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Abstract. The Turán number of a graph H, ex(n,H), is the
maximum number of edges in any graph on n vertices which does
not contain H as a subgraph. Let Pl denote a path on l vertices,
and k · Pl denote k vertex-disjoint copies of Pl. We determine
ex(n, k · P3) for n appropriately large, answering in the positive a
conjecture of Gorgol. Further, we determine ex (n, k · Pl) for arbi-
trary l, and n appropriately large relative to k and l. We provide
some background on the famous Erdős-Sós conjecture, and condi-
tional on its truth we determine ex(n,H) when H is an equibipar-
tite forest, for appropriately large n.

1. Introduction

Our notation in this paper is standard (see, e.g., [3]). Thus G ∪ H
denotes the disjoint union of graphs G and H, and we write G+H for
the join of G and H, the graph obtained from G ∪H by adding edges
between all vertices of G and all vertices of H, Kt for the complete
graph on t vertices, Et for the empty graph on t vertices, and Mt

for a maximal matching on t vertices; that is, the graph on t vertices
consisting of

⌊
t
2

⌋
independent edges. We also take this opportunity to

point out that unless explicitly stated, any graph named G is assumed
to be on vertex set V = [n] and edge set E; we also make no requirement
that the subgraphs we find be induced.

The Turán number, ex(n,H), of a graph H is the maximum num-
ber of edges in a graph on n vertices which does not contain H as a
subgraph. The problem of determining Turán numbers for assorted
graphs traces its history back to 1907, when Mantel (see, e.g., [3])
proved that the maximum number of edges in an n-vertex triangle-free

graph is
⌊
n2

4

⌋
. In 1940, Pál Turán [13, 14] proved that the extremal

graph avoiding Kr as a subgraph is the complete (r− 1)-partite graph
on n vertices which is ‘as balanced as possible’: this is the Turán graph
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2 N. BUSHAW AND N. KETTLE

Tr−1(n) . Later, Simonovits [12] showed that for large n, the extremal
graph forbidding p·Kr is Kp−1+Tr−1(n−p+1). For notation, Hex(n,G)
will be used to represent a graph on n vertices with no copy of G as
a subgraph, and exactly ex(n,G) edges. We note that in general, the
extremal graph(s) may not be unique.

Recently, Gorgol [6] proved upper and lower bounds on the extremal
number for forbidding several vertex-disjoint copies of an arbitrary con-
nected graph. We determine this number for paths of length 3 in Sec-
tion 2.1, longer paths in Section 2.2, and for forests of equibipartite
trees in Section 3.2. We also provide some background on the Erdős-
Sós conjecture in Section 3.1, as our result for trees is conditional on
its validity.

2. Extremal Numbers for Disjoint Paths

We start by looking at graphs with no disjoint paths of length three.
The extremal case here is slightly different than for longer paths, but
the proof introduces the main ideas we shall use in proving the result
for all paths, as well as the general tools needed for our results on
forests.

2.1. Paths of length 3. Gorgol [6] gave constructions giving the fol-
lowing lower bound regarding paths of length three:

ex(n, k·P3) ≥

{(
3k−1
2

)
+
⌊
n−3k+1

2

⌋
, for 3k ≤ n < 5k − 1,(

k−1
2

)
+ (n− k + 1)(k − 1) + bn−k+1

2
c, for n ≥ 5k − 1.

Remark. This bound is obtained by noting that for any connected
graph G on v vertices, and for any positive integers n, k such that n ≥
kv, the graphs Hex(n−kv+1, G)∪Kkv−1 and Hex(n−k+1, G)+Kk−1
do not contain k vertex-disjoint copies of G. Applying this to forbid-
ding copies of K3 and counting the edges in these graphs gives the above
bound.

Gorgol conjectured that this is the correct value of ex(n, k ·P3), and
proved that this is indeed true for k = 2, 3. Our first result shows that
the second construction is best possible for any k and large enough n.

Theorem 2.1. ex(n, k · P3) =
(
k−1
2

)
+ (n − k + 1)(k − 1) + bn−k+1

2
c,

for n ≥ 7k.

There is a unique graph for which this bound is attained, namely
Kk−1 +Mn−k+1, as in Figure 1. This graph does not contain k disjoint
copies of P3, since each P3 must contain at least one vertex from the
(k − 1)-clique.
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· · ·

Kk−1

· · ·
Mn−k+1

Figure 1.

Proof. We proceed by induction on k. For k = 1, we shall use the
following easy lemma.

Lemma 2.2. If G is a graph on n vertices which contains no P3, then
G contains at most bn

2
c edges; that is, ex(n, P3) ≤

⌊
n
2

⌋
.

Proof. If G contains no P3, then no vertex can have degree ≥ 2, and
so G consists of independent edges; thus the lemma holds. �

For the induction step, suppose G is a graph on n vertices, with
m >

(
k−1
2

)
+ (n − k + 1)(k − 1) + bn−k+1

2
c edges, and containing no

k · P3. The number of edges incident to any P3 in G must be at least:

m−ex(n− 3, (k − 1) · P3)

≥
(
k − 1

2

)
+ (n− k + 1)(k − 1) +

⌊
n− k + 1

2

⌋
+ 1

−
(
k − 2

2

)
− (n− k − 1)(k − 2)−

⌊
n− k − 1

2

⌋
= n+ 2k − 3.

Otherwise, the graph induced by the vertices not on this P3 contains
(k − 1) · P3 by induction, showing that G does contain k · P3.

By the induction hypothesis we can find k− 1 vertex-disjoint copies
of P3 in our graph, and each of these must contain a vertex of degree
at least (n+ 2k − 3)/3. Otherwise, the total number of edges with an
endpoint on this P3 is smaller than n + 2k − 3. Taking such a high
degree vertex from each P3 gives us a set U of k − 1 vertices each of
degree at least (n+ 2k − 3)/3.

Assume that G[V \ U ] contains P3. Then, we can still construct
another k − 1 copies of P3, each centered on a vertex from U , as long
as each vertex in U has degree large enough to ensure it is connected
to at least two vertices not contained on any of the other k − 1 copies
of P3; i.e. if (n+ 2k− 3)/3 ≥ 3k− 1, and this is the case when n ≥ 7k.
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Therefore G[V \U ] consists of independent edges and isolated vertices,
and so G has at most

(
k−1
2

)
+ (n − k + 1)(k − 1) + bn−k+1

2
c edges, a

contradiction. �

The above proof gives the extremal graph for n ≥ 7k. No construc-
tion is known giving a better bound for n ≥ 5k− 1, and we conjecture
that the above example is optimal in this range.

2.2. Longer Paths. We note at this point that in the proof of Theo-
rem 2.1, in order to find a P3 it was enough to find a vertex of degree
two; to find subsequent copies of P3, it sufficed to find vertices of large
degree. To adapt this idea to longer paths, we’ll look for sets of vertices
with large common neighbourhood. This notion will continue to be an
integral part of our proofs, and thus we formalize it here.

Lemma 2.3. Let G be a graph on n vertices with m edges, t ∈ N,
and let F1, F2 be arbitrary graphs. Then if F1 ∪ F2 6⊆ G, any F1 in
G contains t vertices with shared neighbourhood of size at least n′ ≥
m′−(n−r)(t−1)

r−t+1
/
(
r
t

)
, where m′ = m− ex(n− r, F2)−

(
r
2

)
, and r = |V (F1)|.

Proof. Assume F1 ⊆ G, say on vertex set U . Since G contains no F1 ∪
F2, G[V \U ] contains no F2. ThusG[V \U ] contains at most ex(n−r, F2)
edges, and so U must have at least m− ex(n− r, F2)−

(
r
2

)
= m′ edges

to V \U . Let n0 be the number of vertices in V \U with neighbourhood
of size at least t in U ; that is, n0 = |{v ∈ V \ U : |NU(v)| ≥ t}|.
U has at most n0r + (n− r − n0) (t− 1) edges to V \ U . Thus

n0r + (n− r − n0) (t− 1) ≥ m′, so n0 ≥ m′−(n−r)(t−1)
r−t+1

. Trivially, there

are only
(
r
t

)
subsets of size t in F1, and so some subset has shared

neighbourhood of size n′ ≥ m′−(n−r)(t−1)
r−t+1

/
(
r
t

)
as claimed. �

The proof of Lemma 2.1 also required the value of ex(n, P3); for
longer paths, we shall use the following result due to Erdős and Gallai
[5].

Theorem 2.4. For any n, l ∈ N, ex(n, Pl) ≤ l−2
2
n.

We note that the bound in Theorem 2.4 is attained by taking disjoint
copies of Kl−1 as in Figure 2; this gives a tight result whenever n is
divisible by l − 1.

We are now ready to prove the main result of this section.

Theorem 2.5. For k ≥ 2, l ≥ 4, and n ≥ 2l + 2kl
(⌈

l
2

⌉
+ 1
) (

l

b l
2c
)
,

ex(n, k · Pl) =

(
k
⌊
l
2

⌋
− 1

2

)
+

(
k

⌊
l

2

⌋
− 1

)(
n− k

⌊
l

2

⌋
+ 1

)
+ cl,
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· · ·

Figure 2. Extremal graph forbidding P6.

where cl = 1 if l is odd, and cl = 0 if l is even.

Note that the result above for k · Pl for l ≥ 4 does not match the
earlier result for k · P3 in Theorem 2.1.

The extremal graph here is G(n, k, l) := Kt + En−t, with a single
edge added to the empty class when l is odd, and t = k

⌊
l
2

⌋
−1, as seen

in Figures 3, 4 respectively.

· · ·

Kkb l
2c−1

· · ·
P2 + En−kb l

2c−1

Figure 3.

· · ·

Kkb l
2c−1

· · ·
En−kb l

2c+1

Figure 4.

Remark 1. We note that for paths of even lengths, the above bound
can be proven, and the extremal structure determined, via a paper of
Balister, Győri, Lehel, and Schelp [2] as a consequence of a theorem
regarding the maximal number of edges in a connected graph containing
no path of some fixed length. One can divide a long path into many
short even paths, and this allows one to deduce our Theorem 2.5 from
their Theorem 1.3; for odd length paths this result gives a nonoptimal
number of edges due to parity issues. This extremal number within
connected graphs was also determined earlier by Kopylov in 1977 [7],
but the approach in the proof given there did not give the extremal
structure.

Proof. We proceed by induction on k, starting with the base case, k =
2.

Let G be a graph with |V | = n ≥ 2l + 4l
(⌈

l
2

⌉
+ 1
) (

l

b l
2c
)
, |E(G)| ≥(2b l

2c−1
2

)
+
(
2
⌊
l
2

⌋
− 1
) (
n− 2

⌊
l
2

⌋
+ 1
)

+ cl, and which contains no
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2 · Pl. As n ≥ l2, we have that |E(G)| > ex(n, Pl), and so G contains
a Pl on vertex set U . Using Lemma 2.3 with F1 = Pl, F2 = Pl, and

m =
(2b l

2c−1
2

)
+
(
2
⌊
l
2

⌋
− 1
) (
n− 2

⌊
l
2

⌋
+ 1
)

+ cl, some elementary

simplification shows that any Pl contained in G must have at least
⌊
l
2

⌋
vertices sharing a neighbourhood of size at least

n′ =

(2b l
2c−1
2

)
+
(
2
⌊
l
2

⌋
− 1
) (
n− 2

⌊
l
2

⌋
+ 1
)(⌈

l
2

⌉
+ 1
) (

l

b l
2c
)

+
cl − ex(n− l, Pl)−

(
l
2

)
− (n− l)

(⌊
l
2

⌋
− 1
)(⌈

l
2

⌉
+ 1
) (

l

b l
2c
)

≥
(2b l

2c−1
2

)
+
(
2
⌊
l
2

⌋
− 1
) (
n− 2

⌊
l
2

⌋
+ 1
)(⌈

l
2

⌉
+ 1
) (

l

b l
2c
)

+
cl − (n− l)

(
l
2
− 1
)
−
(
l
2

)
− (n− l)

(⌊
l
2

⌋
− 1
)(⌈

l
2

⌉
+ 1
) (

l

b l
2c
)

≥
(
1− cl

2

)
n− l(⌈

l
2

⌉
+ 1
) (

l

b l
2c
)

We now create an
⌊
l
2

⌋
-uniform hypergraph H with V (H) = V (G)

as follows: for any Pl ⊆ G, we find a subset U ′ of
⌊
l
2

⌋
vertices with a

large common neighbourhood, as above, and add U ′ as an edge in H.
We now flatten this hypergraph to form a simple graph G′ on the

same vertex set, with uv ∈ E(G′) whenever u and v are contained in
the same hyperedge.

Figure 5. Flattening a Hypergraph.

Since vertices adjacent in G′ have large common neighbourhood, a
path of length

⌊
l
2

⌋
in G′ lets us find a path of length l in G. More

formally, as n′ ≥ 2l, if G′ contains 2 · Pb l
2c, we can choose distinct
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common neighbours for each pair of consecutive vertices in these paths,
and distinct neighbours for the end vertices, giving us 2 ·Pl in G. Thus
G′ cannot contain 2 · Pb l

2c.
We further note that certainly two disjoint hyperedges in H give rise

to two such disjoint paths. Thus every pair of edges inH intersect; such
a hypergraph is called intersecting. We will further call a hypergraph
k-intersecting if every pair of edges intersect in at least k vertices.

Lemma 2.6. If there exists X ⊆ V (H), with |X| = t <
⌊
l
2

⌋
, and

such that X contains some vertex from each edge in H, then |E(G)| <
|E(G(n, 2, l))|.

Proof. AssumeX is such a set. By the construction ofH, sinceH[V (H)\
X] contains no hyperedges, G[V (G) \X] contains no Pl, and so Theo-
rem 2.4 tells us that

|E(G)| ≤
(
t

2

)
+ t(n− t) +

l − 2

2
(n− t) ≤

(
2

⌊
l

2

⌋
− 3

2

)
n.

Recall that

|E (G (n, 2, l)) | =
(

2
⌊
l
2

⌋
− 1

2

)
+

(
2

⌊
l

2

⌋
− 1

)(
n− 2

⌊
l

2

⌋
+ 1

)
+ cl

≥
(

2

⌊
l

2

⌋
− 1

)
n− l2,

and so as n > 2l2, |E(G)| < |E (G (n, 2, l))|. �

Now, assume we have at least 2
⌊
l
2

⌋
vertices contained in edges of

H, but without 2 · Pb l
2c in G′. We claim that no two hyperedges can

intersect in only a single vertex.
If E1, E2 ∈ E(H) with E1 ∩ E2 = {x}, then |E1 ∪ E2| = 2

⌊
l
2

⌋
− 1

vertices, and so H contains an edge E3 not contained in their union.
We may assume that this edge intersects E1 ∪E2 outside {x}, as if no
such edge exists, we are done by Lemma 2.6 applied to the set {x}.
Without loss of generality, E3 ∩ E1 6⊆ E1 ∩ E2 ∪ {x}.

Let us consider two cases.
Case 1: E3 ∩ (E2 \ E1) 6= ∅. Then we can find a cycle in G′ through

all the vertices in E1∪E2. Since we have at least 2
⌊
l
2

⌋
vertices in edges

of G′, there is another vertex adjacent to this cycle. This gives us a
path of length 2

⌊
l
2

⌋
, and so G′ contains 2 · Pb l

2c.
Case 2: E3 ∩ (E2 \ E1) = ∅. Then there is some y ∈ E3 \ (E1 ∪ E2),

and so we can form one Pb l
2c in (E1 \ {x}) ∪ {y} and a disjoint Pb l

2c
entirely inside E2.
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x
e1 e2

e3

Figure 6. Case 1.

e1 e2

e3

x
e1 e2

e3

Figure 7. Case 2.

H is an intersecting hypergraph, with at least 2
⌊
l
2

⌋
vertices con-

tained in its edges, and no two edges can intersect in a single vertex,
and so H is 2-intersecting. H has nonempty edge set, so pick an edge
E, and any vertex in x ∈ E. Each edge in H intersects E in at least
two vertices, so any edge in H intersects E \ {x}, a set of size

⌊
l
2

⌋
− 1.

We have already ruled out such a set of vertices in Lemma 2.6.
We now know G contains a set A of vertices, |A| ≤ 2

⌊
l
2

⌋
− 1, with

the property that any Pl in G contains at least
⌊
l
2

⌋
vertices from A.

We define three more sets of vertices as follows:

B =

{
x ∈ G \ A | dA(x) ≥

⌊
l

2

⌋}
,

C =

{
x ∈ G \ A |

⌊
l

2

⌋
> dA(x) > 0

}
,

D = {x ∈ G \ A | dA(x) = 0} .

Certainly D can contain no Pl, since every Pl meets A. Thus the
number of edges entirely within D is at most l−2

2
|D| by Theorem 2.4.

We now claim that every vertex x ∈ B ∪ C is the end vertex of
a Pl in G, with alternate vertices in A, which also misses any given
y1, y2 ∈ B ∪ C. Since x is adjacent to some y ∈ A, and y is contained
in some hyperedge E, as long as n′ > |A| +

⌊
l
2

⌋
+ 2, we can find

⌊
l
2

⌋
vertices in (B ∪ C) \ {x} adjacent to all vertices in E, allowing us to
find such a Pl.

Further, no vertex in D can have degree more than 1 to B ∪ C;
assume uv, uw are both edges with u ∈ D, and v, w ∈ B ∪ C. We can
find a Pl leaving v, that misses w, with alternate vertices in A. This
gives a Pl starting at w with only

⌊
l
2

⌋
− 1 vertices from A, as in Figure

8. A vertex in C with degree 2 to B ∪ C allows us to create a path in
the same way, so our graph contains none of these.

Similarly, if l is even, an edge inside B allows us to create a Pl using
only

⌊
l
2

⌋
− 1 vertices from A, as in Figure 9, so in this case B must be

empty. If l is odd, two edges in B allow us to create a Pl with only
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A

B C D

Figure 8.

A

B C D

Figure 9.

⌊
l
2

⌋
− 1 vertices from A, but a single edge does not; this is where the

cl in the theorem arises.
We’ve now counted edges between B and C and between B ∪C and

D respectively, and counted the edges inside each of B, C, and D. We
can use the degree conditions in their definitions to count edges from
A to B, C, and D. Putting these together, we see that

|E(G)| ≤
(

2
⌊
l
2

⌋
− 1

2

)
+

(
2

⌊
l

2

⌋
− 1

)(
n−

(
2

⌊
l

2

⌋
− 1

)
− |C| − |D|

)
+

(
1 +

⌊
l

2

⌋
− 1

)
|C|+

(
1 +

l − 2

2

)
|D|+ cl,

≤
(

2
⌊
l
2

⌋
− 1

2

)
+

(
2

⌊
l

2

⌋
− 1

)(
n−

(
2

⌊
l

2

⌋
− 1

))
+

(
1−

⌊
l

2

⌋)
|C|+

(
l − 2

2
− 2

⌊
l

2

⌋
+ 2

)
|D|+ cl.

Since the coefficients of |C| and |D| above are negative, |E(G)| is
maximized when C and D are empty; this gives our bound on |E(G)| as
claimed. Further, since C and D must be empty to attain this bound it
also shows that the extremal graph is G(n, 2, l) = K2b l

2c−1+En−2b l
2c+1

with an extra edge in the empty class for odd l, as claimed.
We have now established the base case k = 2. Somewhat surpris-

ingly, the inductive step is easy to show.
Let G be a graph on n vertices with

m ≥
(
k
⌊
l
2

⌋
− 1

2

)
+

(
k

⌊
l

2

⌋
− 1

)(
n− k

⌊
l

2

⌋
+ 1

)
+ cl

edges, not containing k · Pl.
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This graph does contain a Pl, and from Lemma 2.3, we can find
⌊
l
2

⌋
vertices with shared neighbourhood of size at least

n′ =

(kb l
2c−1
2

)
+
(
k
⌊
l
2

⌋
− 1
) (
n− k

⌊
l
2

⌋
+ 1
)(⌈

l
2

⌉
+ 1
) (

l

b l
2c
)

+
cl − ex (n− l, (k − 1) · Pl)−

(
l
2

)
− (n− l)

(⌊
l
2

⌋
− 1
)(⌈

l
2

⌉
+ 1
) (

l

b l
2c
)

=

(kb l
2c−1
2

)
+
(
k
⌊
l
2

⌋
− 1
) (
n− k

⌊
l
2

⌋
+ 1
)(⌈

l
2

⌉
+ 1
) (

l

b l
2c
)

+
cl −

((k−1)b l
2c−1

2

)
−
(
(k − 1)

⌊
l
2

⌋
− 1
) (
n− l − (k − 1)

⌊
l
2

⌋
+ 1
)(⌈

l
2

⌉
+ 1
) (

l

b l
2c
)

+
−cl −

(
l
2

)
− (n− l)

(⌊
l
2

⌋
− 1
)(⌈

l
2

⌉
+ 1
) (

l

b l
2c
)

=
n+ k

⌊
l
2

⌋2 − 3
2

⌊
l
2

⌋2
+ clk

⌊
l
2

⌋
− 5+2cl

2

⌊
l
2

⌋
− 2cl(⌈

l
2

⌉
+ 1
) (

l

b l
2c
)

≥ n− l(⌈
l
2

⌉
+ 1
) (

l

b l
2c
)

The second inequality is valid since n−l ≥ 2l+2l(k−1)
(⌈

l
2

⌉
+ 1
) (

l

b l
2c
)
.

Write U for the set of vertices from Lemma 2.3. Then G[V \ U ] is a
graph on n−

⌊
l
2

⌋
vertices and at least ex(n−

⌊
l
2

⌋
, (k − 1) · Pl) edges.

If we can find (k− 1) ·Pl, then since n′ ≥ kl, we can find another Pl in
G disjoint from these k − 1. Therefore there cannot be k − 1 disjoint
copies of Pl in G[V \ U ], so by the inductive hypothesis, G[V \ U ] =
G(n−

⌊
l
2

⌋
, k − 1, l). Thus G = G(n, k, l). �

The above proof shows that our construction is optimal for n = O(kl22l).
We conjecture that this construction is optimal for n = O(kl). We also
note a comparison between Theorem 2.5 for even paths and Theorem
2.4: certainly if one forbids k ·P2l, then one is also forbidding P2kl. Thus
an easy upper bound on ex(n, k · P2l) is ex(n, P2kl). The difference be-
tween this bound and the precise result established above is relatively
small, (kl − 1)(kl

2
). In particular, it is not dependent on n for fixed k

and l, despite the significant difference between the extremal graphs.
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3. Trees

Throughout the following section, we need an analogue of Lemma 2.2
as a starting point. For longer paths, we used the Erdős-Gallai result,
Lemma 2.4. The analogous result for trees is known as the Erdős-Sós
Conjecture.

3.1. The Erdős-Sós Conjecture. We note that a path can be viewed
as an extreme kind of tree - l− 2 vertices have degree two, and the two
leaves of course have degree one. The opposite extreme is the star - one
central vertex of degree l − 1, and the other k − 1 vertices are leaves.
For both examples, it is easily seen that ex(n,G) = l−2

2
n. Legend has it

that Vera T. Sós presented the proofs of these two results to her graph
theory class in Budapest in 1962, and left the following conjecture as a
homework problem; by now, this is known as the notoriously difficult
Erdős-Sós Conjecture.

Conjecture 3.1. (Erdős-Sós Conjecture) For any tree T on l vertices,
ex(n, T ) = l−2

2
n.

In 2008, a proof of the conjecture was announced for very large trees
by Ajtai, Komlós, Simonovits, and Szemerédi. For small trees, how-
ever, the conjecture is mostly open. There is a sequence of results in
the direction of the full theorem for smaller trees. We present a repre-
sentative sample of these results here, which is certainly only the tip of
the iceberg. Many more partial results related to the Erdős-Sós Con-
jecture exist; see for example [1],[15]. The first result here establishes
the conjecture for graphs of large girth and is due to Dobson [4].

Theorem 3.2. If T is a tree on l vertices, and G is a graph with girth
at least five and minimum degree δ ≥ l

2
, then G contains T . Thus

Conjecture 3.1 holds for graphs of girth at least 5.

Similarly, Saclé and Woźniak [10] proved that whenever G is a graph
with at least l−2

2
n edges and no C4, G contains any tree on l vertices. In

2005, McLennan [8] proved the Erdős-Sós bound for trees of diameter
at most four.

The Erdős-Sós Conjecture has also been proven for caterpillars; this
result is attributed to Perles in [9]. Later, Sidorenko [11] showed that
the Erdős-Sós Conjecture holds for trees of order l containing a vertex
which is the parent of at least l−1

2
leaves.

3.2. Forests of Equibipartite Trees. Our proof of Theorem 2.5 can
be adapted to work on a significantly larger class of graphs. A key ele-
ment of our proof was finding a set of vertices which intersected every
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long path in at least half its vertices. This continues to be an essen-
tial idea, and thus we restrict ourselves to trees which have the same
number of vertices in each vertex class, when viewed as a bipartite
graph. We call such trees equibipartite, and a forest in which each com-
ponent is an equibipartite tree is called an equibipartite forest. Clearly
any equibipartite tree or equibipartite forest has an even number of
vertices.

If we allow ourselves the considerable benefit of assuming that Erdős-
Sós holds for all equibipartite trees, we can determine the extremal
number for any equibipartite forest, for large n. There is a slight dif-
ference in the extremal number and the structure of the extremal graph
depending on whether the forest admits a perfect matching.

Theorem 3.3. Let H be an equibipartite forest on 2l vertices which is
comprised of at least two trees. If the Erdős-Sós Conjecture holds, then
for n ≥ 3l2 + 32l5

(
2l
l

)
,

ex(n,H) =

{(
l−1
2

)
+ (l − 1)(n− l + 1), if H admits a perfect matching

(l − 1)(n− l + 1) otherwise.

· · ·

Kl−1

· · ·

En−l+1

Figure 10.

· · ·

El−1

· · ·

En−l+1

Figure 11.

Remark. The extremal graphs here are Kl−1 + En−l+1 for any forest
with a perfect matching, and El−1 +En−l+1 for any forest with no per-
fect matching, as in Figures 10, 11. To prove the eventual extremal
number for equibipartite trees as in Theorem 3.3, we do not need the
full strength of the Erdős-Sós Conjecture; we only need that the Erdős-
Sós Conjecture is true for the trees appearing in the forest H. In fact,

it suffices to know that ex(n, T ) = |T |−2
2
n + o(n) for any of the equibi-

partite trees T ⊆ H. In this case, however, the bound on n for which
the result holds is much worse. We also note that again in the state-
ment of the theorem we have suppressed lower order terms in the lower
bound on n; here the lower order terms from the proof are unnecessarily
complicated, and we leave them out.
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x

y x y

Figure 12.

x

y
x y

Figure 13.

Lemma 3.4. Let H be a equibipartite tree on 2l vertices. If H contains
a perfect matching, then every partition of V (H) into two classes of
different sizes is such that the larger class induces at least one edge.

Proof. If H contains a perfect matching, M ⊆ E(H), then for any
partition of V (H) into nonequal classes, |V1| < |V2|, the number of
edges in M which meet V1 is at most |V1| < l, and so some edge lies
inside V2. �

Lemma 3.5. Let H be a equibipartite tree on 2l vertices. If H does
not contain a perfect matching, then there exists a partition of V (H)
into two classes of different sizes such that the larger class induces no
edges and the smaller class induces exactly one edge.

Proof. ConsiderH as a bipartite graph with bipartition V (H) = (A,B).
Since H contains no perfect matching, there is a set S ⊆ A for which
Hall’s condition (see, e.g., [3]) fails. If we take S minimal, then H[S ∪
N(S)] is connected, as otherwise one of its components would fail Hall’s
condition. Consider H[(A\ (S))∪ (B \N(S))]. Each component of this
graph is joined to N(S) by a single edge. Since the union of these
components has larger intersection with B than with A, at least one of
the components does. Let C be such a component, and let xy be the
unique edge between C and N(S), with x ∈ C and y ∈ N(S).

Consider the partition (C, V (H)\C). Then taking the set of vertices
Vx,y which are in the same bipartite class as x in C or in the same
bipartite class as y in V (H) \ C as one class of our new partition, and
V (H) \ Vx,y as the other forms a partition of V (H) with exactly one
edge in Vx,y, and none in V (H) \ Vx,y.

Since our tree is equibipartite, |Vx,y ∩ (V (H)\C)|+ | (V (H) \ Vx,y)∩
C| = l. By our definition of C, |Vx,y ∩ C| < | (V (H) \ Vx,y) ∩ C|,
so we have |Vx,y| = |Vx,y ∩ C| + |Vx,y ∩ (V (H) \ C)| < |Vx,y ∩ C| <
| (V (H) \ Vx,y) ∩ C| = l, as required.

�

See Figures 12, 13 for an example partition of a trees with and with-
out a perfect matching, respectively.
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Proof of Theorem 3.3. Let H have components H1, H2, . . . , Hk, each
on 2l1, 2l2, . . . , 2lk vertices respectively, and G be a graph on n vertices
with m edges which does not contain H, and with m ≥ (l−1)(n−l+1).
Without loss of generality, l1 ≤ li, for each i. For notational ease, we
also define H ′ = H2 ∪ . . . ∪Hk and l′ = 1

2
|H ′| = l − l1.

As n ≥ l2, m ≥ ex(n,H ′) by induction (or Erdős-Sós, if H ′ is a tree),
and so we can find a copy of H ′ ⊆ G. As in the proof of Lemma 2.3, for
any copy of H ′ we can bound from below the size of the set E ′ of edges
between H ′ and G\H ′ by m−

(
2l′

2

)
−ex (n− 2l′, H1). By the Erdős-Sós

Conjecture, this is at least (l − 1) (n− l + 1)−
(
2l′

2

)
−(n− 2l′) (l1 − 1) ≥

l′n− 3l2.
Consider the set of vertices X = {v ∈ G \H ′ : |N(v) ∩H ′| ≥ l′}.

Then

2l′ |X|+ (l′ − 1) (n− 2l′ − |X|) ≥ |E ′| ≥ l′n− 3l2.

Thus |X| ≥ n−3l2
l′+1

. As there are only
(
2l′

l′

)
sets of l′ vertices in H ′, we

can find a set A of l′ vertices in H ′ with at least n′ = n−3l2

(l′+1)(2l′
l′ )

common

neighbours.
Interchangine the roles of H1 and H ′, for any H1 we similarly bound

from below the size of the set E1 of edges between H1 and G \ H1

by m −
(
2l1
2

)
− ex (n− 2l1, H

′). Note that n − 2l1 is much larger than
needed in the condition of the inductive hypothesis, and so

|E1| ≥ (l − 1) (n− l + 1)−
(

2l1
2

)
− (n− l′ − 2l1 + 1) (l′ − 1)−

(
l′ − 1

2

)

≥ l1n− 3l2.

(1)

With this in mind, we define the following two sets of vertices:

B =

{
w ∈ G|w 6∈ A and dG(w) ≥ n− 3l2

l1 + 1

}
C = G \ (A ∪B)

Now, any copy of H1 in G must contain at least l1 vertices from
A ∪ B, as otherwise the total degree of vertices on H1 is less than
(l1 + 1) n−3l2

l1+1
+ (l1 − 1)n, contradicting (1) above.

As a rough bound on the number of edges in G, we note that if G
contained more than 2ln edges, we can find a copy of H ′ by induction
(or by the Erdős-Sós Conjecture if H ′ is a single tree). Removing
this copy of H ′ leaves a graph on n − 2l′ vertices with more than
2l1n ≥ 2l1 (n− 2l′) edges, since each vertex is of course adjacent to at
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most n edges. Again by Conjecture 3.1, we can find a copy of H1. Thus
our graph can have at most 2ln edges.

This means that for any c > 0, there are at most 4ln
c

vertices of

degree at least c. Choosing c = 8ln
n′ ≤

8l(l′+1)(2l′
l′ )n

n−3l2 , there are at least
n′

2
common neighbours of A with degree at most c. Since n ≥ 6l2,

c ≤ 16l (l′ + 1)
(
2l′

l′

)
. Then since n′

2
� l′, we can find a copy of H ′ with

l′ vertices in A and the other l′ vertices having degree at most c.
Since this copy of H ′ is incident to at least l′n−3l2 edges, any vertex

in A has degree at least

l′n− 3l2 − l′c− (l′ − 1) (n− 1)(2)

≥ n− 3l2 − l′c
= n− c′.

There are at most 4ln
c

= n′

2
vertices of degree at least c, and at most

l′c′ vertices not adjacent to all of A.

n− 3l2

l1 + 1
− n′

2
≥ n− 3l2

2 (l1 + 1)
≥ 16l4

(
2l

l

)
≥ l′c′,

and so by the definition of B, each vertex x ∈ B is adjacent to a vertex
y which is adjacent to all of A and such that dG(y) ≤ c.

This condition on the vertices in B enables us to find, for each b ∈ B,
a copy of H ′ from which half the vertices have small degree, and whose
intersection with B contains b. Further, we can find a set U of l′ − 1
vertices of degree at most c which are each adjacent to all of A, so for
any z ∈ A, G [(U ∪ {x} ∪ {y} ∪ (A \ {z}))] is a graph on 2l′ vertices
which contains a copy of Kl′,l′−1 with an extra vertex x adjacent to
some vertex in the larger set. We can find a copy of H ′ in this by
letting a leaf of H ′ correspond to x, and so as in (2), every vertex in B
must have degree at least n−c′. If B contained at least l1 vertices, they
would have common neighbourhood of size at least n−l1c′ ≥ l, allowing
us to find H1 in G[V (G)\A], and again as the common neighbourhood
of A is of size at least 2l, we can find a disjoint copy of H ′, giving a
copy of H in G. Thus |B| ≤ l1− 1, and so |A∪B| ≤ l′+ l1− 1 = l− 1.

We now define two more sets of vertices as follows:

D = {x ∈ G \ (A ∪B) | dA∪B(x) ≥ l1} ,
E = {x ∈ G \ (A ∪B) | dA∪B(x) < l1} .

We note that any vertex not in A∪B which is adjacent to all of A is
in D, and thus |E| ≤ l′c′. There can be no H1 in E, so the number of
edges in E is at most (l1 − 1) |E| by Erdős-Sós. No vertex v ∈ D can
have a neighbour y ∈ D ∪ E, as we can find a set U of l1 − 1 vertices
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in A ∪ B adjacent to v, and W ⊆ (D ∪ E) \ {v, y} consisting of l1 − 1
vertices adjacent to all of U , and as before we can find a copy of H1 on
U ∪W ∪ {v, y} with only l1 − 1 vertices from A ∪ B; a contradiction.
Thus all edges in G[D ∪ E] are in E.

Letting |A ∪B| = t, we bound the number of edges in G by(
t

2

)
+ t (n− t− |E|) + (l1 − 1) |E|+ (l1 − 1) |E|(3)

=

(
t

2

)
+ t (n− t) + (2l1 − 2− t) |E| .

If t < l− 1, then since |E| ≤ l′c′ the number of edges in G is at most(
t
2

)
+ t (n− t) + 2l1l

′c′ ≤ (l − 1) (n− l + 1), for n ≥ 2l2c′ + l2.
The common neighbourhood of A∪B has size at least n− (l− 1)−

(l− 1)c′, as each vertex in A∪B is adjacent to all but c′ vertices in G.
Thus we can find a copy of Kl−1,n−(l−1)(c′+1) ⊆ G, where the smaller
class is A ∪ B. If H does not contain a perfect matching, then by
Lemma 3.5 we can partition the vertices into unequal sets X,Y , the
larger of which is empty, and the smaller of which contains one edge.
This is clearly present in G if A ∪B contains an internal edge.

Counting all edges in G, we see that by (3),

|E(G)| ≤ (l − 1)(n− l − 1)− (l − 2l1 + 1)|E|+ CH ,

where CH =
(
l−1
2

)
if H admits a perfect matching, and CH = 0 other-

wise. As l1 is minimal, (l− 2l1 + 1) > 0, and so the number of edges is
maximized when |E| = 0. �

It is unlikely that the bound on n in Theorem 3.3 is optimal. Deter-
mining the minimal value of n for which this construction is optimal
remains an open question.
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