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DETACHMENTS OF HYPERGRAPHS I: THE BERGE-JOHNSON
PROBLEM

AMIN BAHMANIAN

Abstract. A detachment of a hypergraph is formed by splitting each vertex into one or
more subvertices, and sharing the incident edges arbitrarily among the subvertices. For a
given edge-colored hypergraph F , we prove that there exists a detachment G such that the
degree of each vertex and the multiplicity of each edge in F (and each color class of F ) are
shared fairly among the subvertices in G (and each color class of G , respectively).

Let pλ1 . . . , λmqKh1,...,hm

p1,...,pn

be a hypergraph with vertex partition tV1, . . . , Vnu, |Vi| “ pi
for 1 ď i ď n such that there are λi edges of size hi incident with every hi vertices, at
most one vertex from each part for 1 ď i ď m (so no edge is incident with more than
one vertex of a part). We use our detachment theorem to show that the obvious necessary
conditions for pλ1 . . . , λmqKh1,...,hm

p1,...,pn

to be expressed as the union G1 Y . . . Y Gk of k edge-
disjoint factors, where for 1 ď i ď k, Gi is ri-regular, are also sufficient. Baranyai solved the
case of h1 “ ¨ ¨ ¨ “ hm, λ1 “ . . . , λm “ 1, p1 “ ¨ ¨ ¨ “ pm, r1 “ ¨ ¨ ¨ “ rk. Berge and Johnson,
(and later Brouwer and Tijdeman, respectively) considered (and solved, respectively) the
case of hi “ i, 1 ď i ď m, p1 “ ¨ ¨ ¨ “ pm “ λ1 “ ¨ ¨ ¨ “ λm “ r1 “ ¨ ¨ ¨ “ rk “ 1. We also
extend our result to the case where each Gi is almost regular.

1. Introduction

Intuitively speaking, a detachment of a hypergraph is formed by splitting each vertex into
one or more subvertices, and sharing the incident edges arbitrarily among the subvertices.
As the main result of this paper (see Theorem 4.1), we prove that for a given edge-colored
hypergraph F , there exists a detachment G such that the degree of each vertex and the
multiplicity of each edge in F (and each color class of F ) are shared fairly among the
subvertices in G (and each color class of G , respectively). This result is not only interesting
by itself and generalizes various graph theoretic results (see for example [1, 10, 12, 14, 15,
17, 18, 19]), but also is used to obtain extensions of existing results on edge-decompositions
of hypergraphs by Bermond, Baranyai [2, 3], Berge and Johnson [4, 13], and Brouwer and
Tijdeman [5, 6].

Given a set N of n elements, Berge and Johnson [4, 13] addressed the question of when
do there exist disjoint partitions of N , each partition containing only subsets of h or fewer
elements, such that every subset of N having h or fewer elements is in exactly one partition.
Here we state the problem in a more general setting with the hypergraph theoretic notation.

Let pλ1 . . . , λmqKh1,...,hm
p1,...,pn

be a hypergraph with vertex partition tV1, . . . , Vnu, |Vi| “ pi for
1 ď i ď n such that there are λi edges of size hi incident with every hi vertices, at most
one vertex from each part for 1 ď i ď m (so no edge is incident with more than one vertex
of a part). We use our detachment theorem to show that the obvious necessary conditions
for pλ1 . . . , λmqKh1,...,hm

p1,...,pn
to be expressed as the union G1 Y . . .Y Gk of k edge-disjoint factors,
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where for 1 ď i ď k, Gi is ri-regular, are also sufficient. Baranyai [2, 3] solved the case of
h1 “ ¨ ¨ ¨ “ hm, λ1 “ . . . , λm “ 1, p1 “ ¨ ¨ ¨ “ pm, r1 “ ¨ ¨ ¨ “ rk. Berge and Johnson [4, 13],
(and later Brouwer and Tijdeman [5, 6], respectively) considered (and solved, respectively)
the case of hi “ i, 1 ď i ď m, p1 “ ¨ ¨ ¨ “ pm “ λ1 “ ¨ ¨ ¨ “ λm “ r1 “ ¨ ¨ ¨ “ rk “ 1. We also
extend our result to the case where each Gi is almost regular.

In the next two sections, we give more precise definitions along with terminology. In
Section 4, we state our main result, followed by the proof in Section 5. In the last section,
we show the usefulness of the main result on decompositions of various classes of hypergraphs.
We defer the applications of the main result in solving embedding problems to a future paper.

2. Terminology and precise definitions

If x, y P R (R is the set of real numbers), then txu and rxs denote the integers such that
x ´ 1 ă txu ď x ď rxs ă x ` 1, and x « y means tyu ď x ď rys. We observe that the
relation « is transitive (but not symmetric) and for x, y P R, and n P N (N is the set of
positive integers), x « y implies x{n « y{n. These properties of « will be used in Section 5
without further explanation. For a multiset A and u P A, let µApuq denote the multiplicity
of u in A, and let |A| “

ř

uPA µApuq. For multisets A1, . . . , An, we define A “
Ťn

i“1Ai by
µApuq “

řn

i“1 µAi
puq. We may use abbreviations such as turu for tu, . . . , u

looomooon

r

u — for example

tu2, v, w2u Y tu, w2u “ tu3, v, w4u.
For the purpose of this paper, a hypergraph G is an ordered quintuple pV pG q, EpG q, HpG q,

ψ, φq where V pG q, EpG q, HpG q are disjoint finite sets, ψ : HpG q Ñ V pG q is a function and
φ : HpG q Ñ EpG q is a surjection. Elements of V pG q, EpG q, HpG q are called vertices, edges
and hinges of G , respectively. A vertex v (edge e, respectively) and hinge h are said to be
incident with each other if ψphq “ v (φphq “ e, respectively). A hinge h is said to attach the
edge φphq to the vertex ψphq. In this manner, the vertex ψphq and the edge φphq are said to
be incident with each other. If e P EpG q, and e is incident with n hinges h1, . . . , hn for some
n P N, then the edge e is said to join (not necessarily distinct) vertices ψph1q, . . . , ψphnq. If
v P V pG q, then the number of hinges incident with v (i.e. |ψ´1pvq|) is called the degree of v
and is denoted by dpvq. The number of (distinct) vertices incident with an edge e, denoted
by |e|, is called the size of e. If for all edges e of G , |e| ď 2 and |φ´1peq| “ 2, then G is a
graph.

Thus a hypergraph, in the sense of our definition, is a generalization of a hypergraph as it
is usually defined. In fact, if for every edge e, |e| “ |φ´1peq|, then our definition is essentially
the same as the usual definition. Here for convenience, we imagine each edge of a hypergraph
to be attached to the vertices which it joins by in-between objects called hinges. Readers
from a graph theory background may think of this as a bipartite multigraph with vertex
bipartition tV,Eu, in which the hinges form the edges. A hypergraph may be drawn as a
set of points representing the vertices. A hyperedge is represented by a simple closed curve
enclosing its incident vertices. A hinge is represented by a small line attached to the vertex
incident with it (see Figure 1).

The set of hinges of G which are incident with a vertex v (and an edge e, respectively), is
denoted by Hpvq (Hpv, eq, respectively). Thus if v P V pG q, then Hpvq “ ψ´1pvq, and |Hpvq|
is the degree dpvq of v. If U is a multi-subset of V pG q, and u P V pG q, let EpUq denote
the set of edges e with |φ´1peq| “ |U | joining vertices in U . More precisely, EpUq “ te P
EpG q| for all v P V pG q, |Hpv, eq| “ µUpvqu. For U1, . . . , Un Ă V where for 1 ď i ď n each Ui
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is a multiset, let EpU1, . . . , Unq denote Ep
Ťn

i“1 Uiq. We write mpUq for |EpUq| and call it the
multiplicity of U . For simplicity, Epur, Uq denotes Epturu, Uq, and mpum1

1 , . . . , umr
r q denotes

mptum1

1 , . . . , umr
r uq. The set of hinges that are incident with u and an edge in Epur, Uq is

denoted by Hpur, Uq.

Example 2.1. Let G “ pV,E,H, ψ, φq, with V “ tv1, v2, v3, v4, v5u, E “ te1, e2, e3u, H “
thi, 1 ď i ď 7u, such that ψph1q “ ψph2q “ v1, ψph3q “ v2, ψph4q “ ψph5q “ v3, ψph6q “
v4, ψph7q “ v5 and φph1q “ φph2q “ φph3q “ φph4q “ e1, φph5q “ φph6q “ e2, φph7q “ e3. We
have:

v1

e1

e2

G

v5

h7 v4

h4

v2
h3

h1

h2

v3

h5

h6e3

Figure 1. Representation of a hypergraph G

‚ |e1| “ 3, |e2| “ 2, |e3| “ 1,
‚ dpv1q “ dpv3q “ 2, dpv2q “ dpv4q “ dpv5q “ 1,
‚ Hpv1q “ th1, h2u, Hpv2q “ th3u, Hpv3q “ th4, h5u,
‚ Hpv3, e1q “ th4u, Hpv3, e2q “ th5u, Hpv3, e3q “ ∅,
‚ Eptv1, v2, v3uq “ ∅, Eptv21, v2, v3uq “ Epv21, tv2, v3uq “ te1u,
‚ mpv1, v2, v3q “ 0, mpv21, v2, v3q “ 1,
‚ Hpv21, tv2, v3uq “ th1, h2u, Hpv1, tv2, v3uq “ ∅, Hpv3, tv

2
1, v2uq “ th4u.

A k-edge-coloring of G is a mapping f : EpG q Ñ C, where C is a set of k colors (often we
use C “ t1, . . . , ku), and the edges of one color form a color class. The sub-hypergraph of G

induced by the color class j is denoted by G pjq. To avoid ambiguity, subscripts may be used
to indicate the hypergraph in which hypergraph-theoretic notation should be interpreted —
for example, dG pvq, EG pv2, wq, HG pvq.

3. Amalgamations and detachments

If F “ pV,E,H, ψ, φq is a hypergraph and Ψ is a function from V onto a set W , then we
shall say that the hypergraph G “ pW,E,H,Ψ ˝ ψ, φq is an amalgamation of F and that
F is a detachment of G . Associated with Ψ is the number function g : W Ñ N defined
by gpwq “ |Ψ´1pwq|, for each w P W ; being more specific, we may also say that F is a
g-detachment of G . Intuitively speaking, a g-detachment of G is obtained by splitting each
u P V pG q into gpuq vertices. Thus F and G have the same edges and hinges, and each
vertex v of G is obtained by identifying those vertices of F which belong to the set Ψ´1pvq.
In this process, a hinge incident with a vertex u and an edge e in F becomes incident with
the vertex Ψpuq and the edge e in G .

There are quite a lot of other papers on amalgamations and some highlights include
[7, 8, 9, 10, 12, 14, 18, 19].
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4. Main Result

A function g : V pG q Ñ N is said to be simple if

|Hpv, eq| ď gpvq for v P V pG q, e P EpG q.

A hypergraph G is said to be simple if g : V pG q Ñ N with gpvq “ 1 for v P V pG q is simple.
It is clear that for a hypergraph F and a function g : V pF q Ñ N, there exists a simple
g-detachment if and only if g is simple.

Theorem 4.1. Let F be a k-edge-colored hypergraph and let g : V pF q Ñ N be a simple
function. Then there exists a simple g-detachment G (possibly with multiple edges) of F

with amalgamation function Ψ : V pG q Ñ V pF q, g being the number function associated
with Ψ, such that:

(A1) dG pvq « dF puq{gpuq for each u P V pF q and each v P Ψ´1puq;
(A2) dG pjqpvq « dF pjqpuq{gpuq for each u P V pF q, each v P Ψ´1puq and 1 ď j ď k;

(A3) mG pU1, . . . , Urq « mF pum1

1 , . . . , umr
r q{Πr

i“1

`

gpuiq
mi

˘

for distinct u1, . . . , ur P V pF q and

Ui Ă Ψ´1puiq with |Ui| “ mi ď gpuiq for 1 ď i ď r;

(A4) mG pjqpU1, . . . , Urq « mF pjqpu
m1

1 , . . . , umr
r q{Πr

i“1

`

gpuiq
mi

˘

for distinct u1, . . . , ur P V pF q

and Ui Ă Ψ´1puiq with |Ui| “ mi ď gpuiq for 1 ď i ď r and 1 ď j ď k.

A family A of sets is laminar if, for every pair A,B of sets belonging to A , either A Ă B,
or B Ă A, or AX B “ ∅. To prove the main result, we need the following lemma:

Lemma 4.2. (Nash-Williams [18, Lemma 2]) If A ,B are two laminar families of subsets
of a finite set S, and n P N, then there exist a subset A of S such that for every P P A Y B,
|AX P | « |P |{n.

5. proof of Theorem 4.1

5.1. Inductive construction of G . Let F “ pV,E,H, ψ, φq. Let n “
ř

vPV pgpvq ´ 1q.
Initially we let F0 “ F and g0 “ g, and we let Φ0 be the identity function from V into V .
Now assume that F0 “ pV0, E0, H0, ψ0, φ0q, . . . ,Fi “ pVi, Ei, Hi, ψi, φiq and Φ0, . . . ,Φi have
been defined for some i ě 0. Also assume that the simple functions g0 : V0 Ñ N, . . . , gi :
Vi Ñ N have been defined for some i ě 0. Let Ψi “ Φ0 . . .Φi. If i “ n, we terminate the
construction, letting G “ Fn and Ψ “ Ψn.

If i ă n, we can select a vertex α of Fi such that gipαq ě 2. As we will see, Fi`1 is formed
from Fi by splitting off a vertex vi`1 from α so that we end up with α and vi`1. Let

Ai “ tHFi
pαqu

Ť

tHFip1qpαq, . . . , HFipkqpαqu
Ť

tHFipjqpα, eq : e P EFipjqpαq, 1 ď j ď ku,(1)

and let

Bi “ tHFi
pαt, Uq : t ě 1, U Ă Viztαuu

Ť

tHFipjqpα
t, Uq : t ě 1, U Ă Viztαu, 1 ď j ď ku.(2)

It is easy to see that both Ai and Bi are laminar families of subsets ofHpFi, αq. Therefore,
by Lemma 4.2, there exists a subset Zi of HpFi, αq such that

(3) |Zi X P | « |P |{gipαq, for every P P Ai Y Bi.



DETACHMENTS OF HYPERGRAPHS 5

Let vi`1 be a vertex which does not belong to Vi and let Vi`1 “ Vi Y tvi`1u. Let Φi`1 be the
function from Vi`1 onto Vi such that Φi`1pvq “ v for every v P Vi and Φi`1pvi`1q “ α. Let
Fi`1 be the detachment of Fi under Φi`1 such that V pFi`1q “ Vi`1, and

(4) HFi`1
pvi`1q “ Zi, HFi`1

pαq “ HFi
pαqzZi.

In fact, Fi`1 is obtained from Fi by splitting α into two vertices α and vi`1 in such a
way that hinges which were incident with α in Fi become incident in Fi`1 with α or vi`1

according as they do not or do belong to Zi, respectively. Obviously, Ψi is an amalgamation
function from Fi`1 into Fi. Let gi`1 be the function from Vi`1 into N, such that gi`1pvi`1q “
1, gi`1pαq “ gipαq´1, and gi`1pvq “ gipvq for every v P Viztαu. This finishes the construction
of Fi`1.

5.2. Relations between Fi`1 and Fi. The hypergraph Fi`1, satisfies the following con-
ditions:

(B1) dFi`1
pαq « dFi

pαqgi`1pαq{gipαq;
(B2) dFi`1

pvi`1q « dFi
pαq{gipαq;

(B3) mFi`1
pvsi`1, α

t, Uq “ 0 for s ě 2, and t ě 0;
(B4) mFi`1

pαt, Uq « mFi
pαt, Uqpgipαq ´ tq{gipαq for each U Ă Viztαu, and gipαq ě t ě 1;

(B5) mFi`1
pαt, vi`1, Uq « pt` 1qmFi

pαt`1, Uq{gipαq for each U Ă Viztαu, and t ě 0.

Proof. Since HFi
pαq P Ai, from (4) it follows that

dFi`1
pvi`1q “ |HFi`1

pvi`1q| “ |Zi| “ |Zi X HFi
pαq|

« |HFi
pαq|{gipαq “ dFi

pαq{gipαq,

dFi`1
pαq “ |HFi`1

pαq| “ |HFi
pαq| ´ |Zi|

« dFi
pαq ´ dFi

pαq{gipαq “ pgipαq ´ 1qdFi
pαq{gipαq

“ dFi
pαqgi`1pαq{gipαq.

This proves (B1) and (B2).
If t ě 1, U Ă Viztαu, and e P EFi

pαt, Uq, then for some j, 1 ď j ď k, HFipjqpα, eq P Ai, so
ˇ

ˇZi X HFipjqpα, eq
ˇ

ˇ « |HFipjqpα, eq|{gipαq “ t{gipαq ď 1,

where the inequality implies from the fact that gi is simple. Therefore either |ZiXHFipjqpα, eq| “
1 and consequently e P EFi`1

pαt´1, vi`1, U) or Zi X HFipjqpα, eq “ ∅ and consequently
e P EFi`1

pαt, Uq. Therefore

mFi`1
pvsi`1, α

r, Uq “ 0,

for r ě 1, and s ě 2. This proves (B3). Moreover, since HFi
pαt, Uq P Bi, we have

mFi`1
pαt´1, vi`1, Uq “ |Zi X HFi

pαt, Uq| « |HFi
pαt, Uq|{gipαq “ tmFi

pαt, Uq{gipαq,

mFi`1
pαt, Uq « mFi

pαt, Uq ´ |HFi
pαt, Uq|{gipαq “ mFi

pαt, Uq ´ tmFi
pαt, Uq{gipαq

“ mFi
pαt, Uqpgipαq ´ tq{gipαq.

This proves (B4) and (B5). �

Let us fix j P t1, . . . , ku. It is enough to replace Fi with Fipjq in the statement and the
proof of (B1)–(B5) to obtain companion conditions, say (C1)–(C5) for each color class.
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5.3. Relations between Fi and F . Recall that Ψi “ Φ0 . . .Φi, that Φ0 : V Ñ V , and
that Φi : Vi Ñ Vi´1 for i ą 0. Therefore Ψi : Vi Ñ V and thus Ψ´1

i : V Ñ Vi. Now we use
(B1)–(B5) to prove that the hypergraph Fi satisfies the following conditions for 0 ď i ď n :

(D1) dFi
pvq{gipvq « dF puq{gpuq for each u P V and each v P Ψ´1

i puq;

(D2) mFi
pua11 , U1, . . . , u

ar
r , Urq{Πr

j“1

`

gipujq
aj

˘

« mF pum1

1 , . . . , umr
r q{Πr

j“1

`

gpujq
mj

˘

for distinct ver-

tices u1, . . . , ur P V , aj ě 0, Uj Ă Ψ´1
i pujqztuju with 1 ď mj “ aj ` |Uj | ď gpujq,

1 ď j ď r if gipujq ě aj , 1 ď j ď r.

Proof. The proof is by induction. Recall that F0 “ F , and g0puq “ gpuq for u P V . Thus,
(D1) and (D2) are trivial for i “ 0. Now we will show that if Fi satisfies the conditions (D1)
and (D2) for some i ă n, then Fi`1 satisfies these conditions by replacing i with i ` 1; we
denote the corresponding conditions for Fi`1 by (D1)1 and (D2)1.

Let u P V . If gi`1puq “ gipuq, then (D1)1 is obviously true. So we just check (D1)1

in the case where u “ α. By (B1) and (D1) we have dFi`1
pαq{gi`1pαq « dFi

pαq{gipαq «
dF pαq{gpαq. Moreover, from (B2) and (D1) it follows that dFi`1

pvi`1q « dFi
pαq{gipαq «

dF pαq{gpαq. Since in forming Fi`1 no edge is detached from vr for each vr P Ψ´1
i pαqztαu,

we have dFi`1
pvrq “ dFi

pvrq. Therefore dFi`1
pvrq “ dFi

pvrq « dF pαq{gpαq for each vr P
Ψ´1

i pαqztαu. This proves (D1)1. Let u1, . . . , ur be distinct vertices in V . If gi`1pujq “ gipujq
for 1 ď j ď r, then (D2)1 is clearly true. Therefore, in order to prove (D2)1, without loss of
generality we may assume that gi`1pu1q “ gipu1q ´ 1 (so α “ u1 and vi`1 P Ψ´1

i pu1q). First,
note that for integers a, b we always have pa ´ bq

`

a

b

˘

“ a
`

a´1
b

˘

“ pb ` 1q
`

a

b`1

˘

. If vi`1 R U1,
we have

mFi`1
pua11 , U1, . . . , u

ar
r , Urq

Πr
j“1

`

gi`1pujq
aj

˘

(B4)
«

mFi
pua11 , U1, . . . , u

ar
r , Urqpgipu1q ´ a1q{gipu1q

`

gipu1q´1
a1

˘

Πr
j“2

`

gipujq
aj

˘

“
mFi

pua11 , U1, . . . , u
ar
r , Urqpgipu1q ´ a1q{gipu1q

pgipu1q ´ a1q{gipu1q
`

gipu1q
a1

˘

Πr
j“2

`

gipujq
aj

˘

“
mFi

pua11 , U1, . . . , u
ar
r , Urq

Πr
j“1

`

gipujq
aj

˘

(D2)
«

mF pum1

1 , . . . , umr
r q

Πr
j“1

`

gpujq
mj

˘ .

If vi`1 P U1, we have

mFi`1
pua11 , U1, . . . , u

ar
r , Urq

Πr
j“1

`

gi`1pujq
aj

˘

(B5)
«

mFi
pua1`1

1 , U1ztvi`1u, . . . , uarr , Urqpa1 ` 1q{gipu1q
`

gipu1q´1
a1

˘

Πr
j“2

`

gipujq
aj

˘

“
mFi

pua1`1
1 , U1ztvi`1u, . . . , uarr , Urq

gipu1q{pa1 ` 1q
`

gipu1q´1
a1

˘

Πr
j“2

`

gipujq
aj

˘

“
mFi

pua1`1
1 , U1ztvi`1u, . . . , uarr , Urq

`

gipu1q
a1`1

˘

Πr
j“2

`

gipujq
aj

˘

(D2)
«

mF pum1

1 , . . . , umr
r q

Πr
j“1

`

gpujq
mj

˘ .
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This proves (D2)1. �

Let us fix j P t1, . . . , ku. It is enough to replace F with F pjq, Fi with Fipjq, Fi`1 with
Fi`1pjq, and (Bi) with (Ci) for i “ 1, 2, 4, 5, in the statement and the proof of (D1) and
(D2) to obtain companion conditions, say (E1) and (E2) for each color class.

5.4. G satisfies (A1)–(A4). Recall that G “ Fn and gnpuq “ 1 for every u P V , therefore
when i “ n, (D1) implies (A1). Moreover, if we let i “ n in (D2), we have aj P t0, 1u for

1 ď j ď r and thus Πr
j“1

`

gipujq
aj

˘

“ Πr
j“1

`

1
aj

˘

“ 1. This proves (A3). By a similar argument,

one can prove (A2) and (A4), and this completes the proof of Theorem 4.1. �

6. corollaries

For a matrix A, let Aj denote the j
th column of A, and let spAq denote the sum of all the

elements of A. Let R “ rr1 . . . rksT (or RT “ rris1ˆk), Λ “ rλ1 . . . λmsT and H “ rh1 . . . hmsT

be three column vectors with ri, λi P N, and hi P t1, . . . , nu for 1 ď i ď m, such that
h1 . . . , hm are distinct. Let ΛKH

n denote a hypergraph with vertex set V , |V | “ n, such that
there are λi edges of size hi incident with every hi vertices for 1 ď i ď m. A hypergraph G is
said to be k-regular if every vertex has degree k. A k-factor of G is a k-regular spanning sub-
hypergraph of G . An R-factorization is a partition (decomposition) tF1, . . . , Fku of EpG q in
which Fi is an ri-factor for 1 ď i ď k. Notice that ΛKH

n is
řm

i“1 λi
`

n´1
hi´1

˘

-regular. We show

that the obvious necessary conditions for the existence of an R-factorization of ΛKH
n , are

also sufficient.

Theorem 6.1. ΛKH
n is R-factorizable if and only if spRq “

řm

i“1 λi
`

n´1
hi´1

˘

, and there exists

a non-negative integer matrix A “ raijskˆm such that AH “ nR, and spAjq “ λj
`

n

hj

˘

for

1 ď j ď m.

Proof. To prove the necessity, suppose that ΛKH
n is R-factorizable. Since each ri-factor is

an ri-regular spanning sub-hypergraph for 1 ď i ď k, and ΛKH
n is

řm

i“1 λi
`

n´1
hi´1

˘

-regular,

we must have spRq “
řk

i“1 ri “
řm

i“1 λi
`

n´1
hi´1

˘

. Let aij be the number of edges (counting

multiplicities) of size hj contributing to the ith factor for 1 ď i ď k, 1 ď j ď m. Since for
1 ď j ď m, each edge of size hj contributes hj to the the sum of the degrees of the vertices in

an ri-factor for 1 ď i ď k, we must have
řm

j“1 aijhj “ nri for 1 ď i ď k and
řk

i“1 aij “ λj
`

n

hj

˘

for 1 ď j ď m.
To prove the sufficiency, let F be a hypergraph consisting of a single vertex v with

mF pvhjq “ λj
`

n

hj

˘

for 1 ď j ď m. Note that F is an amalgamation of ΛKH
n . Now we color

the edges of F so that mF piqpv
hjq “ aij for 1 ď i ď k, 1 ď j ď m. This can be done,

because:
k

ÿ

i“1

mF piqpv
hjq “

k
ÿ

i“1

aij “ λj

ˆ

n

hj

˙

“ mF pvhjq for 1 ď j ď m.

Moreover,

dF piqpvq “
m
ÿ

j“1

aijhj “ nri for 1 ď i ď k.

Let g : V pF q Ñ N be a function so that gpvq “ n. Since for 1 ď i ď m, hi ď n, g is simple.
By Theorem 4.1, there exists a simple g-detachment G of F with n vertices, say v1, . . . , vn
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such that by (A2), dG piqpvjq « dF piqpvq{gpvq “ nri{n “ ri for 1 ď i ď k, 1 ď j ď n, and by

(A3), for each U Ă tv1, . . . , vnu with |U | “ hj , mG pUq « mF pvhjq{
`

n

hj

˘

“ λj
`

n

hj

˘

{
`

n

hj

˘

“ λj

for 1 ď j ď m. Therefore G – ΛKH
n , and the ith color class induces an ri-factor for

1 ď i ď k. �

In particular, if m “ 1, h :“ h1, λ1 “ 1, r :“ r1 “ ¨ ¨ ¨ “ rk, then Theorem 6.1 implies
Baranyai’s theorem: the complete h-uniform hypergraph Kh

n is r-factorizable if and only if
h � rn and r �

`

n´1
h´1

˘

.

Now let hi ě 2 for 1 ď i ď m, and let ΛKH
p1,...,pn

be a hypergraph with vertex partition
tV1, . . . , Vnu, |Vi| “ pi for 1 ď i ď n such that there are λi edges of size hi incident with
every hi vertices, at most one vertex from each part for 1 ď i ď m (so no edge is incident
with more than one vertex of a part). If p1 “ ¨ ¨ ¨ “ pn :“ p, we denote ΛKH

p1,...,pn
by ΛKH

nˆp.

Theorem 6.2. ΛKH
p1,...,pn

is R-factorizable if and only if p1 “ ¨ ¨ ¨ “ pn :“ p, spRq “
řm

i“1 λi
`

n´1
hi´1

˘

phi´1, and there exists a non-negative integer matrix A “ raijskˆm such that

AH “ npR, and spAjq “ λj
`

n

hj

˘

phj for 1 ď j ď m.

Proof. To prove the necessity, suppose that ΛKH
p1,...,pn

is R-factorizable (so it is regular). Let

u and v be two vertices from two different parts, say ath and bth parts, respectively. Since
dpuq “ dpvq, we have

ÿ

1ďjďm

λj
ÿ

1ďi1ă¨¨¨ăi
hj´1

ďn

aRti1,...,ihj´1
u

pi1 . . . pihj´1
“

ÿ

1ďjďm

λj
ÿ

1ďi1ă¨¨¨ăi
hj´1

ďn

bRti1,...,ihj´1
u

pi1 . . . pihj´1
ðñ

ÿ

1ďjďm

λj

´

ÿ

1ďi1ă¨¨¨ăi
hj´1

ďn

aRti1,...,ihj´1
u

pi1 . . . pihj´1
´

ÿ

1ďi1ă¨¨¨ăi
hj´1

ďn

bRti1,...,ihj´1
u

pi1 . . . pihj´1

¯

“ 0 ðñ

ÿ

1ďjďm

λj

´

pb
ÿ

1ďi1ă¨¨¨ăi
hj´2

ďn
pi1 . . . pihj´2

´ pa
ÿ

1ďi1ă¨¨¨ăi
hj´2

ďn
pi1 . . . pihj´2

¯

“ 0 ðñ

ppb ´ paq
ÿ

1ďjďm

λj
ÿ

1ďi1ă¨¨¨ăi
hj´2

ďn
pi1 . . . pihj´2

“ 0 ðñ

pb “ pa.

Therefore, p1 “ ¨ ¨ ¨ “ pn :“ p. So ΛKH
nˆp is

řm

i“1 λi
`

n´1
hi´1

˘

phi´1-regular, and we must have

spRq “
řk

i“1 ri “
řm

i“1 λi
`

n´1
hi´1

˘

phi´1. Moreover, there must exist non-negative integers aij ,

1 ď i ď k, 1 ď j ď m, such that
řm

j“1 aijhj “ npri for 1 ď i ď k and
řk

i“1 aij “ λj
`

n

hj

˘

phj

for 1 ď j ď m. We note that aij is in fact the number of edges (counting multiplicities) of
size hj contributing to the ith factor.

To prove the sufficiency, let Λp “ rphiλis
T
1ˆm, and let F “ ΛpKH

n with vertex set V “
tv1, . . . , vnu. Notice that F is an amalgamation of ΛKH

nˆp. By Theorem 6.1, F is pR-
factorizable. Therefore, we can color the edges of F so that

dF piqpvq “ pri for v P V, 1 ď i ď k.

Let g : V Ñ N be a function so that gpvq “ p for v P V . Since p ě 1, g is simple. By Theorem
4.1, there exists a simple g-detachment G of F with np vertices, say vi is detached to
vi1, . . . , vip for 1 ď i ď n, such that by (A2), dG piqpvabq « dF piqpvaq{gpvaq “ pri{p “ ri for 1 ď
i ď k, 1 ď a ď n, 1 ď b ď p, and by (A3), mG pva1b1 , . . . , vahj bhj q « mF pva1 , . . . , vahj q{phj “
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phjλj{p
hj “ λj for 1 ď j ď m, 1 ď a1 ă ¨ ¨ ¨ ă ahj

ď n, 1 ď b1, . . . , bhj
ď p. Therefore

G – ΛKH
nˆp, and the ith color class induces an ri-factor for 1 ď i ď k. �

In particular, if m “ 1, h :“ h1, λ1 “ 1, r :“ r1 “ ¨ ¨ ¨ “ rk, then Theorem 6.2 implies
another one of Baranyai’s theorems: the complete h-uniform n-partite hypergraph Kh

nˆp is

r-factorizable if and only if h � npr and r �
`

n´1
h´1

˘

ph´1.

Let JT
k “ r1 . . . 1s1ˆk. For two column vectors Q “ rq1 . . . qksT , R “ rr1 . . . rksT , if qi ď ri

for 1 ď i ď k, we say that Q ď R. For a hypergraph G , a pq, rq-factor is a spanning
sub-hypergraph in which

q ď dpvq ď r for each v P V pG q.

A pQ,Rq-factorization is a partition tF1, . . . , Fku of EpG q in which Fi is a pqi, riq-factor for
1 ď i ď k. An almost k-factor of G is pk ´ 1, kq-factor. An almost R-factorization is an
pR ´ Jk, Rq-factorization. The proof of the following theorems are very similar to those of
Theorem 6.1 and 6.2.

Theorem 6.3. ΛKH
n is pQ,Rq-factorizable if and only if spQq ď

řm

i“1 λi
`

n´1
hi´1

˘

ď spRq, and

there exists a non-negative integer matrix A “ raijskˆm such that nQ ď AH ď nR, and
spAjq “ λj

`

n

hj

˘

for 1 ď j ď m.

Proof. To prove the necessity, suppose that ΛKH
n is pQ,Rq-factorizable. Since ΛKH

n is
řm

i“1 λi
`

n´1
hi´1

˘

-regular, we must have spQq “
řk

i“1 qi ď
řm

i“1 λi
`

n´1
hi´1

˘

ď
řk

i“1 ri “ spRq.
Since for 1 ď j ď m, each edge of size hj contributes hj to the the sum of the degrees of the
vertices in pqi, riq-factor for 1 ď i ď k, there must exist non-negative integers aij , 1 ď i ď k,

1 ď j ď m, such that nqi ď
řm

j“1 aijhj ď nri for 1 ď i ď k and
řk

i“1 aij “ λj
`

n

hj

˘

for

1 ď j ď m.
To prove the sufficiency, let F be a hypergraph consisting of a single vertex v with

mF pvhjq “ λj
`

n

hj

˘

for 1 ď j ď m. Note that F is an amalgamation of ΛKH
n . Now we color

the edges of F so that mF piqpv
hjq “ aij for 1 ď i ď k, 1 ď j ď m. This can be done,

because:
k

ÿ

i“1

mF piqpv
hjq “

k
ÿ

i“1

aij “ λj

ˆ

n

hj

˙

“ mF pvhjq for 1 ď j ď m.

Moreover,

nqi ď dF piqpvq “
m

ÿ

j“1

aijhj ď nri for 1 ď i ď k.

Let g : V pF q Ñ N be a function so that gpvq “ n. Since for 1 ď i ď m, hi ď n, g is simple.
By Theorem 4.1, there exists a simple g-detachment G of F with n vertices, say v1, . . . , vn
such that by (A2), qi “ nqi{n ď dG piqpvjq ď nri{n “ ri for 1 ď i ď k, 1 ď j ď n, and by

(A3), for each U Ă tv1, . . . , vnu with |U | “ hj , mG pUq « mF pvhjq{
`

n

hj

˘

“ λj
`

n

hj

˘

{
`

n

hj

˘

“ λj

for 1 ď j ď m. Therefore G – ΛKH
n , and the ith color class induces a pqi, riq-factor for

1 ď i ď k. �

Theorem 6.4. ΛKH
n is almost R-factorizable if and only if spRq´k ď

řm

i“1 λi
`

n´1
hi´1

˘

ď spRq,

and there exists a non-negative integer matrix A “ raijskˆm such that npR´Jkq ď AH ď nR,
and spAjq “ λj

`

n

hj

˘

for 1 ď j ď m.

Proof. It is enough to take Q “ R ´ Jk in Theorem 6.3. �
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Theorem 6.5. ΛKH
nˆp is pQ,Rq-factorizable if and only if spQq ď

řm

i“1 λi
`

n´1
hi´1

˘

phi´1 ď spRq,

and there exists a non-negative integer matrix A “ raijskˆm such that npQ ď AH ď npR,
and spAjq “ λj

`

n

hj

˘

phj for 1 ď j ď m.

Proof. To prove the necessity, suppose that ΛKH
nˆp is pQ,Rq-factorizable. Since ΛKH

nˆp is
řm

i“1 λi
`

n´1
hi´1

˘

phi´1-regular, we must have spQq “
řk

i“1 qi ď
řm

i“1 λi
`

n´1
hi´1

˘

phi´1 ď
řk

i“1 ri “

spRq. Moreover, there must exist non-negative integers aij , 1 ď i ď k, 1 ď j ď m, such that

npqi ď
řm

j“1 aijhj ď npri for 1 ď i ď k and
řk

i“1 aij “ λj
`

n

hj

˘

phj for 1 ď j ď m.

To prove the sufficiency, let Λp “ rphiλis
T
1ˆm, and let F “ ΛpKH

n with vertex set V “
tv1, . . . , vnu. Notice that F is an amalgamation of ΛKH

nˆp. By Theorem 6.3, F is ppQ, pRq-
factorizable. Therefore, we can color the edges of F so that

pqi ď dF piqpvq ď pri for v P V, 1 ď i ď k.

Let g : V Ñ N be a function so that gpvq “ p for v P V . Since p ě 1, g is simple. By
Theorem 4.1, there exists a simple g-detachment G of F with np vertices, say vi is detached to
vi1, . . . , vip for 1 ď i ď n, such that by (A2), qi “ pqi{p ď dG piqpvabq ď pri{p “ ri for 1 ď i ď k,
1 ď a ď n, 1 ď b ď p, and by (A3), mG pva1b1 , . . . , vahj bhj q « mF pva1 , . . . , vahj q{phj “

phjλj{p
hj “ λj for 1 ď j ď m, 1 ď a1 ă ¨ ¨ ¨ ă ahj

ď n, 1 ď b1, . . . , bhj
ď p. Therefore

G – ΛKH
nˆp, and the ith color class induces a ppi, riq-factor for 1 ď i ď k. �

Theorem 6.6. ΛKH
nˆp is almost R-factorizable if and only if spRq´k ď

řm

i“1 λi
`

n´1
hi´1

˘

phi´1 ď

spRq, and there exists a non-negative integer matrix A “ raijskˆm such that nppR ´ Jkq ď
AH ď npR, and spAjq “ λj

`

n

hj

˘

phj for 1 ď j ď m.

Proof. It is enough to take Q “ R ´ Jk in Theorem 6.5. �
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