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DETACHMENTS OF HYPERGRAPHS I: THE BERGE-JOHNSON
PROBLEM

AMIN BAHMANIAN

ABSTRACT. A detachment of a hypergraph is formed by splitting each vertex into one or
more subvertices, and sharing the incident edges arbitrarily among the subvertices. For a
given edge-colored hypergraph .7, we prove that there exists a detachment ¢ such that the
degree of each vertex and the multiplicity of each edge in .% (and each color class of .#) are
shared fairly among the subvertices in ¢ (and each color class of ¢, respectively).

Let (A1...,Am)Kl-lm be a hypergraph with vertex partition {Vi,...,V,}, |[Vi| = ps

for 1 < ¢ < n such that there are )\; edges of size h; incident with every h; vertices, at
most one vertex from each part for 1 < ¢ < m (so no edge is incident with more than
one vertex of a part). We use our detachment theorem to show that the obvious necessary

conditions for (A1 ..., Ap) K -lm to be expressed as the union % U ... U % of k edge-

disjoint factors, where for 1 < i < k, & is r;-regular, are also sufficient. Baranyai solved the
caseof hi =+ =hm, A1 =..., A\m=1,p1 =+ =pm, ™1 =+ =1, Berge and Johnson,
(and later Brouwer and Tijdeman, respectively) considered (and solved, respectively) the
caseof h; =i, 1 <i<m,pr=-=pnm=M=--=A\p=1r1=--=r1, =1. We also
extend our result to the case where each ¢; is almost regular.

1. INTRODUCTION

Intuitively speaking, a detachment of a hypergraph is formed by splitting each vertex into
one or more subvertices, and sharing the incident edges arbitrarily among the subvertices.
As the main result of this paper (see Theorem [41]), we prove that for a given edge-colored
hypergraph %, there exists a detachment ¢ such that the degree of each vertex and the
multiplicity of each edge in .# (and each color class of %) are shared fairly among the
subvertices in ¢4 (and each color class of ¢, respectively). This result is not only interesting
by itself and generalizes various graph theoretic results (see for example [I], 10, 12, 4], 15|,
17, 18] [19]), but also is used to obtain extensions of existing results on edge-decompositions
of hypergraphs by Bermond, Baranyai [2] B3], Berge and Johnson [4, [13], and Brouwer and
Tijdeman [5] [6].

Given a set N of n elements, Berge and Johnson [4], [I3] addressed the question of when
do there exist disjoint partitions of N, each partition containing only subsets of h or fewer
elements, such that every subset of N having h or fewer elements is in exactly one partition.
Here we state the problem in a more general setting with the hypergraph theoretic notation.

Let (Ar..., Am)Ké‘f;:_‘:,’;iT be a hypergraph with vertex partition {V;,...,V,.}, |Vi| = p; for
1 < ¢ < n such that there are \; edges of size h; incident with every h; vertices, at most
one vertex from each part for 1 < ¢ < m (so no edge is incident with more than one vertex
of a part). We use our detachment theorem to show that the obvious necessary conditions

for (A1 ..., )\m)K;ff,’,‘,',‘,fnm to be expressed as the union 4, U ... U %, of k edge-disjoint factors,
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where for 1 < i < k, 9 is r;-regular, are also sufficient. Baranyai [2] 3] solved the case of

hy=-=hpy, M =....,An=1,p =+ =pp, 1 = =1, Berge and Johnson [ [I3],
(and later Brouwer and Tijdeman [5], [6], respectively) considered (and solved, respectively)
thecaseof hy =i, 1<i<m,pr=-=ppn=A\ ==\, =1, =---=1, =1. We also

extend our result to the case where each ¥; is almost regular.

In the next two sections, we give more precise definitions along with terminology. In
Section 4], we state our main result, followed by the proof in Section Bl In the last section,
we show the usefulness of the main result on decompositions of various classes of hypergraphs.
We defer the applications of the main result in solving embedding problems to a future paper.

2. TERMINOLOGY AND PRECISE DEFINITIONS

If z,y € R (R is the set of real numbers), then |z| and [z| denote the integers such that
r—1<|z] <z <|z] <x+1,and x ~ y means |y| < x < [y]. We observe that the
relation ~ is transitive (but not symmetric) and for z,y € R, and n € N (N is the set of
positive integers), x ~ y implies x/n ~ y/n. These properties of ~ will be used in Section
without further explanation. For a multiset A and u € A, let p4(u) denote the multiplicity
of win A, and let |[A] = > _, pa(u). For multisets Ay,..., A,, we define A = |J;_, A; by
palu) =20 jua,(u). We may use abbreviations such as {u"} for {u, ..., u} — for example

——
{u?, v, w?} U {u, w?} = {u3, v, w}.

For the purpose of this paper, a hypergraph ¢ is an ordered quintuple (V(¥), E(¥), H(¥),
¥, ¢) where V(¥), E(¥), H(¥) are disjoint finite sets, ¢ : H(¥) — V(¥) is a function and
¢: H(¥Y)— E(¥Y) is a surjection. Elements of V(¥), E(¥4), H(¥) are called vertices, edges
and hinges of ¢, respectively. A vertex v (edge e, respectively) and hinge h are said to be
incident with each other if ¥)(h) = v (¢(h) = e, respectively). A hinge h is said to attach the
edge ¢(h) to the vertex 1 (h). In this manner, the vertex ¢)(h) and the edge ¢(h) are said to
be incident with each other. If e € £(¥), and e is incident with n hinges hy, ..., h, for some
n € N, then the edge e is said to join (not necessarily distinct) vertices (hq), ..., ¥ (hy). If
v e V(¥), then the number of hinges incident with v (i.e. [)71(v)]) is called the degree of v
and is denoted by d(v). The number of (distinct) vertices incident with an edge e, denoted
by lel, is called the size of e. If for all edges e of ¢, |e| < 2 and |¢p~'(e)| = 2, then ¥ is a
graph.

Thus a hypergraph, in the sense of our definition, is a generalization of a hypergraph as it
is usually defined. In fact, if for every edge e, |e| = |¢~!(e)|, then our definition is essentially
the same as the usual definition. Here for convenience, we imagine each edge of a hypergraph
to be attached to the vertices which it joins by in-between objects called hinges. Readers
from a graph theory background may think of this as a bipartite multigraph with vertex
bipartition {V, E'}, in which the hinges form the edges. A hypergraph may be drawn as a
set of points representing the vertices. A hyperedge is represented by a simple closed curve
enclosing its incident vertices. A hinge is represented by a small line attached to the vertex
incident with it (see Figure [II).

The set of hinges of ¢4 which are incident with a vertex v (and an edge e, respectively), is
denoted by H(v) (H (v, e), respectively). Thus if v € V(¥), then H(v) = v ~1(v), and |H (v)|
is the degree d(v) of v. If U is a multi-subset of V(¥¢), and v € V(¥), let E(U) denote
the set of edges e with |¢~*(e)| = |U| joining vertices in U. More precisely, E(U) = {e €
E(9)| for all v e V(¥),|H(v,e)| = py(v)}. For Uy, ..., U, <V where for 1 <i < n each Uj;
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is a multiset, let E(Uy,...,U,) denote E(J;_, U;). We write m(U) for |E(U)| and call it the
multiplicity of U. For simplicity, E(u",U) denotes E({u"},U), and m(u}",...,u"") denotes

m({u",...,u"}). The set of hinges that are incident with u and an edge in F(u",U) is
denoted by H(u",U).

Example 2.1. Let ¥ = (V,E H, ¢, ¢), with V = {vy,v9,v3, 04,05}, E = {e1,ez,e3}, H =
{hzal <1 < 7}7 such that ?/)(hl) = ,lvb(h?) = Ul>w(h3) = U2ﬂ/’(h4) = ¢(h5) = U3’¢(h’6) =
v, Y(h7) = vs and ¢(h1) = ¢(ha) = d(hs) = ¢(ha) = e1, ¢(hs) = d(he) = ea, ¢(h7) = e3. We

have:

€1

N ~ €9
\ hs AN
AN N
~ N
N h6~ Y
~
€3 ~ ® \\
\\ Uy
~
g T--

FIGURE 1. Representation of a hypergraph ¢

° |€1| = 3, |62| = 2, |63| = 1,
d(’Ul) = d(’Ug) = 2,d(U2) =d
H(v1) = {ha, ha}, H(vz) = {

= d(U5) = 1,
H(vs) = {ha, hs},

(%

(va
hg}

)
H(vs,e1) = {ha}, H(vs, e2) = {hs}, H(vs, e3) = &,

E({v1,v2,v3}) = @, E({v},v2, v3}) = E(v?, {va,v3}) = {ex},

m(vy,vg,v3) = 0, m(vi vg,v3) = 1,

H(v}, {va,vs}) = {ha, ha}, H(v1,{ve, v3}) = @, H(vs, {v7,v2}) = {ha}.

A k-edge-coloring of 4 is a mapping f : E(¥Y) — C, where C' is a set of k colors (often we
use C' = {1,...,k}), and the edges of one color form a color class. The sub-hypergraph of ¢
induced by the color class j is denoted by ¢(j). To avoid ambiguity, subscripts may be used
to indicate the hypergraph in which hypergraph-theoretic notation should be interpreted —
for example, dy(v), Fy(v? w), Hy(v).

3. AMALGAMATIONS AND DETACHMENTS

If # =(V,E,H,%,¢) is a hypergraph and ¥ is a function from V' onto a set W, then we
shall say that the hypergraph & = (W, E, H,V o %, ¢) is an amalgamation of .% and that
F is a detachment of &. Associated with W is the number function g : W — N defined
by g(w) = [¥~1(w)|, for each w € W; being more specific, we may also say that .7 is a
g-detachment of . Intuitively speaking, a g-detachment of ¢ is obtained by splitting each
u e V(¥4) into g(u) vertices. Thus .# and ¢ have the same edges and hinges, and each
vertex v of ¢ is obtained by identifying those vertices of .# which belong to the set U=1(v).
In this process, a hinge incident with a vertex u and an edge e in .# becomes incident with
the vertex W(u) and the edge e in ¥.

There are quite a lot of other papers on amalgamations and some highlights include

[7, 8, 9 10, 12} 14} 18, 19].
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4. MAIN RESULT
A function ¢ : V(¢) — N is said to be simple if
|H(v,e)| < g(v) forveV(4),ee E(Y).

A hypergraph ¢ is said to be simple if g : V(¥9) — N with g(v) = 1 for v € V(¥) is simple.
It is clear that for a hypergraph .# and a function g : V(%) — N, there exists a simple
g-detachment if and only if g is simple.

Theorem 4.1. Let % be a k-edge-colored hypergraph and let g : V(F) — N be a simple
function. Then there exists a simple g-detachment & (possibly with multiple edges) of %
with amalgamation function ¥ : V(4) — V(F), g being the number function associated
with W, such that'

(A1) dg(v) ~ dgz(u)/g(u) for each we V(F) and each v € \P*I(u);
(A2) dy(j)(v) = dgj)(u)/g(u) for each we V(F), each ve U (u) and 1 < j < k;

(A3) mg(Uy,...,.U,) ~ mJ(uTl,..., wm) /I (¢ (“’) for distinct uy, ..., u, € V(F) and
U, < O u;) with U] = (ul)forl<z<7"
(A4) mg; (U, ..., U) ~ mj(])(ul o) I (¢ (“Z) for distinct uy, ..., u, € V(F)

and U; < U= w;) with |U;] = m; < g(u;) for 1 <i<rand1<j<k.

A family & of sets is laminar if, for every pair A, B of sets belonging to <7, either A ¢ B,
or Bc A, or An B = @. To prove the main result, we need the following lemma:

Lemma 4.2. (Nash-Williams [I8, Lemma 2|) If &7, A are two laminar families of subsets
of a finite set S, and n € N, then there exist a subset A of S such that for every P € of U A,
|A n P| ~ |P|/n.

5. PROOF OF THEOREM [4.1]

5.1. Inductive construction of ¢. Let F# = (V. E, H,v¢,¢). Let n = >,/ (g(v) —1).
Initially we let %, = % and gy = g, and we let ®y be the identity function from V" into V.
Now assume that 90 = (‘/0, E(], H(), wo, (]50), cey g@ = (V;, EZ', HZ‘, wiv (bZ) and (I)(], ceey (I)z have
been defined for some i > 0. Also assume that the simple functions go : Vo —» N,...,g; :
Vi — N have been defined for some i > 0. Let ¥; = ®y...P;. If i = n, we terminate the
construction, letting ¢4 = .%, and ¥ = V..

If i < n, we can select a vertex a of %; such that g;(«) = 2. As we will see, .%; 1 is formed
from .%; by splitting off a vertex v;, from « so that we end up with a and v;,;. Let

o = {Hgz(a)}
U {Hzo(@), ..., Hz ()}
(1) U {Hyz‘(j)(o" 6) ‘ee EL%'(J')(O‘)’ I<y< k}a
and let
B = {Hz (", U):t=1,Uc V\{a}}

(2) U {Hyi(j)(at,U) t=1,U cVi\{a},1 <j <k}

It is easy to see that both o7 and %; are laminar families of subsets of H(Z;,a). Therefore,
by Lemma 2] there exists a subset Z; of H(.%;, ) such that

(3) |Z; n P| ~ |P|/gi(a), for every P e o U ;.
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Let v; 11 be a vertex which does not belong to V; and let V; ;1 = V; U {v;11}. Let ®;,1 be the
function from V;;1 onto V; such that ®;,(v) = v for every v € V; and ®;1(v;41) = . Let
Fi+1 be the detachment of .#; under ®;, such that V(.%; 1) = V1, and

(4) HﬂiJrl(UiJrl) = Zi7 ngi+1 (Oé) = Hﬂz (a)\ZZ

In fact, .%;,1 is obtained from .%; by splitting « into two vertices o and v;;; in such a
way that hinges which were incident with « in .%; become incident in .%;,; with a or v;;
according as they do not or do belong to Z;, respectively. Obviously, ¥; is an amalgamation
function from .%; . into .%;. Let g;41 be the function from V;,; into N, such that g;1(v;11) =
1,gi41(a) = gi(a)—1, and g;11(v) = g;(v) for every v € V;\{a}. This finishes the construction
of Fi1.

5.2. Relations between .#,,; and .%;. The hypergraph .%;,, satisfies the following con-
ditions:

(B1) d ()~dfz(a)gi+1(a)/gz'(a);
+1(Uz+1) ( )/gz( )

(B2) d
(B )mjm( s al U)—Ofors 2, and t > 0;

(B4) mz, +1(04 U) ~mg, (o', U)(g:i(c )—t)/gl( ) for each U < V)\{a}, and g;(a) >t = 1;
(B5) mg,, (o', vie1,U) ~ (t + 1)mg, (o', U)/gi(a) for each U < Vi\{a}, and t = 0

Proof. Since Hz,(«) € o, from () it follows that

Az, (Vis1) = |[Hz,,(vin)| = |Zi] = 1Zi 0 Hz,()]
~ |Hz(a)|/gi(a) = dz(a)/g:(a),
|Hz,,,(a)] = [Hz(a)] — |Zi]
~ dz(a) —dz(a)/gi(a) = (g:i(a) — 1)dz(@)/gi()
= dg,(a)giri(@)/gi(a).
This proves (B1) and (B2).
Ift>1,Uc Vi\{e}, and e € Ez, (a",U), then for some j, 1 < j <k, Hz,j)(a,e) € 4, so

|Zi o Hz, ) (v, €)| ~ [Hz, (v, €)]/gi(a )—t/gz-(a) <1,

where the inequality implies from the fact that g; is simple. Therefore either |Z;nH z,¢;)(a, e)| =
1 and consequently e € Egz,, (o' vi1,U) or Z; n Hg,;(o,e) = & and consequently
ee Bz, (of,U). Therefore

dﬂiﬂ (Oé)

mz,.,(V}1,0",U) =0,
for r > 1, and s > 2. This proves (B3). Moreover, since Hg, (o', U) € %;, we have
Mz, (0 v, U) = |Zi0 Hz (o, U)| ~ [Hz, (o, U)|/gi(@) = tmz, (o, U)/g:(),
mz,, (0, U) ~ mgz(a',U) = |Hz (" U)l/gi(c) = msz,(a tU)—tm%(at,U)/gz'(a)
= mz(a’,U)(gi(a) —t)/gi().
This proves (B4) and (B5). O

Let us fix 7 € {1,...,k}. It is enough to replace .%#; with .%;(j) in the statement and the
proof of (B1)-(B5) to obtain companion conditions, say (C1)-(C5) for each color class.
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5.3. Relations between .%;, and .%. Recall that ¥; = ®q...P,, that &y : V — V. and
that ®; : V; — V,_; for ¢ > 0. Therefore ¥, : V; — V and thus \I/;I 'V — V. Now we use
(B1)—(Bb) to prove that the hypergraph .%; satisfies the following conditions for 0 <i < n:

(D1) dg,(v)/g:(v) ~ ( )/g( ) for each uw e V and each v € \II’I( );

(D2) mg, (ui*, Uy, ..., ul, U, )/II%_, (gb(“J)) ~mg(ul™,. .. ul )/HT’_I( )fordlstlnct ver-
tices uy,...,u, € V, a; = 0, U; < W7 (u;)\{u;} with 1 < m; = aj +U;| < g(uy),
1<j<rifgi(uj)>aj,1<j<r.

Proof. The proof is by induction. Recall that %, = .#, and go( ) = g(u) for w e V. Thus,
(D1) and (D2) are trivial for i = 0. Now we will show that if .7, satisfies the conditions (D1)
and (D2) for some i < n, then .%; ;| satisfies these conditions by replacing ¢ with ¢ + 1; we
denote the correspondmg conditions for .%#;; by (D1)" and (D2)".

Let w € V. If gir1(u) = gi(u), then (D1)" is obviously true. So we just check (D1)
in the case where u = «. By (Bl) and (D1) we have dg, ,(a)/gis1(a) ~ dz(a)/gi(a) ~
dz(a)/g(c). Moreover, from (B2) and (D1) it follows that dz,,, (vis1) y‘( )/gz( ) ~
dz(a)/g(a). Since in forming .%;1 no edge is detached from v, for each v, € U; ' (a)\{a},
we have dz,,,(v.) = dg(v.). Therefore dz, ,(v,) = dz(v,) ~ dz(a)/g(a ) for each v, €
;Y (a)\{a}. This proves (D1)". Let uy, ..., u, be distinct vertices in V. If g;11(u;) = gi(u;)
for 1 < j <r, then (D2)" is clearly true. Therefore, in order to prove (D2)’, without loss of
generality we may assume that g;,1(u1) = g;(u1) — 1 (so @ = uy and v,y € ¥, '(uy)). First,
note that for integers a,b we always have (a — b)(§) = a(“;l) = (b+ 1)(b+1) If v;1q ¢ Uy,
we have

a1
o

mz,, (u', Ur,ooug U)o @9 mg, (up, Ur,ug U ) (gi(un) — an)/gi(un)
(1) CReaey

myi(ulf1> U1> s ’urr> UT)(gi(ul) B al)/gi(ul)
(gi(u1) = ar)/gi(uy) (“S )T, (ggj’))

 omg (uy, Uy, ul Uy
H§=1(ng(z?))
0 mp (. u)
I, ()
If v;y1 € Uy, we have
Mo (W U ouy Un) @9 g, (ug™, Ui\ fvia}, - ug, Uy ) (an + 1) /gi(ua)
I (7)) (=), (1))

mﬂ}( artl Ul\{vl+1} -, U, 7U7")
gi(ul)/(a1+1)(gl(u1) )Hr (gz((;;j))

_ my( g Ul\{vl-i-l} cey Uy aUT’>
(I ()
®2) mg(ui™, ..., ul")

H§=1 (g(uj))

m;
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This proves (D2)'. O

Let us fix j € {1,...,k}. It is enough to replace .# with .7 (j), .%#; with .%;(j), %1 with
Fi+1(j), and (Bi) Wlth (Ci) for i = 1,2,4,5, in the statement and the proof of (D1) and
(D2) to obtain companion conditions, say (El) and (E2) for each color class.

5.4. ¢ satisfies (A1)—(A4). Recall that 4 = .%, and g, (u) = 1 for every u € V, therefore
when ¢ = n, (D1) implies (Al). Moreover, if we let i = n in (D2), we have a; € {0, 1} for
1 <j <7 and thus IT}_ (gl(“J)) =107, ( 3) = 1. This proves (A3). By a similar argument,
one can prove (A2) and (A4) and this completes the proof of Theorem 4.1 O

6. COROLLARIES

For a matrix A, let A; denote the j column of A, and let s(A) denote the sum of all the
elements of A. Let R = [ry...r]7 (or RT = [ri]ixx), A = [A1.. A" and H = [hy ... hp]"
be three column vectors with r;, \; € N, and h; € {1,...,n} for 1 < i < m, such that
hi..., "y, are distinct. Let AKH denote a hypergraph with vertex set V', |V| = n, such that
there are \; edges of size h; incident with every h; vertices for 1 <i < m. A hypergraph ¥ is
said to be k-regular if every vertex has degree k. A k-factor of ¢ is a k-regular spanning sub-
hypergraph of 4. An R factom’zation is a partition (decomposition) {Fl, oo, Fi} of E(9) in
which F; is an r;-factor for 1 < ¢ < k. Notice that AK is 3" | \; ( ) regular We show

that the obvious necessary condltlons for the existence of an R- factorlzatlon of AK
also sufficient.

Theorem 6.1. AKY is R-factorizable if and only if s(R) = >, \; (,?_,11), and there exists

a non-negative integer matriv A = [a;|kxm such that AH = nR, and s(A;) = A; (}Z) for
I<j<m.

n 7 are

Proof. To prove the necessity, suppose that AKX is R-factorizable. Since each r;-factor is
an r;-regular spanning sub-hypergraph for 1 < ¢ < k, and AK/T is 3", \; (:i:ll)-regular,

we must have s(R) = S¥ 7, = 3"\ (" ). Let a;; be the number of edges (counting

multiplicities) of size h; contributing to the i factor for 1 <i < k, 1 < j < m. Since for
1 < j <m,each edge of size h; contributes h; to the the sum of the degrees of the vertices in
an ;- factor for 1 <7 < k, we must have Z L aiih; = nr; for 1 <i <k and ZZ L @i = A ( )
for 1 <j<m.

To prove the sufficiency, let .# be a hypergraph consisting of a single vertex v with
mg(v") = X[ ) for 1 < j < m. Note that .# is an amalgamatlon of AKH. Now we color
the edges of .7 so that mz(; (V") = a;; for 1 < i < k, 1 < j < m. This can be done,
because:

k
Zmﬂ(i)(vhj) = Zaij =\ <;;> =mz(") for1<j<m.
i=1 J

i=1

Moreover,
m

dz@u (v Z =nr; forl<i<k.

Let g : V(%) — N be a function so that g(v) = n. Since for 1 <i <m, h; < n, g is simple.
By Theorem [4.I] there exists a simple g-detachment ¢ of . with n vertices, say vy,...,v,
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such that by (A2), dy(vj) ~ dzu)(v)/g9(v) = nry/n = r; for 1 <i <
(A3), for each U < {vy,...,v,} with |U| = hj, mg(U) ~ my(vhj)/(}:;) (hj)/(hj) =\
for 1 < j < m. Therefore ¥ ~ AK and the i"* color class induces an r;-factor for

1<i<k. U

k,1 <7 <n,and by
Aj

In particular, if m = 1, h := hy, Ay = 1, r :=r;y = --- = rp, then Theorem implies
Baranyai’s theorem: the complete h-uniform hypergraph K" is r-factorizable if and only if
h | rn and r | (Zj)

Now let h; = 2 for 1 < i < m, and let AK{Z,...,pn be a hypergraph with vertex partition
{Vi,..., V), |Vil = pi for 1 < i < n such that there are \; edges of size h; incident with

every h; vertices, at most one vertex from each part for 1 < i < m (so no edge is incident

with more than one vertex of a part). If py = --- = p, := p, we denote AK[! by AK[ .
Theorem 6.2. AK['  is R-factorizable if and only if py = --- = p, = p, s(R) =

PIIPY (Z:ll)phi’l, and there ezists a non-negative integer matric A = [a;;]kxm such that
AH = npR, and s(A;) = \; ([ ) i for1<j<m.

Proof. To prove the necessity, suppose that AKg ...pn 18 R-factorizable (so it is regular). Let

u and v be two vertices from two different parts, say a* and b parts, respectively. Since
d(u) = d(v), we have

Z )\ Zl<zl< <7, 1<np21... i ) Z )\ Zl<zl< <7, 1<np7'1"'pihj—1 —

1<j<m ag{in, iy, 1} l<jsm b{in,n, }
Z )\j(21<h<---<ihj,1<n Diy -+ Pip, 1 — Zl<i1<~~~<ihrl<n Piy - -pihj,1> =0
1<]<m (1${7;17...,7;h_71} b${i17“'7ihj,1}
Z Aj (pb 21<zl< <zh 72<npi1 o 'pihj*2 ~ Pa 21<i1<---<ih‘72<npi1 o 'pihj”) =0
1<j<m J
Pb pa Z Zl<zl< i, 72<npi1...pihj72 =0 <
1<j<m
Pv = Pa-
Therefore, p; = --- = p, := p. So AKpr is Y0 N (Z:ll)phi’l-regular, and we must have
s(R) =S¥ ri =", )x-("_l) p"i~1. Moreover, there must exist non-negative integers a;;,
1<i<k 1<j<m,such that Z L @ijh; = npr; for 1 < i < k and Z LA = A (}?A)phf
J

for1 <j<m. We note that a;; is in fact the number of edges (counting multiplicities) of
size h; contributing to the i factor.

To prove the sufficiency, let AP = [phi)\;]T, .., and let 9 APKH with vertex set V =
{vi,...,v,}. Notice that # is an amalgamation of AK nxp By Theorem [6.1 .# is pR-
factorlzable. Therefore, we can color the edges of .% so that

dz@(v) =priforve V,1<i<k.

Let g : V' — N be a function so that g(v) = p for v € V. Since p > 1, g is simple. By Theorem
4.1l there exists a simple g-detachment ¥ of . with np vertices, say v; is detached to
Vi1, - .., Uy for 1 <4 < n, such that by (A2), dyg)(vas) ~ dzg)(va)/g9(ve) = pri/p = r; for 1 <
i<k, 1<a<n,1<b<p,and by (A3), mg(valbl,...,vahjbhj) x mg(val,...,vahj)/phﬂ' =
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piNj/phi =N for 1 <j<m,1<a < < ap, <n, 1 <by,...,by, < p. Therefore
g AKY . and the i'" color class induces an r;-factor for 1 <4 < k. O
In particular, if m = 1, h := hy, Ay = 1, r :=r;y = --- = rp, then Theorem [.2] implies

another one of Baranyai’s theorems: the complete h-uniform n-partite hypergraph Kfjxp i
r-factorizable if and only if & | npr and r | (7_1)p" %

Let JI' = [1...1];x. For two column vectors Q = [q;...qx]", R = [ri...m]7, if ¢ <7,
for 1 < i < k, we say that Q < R. For a hypergraph ¢, a (q,r)-factor is a spanning
sub-hypergraph in which

q < d(v) <r for each v e V(¥).
A (Q, R)-factorization is a partition {F},..., Fi} of E(¥) in which F; is a (¢;, r;)-factor for
1 <i < k. An almost k-factor of ¢4 is (k — 1, k)-factor. An almost R-factorization is an

(R — Ji, R)-factorization. The proof of the following theorems are very similar to those of
Theorem [6.1] and 6.2

Theorem 6.3. AK" is (Q, R)-factorizable if and only if s(Q) < Y-, \; (}Z ) < s(R), and
there exists a non-negative integer matric A = [aijlgxm such that nQ < AH < nR, and

s(A;) = )\j(:j) forl<j<m

Proof. To prove the necessity, suppose that AK! is (Q, R)-factorizable. Since AKZ is

S !)-regular, we must have s(Q) = Y5 ¢ < Y, X5 ) < Y = s(R).
Since for 1 < J < m, each edge of size h; contributes h; to the the sum of the degrees of the
vertices in (g;, ri)—factor for 1 <1<k, there must exist non—negative integers a;j, 1 <1<k,

1 < j < m, such that ng, < Z;nzl aijhj < nr; for 1 <4 < k and Zz 1 Gij = A ( ) for
I<yj<m.

To prove the sufficiency, let .# be a hypergraph consisting of a single vertex v with
mg(v") = X;(] ) for 1 < j < m. Note that .# is an amalgamatlon of AKH. Now we color
the edges of ? so that mg()(v™) = a; for 1 <@ < k, 1 < j < m. This can be done,
because:

k k
D imrm ) =Y lay =\ <}7> = mgz(v") for 1 <j<m.
i=1 i=1 J

Moreover,

ng; < aly(Z Z a;jh; <nr; for1<i<k.

Let g : V(.#) — N be a function so that g( ) = n. Since for 1 <i < m, h; < n, g is simple.
By Theorem E1] there exists a simple g-detachment ¢ of .7 Wlth n vertices, say vy, ..., U,
such that by (A2), ¢; = ngi/n < dyu(vj) < nry/n =1 for 1 <i <k, 1 <j<mn,and by
(A3), for each U < {vy,...,v,} with |U| = h;, Mw(U) A my‘(vhj)/(}?]) = )\J(}Z)/(}?) =}

J

for 1 < j < m. Therefore 4 =~ AK! and the i"* color class induces a (g;,r;)-factor for

1<i<k. U

Theorem 6.4. AK is almost R-factorizable if and only if s(R)—k < X" \i (;;z__ll) < s(R),
and there exists a non- negative integer matriz A = [a;j|kxm such thatn(R—J,) < AH < nR,
and s(A;) = N\ ([ ) for1<j<m.

Proof. 1t is enough to take () = R — Jj in Theorem O
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Theorem 6.5. AK[!  is (Q, R)-factorizable if and only if s(Q) < D", A (}Z__ll)phi_l <

and there exists a non-negative integer matriz A = [aij|gxm such that npQ < AH < npR,
and s(A;) = X;(;)p" for 1< j<m.

Proof. To prove the necessity, suppose that AKTIfxp is (Q, R)-factorizable. Since AKY is

nxp

SN (}Zill)phi’l—regular, we must have s(Q) = 35 ¢ < X7\ (}:L;_ll)phi’1 <SF o=
s(R). Moreover, there must exist non-negative integers a;;, 1 <i <k, 1 < j < m, such that
npg; < Yi_ aghy < npry for 1 <i <k and Zle aij = \j (}Z_)phj for 1 <j<m.

To prove the sufficiency, let AP = [p"\]L,,., and let .# = APK! with vertex set V =

1xm>

{v1,...,v,}. Notice that . is an amalgamation of AKZ = By Theorem B3] .% is (pQ, pR)-

nxp*
factorizable. Therefore, we can color the edges of .# so that

pgi < dgzgy(v) <priforveV,1<i<k.

Let g : V. — N be a function so that g(v) = p for v € V. Since p > 1, ¢ is simple. By
Theorem 1], there exists a simple g-detachment ¢ of .% with np vertices, say v; is detached to
Vi1, - .., Uy for 1 <@ < m, such that by (A2), ¢; = pgi/p < dy@y(vay) < pri/p = 7 for 1 <i <k,
1 <a<mn 1<b<p and by (A3), mg(valbl,...,vahjbhj) A m,g(val,...,vahj)/phf =
piNj/phi = Nfor 1 <j<m,1<a < < ap; <n, 1 < by,...,bp; < p. Therefore

¢ ~ AK . and the i" color class induces a (p;, r;)-factor for 1 < i < k.

Theorem 6.6. AKX is almost R-factorizable if and only if s(R)—k < Y, \; (;:Zf_ll)phiﬂ

nxp

NN O

s(R), and there exists a non-negative integer matriv A = [a;;|kxm such that np(R — Ji)
AH < npR, and s(4;) = X;(;)p" for 1< j<m.

Proof. Tt is enough to take @Q = R — J, in Theorem

O
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