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Daisies and Other Turán Problems
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Our aim in this note is to make some conjectures about extremal densities of
daisy-free families, where a ‘daisy’ is a certain hypergraph. These questions
turn out to be related to some Turán problems in the hypercube, but they are
also natural in their own right. We start by giving the daisy conjectures, and
some related problems, and shall then go on to describe the connection with
vertex-Turán problems in the hypercube.

This note is self-contained. Our notation is standard: in particular, we write [n]
for {1, . . . , n}, and Qn for the n-dimensional hypercube (the set of all subsets
of an n-point set). For a set X , we write X(r) for the set of all r-sets of X . An
r-graph (or r-uniform hypergraph) on X is a subset of X(r). For background
on hypergraphs see [2], and for background on Turán problems in general see
[9] and [7].

A daisy, or r-daisy, is an r-uniform hypergraph consisting of six r-sets: given
an (r − 2)-set P and a 4-set Q disjoint from P , the daisy on (P,Q) consists of
the r-sets A with P ⊂ A ⊂ P ∪Q. We write this as D, or Dr. Our fundamental
question is: how large can a family A of r-sets from an n-set be if A does not
contain a daisy?

As usual, if F is a family of r-sets, we write ex(n,F) for the maximum size of
a family of r-sets from an n-set that does not contain a copy of F , and π(F)
or πr(F) for the limiting density, namely the limit of ex(n,F)/

(

n
r

)

as n tends
to infinity – a standard averaging argument shows that this limit exists, and
indeed that ex(n,F)/

(

n
r

)

is a decreasing function of n.

Conjecture 1. π(Dr) → 0 as r → ∞.
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Roma, Italy. Email: claudia@di.uniroma1.it.

1

http://arxiv.org/abs/1105.1553v1


What is unusual here is that we are not so concerned with the actual values of
πr(Dr) for particular r: our main interest is in the limit of these values. We will
see later why Conjecture 1 is related to Turán questions in the hypercube.

Since the hypergraph Dr is not r-partite, it follows that π(Dr) ≥ r!/rr , as the
complete r-partite r-graph does not contain a daisy. For r = 2, a daisy is
precisely a K4, and so Turán’s theorem tells us that π(D2) = 2/3. Although
even for r = 3 we do not know what the limiting density is, we believe we know
what it should be.

Conjecture 2. π(D3) = 1/2.

To see where this conjecture comes from, note that the 3-graph on 7 vertices
given by the complement of the Fano plane does not contain a daisy. Here as
usual the Fano plane is the projective plane over the field of order 2; equivalently,
it consists of the triples {a, a + 1, a + 3}, where the ground set is the integers
mod 7. This gives ex(7,D3) ≥ 28 = 4

5

(

7
3

)

. If we take a blow-up of this, thus
dividing [n] into 7 classes C0, . . . , C6 each of size ⌊n/7⌋ or ⌈n/7⌉ and taking the
7-partite 3-graph consisting of all 3-sets whose 3 classes are not {Ca, Ca+1, Ca+3}
(with subscripts taken mod 7), we obtain ex(n,D3) ≥ (1+ o(1))2449

(

n
3

)

. But now
we may iterate, taking a similar construction inside each class, and so on. This
gives a limiting density of 24/49 times 1 + 1/49 + 1/492 + . . ., which is exactly
1/2.

We do not even see any counterexample to a much stronger assertion, that this
is the actual best-possible example, at least if n is a power of 7. This reduces
to the following conjecture.

Conjecture 3. Let n = 7k, and let A be a family of 3-sets of [n] not containing
a daisy.Then |A| ≤ (1 − 1/49k) n3/12 = 1

2

(

n+1
3

)

.

The above ‘daisy’ is actually part of a more general family. In general, an (s, t)-
daisy D(s, t) = Dr(s, t) consists of all of those r-sets A that contain a fixed
(r − t)-set P and are contained in P ∪Q, where Q is a fixed s-set disjoint from
P . Thus a (4, 2)-daisy is precisely a daisy in our earlier sense.

Conjecture 4. Let s and t be fixed. Then π(Dr(s, t)) → 0 as r → ∞.

Perhaps the most natural case of this is when s = 2t – see later. In fact, in a
sense this is the only case, as Dr(s, t) is contained in Dr(s + 1, t) and also in
Dr(s + 1, t + 1) – so to verify Conjecture 4 it would be enough to verify it for
the case s = 2t.

Conjecture 4 certainly holds when t = s− 1, as then we are simply asking that
our family should contain no s r-sets from any (r + 1)-set. Averaging gives
π(Dr(s, s− 1)) ≤ s−1

r+1 , which tends to zero as required. Conjecture 4 also holds
if t = 1, as our condition is now that no (r − 1)-set can be contained in s
r-sets in our family. Hence our family has size at most

(

n
r−1

)

(s− 1)/r, whence
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π(Dr(s, 1)) = 0 for all r. (Alternatively, as Dr(s, 1) is r-partite, one may use
the well-known result of Erdős [4] that the limiting density for any r-partite
r-graph is zero.) Thus our starting case of the (4, 2)-daisy is in fact the first
nontrivial case.

We digress briefly to point out that a related notion is far simpler to analyze.
A daisy (a (4, 2)-daisy) consists of 6 r-sets in a set of size r + 2. Suppose that,
rather than forbidding an actual daisy, we instead do not allow an (r + 2)-set
to contain any 6 r-sets. In this case it is easy to see that we cannot have a
constant proportion of the r-sets (as r → ∞), because averaging gives that the
proportion of r-sets in our family is at most 6

/(

r+2
2

)

.

The situation is the same if we replace our ‘6’ with any function that is o(r2).
However, this changes the moment we reach a constant times r2. Indeed, sup-
pose that we wish to insist that no (r + 2)-set contains cr2 r-sets. Partition [n]
into k sets of size n/k (for some fixed value of k), and take the family A of all
r-sets that have between r/k− δ and r/k+ δ points in each class (for some fixed
value of δ) and have even-size intersection with each class (or, if r is odd, one
intersection-size is odd). This is a positive proportion of all r-sets, and yet no
(r+ 2)-set R can contain cr2 sets from A. Indeed, R would have to meet every
class of the partition in roughly between r/k − δ and r/k + δ points (or else it
will contain no sets from A). And now it is easy to check that if R meets all
classes in an even number of points then the number of sets of A contained in
R is o(r2), and similarly if the intersection sizes of R with the classes have any
given parities.

Let us remark that the notion of an (s, t)-daisy is only the ‘tip of the iceberg’.
Indeed, more generally we could combine any two hypergraphs, in the sense
that we combined one (r − t)-set and the family of all t-sets from an s-set to
form the (s, t)-daisy. Thus, given hypergraphs F and G, we define F ∗ G to be
the hypergraph, on ground-set the disjoint union of the ground-sets of F and
G, whose edges are all sets of the form A ∪ B, where A ∈ F and B ∈ G. For
example, if both F and G are complete graphs, say on s and t points respectively,
then F ∗G is a 4-graph consisting of all 4-sets on [s+ t] that meet [s] in exactly
2 points.

A rather general question is as follows.

Problem 5. Let F be an r-graph and G be an s-graph. How does πr+s(F ∗ G)
compare to πr(F) and πs(G)?

One very interesting case of this is when F and G are the same hypergraph.
More generally, let us write Fd for the d-fold product F ∗ . . . ∗ F .

Problem 6. Let F be a fixed r-graph. As d varies, how does πdr(F
d) behave?

We do not even know what happens when F = [s](r), i.e. F consists of all r-sets
of an s-set.
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We now turn to the connection with Turán problems in the hypercube. Indeed,
it was this link that led us to define the notion of a daisy in the first place.
The basic vertex-Turán problem in the hypercube Qn is as follows: how many
points do we need to meet all the d-cubes of an n-cube? We are interested in
the behaviour as n gets large, for fixed d. (We mention in passing that there are
also a host of edge-Turán problems in the hypercube – see [1] and the references
therein.)

We clearly need at least a fraction 1/2d (of the total number of points, 2n),
just to meet all of the d-cubes in a given direction. From the other side, if we
take every (d+1)-st layer of the n-cube (where a layer means [n](r) for some r)
then we certainly meet every d-cube, and this shows that we can take a fraction
1/(d+ 1) of the n-cube.

Let us write td for the limiting density (which exists, by averaging). The be-
haviour of td was investigated by Alon, Krech and Szabó [1], who showed that
in a (d + 2)-cube we need at least log d points to meet every d-cube (logs are
to base 2). By averaging, this gives that td is at least (log d)/2d+2. And, re-
markably, these bounds of (log d)/2d+2 ≤ td ≤ 1/(d+1) are all that is known in
general about the asymptotic behaviour of td. The only exact values that are
known are t1, which is trivially seen to be 1/2, and t2, which is 1/3, as shown
by E. A. Kostochka [8] and by Johnson and Entringer [6]. See also Johnson and
Talbot [5] for related results.

We believe that td = 1/(d+1), and, as we now explain, the problems on daisies
relate to this.

Suppose we consider the case d = 4 (it turns out to be slightly simpler to
consider d even), and we look at just those 4-cubes that go from layer n

2 − 2 to
layer n

2 + 2 (assuming that n is even) – we call these the middle 4-cubes. And
suppose further that we wish to meet all of these cubes using only points in
the middle layer of the cube. We conjecture that nearly all of the points of the
middle layer must be used.

Conjecture 7. Let n be even, and let A be a subset of [n](n/2) that meets every
middle 4-cube. Then |A| ≥ (1 − o(1))

(

n
n/2

)

.

We think that Conjecture 7 might be the ‘right first step’ in showing that
t4 = 1/5.

We claim that Conjecture 1 implies Conjecture 7. Indeed, suppose that (for n
large) A is a subset of [n](n/2) that meets every middle 4-cube. For a given value
of r, consider those sets in A that contain a fixed (n2 −r)-set R: this corresponds
exactly to a family of r-sets (from a ground-set of size n

2 + r) that meets every

daisy, and so by Conjecture 1 has size at least (1− o(1))
(n

2
+r
r

)

. Averaging over

all such R, we obtain |A| ≥ (1 − o(1))
(

n
n/2

)

, as required.

In fact, Conjecture 1 is actually equivalent to Conjecture 7. For Conjecture 7, in
the language of daisies, states precisely that ex(n,Dn/2)/

(

n
n/2

)

→ 0 as n → ∞,
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which implies that π(Dn/2) → 0.

Similarly, we make the following conjecture, which we hope would be a step
towards showing that td = 1/(d+ 1).

Conjecture 8. Let d be fixed. Let n be even, and let A be a subset of [n](n/2)

that meets every middle 2d-cube. Then |A| ≥ (1 − o(1))
(

n
n/2

)

.

Just as Conjecture 1 is equivalent to Conjecture 7, so Conjecture 4 for the
parameters (2d, d) is equivalent to Conjecture 8. This is why the case s = 2t
seems the most interesting case of Conjecture 4.

Finally, we mention briefly a beautiful conjecture of Johnson and Talbot [5],
about meeting d-cubes in several points, that is also closely tied to our daisy
problems. They conjecture that if we have a positive fraction of the vertices of
the n-cube then (for n sufficiently large) there must be some d-cube containing
at least

(

d
⌊d/2⌋

)

points of our family. (This is the greatest number of points of a

d-cube that one could ask for, because of the family consisting of every (d+1)-st
layer of the n-cube).

It is easy to see that Conjecture 4 is actually equivalent to this conjecture.
Indeed, if A is a subset of Qn of positive density then A must contain a positive
proportion of a layer not far from the middle layer of the n-cube, and Conjecture
4 (plus averaging) now yields a Dr(d, ⌊d/2⌋) for suitable r just as above. In the
other direction, if Conjecture 4 were false then, by putting together suitable
counterexamples on every (d + 1)-st layer (for layers not far from the middle
layer), we could find a subset of the n-cube of positive density that did not
contain

(

d
⌊d/2⌋

)

points of any d-cube.

This connection with the Johnson-Talbot conjecture was independently ob-
served by Bukh [3], who also made Conjecture 4 independently.
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