{aligned}
$$

with the abbeviations $W=\sqrt{1-y(x) w}$ and $T=\sqrt{1-y(x) t}$, wher

$$
\begin{gathered}
y(x) g(x)-h(x) \sqrt{1-x / x_{0}} \\
G(x, w, t)=G_{1}(x, w, t)-G_{2}(x, w, t) \sqrt{1-x / x_{0}} \\
H(x, w, t)=H_{1}(x, w, t)-H_{2}(x, w, t) \sqrt{1-x / x_{0}} \\
I(x, w, t)=I_{1}(x, w, t)-I_{2}(x, w, t) \sqrt{1-x / x_{0}} \\
J(x, w, t)=J_{1}(x, w, t)-J_{2}(x, w, t) \sqrt{1-x / x_{0}}
\end{gathered}
$$

with analytic functions $g, h, G_{1}, G_{2}, H_{1}, H_{2}, I_{1}, I_{2}, J_{1}, J_{2}$ ( + some technical conditions)

## Asymptotic Analysis

Lemma 2 (cont.)

$$
\Longrightarrow f_{n, k, \ell} \sim \frac{J\left(x_{0}, 0, \frac{1}{g\left(x_{0}\right)}, \frac{1}{g\left(x_{0}\right)}\right)}{4 \pi^{3 / 2}} g\left(x_{0}\right)^{k+\ell} x_{0}^{-n}(k \ell)^{-\frac{3}{2}} n^{-\frac{1}{2}}
$$

uniformly for $k, \ell \leq C \log n$ (for any constant $C>0$ ) and

$$
f_{n, k, \ell}=O\left(\left(g\left(x_{0}\right)+\varepsilon\right)^{k+\ell} x_{0}^{-n} n^{-\frac{1}{2}}\right)
$$

uniformly for all $n, k, \ell \geq 0$ for every $\varepsilon>0$.

Remark This proves $p_{n, k, \ell} \sim c^{2} q^{k+\ell}(k \ell)^{-\frac{3}{2}}$.

## Proof of Lemma 1

## 1. Singularity Analysis

(following Flajolet-Odlyzko)

Suppose that

$$
y(x)=\left(1-x / x_{0}\right)^{-\alpha} \text {. }
$$

Then

$$
y_{n}=\left[x^{n}\right] y(x)=(-1)^{n}\binom{-\alpha}{n} x_{0}^{n}=\frac{n^{\alpha-1}}{\Gamma(\alpha)} x_{0}^{n}+\mathcal{O}\left(n^{\alpha-2} x_{0}^{n}\right)
$$

## Proof of Lemma 1

## 1. Singularity Analysis

Cauchy's formula:

$$
(-1)^{n}\binom{-\alpha}{n} x_{0}^{n}=\frac{1}{2 \pi i} \int_{\gamma}\left(1-x / x_{0}\right)^{-\alpha} x^{-n-1} d x
$$

$$
\gamma=\gamma_{1} \cup \gamma_{2} \cup \gamma_{3} \cup \gamma_{4}
$$

$$
\begin{aligned}
\gamma_{1} & =\left\{x=x_{0}\left(1-\frac{i+(\log n)^{2}-t}{n}\right): 0 \leq t \leq(\log n)^{2}\right\} \\
\gamma_{2} & =\left\{x=x_{0}\left(1-\frac{1}{n} e^{-i \phi}\right):-\frac{\pi}{2} \leq \phi \leq \frac{\pi}{2}\right\} \\
\gamma_{3} & =\left\{x=x_{0}\left(1+\frac{i+t}{n}\right): 0 \leq t \leq(\log n)^{2}\right\}
\end{aligned}
$$

and $\gamma_{4}$ is a circular arc centred at the origin and making $\gamma$ a closed curve.

## 1. Singularity Analysis

## Path of integration



## 1. Singularity Analysis

Substitution for $x \in \gamma_{1} \cup \gamma_{2} \cup \gamma_{3}$ :

$$
x / x_{0}=1+\frac{t}{n} \Longrightarrow x^{-n-1}=e^{-t}\left(1+\mathcal{O}\left(\frac{t^{2}}{n}\right)\right)
$$

With Hankel's integral representation for $1 / \Gamma(\alpha)$

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\gamma_{1} \cup \gamma_{2} \cup \gamma_{3}}\left(1-x / x_{0}\right)^{-\alpha} x^{-n-1} d x & =\frac{n^{\alpha-1} x_{0}^{n}}{2 \pi i} \int_{H}(-t)^{-\alpha} e^{-t} d t \\
& +\frac{n^{\alpha-2} x_{0}^{n}}{2 \pi i} \int_{H}(-t)^{-\alpha} e^{-t} \cdot \mathcal{O}\left(t^{2}\right) d t \\
& =n^{\alpha-1} \frac{1}{\Gamma(\alpha)} x_{0}^{n}+\mathcal{O}\left(n^{\alpha-2 x_{0}^{n}}\right)
\end{aligned}
$$

$$
H=\{t| | t \mid=1, \Re t \leq 0\} \cup\left\{t \mid 0<\Re t \leq \log ^{2} n, \Im t= \pm 1\right\}
$$



## 1. Singularity Analysis

## Remark

$$
x \in \gamma_{1} \cup \gamma_{2} \cup \gamma_{3} \quad \Longrightarrow \quad \frac{1}{n} \leq\left|1-\frac{x}{x_{0}}\right| \leq \frac{(\log n)^{2}}{n}
$$

## Asymptotic Analysis

Lemma 1 (the same as before)

$$
\begin{aligned}
f(x, w) & =\sum_{n, k \geq 0} f_{n, k} x^{n} w^{k} \\
& =G(x, w)+H(x, w)(1-y(x) w)^{\frac{3}{2}},
\end{aligned}
$$

where

$$
\begin{aligned}
y(x) & =g(x)-h(x) \sqrt{1-x / x_{0}} \\
G(x, w) & =G_{1}(x, w)-G_{2}(x, w) \sqrt{1-x / x_{0}} \\
H(x, w) & =H_{1}(x, w)-H_{2}(x, w) \sqrt{1-x / x_{0}}
\end{aligned}
$$

with analytic functions $g, h, G_{1}, G_{2}, H_{1}, H_{2}$
( + some technical conditions)
$\Longrightarrow f_{n, k}=\frac{3 h\left(x_{0}\right) H\left(x_{0}, 0,1 / g\left(x_{0}\right)\right)}{8 \pi} g\left(x_{0}\right)^{k-1} x_{0}^{-n} k^{-\frac{3}{2}} n^{-\frac{3}{2}}\left(1+O\left(\frac{1}{k}\right)\right)$
uniformly for $k \leq C \log n$ (for any constant $C>0$ ) and

$$
f_{n, k}=O\left(\left(g\left(x_{0}\right)+\varepsilon\right)^{k} \rho^{-n} n^{-\frac{3}{2}}\right)
$$

## Proof of Lemma 1

## 2. Cauchy's formula

$$
f_{n, k}=\frac{1}{(2 \pi i)^{2}} \int_{\gamma} \int_{\Gamma} \frac{f(x, w)}{x^{n+1} w^{k+1}} d x d w
$$

Integration with respect to $x: \gamma=\gamma_{1} \cup \gamma_{2} \cup \gamma_{3} \cup \gamma_{4}$, where

$$
\begin{aligned}
\gamma_{1} & =\left\{x=x_{0}\left(1-\frac{i+(\log n)^{2}-t}{n}\right): 0 \leq t \leq(\log n)^{2}\right\} \\
\gamma_{2} & =\left\{x=x_{0}\left(1-\frac{1}{n} e^{-i \phi}\right):-\frac{\pi}{2} \leq \phi \leq \frac{\pi}{2}\right\} \\
\gamma_{3} & =\left\{x=x_{0}\left(1+\frac{i+t}{n}\right): 0 \leq t \leq(\log n)^{2}\right\}
\end{aligned}
$$

and $\gamma_{4}$ is a circular arc centred at the origin and making $\gamma$ a closed curve.

## 2. Cauchy's formula

Integration with respect to $w: \Gamma=\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3} \cup \Gamma_{4}$, where

$$
\begin{aligned}
& \Gamma_{1}=\left\{w=w_{0}\left(1-\frac{i+(\log k)^{2}-r}{k}\right): 0 \leq s \leq(\log k)^{2}\right\}, \\
& \Gamma_{2}=\left\{w=w_{0}\left(1-\frac{1}{k} e^{-i \psi}\right):-\frac{\pi}{2} \leq \psi \leq \frac{\pi}{2}\right\}, \\
& \Gamma_{3}=\left\{w=w_{0}\left(1+\frac{i+s}{w}\right): 0 \leq s \leq(\log k)^{2}\right\},
\end{aligned}
$$

and $\Gamma_{4}$ is a circular arc centred at the origin and making $\Gamma$ a closed curve.
$\left(w_{0}=1 / g\left(x_{0}\right)\right)$


2. Cauchy's formula

## Remark

$x \in \gamma_{1} \cup \gamma_{2} \cup \gamma_{3}$ and $w \in \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}:$

$$
\frac{1}{n} \leq\left|1-\frac{x}{x_{0}}\right| \leq \frac{(\log n)^{2}}{n} \quad \text { and } \quad \frac{1}{k} \leq\left|1-\frac{w}{w_{0}}\right| \leq \frac{(\log k)^{2}}{k}
$$

For $k \leq C \log n$ we thus have

$$
X=\sqrt{1-\frac{x}{x_{0}}} \quad \text { is much smaller than } \quad W=1-\frac{w}{w_{0}}
$$

## Proof of Lemma 1

3. Local expansion around the singularity

$$
\begin{aligned}
y(x) & =g(x)-h(x) \sqrt{1-x / x_{0}} \\
& =g\left(x_{0}\right)-h\left(x_{0}\right) X+O\left(X^{2}\right) \\
w & =w_{0}+w-w_{0}=w_{0}(1-W) \\
1-y(x) w & =W+h\left(x_{0}\right) w_{0} X+O\left(X^{2}\right) \\
(1-y(x) w)^{\frac{3}{2}} & =\left(W+h\left(x_{0}\right) w_{0} X+O\left(X^{2}\right)\right)^{3 / 2} \\
& =W^{3 / 2}\left(1+\frac{(3 / 2) h\left(x_{0}\right) w_{0} X}{W}+O\left(\frac{X^{2}}{W}\right)\right) \\
& =W^{3 / 2}+\frac{3}{2} h\left(x_{0}\right) w_{0} X W^{1 / 2}+O\left(X^{2} W^{1 / 2}\right)
\end{aligned}
$$

3. Local expansion around the singularity

$$
X W^{1 / 2}=\left(1-\frac{x}{x_{0}}\right)^{\frac{1}{2}}\left(1-\frac{w}{w_{0}}\right)^{\frac{1}{2}}
$$

... Cauchy integration provides the asymptotic leading term

$$
\frac{1}{4 \pi} x_{0}^{-n} w_{0}^{-k} n^{-\frac{3}{2}} k^{-\frac{3}{2}}
$$

## Random Planar Graphs

Conjecture for maximum degree $\Delta_{n}$

$$
\frac{\Delta_{n}}{\log n} \rightarrow \frac{1}{\log (1 / q)} \quad \text { in probability }
$$

and

$$
\mathbb{E} \Delta_{n} \sim \frac{\log n}{\log (1 / q)}
$$

where $q=0.6734506 \ldots$ appear in the asymptotics of $p_{k} \sim c k^{-\frac{1}{2}} q^{k}$; $1 / \log (1 / q)=2.529464248 \ldots$

## Random Planar Graphs

## Degree Distribution

Theorem [D.+Giménez+Noy]

Let $p_{n, k}$ be the probability that a random vertex in a random planar graph $\mathcal{R}_{n}$ has degree $k$. Then the limit

$$
p_{k}:=\lim _{n \rightarrow \infty} p_{n, k}
$$

exists. The probability generating function

$$
p(w)=\sum_{k \geq 1} p_{k} w^{k}
$$

can be explicitly computed; $p_{k} \sim c k^{-\frac{1}{2}} q^{k}$ for some $c>0$ and $0<q<1$.

| $p_{1}$ | $p_{2}$ | $p_{3}$ | $p_{4}$ | $p_{5}$ | $p_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0367284 | 0.1625794 | 0.2354360 | 0.1867737 | 0.1295023 | 0.0861805 |

## Random Planar Graphs

## Counting Generating Functions

$$
\begin{aligned}
G(x, y) & =\exp (C(x, y)) \\
\frac{\partial C(x, y)}{\partial x} & =\exp \left(\frac{\partial B}{\partial x}\left(x \frac{\partial C(x, y)}{\partial x}, y\right)\right) \\
\frac{\partial B(x, y)}{\partial y} & =\frac{x^{2}}{2} \frac{1+D(x, y)}{1+y} \\
\frac{M(x, D)}{2 x^{2} D} & =\log \left(\frac{1+D}{1+y}\right)-\frac{x D^{2}}{1+x D} \\
M(x, y) & =x^{2} y^{2}\left(\frac{1}{1+x y}+\frac{1}{1+y}-1-\frac{(1+U)^{2}(1+V)^{2}}{(1+U+V)^{3}}\right) \\
U & =x y(1+V)^{2} \\
V & =y(1+U)^{2}
\end{aligned}
$$

## Random Planar Graphs

Asymptotic enumeration of planar graphs

$$
\begin{aligned}
b_{n} & =b \cdot \rho_{1}^{-n} n^{-\frac{7}{2}} n!\left(1+O\left(\frac{1}{n}\right)\right), \\
c_{n} & =c \cdot \rho_{2}^{-n} n^{-\frac{7}{2}} n!\left(1+O\left(\frac{1}{n}\right)\right), \\
g_{n} & =g \cdot \rho_{2}^{-n} n^{-\frac{7}{2}} n!\left(1+O\left(\frac{1}{n}\right)\right) \\
\rho_{1} & =0.03819 \ldots \\
\rho_{2} & =0.03672841 \ldots, \\
b & =0.3704247487 \ldots \cdot 10^{-5} \\
c & =0.4104361100 \ldots \cdot 10^{-5} \\
g & =0.4260938569 \ldots \cdot 10^{-5}
\end{aligned}
$$

## Random Planar Graphs

Generating functions for the degree distribution of planar graphs
$C^{\bullet}=\frac{\partial C}{\partial x} \ldots$ GF, where one vertex is marked
$w .$. additional variable that counts the degree of the marked vertex

Generating functions:

$$
\begin{array}{ll}
G^{\bullet}(x, y, w) & \text { all rooted planar graphs } \\
C^{\bullet}(x, y, w) & \text { connected rooted planar graphs } \\
B^{\bullet}(x, y, w) & \text { 2-connected rooted planar graphs } \\
T^{\bullet}(x, y, w) & \text { 3-connected rooted planar graphs }
\end{array}
$$

## Random Planar Graphs

$$
\left.\begin{array}{rl}
G^{\bullet}(x, y, w) & =\exp (C(x, y, 1)) C^{\bullet}(x, y, w) \\
C^{\bullet}(x, y, w) & =\exp \left(B^{\bullet}\left(x C^{\bullet}(x, y, 1), y, w\right)\right) \\
w \frac{\partial B^{\bullet}(x, y, w)}{\partial w} & =x y w \exp \left(S(x, y, w)+\frac{1}{x^{2} D(x, y, w)} T^{\bullet}\left(x, D(x, y, 1), \frac{D(x, y, w)}{D(x, y, 1)}\right)\right. \\
D(x, y, w) & =(1+y w) \exp \left(S(x, y, w)+\frac{1}{x^{2} D(x, y, w)} \times\right. \\
& \left.\times T^{\bullet}\left(x, D(x, y, 1), \frac{D(x, y, w)}{D(x, y, 1)}\right)\right)-1 \\
S(x, y, w) & =x D(x, y, 1)(D(x, y, w)-S(x, y, w)), \\
T^{\bullet}(x, y, w) & =\frac{x^{2} y^{2} w^{2}}{2}\left(\frac{1}{1+w y}+\frac{1}{1+x y}-1-\right. \\
\left.-\frac{(u+1)^{2}(-w 1}{2}(u, v, w)+(u-w+1) \sqrt{w_{2}(u, v, w)}\right)
\end{array}\right),
$$

## Degree Distribution

with polynomials $w_{1}=w_{1}(u, v, w)$ and $w_{2}=w_{2}(u, v, w)$ given by

$$
\begin{aligned}
w_{1}= & -u v w^{2}+w\left(1+4 v+3 u v^{2}+5 v^{2}+u^{2}+2 u+2 v^{3}+3 u^{2} v+7 u v\right) \\
& +(u+1)^{2}\left(u+2 v+1+v^{2}\right), \\
w_{2}= & u^{2} v^{2} w^{2}-2 w u v\left(2 u^{2} v+6 u v+2 v^{3}+3 u v^{2}+5 v^{2}+u^{2}+2 u+4 v+1\right) \\
& +(u+1)^{2}\left(u+2 v+1+v^{2}\right)^{2} .
\end{aligned}
$$

## Random Planar Graphs

Singular structure of $B^{\bullet}(x, 1, w)$

$$
\begin{gathered}
\frac{\partial B^{\bullet}(x, 1, w)}{\partial w}=K(X, W)+\sqrt{L(X, W)} \\
X=\sqrt{1-\frac{x}{x_{0}}}, \quad W=1-\frac{w}{w_{0}} \\
L(X, W)=X^{3} h_{1}(W)+X^{2} W h_{2}(X, W)+0+W^{3} h_{4}(W)
\end{gathered}
$$

## Random Planar Graphs

## Lemma 1.2

$$
\begin{aligned}
f(x, w) & =\sum_{n, k \geq 0} f_{n, k} x^{n} w^{k} \\
& =K(X, W)+\sqrt{L(X, W)}
\end{aligned}
$$

where $X=\sqrt{1-x / x_{0}}$ and $W=1-w / w_{0}$ and

$$
L(X, W)=X^{3} h_{1}(W)+X^{2} W h_{2}(X, W)+0+W^{3} h_{4}(W)
$$

with analytic functions $K, h_{1}, h_{2}, h_{4}$
( + some technical conditions)

$$
\Longrightarrow f_{n, k}=c x_{0}^{-n} w_{0}^{-k} k^{\frac{1}{2}} n^{-\frac{5}{2}}\left(1+O\left(\frac{1}{k}\right)\right)
$$

## Random Planar Graphs

## Work in progress...

- Generating functions for double rooting
- Singular structure of generating functions
- Lemma 2.2


## Thank You for Your Attention!

