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DISTANCE PRESERVING RAMSEY GRAPHS

DOMINGOS DELLAMONICA JR.1 AND VOJTĚCH RÖDL2

Abstract. We prove the following metric Ramsey theorem. For any
connected graph G endowed with a linear order on its vertex set there
exists a graph R such that in every coloring of the t-tuples of vertices
of R it is possible to find a copy G ⊂ R satisfying:
• distG(x, y) = distR(x, y) for every x, y ∈ V (G);
• the color of a t-tuple in G is a function of the graph-distance metric

induced by the t-tuple.

1. Introduction

In [2], [3] and [12, 13] the following extension of the Ramsey Theorem was
proved.

Theorem 1. For any graph G there exists a graph R with the property that
in any 2-coloring of the edges of R there exists an induced copy G ⊂ R
(i.e. G ∈

(
R
G

)
ind

) which is monochromatic.

Notice that for an induced copy G ∈
(
R
G

)
ind

and for an isomorphism
φ : V (G)→ V (G) ⊂ V (R), we have

(1) distG(x, y) = distR
(
φ(x), φ(y)

)
whenever distG(x, y) ≤ 2. A question, whether the above restriction on
distances is necessary was answered by Nešetřil and the second author [8]
(see Remark 5 below). In [8] it is shown that Theorem 1 may be strengthened
by obtaining a monochromatic isometric copy of G in R (i.e. (1) holds for
all x, y ∈ V (G)) instead of just an induced copy.

Another possible generalization of Theorem 1 deals with partitioning (col-
oring) graphs other than edges (K2). Such an extension was obtained in [1]
and [7]. In this paper we will considered a joint extension of both [1, 7]
and [8].

Remark 2 (Ordered graphs). Similarly as in [1, 7], in this paper every
graph is implicitly assumed to have a total order in its vertex-set. *** All
maps considered here are assumed to be monotone, that is φ(u) < φ(v)
whenever u < v. *** In particular, all graph isomorphisms are unique.

1Supported by a CAPES/Fulbright scholarship.
2Partially supported by NSF grant DMS0800070.
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Definition 3. For graphs G and H, the graph G is a subgraph of H (we
write G ⊂ H) if V (G) ⊂ V (H), E(G) ⊂ E(H) and the order <G in V (G)
respects the order<H in V (H), that is, for every u, v ∈ V (G) we have u <G v
iff u <H v.

We denote by
(
H
G

)
the set of all subgraphs of H which are isomorphic

to G.

Theorem 4 (Main Result). Let t ∈ N and G be a connected graph.
Then there exists a graph R with the following properties: for every 2-

coloring of
(
V (R)
t

)
there exists G ∈

(
R
G

)
such that

• distG(x, y) = distR(x, y) for all x, y ∈ V (G);
• the color of any S = {v1, v2, . . . , vt} ⊂ V (G), with v1 < v2 < · · · < vt,

depends only on
(
distG(vi, vj)

)
1≤i<j≤t, namely, the color of S is a

function of the metric induced by S.

Remark 5. The particular case t = 2 of Theorem 4 implies that for any
graph G it is possible to find some graph R in which every coloring of the

pairs in
(
V (R)

2

)
yields a metric copy G ∈

(
R
G

)
in which the color of {x, y} ∈(

V (G)
2

)
is a function of distG(x, y). (In particular, the edges of E(G) are

monochromatic.) This special case t = 2 was stated in [8].

Definition 6. A discrete metric ρ on the ordered set [t] = {1, 2, . . . , t} is a
symmetric function ρ : [t]2 → N ∪ {∞} satisfying the triangle inequality:

ρ(i, j) + ρ(j, k) ≥ ρ(i, k).

Let ` ∈ N be fixed. For a graph H and a set S = {v1, v2, . . . , vt} ⊂ V (H)
with v1 < v2 < · · · < vt we say that S is ρ`-metric with respect to H if for
all 1 ≤ i < j ≤ t

• distH(vi, vj) = ρ(i, j) whenever ρ(i, j) ≤ `;
• distH(vi, vj) ≥ ` whenever ρ(i, j) > `.

A set S as above is called a (ρ`, t)-tuple. We denote by
(
H
ρ`

)
the family of all

(ρ`, t)-tuples of H.

Definition 7. A graph G naturally induces a metric ρ(G) over its vertices
by defining the distance between pairs of vertices as the length of a shortest
path connecting them (when the pair is not connected, their distance is∞).
For a pair of graphs G ⊂ R, the graph G is said to be `-metric in R if V (G)
is ρ(G)`-metric with respect to R. Namely, G is `-metric in R if no pair of
vertices in G admits a shortcut in R of length smaller than `. For instance,
G is 2-metric in R iff it is an induced subgraph of R. A graph G is said to
be metric in R if it is `-metric for all ` (namely, distG(x, y) = distR(x, y) for
every x, y ∈ V (G)).

For A,B ⊂ V (G) we will write A ≺ B if max(A) < min(B).

Definition 8. Let G be a graph and q ≥ 2. Suppose that G admits a
vertex partition V (G) = V q

1 (G) ∪ · · · ∪ V q
q (G) in which all edges of G are
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crossing, that is, no edge intersects the same class in more than one vertex.
Furthermore suppose that V q

1 (G) ≺ V q
2 ≺ · · · ≺ V q

q (G). Such a graph G is
called a q-partite graph.

If G and H are q-partite graphs, a partite embedding is an injective mono-
tone map φ : V (G) → V (H) which is edge-preserving (φ(e) ∈ E(H) for
all e ∈ E(G)) and satisfies φ(V q

j (G)) ⊂ V q
j (H) for all j = 1, . . . , q.

Definition 9. We will use the following notation.

• Let φ : V (G)→ V (H) be an embedding of G into H. Then we set

φ(G) =
(
φ(V (G)), {φ(e) : e ∈ E(G)}

)
⊂ H.

• For q-partite graphs G and H we denote by
(
H
G

)
Part(q)

the set of all

subgraphs φ(G) of H where φ : V (G) → V (H) is a partite embed-
ding.
• For a graph G it will be convenient to use G (typeset in a sans-serif

font) to denote an isomorphic copy of G.
• Suppose that G is a graph and I is a hypergraph with vertex set
V (I) ⊂ V (G). For G with σ : V (G) → V (G) being the monotone
isomorphism of G into G, let IG denote the hypergraph σ(I) with
vertex set σ(V (I)) ⊂ V (G) and edges {σ(I) : I ∈ I}.

Lemma 10 below is a technical result which will be used in the proof of
our main result, Theorem 4.

Lemma 10 (Partite Lemma). Let `, t, q ∈ N, t ≤ q, and ρ be a metric on [t].
Suppose that G is a q-partite graph with V (G) = V q

1 (G) ∪ · · · ∪ V q
q (G)

and, for some 1 ≤ j1 < j2 < · · · < jt ≤ q, I ⊆
(
G
ρ`

)
is a t-partite t-uniform

hypergraph with classes {V q
ji

(G)}ti=1.

Then there exists a q-partite graph R and F ⊂
(
R
G

)
Part(q)

satisfying the

following properties.

(1) For any 2-coloring of
(
V (R)
t

)
there exists G ∈ F such that every

(ρ`, t)-tuple in IG ⊂
(G
ρ`

)
is monochromatic.

(2) Every G ∈ F is `-metric in R.

Remark 11. Note that in Condition (1) the only relevant colored t-tuples
of V (R) are those in

⋃
G∈F IG.

The proof of Lemma 10 uses the partite construction method, which was
introduced in [9] and has been a successful tool for proving the existence
of several Ramsey structures such as metric spaces [6], systems of sets [11],
Steiner systems [10] etc.

Using an extra round of the partite construction we will extend Lemma 10
and establish a result guaranteeing the whole family

(
H
ρ

)
being monochro-

matic rather than only a t-partite t-uniform family I ⊂
(
H
ρ

)
. Namely, we

prove the following lemma.
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Lemma 12. Let t ∈ N, ρ be a metric on [t] and H be a connected graph.

There exists a graph R such that for every 2-coloring of
(
V (R)
t

)
there exists

a metric H ⊂ R such that
(H
ρ

)
is monochromatic.

A sketch of the proof of Lemma 12 will be given in Section 4. By repeated
applications of Lemma 12, we obtain Theorem 4.

Proof of Theorem 4. LetM = {ρ1, . . . , ρm} be the set of all metrics induced
by t vertices of G. Apply Lemma 12 to R0 = G and ρ1 to obtain a graph R1.
After Ri is constructed, 1 ≤ i ≤ m− 1, obtain Ri+1 by applying Lemma 12
to Ri and ρi+1.

We claim that R = Rm satisfies the conditions of Theorem 4. Indeed,

given any 2-coloring of
(
V (R)
t

)
, we can find a metric copy Rm−1 of Rm−1 in

which every (ρm, t)-tuple in
(Rm−1

ρm

)
is colored by cm. Iterating this argument

yields a sequence R0 ⊂ R1 ⊂ · · · ⊂ Rm−1 ⊂ R such that Ri ∼= Ri is metric

in Ri+1 and every (ρi+1, t)-tuple in
( Ri

ρi+1

)
has the same color ci+1. The

graph G = R0 ∼= G is metric in R and is such that
(G
ρ

)
is monochromatic for

every ρ. �

2. Proof of Lemma 10

Our proof will use a double induction argument. The main induction is
over `. In order to carry on the induction we need to prove a slightly stronger
statement (see the box below). For each ` ≥ 2 we have a graph R` and a

family F` ⊂
(
R`
G

)
Part(q)

. Lemma 23 in Section 3, which is a straightforward

adaptation of the result of [10], shows that the base case holds (` = 2).

Induction over ` – Hypothesis for R` and F`
Lemma 10 holds for `, namely, R` and F` ⊂

(
R`
G

)
Part(q)

satisfy

conditions (1), (2).
In addition,

(A) If G1,G2 ∈ F` and u ∈ V (G1) ∩ V (G2) then there are
(ρ`, t)-tuples Ij ∈ IGj , j = 1, 2, such that u ∈ I1 ∩ I2.

(B) If G1,G2 ∈ F` are distinct and u, v ∈ V (G1)∩V (G2) then
either
(B1) there exist (ρ`, t)-tuples Ij ∈ IGj , j = 1, 2, such

that {u, v} ⊂ I1 ∩ I2 or
(B2) if σj : V (Gj) → V (G), j = 1, 2, are the iso-

morphisms of G1,G2 into G then σ1(u) = σ2(u)
and σ1(v) = σ2(v).

Suppose now that the induction hypothesis holds for ` ≥ 2. We will show
that it also holds for `+ 1.

Let G be the given q-partite graph and let I ⊂
(
G
ρ`+1

)
⊂
(
G
ρ`

)
be a t-partite

t-uniform hypergraph with classes {V q
ji

(G)}ti=1. We may assume without loss
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Figure 1. An illustration of R` and G ∈ F`. Here we as-
sume t = 3, j1 = 1, j2 = 2 and j3 = 3. The triples in IG are
represented by the crossing triangles.

of generality that t < |V (G)| since otherwise G itself would trivially satisfy

the conditions of the lemma. Let the q-partite graph R` and F` ⊂
(
R`
G

)
Part(q)

be obtained from our induction hypothesis.
Consider the family

(2)
⋃

G∈F`

IG = {I1, I2, . . . , Im}.

This family is a t-partite t-uniform hypergraph with partition {V q
ji

(R`)}ti=1

(see Figure 1).

We will construct a sequence of |V (R`)|-partite graphs P0, P1, . . . , Pm,

which we will call pictures, and families F(Pk) ⊂
(
Pk
G

)
Part(q)

, k = 0, 1, . . . ,m.

We will then show that R`+1 = Pm and F`+1 = F(Pm) satisfy conditions (1),
(2), (A) and (B). This will establish the induction step and conclude the
proof of Lemma 10.

Let us start by constructing P0 (see Figure 2). For convenience, let r` =
|V (R`)|. For each u ∈ V (R`), let

(3) V r`
u (P0) = {(u,G) : G ∈ F`, V (G) 3 u}.

Recalling the total order on V (R`) we may assume in fact that V (R`) =
{1, 2, . . . , r`}. We then impose a total order in V (P0) so that V r`

j (P0), j =

1, . . . , r`, satisfies V r`
j (P0) ≺ V r`

j+1(P0) for all j.

The edges of P0 are of the form {(u,G), (w,G)}, where uw ∈ E(G), G ∈ F`.
Notice that the r`-partition of P0 given by (3) is indeed such that every edge
of P0 is crossing. We set F(P0) to be the set of copies of G in correspondence
with F`. In particular, |F(P0)| = |F`|. Moreover, the projection π0(u,G) =
u defines a monotone homomorphism from P0 to R`.
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Figure 2. The graph P0 is a disjoint union of copies of G
where each copy is projected by π0 into a copy of G in F`.

Assuming that the hypothesis hold for some ` ≥ 2 we will now induce
on k.

Induction over k – Hypothesis on Pictures

(I) The picture Pk is r`-partite with classes V r`
j (Pk), j =

1, . . . , r`. The projection map πk : V (Pk) → V (R`)
given by πk(x) = j iff x ∈ V r`

j (Pk) is a homomorphism

of Pk into R`. Moreover, πk(G) ∈ F` for every G ∈
F(Pk).

(II) The family F(Pk) is contained in
(
Pk
G

)
Part(q)

.

(III) The family F(Pk) satisfies conditions (A), (B).
(IV) Every G ∈ F(Pk) is (`+ 1)-metric in Pk.

Claim 13. The graph P0 satisfies the induction hypothesis for pictures.

Since the copies of G in P0 are vertex-disjoint (and thus metric) and are
projected by π0 into copies of G in R` it is clear that (I) and (II) hold
and that F(P0) satisfies conditions (A) and (B). It remains to check (III),

namely, that F(P0) is contained in
(
P0

G

)
Part(q)

.

We now observe that the q-partition of V (P0) may be expressed in terms
of π0 as

V q
j (P0) = π−1

0 (V q
j (R`)) =

⋃
u∈V qj (R`)

V r`
u (P0)

for j = 1, . . . , q. For every G ∈ F(P0), we have G′ = π0(G) ∈ F`. Let
σ : V (G)→ V (G′) be the partite isomorphism between G and G′ guaranteed
by the induction hypothesis. Then π−1

0 ◦ σ : V (G) → V (G) is a partite
isomorphism of G into G by our choice of V q

j (P0), j = 1, . . . , q.
Hence P0 satisfies the induction hypothesis for pictures and Claim 13 is

proved.

Suppose that Pk, F(Pk), and πk, k ≥ 0, are constructed and satisfy the
induction hypothesis. Since every G ∈ F(Pk) is (`+1)-metric in Pk, it follows
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{

Figure 3. The picture Pk+1 is obtained from picture Pk
through the induction hypothesis over `. The vertices in R`
are not vertically ordered to simplify the figure.

that IG ⊂
( G
ρ`+1

)
⊂
(
Pk
ρ`+1

)
for every G ∈ F(Pk). For k = 0, 1, . . . ,m−1, define

(4) I(k) =

{
I ∈

⋃
G∈F(Pk)

IG : πk(I) = Ik+1

}
⊂
(
Pk
ρ`+1

)
,

where the (ρ`+1, t)-tuple Ik+1 is defined as the (k + 1)th tuple in (2).

Observe that by construction, I(k) is a t-partite t-uniform hypergraph.
Indeed, every tuple in I(k) is crossing with respect to the t-tuple of sets
{π−1

k (u) = V r`
u (Pk)}u∈Ik+1

. To construct Pk+1 we invoke our induction
assumption over ` with

• r` in place of q;
• Pk in place of G;
• I(k) in place of I.

We then obtain the graph Pk+1 and a family F̂k+1 ⊂
(Pk+1

Pk

)
Part(r`)

satisfying

conditions (1), (2), (A) and (B). More specifically, the following holds

(1)k+1 For every coloring of
(
V (Pk+1)

t

)
there exists P ∈ F̂k+1 such that I(k)

P

is monochromatic (and t-partite with respect to {V r`
wi (Pk+1)}ti=1).

(2)k+1 Every P ∈ F̂k+1 is `-metric in Pk+1.

(A)k+1 If P1,P2 ∈ F̂k+1 are distinct and u ∈ V (P1) ∩ V (P2) then there are

tuples Ij∗ ∈ I(k)

Pj
, j = 1, 2, such that u ∈ I1

∗ ∩ I2
∗ .

(B)k+1 If P1,P2 ∈ F̂k+1 are distinct and u, v ∈ V (P1) ∩ V (P2) then either

(B1)k+1 there exist tuples Ij∗ ∈ I(k)

Pj
, j = 1, 2, such that {u, v} ⊂

I1
∗ ∩ I2

∗ or
(B2)k+1 if φj : V (Pj) → V (Pk), j = 1, 2, are the isomorphisms

of P1,P2 into Pk then φ1(u) = φ2(u) and φ1(v) = φ2(v).

The projection πk+1 : V (Pk+1) → V (R`) is naturally defined in terms
of the partition {V r`

j (Pk+1)}r`j=1 (this partition is given by the induction
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hypothesis over `). More concretely, πk+1(u) = j iff u ∈ V r`
j (Pk+1). For

any P ∈ F̂k+1 with isomorphism φ : V (Pk) → V (P) the following diagram
commutes:

(5)

Pk P Pk+1

R`

-� φ

?

πk

-ı

�
���

�����

πk+1

Indeed, because φ is a partite embedding, we have φ
(
V r`
j (Pk)

)
⊂ V r`

j (Pk+1)

for all j = 1, . . . , r`. Hence, for u ∈ V (Pk), πk(u) = j iff u ∈ V r`
j (Pk)

iff φ(u) ∈ V r`
j (Pk+1) iff πk+1 ◦ φ(u) = j. This shows that πk = πk+1 ◦ φ and

thus the diagram commutes.
The graph Pk+1 may also be viewed as q-partite with partition given by

the classes

(6) V q
j (Pk+1) = π−1

k+1

(
V q
j (R`)

)
=

⋃
u∈V qj (R`)

V r`
u (Pk+1), j = 1, . . . , q.

Notice that because V q
1 (R`) ≺ V q

2 (R`) ≺ · · · ≺ V q
q (R`) and V r`

1 (Pk+1) ≺
· · · ≺ V r`

r`
(Pk+1) we also have V q

1 (Pk+1) ≺ · · · ≺ V q
q (Pk+1). Also observe

that the r`-partition of Pk+1 is a refinement of its q-partition.
We will now start the proof of the induction step over k.

Claim 14. Condition (I) holds for Pk+1.

We will start by showing that the projection map πk+1 is a homomorphism
of Pk+1 into R`.

By construction, the r`-partite graph Pk+1 has a partition with classes

V r`
j (Pk+1) = π−1

k+1(j), j = 1, . . . , r`, such that for every P ∈ F̂k+1 ⊂(Pk+1

Pk

)
Part(r`)

the (unique monotone) isomorphism φ : V (Pk) → V (P) sat-

isfies φ(V r`
j (Pk)) ⊂ V r`

j (Pk+1).
We assume without loss of generality that every edge in Pk+1 is contained

in some copy P ∈ F̂k+1. Indeed, otherwise we could delete such an edge with-
out affecting the essential properties of Pk+1 (distances may only increase
after an edge is deleted). Since the edges of P must be crossing with respect
to {V r`

j (Pk+1)}r`j=1, it follows that the projection πk+1 is a homomorphism
of Pk+1 into R`.

For any P ∈ F̂k+1, given the (unique monotone) isomorphism φ : V (Pk)→
V (P), set

F(P) = {φ(G) : G ∈ F(Pk)}.
Define

(7) F(Pk+1) =
⋃

P∈F̂k+1

F(P).
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Observe that there is a rich structure of copies of G in Pk+1 which is inherited
by the many overlapping copies of Pk in Pk+1.

Now we will prove that πk+1(G) ∈ F` for every G ∈ F(Pk+1). For G ∈
F(P), P ∈ F̂k+1, and the isomorphism φ : V (Pk)→ V (P) we have φ−1(G) ∈
F(Pk) and, by the induction hypothesis, πk

(
φ−1(G)

)
∈ F`. The fact that

P ∈
(Pk+1

Pk

)
Part(r`)

implies that φ(V r`
j (Pk)) = V r`

j (P) ⊂ V r`
j (Pk+1), for j =

1, . . . , r`. Consequently, we have πk+1|V (G) = πk ◦ φ−1|V (G) (see the dia-
gram (5)) and it follows that πk+1(G) ∈ F` for every G ∈ F(Pk+1). This
concludes the proof that (I) holds.

Claim 15. Condition (II) holds for Pk+1, namely, F(Pk+1) ⊂
(Pk+1

G

)
Part(q)

.

To prove that (II) holds consider the q-partition described in (6) in terms
of π−1

k+1 by V q
j (Pk+1) = π−1

k+1(V q
j (R`)), j = 1, . . . , q. Notice that every edge

of Pk+1 is crossing with respect to this partition since for every j, V q
j (R`)

is an independent set in R` and the projection πk+1 is a homomorphism
from Pk+1 to R`. We use the fact that every G ∈ F(Pk+1) is such that G′ =

πk+1(G) ∈ F` and F` ⊂
(
R`
G

)
Part(q)

. Namely, the isomorphism σ : V (G) →
V (G′) is partite, meaning that σ(V q

j (G)) ⊂ V q
j (R`) for all j = 1, . . . , q. It

follows that the composition π−1
k+1◦σ : V (G)→ V (G) is a partite isomorphism

of G into G establishing that G ∈
(Pk+1

G

)
Part(q)

.

Claim 16. If P1,P2 ∈ F̂k+1 are distinct and u ∈ V (P1) ∩ V (P2) then
πk+1(u) ∈ Ik+1. Consequently, for each G ∈ F(Pk+1) there is a unique P ∈
F̂k+1 such that G ⊂ P.

From Condition (A)k+1 there exist Ij∗ ∈ I(k)

Pj
, j = 1, 2, such that u ∈

I1
∗ ∩ I2

∗ . From Diagram (5) we conclude that the isomorphism φ1 : V (Pk)→
V (P1) satisfies πk = πk+1 ◦ φ1. Because I1 = φ−1

1 (I1
∗ ) ∈ I(k), we have

πk+1(I1
∗ ) = πk+1 ◦ φ1(I1) = πk(I

1)
(4)
= Ik+1.

Consequently, πk+1(u) ∈ Ik+1.
Since each G ∈ F(Pk+1) is mapped by πk+1 onto a member of F`, the pro-

jection must be one-to-one over V (G). Therefore
∣∣πk+1

(
V (G)

)∣∣ = |V (G)| > t

and thus πk+1

(
V (G)

)
6⊂ Ik+1. It follows that V (G) 6⊂ V (P1) ∩ V (P2).

Claim 17. Condition (III) holds for Pk+1, namely, F(Pk+1) satisfies the
intersection conditions (A) and (B).

Let G1,G2 ∈ F(Pk+1) be distinct and arbitrary. By Claim 16 there are

unique P1,P2 ∈ F̂k+1 such that Gj ⊂ Pj , j = 1, 2. If P1 = P2 then the
induction hypothesis over P1 = P2 ∼= Pk implies that both conditions (A)
and (B) hold for G1 and G2. Hence let us suppose that P1 6= P2.

Proof of (A). By the assumption (A)k+1, it follows that for any u ∈
V (G1) ∩ V (G2) ⊂ V (P1) ∩ V (P2) there exist edges Ij∗ ∈ I(k)

Pj
, j = 1, 2, such
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that u ∈ I1
∗ ∩ I2

∗ . Let G′j ∈ F(Pj) be such that Ij∗ ∈ IG′j . For each j = 1, 2

we will obtain Ij ∈ IGj with u ∈ I1 ∩ I2.

First we show that there exists I1 ∈ IG1 such that u ∈ I1. If G1 = G′1,
take I1 = I1

∗ ; otherwise u ∈ V (G1)∩V (G′1) and the induction hypothesis (A)
over P1 ∼= Pk implies that there exists I1 ∈ IG1 such that u ∈ I1 ∩ I1

∗ .
Similarly we find I2 ∈ IG2 such that u ∈ I2 and therefore the condition (A)
holds for F(Pk+1).

Proof of (B). Suppose that there are two distinct u, v ∈ V (G1)∩V (G2) ⊂
V (P1) ∩ V (P2). Then either (B1)k+1 or (B2)k+1 holds.

In case (B1)k+1 holds we will show that (B1) holds. Consider the tu-

ples Ij∗ ∈ I(k)

Pj
, j = 1, 2 such that u, v ∈ I1

∗ ∩ I2
∗ . Let G′j ∈ F(Pj) be such

that Ij∗ ∈ IG′j , j = 1, 2.

First we will show that there exists I1 ∈ IG1 such that u, v ∈ I1. If G′1 =
G1, set I1 = I1

∗ . Otherwise, observe that u, v ∈ V (G1)∩ V (G′1) and G1,G
′
1 ∈

F(P1). We may now use the induction hypothesis on Pk which states that
Condition (B) holds for F(Pk). In particular, if there is no I1 ∈ IG1

satisfying u, v ∈ I1 ∩ I1
∗ then the isomorphisms σ1, σ

′
1 from G1,G

′
1 to G

are such that σ1(u) = σ′1(u) and σ1(v) = σ′1(v). However, this means

that I1 = σ−1
1 ◦σ′1(I1

∗ ) ∈ IG1 satisfies u, v ∈ I1. Similarly we obtain I2 ∈ IG2

such that u, v ∈ I2 and thus establish that (B1) holds.
In case (B2)k+1 holds we will show that either (B2) or (B1) hold. Consider

the isomorphisms φj : V (Pj)→ V (Pk), j = 1, 2 (which satisfy φ1(u) = φ2(u)
and φ1(v) = φ2(v)). Let G′j = φj(Gj) ∈ F(Pk), j = 1, 2. If G′1 = G′2 then

let σ : V (G′1) = V (G′2)→ V (G) be the isomorphism between G′1 = G′2 into G.
The isomorphisms σj : V (Gj)→ V (G) are then defined by σj = σ ◦φj |V (Gj).
Therefore

σ1(u) = σ(φ1(u)) = σ(φ2(u)) = σ2(u).

Similarly, σ1(v) = σ2(v). In particular, (B2) holds.
If G′1 6= G′2 then x = φ1(u) = φ2(u) and y = φ1(v) = φ2(v) sat-

isfy x, y ∈ V (G′1) ∩ V (G′2). By the induction assumption over Pk either the
isomorphisms σ′j : V (G′j)→ V (G) satisfy σ′1(x) = σ′2(x) and σ′1(y) = σ′2(y)—

in which case the isomorphisms σ′j ◦ φj |V (Gj) : V (Gj)→ V (G), j = 1, 2, sat-

isfy (B2)—or there exist Ij∗ ∈ IG′j , j = 1, 2, such that x, y ∈ I1
∗ ∩ I2

∗ . In the

latter case, let Ij = φ−1
j (Ij∗) ∈ IGj for j = 1, 2. Notice that u, v ∈ I1 ∩ I2.

Therefore condition (B1) holds.

Before showing that condition (IV) holds we will prove two auxiliary
claims.

Claim 18. Suppose that P1,P2 ∈ F̂k+1, u, v ∈ V (P1) ∩ V (P2), d1 =
distP1(u, v) and d2 = distP2(u, v). Then either min{d1, d2} ≥ `+ 1 or d1 =
d2.
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Without loss of generality assume that P1 6= P2, d1 = min{d1, d2} ≤ `,
and u 6= v. By assumption, either Condition (B1)k+1 or Condition (B2)k+1

holds.
Suppose first that (B2)k+1 holds, namely, the isomorphisms φj : V (Pj)→

V (Pk) are such that φ1(u) = φ2(u) and φ1(v) = φ2(v). Hence φ = φ2 ◦
φ−1

1 : V (P1) → V (P2) is an isomorphism from P1 to P2 satisfying φ(u) = u
and φ(v) = v. It follows that

distP1(u, v) = distP2(φ(u), φ(v)) = distP2(u, v).

The equality in this case holds even for arbitrary distances d1, d2.
Suppose now that Condition (B1)k+1 holds, namely, there exist tuples Ij ∈

I(k)

Pj
⊂
( Pj

ρ`+1

)
, j = 1, 2, such that u, v ∈ I1 ∩ I2.

Let Gj ∈ F(Pj) be such that Ij ∈ IGj for j = 1, 2. By the induction

hypothesis over Pj ∼= Pk, the graph Gj is (`+ 1)-metric in Pj . In particular,
distP1(u, v) = d1 ≤ ` implies that distG1(u, v) = d1.

Recall that

πk+1(I1) = πk+1(I2) = Ik+1 = {w1 < w2 < · · · < wt} ⊂ V (R`).

Moreover, the Ij ’s are crossing with respect to the classes V r`
wi (Pk+1), i =

1, . . . , t. Consequently, there are indices 1 ≤ a, b ≤ t such that u is the ath
element of Ij (j = 1, 2) and v is the bth element of Ij (j = 1, 2). Because
distG1(u, v) = d1 ≤ ` and each Ij is ρ`+1-metric with respect to Gj we have

d1 = distG1(u, v) = ρ(a, b) = distG2(a, b) ≥ distP2(a, b) = d2 = max{d1, d2}

and thus d1 = d2. Hence, Claim 18 follows.

Claim 19. Suppose that G1,G2 ∈ F` and there are distinct u, v ∈ V (G1) ∩
V (G2). Moreover, assume that there exists I1 ∈ IG1 such that u, v ∈ I1.
Then there exists I2 ∈ IG2 such that u, v ∈ I2.

If G1 = G2 then the claim is trivial so let as assume the graphs are distinct.
By assumption, F` satisfies Condition (B). If (B1) holds then the existence
of I2 is immediate.

If, on the other hand, (B2) holds, then the isomorphisms σj : V (Gj) →
V (G) satisfy σ1(u) = σ2(u) and σ1(v) = σ2(v). The map σ = σ−1

2 ◦
σ1 : V (G1)→ V (G2) is clearly the isomorphism from G1 to G2. Since σ(u) =
u and σ(v) = v, it follows that I2 = σ(I1) ∈ IG2 satisfies the conditions of
the claim.

Claim 20. Condition (IV) holds for Pk+1, namely, every G ∈ F(Pk+1) is
(`+ 1)-metric.

For an arbitrary G ∈ F(Pk+1) and u, v ∈ V (G) we will show the following:

(i) If distG(u, v) ≤ ` then distPk+1
(u, v) = distG(u, v).

(ii) If distG(u, v) ≥ `+ 1 then distPk+1
(u, v) ≥ `+ 1.
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The two conditions above imply that G is (` + 1)-metric in Pk+1. Indeed,
notice that when distG(u, v) = `+ 1 we have

`+ 1
(ii)

≤ distPk+1
(u, v) ≤ distG(u, v) = `+ 1

and equality holds. Therefore, for all u, v ∈ V (G) we have distPk+1
(u, v) =

distG(u, v) whenever distG(u, v) ≤ ` + 1 and distPk+1
(u, v) ≥ ` + 1 when-

ever distG(u, v) > `+ 1.
We start by proving (i). Assume that distG(u, v) ≤ `. If distPk+1

(u, v) <
distG(u, v), consider a shortest path P(u, v) in Pk+1. The projection of this
path, πk+1(P(u, v)), is a trail in R` starting at x = πk+1(u) and ending
at y = πk+1(v). Since G′ = πk+1(G) ∈ F` and πk+1 is an isomorphism
between G and G′, it follows that distG′(x, y) = distG(u, v) ≤ `. On the
other hand, the trail πk+1(P(u, v)) shows that

distR`(x, y) ≤ |πk+1(P(u, v))| ≤ |P(u, v)|
= distPk+1

(u, v) < distG(u, v) = distG′(x, y).
(8)

However, this contradicts the fact that G′ is `-metric in R`.
Now let us prove (ii). Assume that distG(u, v) ≥ ` + 1. Suppose for the

sake of contradiction that there exists a path P(u, v) in Pk+1 with length `

or less. By Claim 16, there exists a unique P1 ∈ F̂k+1 ⊂
(Pk+1

Pk

)
Part(r`)

such

that G ⊂ P1. We will show that the path P(u, v) satisfies the following:

(a) P(u, v) 6⊂ P1;
(b) there is no internal vertex of P(u, v) in V (P1), in particular, E

(
P(u, v)

)
∩

E(P1) = ∅;
(c) πk+1(u), πk+1(v) ∈ Ik+1;

(d) P(u, v) 6⊂ P2 for every P2 ∈ F̂k+1;

By the induction hypothesis over the picture P1 ∼= Pk the graph G must
be (`+ 1)-metric in P1 and thus

(9) distP1(u, v) ≥ `+ 1.

In particular, (a) holds, that is, the path P(u, v) cannot be entirely contained
in P1.

Suppose that the path P(u, v) contains an internal vertex w ∈ V (P1).
Then the (non-trivial) induced subpaths P(u,w) and P(w, v) have length
strictly shorter than `. Our assumption that P1 is `-metric in Pk+1 implies
that |P(u,w)| ≥ distP1(u,w) and |P(w, v)| ≥ distP1(w, v). Therefore

|P(u, v)| = |P(u,w)|+ |P(w, v)| ≥ distP1(u,w) + distP1(w, v)

≥ distP1(u, v)
(9)

≥ `+ 1,
(10)

which contradicts the fact that |P(u, v)| ≤ `. Therefore (b) holds.
Because of (b) the edge of the path incident to u must be contained in

some P2 ∈ F̂k+1, P2 6= P1. In particular, u ∈ V (P1)∩V (P2). From Claim 16
we conclude that πk+1(v) ∈ Ik+1 therefore establishing (c).
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Figure 4. An illustration of a path P(u, v) and its subpaths
from case (ii) of Claim 20 with u = x1 and v = x4. We also
have t = 4, a1 = 3, a2 = 1, a3 = 2 and a4 = 4. The
vertex x3 is repeated because P4 is wrapped around and ef-
fectively intersects both P3 and P1. Only the vertices in Ik+1

are vertically ordered to simplify the figure.

To show that (d) is satisfied, suppose that P(u, v) ⊂ P2 for some P2 ∈
F̂k+1, P2 6= P1. Then d2 = distP2(u, v) ≤ `. From Claim 18 we conclude
that

distP1(u, v) = d1 = d2 = `,

which contradicts (9). Therefore (d) holds.
From (a)–(d) we conclude that the path P(u, v) can be decomposed in

subpaths contained in at least two distinct copies of Pk in F̂k+1. Therefore
we may find vertices u = x1, x2, . . . , xr = v, r ≥ 3, belonging to P(u, v)
such that each (non-trivial) subpath P(xj , xj+1), j = 1, . . . , r−1, is entirely

contained in some Pj+1 ∈ F̂k+1, and Pj+1 6= Pj+2 for j = 1, . . . , r − 2 (see
the illustration in Figure 4).

Note that each P(xj , xj+1) has length at most ` − 1 since the sum of
the lengths of each subpath equals |P(u, v)| ≤ `. From Claim 16 we infer
that πk+1(xj) ∈ Ik+1 = {w1 < w2 < · · · < wt} since each xj , 2 ≤ j ≤ r − 1,
is such that xj ∈ V (Pj) ∩ V (Pj+1).

For every j = 1, . . . , r − 1, the projection πk+1

(
P(xj , xj+1)

)
is a trail

connecting waj = πk+1(xj) and waj+1 = πk+1(xj+1) of length |P(xj , xj+1)| ≤
` − 1. Consequently, distR`(waj , waj+1) ≤ ` − 1. Let G′′ ∈ F` ⊂

(
R`
G

)
Part(q)

be such that Ik+1 ∈ IG′′ ⊂
( G′′

ρ`+1

)
. Since G′′ is `-metric in R` it follows that

distG′′(waj , waj+1) = distR`(waj , waj+1) ≤ |P(xj , xj+1)| ≤ `− 1.
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Because Ik+1 ∈
( G′′

ρ`+1

)
we must have distG′′(waj , waj+1) = ρ(aj , aj+1) and

thus

|P(u, v)| =
r−1∑
j=1

|P(xj , xj+1)| ≥
r−1∑
j=1

distG′′(waj , waj+1)

=
r−1∑
j=1

ρ(aj , aj+1) ≥ ρ(a1, ar),

(11)

where in the last part we used the triangle inequality.
Let G′ = πk+1(G) ∈ F`. Notice that wa1 = πk+1(u), war = πk+1(v) ∈

V (G′) ∩ V (G′′). From Claim 19 applied to G′ and G′′ we conclude that
there exists I ′ ∈ IG′ such that wa1 , war ∈ I ′ ∩ Ik+1. Moreover, by the
induction hypothesis every graph in F` is partite embedded into R`, that
is F` ⊂

(
R`
G

)
Part(q)

. This ensures that I ′ and Ik+1 are crossing with re-

spect to {V q
ji

(G′) ⊂ V q
ji

(R`)}ti=1 and {V q
ji

(G′′) ⊂ V q
ji

(R`)}ti=1 respectively. In

particular, the a1th element in I ′ is wa1 and the arth element in I ′ is war . Be-

cause I ′ ∈
( G′

ρ`+1

)
and ρ(a1, ar) ≤ `, we have distG′(wa1 , war) = ρ(a1, ar) ≤ `

Since πk+1 is the isomorphism of G into G′ we have

distG(u, v) = distG′(wa1 , war) = ρ(a1, ar) ≤ `,

which is a contradiction with the original assumption that distG(u, v) ≥ `+1.
This finishes the proof of Claim 20.

We have proved the induction step over k by establishing Claims 14, 15,
17 and 20. In order to prove that R`+1 = Pm and F`+1 = F(Pm) satisfy the
induction hypothesis for `+ 1, it remains to show the following claim.

Claim 21. For every 2-coloring of
(
V (R`+1)

t

)
there exists G ∈ F`+1 such that

every (ρ`+1, t)-tuple in IG is monochromatic.

Suppose that the t-tuples of vertices in R`+1 are 2-colored. By construc-

tion (see Property (1)m), there exist some Pm−1 ∈ F̂m ⊂
(R`+1

Pm−1

)
Part(r`)

such

that I(m−1)
Pm−1 is monochromatic (with color cm). Similarly, we obtain Pm−2 ∈

F̂m−1 ⊂
(Pm−1

Pm−2

)
Part(r`)

such that I(m−2)
Pm−2 is monochromatic (with color cm−1).

Repeating the argument we obtain a sequence P0 ⊂ P1 ⊂ · · · ⊂ Pm−1 such

that each I(k)

Pk
, k = 0, . . . ,m− 1, is monochromatic with color ck+1.

Recall that P0 consists of disjoint copies of G which are in correspon-
dence with members of F` ⊂

(
R`
G

)
Part(q)

by π0 (see Figure 2). Given the

isomorphism φ : V (P0)→ V (P0), the map λ = π0 ◦φ−1 is a projection of P0

onto R`. We will now show that for each

Ik ∈
⋃

G∈F`

IG
(2)
= {I1, . . . , Im},
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every I ∈
⋃

G∈F(P0) IG with λ(I) = Ik is colored with the same color ck.

For any I ∈
⋃

G∈F(P0) IG with λ(I) = Ik there is a unique Ḡ ∈ F(P0) such

that I ∈ IḠ. By (7), we have Ḡ ∈ F(P0) ⊂ F(P1) ⊂ · · · ⊂ F(Pk−1) and
hence I ∈

⋃
G∈F(Pk−1) IG. Because V r`

j (P0) ⊂ V r`
j (P1) ⊂ · · · ⊂ V r`

j (Pk−1)

for all j = 1, . . . , r` and I is crossing with respect to {V r`
j (P0)}j∈Ik it is

obvious that I is crossing with respect to {V r`
j (Pk−1)}j∈Ik as well. Given the

isomorphism φk−1 : V (Pk−1)→ V (Pk−1) we conclude that πk−1 ◦ φ−1
k−1(I) =

Ik. From (4) we conclude that φ−1
k−1(I) ∈ I(k−1) and thus I ∈ I(k−1)

Pk−1 .

However, I(k−1)

Pk−1 is monochromatic (with color ck) by the definition of Pk−1.
Consequently, the color of I is ck.

This induces a 2-coloring on the tuples in
⋃

G∈F` IG by setting χ(Ik) = ck
for all k = 0, . . . ,m − 1. By the induction hypothesis over `, there exists
a copy G∗ ∈ F` such that IG∗ is monochromatic (under χ). There exist a
unique G ∈ F(P0) such that λ(G) = G∗. Since the color of any I ∈ IG is
equal to χ

(
λ(I)

)
and λ(I) ∈ IG∗ , it follows that IG is monochromatic.

The induction hypothesis for pictures applied to R`+1 = Pm and F`+1 =
F(Pm) together with Claim 21 establish that the induction hypothesis holds
for `+ 1. Lemma 10 then follows by induction.

3. The base of the induction

Here we prove the induction base of the proof of Lemma 10. This will be
done by an application of the Hales–Jewett theorem.

Suppose that I is a t-partite t-uniform hypergraph with vertex set V
and classes V1, . . . , Vt. Let In be the set of n-tuples of elements of I. A
combinatorial line L in In associated with a partition [n] = ML∪FL, ML 6=
∅, and an |FL|-tuple (ILk )k∈FL ∈ IFL is given by

L = {(I1, I2, . . . , In) ∈ In : Ir = Is for r, s ∈ML and Ik = ILk for k ∈ FL}.
The set ML is called the set of moving coordinates, while FL is called the set
of fixed coordinates. Notice that every combinatorial line has precisely |I|
elements.

The Hales–Jewett theorem is stated as follows. For a proof, see for in-
stance [4].

Theorem 22 ([5]). For any integer r ≥ 2 and finite set I there exists n
such that in every r-coloring of In there exists a monochromatic line.

For our purposes it will be useful to interpret an element I ∈ I as a vector
with t coordinates where the jth coordinate is simply the unique vertex
in I ∩ Vj . In this way, an element in In may be viewed as a t × n matrix.
Consequently, a line of In may be described as a collection of matrices QLI ,
I ∈ I, where the columns ofQLI indexed by FL are fixed and independent of I
while every column indexed by ML is precisely I. For example, for n = 4,
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ML = {1, 2}, FL = [4] \ML = {3, 4} and L = {(I, I, IL3 , IL4 ) : I ∈ I}, the
elements of L are the matrices

(12) QLI =

 | | | |
I I IL3 IL4
| | | |


for all I ∈ I.

We will now prove Lemma 23 which is the base of the induction in the
proof of Lemma 10.

Lemma 23. Let t, q ∈ N, t ≤ q, and ρ be a metric on [t].
Suppose that G is a q-partite graph with V (G) = V q

1 (G) ∪ · · · ∪ V q
q (G)

and, for some 1 ≤ j1 < j2 < · · · < jt ≤ q, I ⊆
(
G
ρ2

)
is a t-partite t-uniform

hypergraph with classes {V q
ji

(G)}ti=1.

Then there exists a q-partite graph R and F ⊂
(
R
G

)
Part(q)

satisfying the

following properties.

(1) For any 2-coloring of
(
V (R)
t

)
there exists G ∈ F such that every

(ρ2, t)-tuple in IG ⊂
(G
ρ2

)
is monochromatic.

(2) Every G ∈ F is 2-metric in R.
(3) The family F satisfies conditions (A) and (B).

Remark 24. Consider a graph Fρ with vertex set [t] such that ij ∈ Fρ
iff ρ(x, y) = 1. With this definition we have

(
G
ρ2

) ∼= (
G
Fρ

)
, i.e.,

(
G
ρ2

)
coincides

with the set of all induced copies of Fρ in G.
Notice also that the fact that every G ∈ F is 2-metric in R implies that G

is an induced subgraph of R. Indeed, by the definition, for all x, y ∈
V (G), when distR(x, y) ≤ 2 we must have distG(x, y) = distR(x, y) and
when distR(x, y) > 2 we must have distG(x, y) ≥ 2. In particular, xy ∈ R
iff xy ∈ G.

Lemma 23 appears in [10] without explicitly stating Condition (3), which
is needed here for technical reasons to carry on the induction. For complete-
ness we include here the proof of [10] modified to explicitly establish (3).

Proof. Suppose that G and I are given as in the statement of the lemma.
Let J = {j1, . . . , jt} be the set of indices with the property of the assumption,
namely, I is a t-partite t-uniform hypergraph with classes {V q

j (G)}j∈J . Let n

be given by Theorem 22 (with r = 2) applied to I. Let {L1, . . . , LN} denote
the set of all lines in In

Let W =
⋃
I∈I I and Wj = V q

j (G)∩W . (Notice that Wj = ∅ when j /∈ J .)
The vertex set of R is given by

V (R) =
(
[N ]× (V (G) \W )

)
∪
⋃
j∈J

Wn
j .

The edge set of R will be defined after we prove Claim 25.
For a line La with fixed values

(
Iak
)
k∈Fa , we view Iak = {Iak,j ∈ Wj}j∈J

as a column-vector [Iak,j ]j∈J . Let us define the map ψa : V (G) → V (R) as
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follows:

(13) ψa(v) =


(a, v) for v ∈ V (G) \W ;

(v1, v2, . . . , vn) for v ∈Wj , j ∈ J, where

vk = v for k ∈Ma and vk = Iak,j for k ∈ Fa.

In view of (12) and (13), for every I = {u1 < u2 < · · · < ut} ∈ I we have

QLaI = ψa(I) =


ψa(u1)
ψa(u2)

...
ψa(ut)

 .
Observe that the rows of the matrices QLaI are seen as vertices of R.

Claim 25. The map ψa : V (G)→ V (R) is one-to-one.

Suppose for the sake of contradiction that two distinct u, v ∈ V q
j (G),

1 ≤ j ≤ q, are such that ψa(u) = ψa(v). We cannot have ψa(u) = (a, u)
since that would imply u = v. Consequently, u, v ∈ Wj with j ∈ J . Hence
both ψa(u) and ψa(v) must be n-tuples such that ψa(u)k = u 6= v = ψa(v)k
for all k ∈Ma. Therefore u cannot be distinct from v.

Set

E(R) =
N⋃
a=1

E
(
ψa(G)

)
and let F = {Ga = ψa(G) : a = 1, . . . , N}.

We now must prove that the conclusions of the lemma hold for R and F .
This will be accomplished by the following steps.

(a) Define a total order on V (R) and a q-partition V (R) = V q
1 (R)∪V q

2 (R)∪
· · ·∪V q

q (R) such that every ψa is a monotone map satisfying ψa(V
q
j (G)) ⊂

V q
j (R) for every j. This order ensures that F ⊂

(
R
G

)
Part(q)

.

(b) Establish the intersection properties of F described in (3).
(c) Use (ii) to show that every Ga ∈ F is an induced subgraph of R and

thus prove (2).
(d) Show that the family F is Ramsey in R, namely, prove (1).

Proof of (a). For all j, define

(14) V q
j (R) =

(
[N ]× (V q

j (G) \W )
)
∪Wn

j .

Observe that V (R) = V q
1 (R) ∪ V q

2 (R) ∪ · · · ∪ V q
q (R). Moreover, it is simple

to check that ψa(V
q
j (G)) ⊂ V q

j (R) for all j. Let us now define a total order

on V (R) for which every map ψa is monotone. It is enough to define the
order for each V q

j (R) since we require V q
1 (R) ≺ V q

2 (R) ≺ · · · ≺ V q
q (R).

Let Uj = Wn
j be linearly ordered using the lexicographic order in the n-

tuples (recall that Wj ⊂ V q
j (G) ⊂ V (G) and V (G) is also linearly ordered).

We extend the linear order of Uj as follows: let v ∈ V q
j (G)\W be the smallest
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element such that ψ1(v) = (1, v) /∈ Uj . If there is a predecessor u ∈ V q
j (G)

of v then add ψ1(v) to Uj as a successor of ψ1(u) otherwise let ψ1(v) be the
first (smallest) element of Uj .

Repeat the extension steps until ψ1(V q
j (G)) ⊂ Uj . Then repeat the same

steps for ψ2, ψ3, . . . , ψN . After the end of this procedure we have obtained a
total order on V q

j (R). It remains to check that every ψa is monotone under
this ordering.

Initially Uj = Wn
j and the elements of Uj were ordered lexicographically.

For arbitrary u, v ∈ Wj we have ψa(u)k = ψa(v)k for every k ∈ Fa. This
means that the first coordinate in which ψa(u) differs from ψa(v) is in Ma.
Since for every k ∈ Ma, we have ψa(u)k = u, ψa(v)k = v, it follows that
ψa(u) < ψa(v) in the lexicographic order.

We show that the linear order above is such that each ψa is monotone.
Suppose that the order on ψa(V

q
j (G)) ∩Uj , a = 1, . . . , N , is consistent with

the order on V q
j (G) at a given step. If Uj is extended by including some

element (a, v), then this extension does not affect the maps ψb, b 6= a. The
placement of (a, v) in the linearly ordered set Uj is such that ψa(V

q
j (G))∩Uj

remains consistent with the order on V q
j (G). Since initially Uj was consistent

with every map ψa, the statement follows by induction.

Proof of (b). Suppose that x ∈ V (Ga) ∩ V (Gb) with a 6= b. We must
have x ∈ Wn

j for some j ∈ J since otherwise for some v ∈ V (G) \ W ,

we have x = (a, v) = (b, v) which contradicts a 6= b. It follows therefore
that ψ−1

a (x), ψ−1
b (x) ∈ Wj and therefore by definition (Wj ⊂ W =

⋃
I∈I I)

there exists I ′a, I
′
b ∈ I such that ψ−1

a (x) ∈ I ′a and ψ−1
b (x) ∈ I ′b. Consequently,

x ∈ Ia = ψa(I
′
a) ∈ IGa and x ∈ Ib = ψb(I

′
b) ∈ IGb . This establishes the

intersection Condition (A) for members of F .
Now let us prove Condition (B). Suppose that there are distinct x, y ∈

V (Ga) ∩ V (Gb), a 6= b.
Let

(
Iak = [Iak,j ]j∈J

)
k∈Fa and

(
Ibk = [Ibk,j ]j∈J

)
k∈Fb

be the set of fixed

elements in the lines La and Lb respectively. By (13), for j ∈ J such
that x = (xk)

n
k=1 ∈ Wn

j we have xk = Iak,j for k ∈ Fa and xk = Ibk,j
for k ∈ Fb.

We distinguish between two cases.

(i) Ma ∩Mb 6= ∅.
(ii) Ma ∩Mb = ∅ (then Ma ⊂ Fb and Mb ⊂ Fa).

We have ψ−1
a (x) = xk for every k ∈ Ma and ψ−1

b (x) = xk for every k ∈
Mb. If (i) holds, take k ∈ Ma ∩ Mb and observe that ψ−1

a (x) = ψ−1
b (x)

(and ψ−1
a (y) = ψ−1

b (y)). Therefore in this case Condition (B2) holds as the

isomorphisms σa = ψ−1
a : V (Ga) → V (G) and σb = ψ−1

b : V (Gb) → V (G)
satisfy σa(x) = σb(x) and σa(y) = σb(y).
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If (ii) holds, we must have Ma ⊂ Fb and Mb ⊂ Fa. Observe that for k ∈
Ma ⊂ Fb there are j, j′ ∈ J such that

ψ−1
a (x)

k∈Ma= xk
k∈Fb= Ibk,j

and ψ−1
a (y) = yk = Ibk,j′ . In particular, {ψ−1

a (x), ψ−1
a (y)} = {Ibk,j , Ibk,j′} ⊂

Ibk ∈ I and we set Ĩa = Ibk. Similarly we conclude that {ψ−1
b (x), ψ−1

b (y)} ⊂ Ĩb
for some Ĩb ∈ I.

Let Ia = ψa(Ĩa) ∈ IGa and Ib = ψb(Ĩb) ∈ IGb . Notice that {x, y} ⊂ Ia∩Ib.
This shows that Condition (B1) holds.

Proof of (c). Let Ga ∈ F be arbitrary. To prove that Ga is an induced
subgraph of R we must check that for every pair of distinct x, y ∈ V (Ga)
if x, y ∈ V (Gb) for some b 6= a then {x, y} ∈ Ga iff {x, y} ∈ Gb. Since x, y ∈
V (Ga)∩V (Gb), we may invoke the intersection properties of F proved in (b).

In case Condition (B2) holds, we have ψ−1
a (x) = ψ−1

b (x) and ψ−1
a (y) =

ψ−1
b (y). Therefore {x, y} ∈ Ga iff {ψ−1

a (x), ψ−1
a (y)} = {ψ−1

b (x), ψ−1
b (y)} ∈ G

iff {x, y} ∈ Gb.
In case Condition (B1) holds, let Ia ∈ IGa and Ib ∈ IGb be such that x, y ∈

Ia ∩ Ib. Let jr, js ∈ J (1 ≤ r, s ≤ t) be such that x ∈ V q
jr

(R) and y ∈ V q
js

(R).

Because Ia ∈
(Ga
ρ2

)
it follows that distGa(x, y) = ρ(r, s) whenever ρ(r, s) ≤

2 and distGa(x, y) ≥ 2 whenever ρ(r, s) > 2. In particular, {x, y} ∈ Ga
iff ρ(r, s) = 1. Similarly, {x, y} ∈ Gb iff ρ(r, s) = 1. Therefore {x, y} ∈ Ga
iff {x, y} ∈ Gb.

Proof of (d). We will now show that for any 2-coloring of
(
V (R)
t

)
there

exists G ∈ F such that every t-tuple in IG ⊂
(G
ρ2

)
is monochromatic.

Consider Q = (I1, . . . , In) ∈ In as a t×n matrix with columns I1, . . . , In.
The kth row of the matrix is in V q

jk
(R) (recall that J = {j1, . . . , jt}). In

particular, Q is in correspondence with a t-tuple of V q
j1

(R)× · · · × V q
jt

(R) ⊂(
V (R)
t

)
. Define the color of Q as the color of the corresponding t-tuple.

By the Hales–Jewett theorem, there is a monochromatic line La, a ∈ [N ],
in such a coloring. It follows that G = Ga is such that IG is monochromatic.
Indeed, every t-tuple ψa(I) ∈ IGa , I ∈ I, corresponds to the matrix QLaI
contained in the line La (see (13) and the discussion that follows). �

4. Sketch of Lemma 12

In this section we give a sketch of the proof of Lemma 12. Since this
proof is very similar to the proof of the induction step in Lemma 10 (albeit
simpler), we avoid repeating some details and instead refer the reader to
parts of the proof of Lemma 10 that present similar arguments.

Let H be a given connected graph on n vertices and ρ be a metric on t
elements.
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Set N = Rt(n), where Rt(n) is the smallest number such that for every 2-

coloring of the complete t-uniform hypergraph K
(t)
N there exists a monochro-

matic K
(t)
n as a subhypergraph.

Consider the complete graph R0
∼= K

(2)
N with vertex set V (R0) = [N ].

Clearly, for every set S ⊂ V (R0), |S| = n, there is a unique monotone
injective map φ : V (H) → S. Since R0 is complete, the map φ is trivially
edge-preserving. In particular, the family F0 of all not necessarily induced

ordered copies of H in R0 is in correspondence with
(

[N ]
n

)
.

Just as in the proof of Lemma 10 we construct an N -partite graph P0

consisting of disjoint copies of H that project onto (non-induced) copies

of H through π0 (see Figure 2). Let F(P0) =
(
P0

H

)
and notice that (due to

the fact that H is connected) there is a one-to-one correspondence of F(P0)

and F0
∼=
(

[N ]
m

)
through the projection π0.

Consider the hypergraph⋃
H∈F0

(
H

ρ

)
= {I1, . . . , Im} ⊂

(
V (R0)

t

)
,

and set

I(0) =

{
I ∈

⋃
H∈F(P0)

(
H

ρ

)
: π0(I) = I1

}
⊂
(
P0

ρ

)
,

which is defined in a similar as the hypergraph in (4). Observe that the

t-uniform hypergraph I(0) is t-partite with respect to {V N
j (P0)}j∈I1 .

Let ` = max{distH(x, y) : x, y ∈ V (H)} < ∞. Apply Lemma 10 to the

N -partite graph P0 (instead of a q-partite G) and the family I(0) ⊂
(
P0

ρ`

)
.

We then obtain the Ramsey N -partite graph P1 and F̂1 ⊂
(
P1

P0

)
Part(N)

for

which (1) and (2) hold. In particular, (2) ensures that every P ∈ F̂1 is `-
metric in P1. By our choice of `, this implies that every H ∈ F(P) is metric
in P1.

In general, we obtain Pk+1 from Pk, k = 0, . . . ,m − 1, by applying
Lemma 10 to the N -partite graph Pk and the t-partite t-uniform hyper-
graph

I(k) =

{
I ∈

⋃
H∈F(Pk)

(
H

ρ

)
: πk(I) = Ik+1

}
⊂
(
Pk
ρ`

)
.

The graph Pk+1 and the family F̂k+1 ⊂
(Pk+1

Pk

)
Part(N)

we obtain are such that

every H ∈ F(Pk+1) =
⋃

P∈F̂k+1
F(P) is metric in Pk+1 and πk+1(H) ∈ F0

(where πk+1 : V (Pk+1) → V (R0) = [N ] is defined as the projection that
maps every v ∈ V N

j (Pk+1) to j for all j = 1, . . . , N).

Take R = Pm and F = F(Pm) ⊂
(
R
H

)
. Just as in Claim 21 one may

show that in any 2-coloring of
(
V (R)
t

)
there exists a copy of P0 in R, say P =

φ(P0) ⊂ R, such that the color of a tuple I ∈
(H
ρ

)
, H ∈ F(P), depends only
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on π0◦φ−1(I) ∈ {I1, . . . , Im}. In particular, there is an induced 2-coloring of

the tuples I1, I2, . . . , Im ∈ K(t)
N . Extend this induced 2-coloring to all of K

(t)
N

arbitrarily.

By the definition of N , there must be a monochromatic K
(t)
n in K

(t)
N .

Let S ∈
(

[N ]
n

)
be the set of vertices of this monochromatic K

(t)
n and let H∗ ∈

F0 be the copy of H in correspondence with S. The graph H = φ◦π−1
0 (H∗) ∈

F(P) is such that H ⊂ R is metric and
(H
ρ

)
is monochromatic.
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[11] J. Nešetřil and V. Rödl. The partite construction and Ramsey set systems. Discrete
Math., 75(1-3):327–334, 1989. Graph theory and combinatorics (Cambridge, 1988).
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