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MEASURABLE EVENTS INDEXED BY TREES

PANDELIS DODOS, VASSILIS KANELLOPOULOS AND KONSTANTINOS TYROS

Abstract. A tree T is said to be homogeneous if it is uniquely rooted and

there exists an integer b > 2, called the branching number of T , such that

every t ∈ T has exactly b immediate successors. We study the behavior of

measurable events in probability spaces indexed by homogeneous trees.

Precisely, we show that for every integer b > 2 and every integer n > 1 there

exists an integer q(b, n) with the following property. If T is a homogeneous tree

with branching number b and {At : t ∈ T} is a family of measurable events

in a probability space (Ω,Σ, µ) satisfying µ(At) > ε > 0 for every t ∈ T , then

for every 0 < θ < ε there exists a strong subtree S of T of infinite height such

that for every finite subset F of S of cardinality n > 1 we have

µ
(

⋂

t∈F

At

)

> θq(b,n).

In fact, we can take q(b, n) =
(

(2b − 1)2n−1 − 1
)

· (2b − 2)−1. A finite version

of this result is also obtained.

1. Introduction

1.1. Overview. Let (Ω,Σ, µ) be a probability space and {Ai : i ∈ N} a family

of measurable events in (Ω,Σ, µ) satisfying µ(Ai) > ε > 0 for every i ∈ N. It is

well-known (and easy to see) that for every 0 < θ < ε there exist i, j ∈ N with i 6= j

such that µ(Ai ∩Aj) > θ2. Using the classical Ramsey Theorem [11] and iterating

this basic fact, we get the following.

If {Ai : i ∈ N} is a family of measurable events in a probability space (Ω,Σ, µ)

satisfying µ(Ai) > ε > 0 for every i ∈ N, then for every 0 < θ < ε there exists an

infinite subset L of N such that for every integer n > 1 and every finite subset F of

L of cardinality n we have

µ
(

⋂

i∈F

Ai

)

> θn.

In other words, if we are given a sequence of measurable events in a probability

space and we are allowed to refine (i.e. to pass to a subsequence), then we may do

as if the events are at least as correlated as if they were independent.
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Now suppose that the events are not indexed by the integers but are indexed

by another “structured” set S. A natural problem is to decide whether the afore-

mentioned result is valid in the new setting. Namely, given a family {As : s ∈ S}

of measurable events in a probability space (Ω,Σ, µ) satisfying µ(As) > ε > 0 for

every s ∈ S, is it possible to find a “substructure” S′ of S such that the events in

the family {As : s ∈ S′} are highly correlated? And if yes, then can we get explicit

(and, hopefully, optimal) lower bounds for their joint probability? Of course what

“substructure” is, will depend on the nature of the index set S. From a combinato-

rial perspective, these questions are of particular importance when the “structured”

set S is a Ramsey space, a notion introduced by T. J. Carlson in [3] and further

developed by S. Todorcevic in [15].

Various versions have been studied in the literature and several results have

been obtained so far. Undoubtedly, the most well-known and heavily investigated

case is when the events are indexed by the Ramsey space W (A) of all finite words

over a non-empty finite alphabet A. Specifically, it was shown by H. Furstenberg

and Y. Katznelson in [4] that for every 0 < ε 6 1 and every integer b > 2 there

exists a strictly positive constant θ(ε, b) with the following property. If A is an

alphabet with b letters and {Aw : w ∈ W (A)} is a family of measurable events in

a probability space (Ω,Σ, µ) satisfying µ(Aw) > ε for every w ∈ W (A), then there

exists a combinatorial line L (see [6]) such that

µ
(

⋂

w∈L

Aw

)

> θ(ε, b).

In fact, this statement is equivalent to the density Hales–Jewett Theorem. Although

powerful, the arguments in [4] are not effective and give no estimate on the constant

θ(ε, b). Explicit lower bounds can be extracted from the recent “polymath” proof

of the density Hales–Jewett Theorem [10].

Another version has been studied in [2]. The events in this case were assumed to

be of a rather “canonical” form and the index set S was the level product of a finite

sequence of homogeneous trees; we recall that a tree T is said to be homogeneous if

it is uniquely rooted and there exists an integer b > 2, called the branching number

of T , such that every t ∈ T has exactly b immediate successors. We will not state

explicitly this result since this requires a fair amount of terminology. We point out,

however, that it was needed as a tool in the proof of the density version of the

Halpern–Läuchli Theorem [7].

1.2. The main results. Our goal in this paper is to study the above problem when

the index set S is a (finite or infinite) homogeneous tree and to obtain explicit and

fairly “civilized” lower bounds. Of course, such a problem can be also studied

if the events are indexed by a boundedly branching tree or, even more generally,

by a finitely branching tree. However, as it is shown in Appendix A, the case of

boundedly branching trees is essentially reduced to the case of homogeneous trees,
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while for finitely branching but not boundedly branching trees one can construct

examples showing that our results do not hold in this wider category.

In the context of trees the most natural (and practically useful) notion of “sub-

structure” is that of a strong subtree. We recall that a (finite or infinite) subtree

S of a uniquely rooted tree T is said to be strong provided that: (a) S is uniquely

rooted and balanced (that is, all maximal chains of S have the same cardinality),

(b) every level of S is a subset of some level of T , and (c) for every non-leaf node

s ∈ S and every immediate successor t of s in T there exists a unique immediate

successor s′ of s in S with t 6 s′. The last condition is the most important one

and expresses a basic combinatorial requirement, namely that a strong subtree of

T must respect the “tree structure” of T (it implies, for instance, that a strong

subtree of infinite height of a homogeneous tree is also homogeneous and has the

same branching number). Although the notion of a strong subtree was isolated in

the late 1960s, it was highlighted with the work of K. Milliken [8, 9] who showed

that the family of strong subtrees of a uniquely rooted and finitely branching tree

is partition regular.

1.2.1. The infinite case. We are ready to state the first main result of the paper.

Theorem 1. Let T be a homogeneous tree with branching number b. Also let

{At : t ∈ T } be a family of measurable events in a probability space (Ω,Σ, µ)

satisfying µ(At) > ε > 0 for every t ∈ T . Then for every 0 < θ < ε there exists a

strong subtree S of T of infinite height such that for every integer k > 1 and every

strong subtree R of S of height k we have

(1) µ
(

⋂

t∈R

At

)

> θp(b,k)

where

(2) p(b, k) =
(2b − 1)k − 1

2b − 2
.

Notice that a strong subtree R of height k of a homogeneous tree with branching

number b has cardinality (bk − 1)/(b − 1). Therefore, the exponent appearing in

the right-hand side of inequality (1) depends polynomially on the cardinality of R;

specifically, if R has cardinality n, then the corresponding exponent is O(nb/ log b).

It is shown in Appendix B that every non-empty finite subset F of a homogeneous

tree is contained in a strong subtree of height 2|F | − 1. This fact and Theorem 1

yield the following.

Corollary 2. Let T be a homogeneous tree with branching number b. Also let

{At : t ∈ T } be a family of measurable events in a probability space (Ω,Σ, µ)

satisfying µ(At) > ε > 0 for every t ∈ T . Then for every 0 < θ < ε there exists a

strong subtree S of T of infinite height such that for every integer n > 1 and every
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subset F of S of cardinality n we have

(3) µ
(

⋂

t∈F

At

)

> θq(b,n)

where

(4) q(b, n) =
(2b − 1)2n−1 − 1

2b − 2
.

1.2.2. Free sets: improving the lower bound. Observe that the integer q(b, n) ob-

tained by Corollary 2 depends exponentially on n. We do not know whether it is

possible to have polynomial dependence. However, if we restrict our attention to

a certain class of finite subsets of homogeneous trees, then we get optimal lower

bounds. This class of finite sets, which we call free, is defined in §6 in the main

text. It includes various well-known classes of subsets of trees (such as all finite

chains, all doubletons and many more) and is sufficiently rich in the sense that

every infinite subset A of a homogeneous tree contains an infinite set B such that

every non-empty finite subset of B is free. Related to this concept, we show the

following.

Theorem 3. Let T be a homogeneous tree. Also let {At : t ∈ T } be a family of

measurable events in a probability space (Ω,Σ, µ) satisfying µ(At) > ε > 0 for every

t ∈ T . Then for every 0 < θ < ε there exists a strong subtree S of T of infinite

height such that for every integer n > 1 and every free subset F of S of cardinality

n we have

(5) µ
(

⋂

t∈F

At

)

> θn.

1.2.3. The finite case. Theorem 1 has the following finite counterpart which is the

third main result of the paper.

Theorem 4. For every integer b > 2, every integer k > 1 and every pair of reals

0 < θ < ε 6 1 there exists an integer N with the following property. If T is a finite

homogenous tree with branching number b and of height at least N and {At : t ∈ T }

is a family of measurable events in a probability space (Ω,Σ, µ) satisfying µ(At) > ε

for every t ∈ T , then there exists a strong subtree S of T of height k such that

(6) µ
(

⋂

t∈S

At

)

> θp(b,k)

where p(b, k) is as in (2).

The least integer N with the property described in Theorem 4 will be denoted

by Cor(b, k, θ, ε). It is interesting to point out that Theorem 4 does not follow from

Theorem 1 via compactness and one has to appropriately convert the arguments

to the finite setting. An advantage of having an effective proof is that we can

extract explicit and reasonable upper bounds for the integers Cor(b, k, θ, ε); see, for

instance, Proposition 5 below.
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1.3. Outline of the proofs. As we have already mentioned, the proofs of Theorem

1 and Theorem 4 are conceptually similar. The main goal is to construct a strong

subtree W of T (which is either infinite, or of sufficiently large height) for which

we can control the joint probability of the events over all initial subtrees of W .

Once this is done, both Theorem 1 and Theorem 4 follow by an application of

Milliken’s Theorem. The desired strong subtree W is constructed recursively using

the following detailed version of the case “k = 2” of Theorem 4 and which is the

basic pigeon-hole principle in the “one-step extension” of the recursive selection.

Proposition 5. There exists a primitive recursive function Φ : N2 → N such that

for every integer b > 2 and every pair of reals 0 < θ < ε 6 1 the following holds. If

T is a finite homogeneous tree with branching number b such that

(7) h(T ) > Φ
(

b,
⌈ 2b − 1

ε2b − θ2b

⌉)

and {At : t ∈ T } is a family of measurable events in a probability space (Ω,Σ, µ)

satisfying µ(At) > ε for every t ∈ T , then there exists a strong subtree S of T of

height 2 such that

(8) µ
(

⋂

t∈S

At

)

> θ2
b

.

In particular,

(9) Cor(b, 2, θ, ε) 6 Φ
(

b,
⌈ 2b − 1

ε2b − θ2b

⌉)

.

Proposition 5 will be proved in §3. The basic ingredient of its proof is an appro-

priate generalization of the notion of a “Shelah line”, a fundamental tool in Ramsey

Theory introduced by S. Shelah in his work [13] on the van der Waerden and the

Hales–Jewett numbers. We call these new combinatorial objects generalized Shelah

lines.

The proof of Theorem 3 is somewhat different. In particular, in this case the

desired strong subtree S is constructed recursively and directly. The “one-step

extension” of the recursive selection is achieved using the following result.

Proposition 6. Let T be a homogeneous tree. Also let {At : t ∈ T } be a family of

measurable events in a probability space (Ω,Σ, µ) satisfying µ(At) > ε > 0 for every

t ∈ T . Then for every 0 < θ < ε there exists a strong subtree S of T of infinite

height such that for every s, t ∈ S we have µ(As ∩At) > θ2.

The main difficulty in the proof of Proposition 6 lies in the fact that the class of

doubletons of homogeneous trees is not Ramsey; that is, one can find a 2-coloring

of the set of all doubletons of, say, the dyadic tree D such that every strong subtree

of D of height at least 2 contains doubletons of both colors. These pathologies in

Ramsey Theory for trees have been observed in the late 1960s by F. Galvin and

are reflected in his conjecture about partitions of finite subsets of the reals [5],
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settled in the affirmative in the early 1980s by A. Blass [1]. The key observation

in Blass’ work is that, for a fixed integer n > 1, the set of all n-element subsets

of certain trees can be categorized in a finite list of classes each of which has the

Ramsey property. A similar observation is also the driving force behind the proof

of Proposition 6.

1.4. Organization of the paper. The paper is organized as follows. In §2 we set

up our notation and terminology and we gather some background material needed

in the rest of the paper. In the next section we introduce the aforementioned notion

of a generalized Shelah line and we give the proof of Proposition 5. The proof of

Theorem 4 is given in §4 while the proofs of Theorem 1 and Corollary 2 are given

in §5. Finally, in §6 we define the class of free subsets of homogeneous trees and we

give the proofs of Theorem 3 and Proposition 6. To facilitate the interested reader

we have also included two appendices. In Appendix A we show that Theorem 1 still

holds if the tree T is merely assumed to be boundedly branching and we provide

counterexamples for the case of finitely branching but not boundedly branching

trees. In Appendix B we prove that every finite subset F of a homogeneous tree

T is contained in a strong subtree of T of height 2|F | − 1, a result needed for the

proof of Corollary 2.

2. Background material

By N = {0, 1, 2, ...} we denote the natural numbers. The cardinality of a set X

will be denoted by |X |.

2.1. Trees. By the term tree we mean a non-empty partially ordered set (T,<) such

that the set {s ∈ T : s < t} is finite and linearly ordered under < for every t ∈ T .

The cardinality of this set is defined to be the length of t in T and will be denoted

by ℓT (t). For every n ∈ N the n-level of T , denoted by T (n), is defined to be the

set {t ∈ T : ℓT (t) = n}. The height of T , denoted by h(T ), is defined as follows. If

there exists k ∈ N with T (k) = ∅, then we set h(T ) = max{n ∈ N : T (n) 6= ∅}+1;

otherwise, we set h(T ) = ∞.

For every node t of a tree T the set of successors of t in T is defined by

(10) SuccT (t) = {s ∈ T : t 6 s}.

The set of immediate successors of t in T is the subset of SuccT (t) defined by

ImmSuccT (t) = {s ∈ T : t 6 s and ℓT (s) = ℓT (t) + 1}.

A subtree of a tree T is a subset of T viewed as a tree equipped with the induced

partial ordering. For every k ∈ N with k < h(T ) we set

(11) T ↾ k = T (0) ∪ ... ∪ T (k).

Notice that h(T ↾ k) = k + 1. An initial subtree of T is a subtree of T of the form

T ↾ k for some k ∈ N. A chain of T is a subset C of T such that for every s, t ∈ C

we have that either s 6 t or t 6 s.
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A tree T is said to be pruned (respectively, finitely branching) if for every t ∈ T

the set of immediate successors of t in T is non-empty (respectively, finite). It is

said to be boundedly branching if there exists an integerm > 1 such that every t ∈ T

has at most m immediate successors, and it is said to be balanced if all maximal

chains of T have the same cardinality. Finally, a tree T is said to be uniquely rooted

if |T (0)| = 1; the root of a uniquely rooted tree T is defined to be the node T (0).

Let T be a uniquely rooted tree. For every s, t ∈ T the infimum of s and t in

T , denoted by s ∧T t, is defined to be the <-maximal node w ∈ T such that w 6 s

and w 6 t (notice that the infimum is well-defined since T (0) 6 t for every t ∈ T ).

More generally, for every non-empty subset F of T the infimum of F in T , denoted

by ∧TF , is defined to be the <-maximal node w ∈ T such that w 6 t for every

t ∈ F . Observe that s ∧T t = ∧T {s, t}.

2.2. Vector trees. A vector tree T is a non-empty finite sequence of trees having

common height; this common height is defined to be the height of T and will

be denoted by h(T). We notice that, throughout the paper, we will start the

enumeration of vector trees with 1 instead of 0.

The level product of a vector tree T = (T1, ..., Td), denoted by ⊗T, is defined to

be the set

(12)
⋃

n<h(T)

T1(n)× ...× Td(n).

We say that a vector tree T = (T1, ..., Td) is pruned (respectively, finitely branch-

ing, boundedly branching, balanced, uniquely rooted) if for every i ∈ {1, ..., d} the

tree Ti is pruned (respectively, finitely branching, boundedly branching, balanced,

uniquely rooted).

2.3. Strong subtrees and vector strong subtrees. A subtree S of a uniquely

rooted tree T is said to be strong provided that: (a) S is uniquely rooted and

balanced, (b) every level of S is a subset of some level of T , and (c) for every

non-maximal node s ∈ S and every t ∈ ImmSuccT (s) there exists a unique node

s′ ∈ ImmSuccS(s) such that t 6 s′. The level set of a strong subtree S of T is

defined to be the set

(13) LT (S) = {m ∈ N : exists n < h(S) with S(n) ⊆ T (m)}.

A basic property of strong subtrees is that they preserve infima. That is, if S is a

strong subtree of T and F is a non-empty subset of S, then ∧SF = ∧TF .

The concept of a strong subtree is naturally extended to vector trees. Specifically,

a vector strong subtree of a uniquely rooted vector tree T = (T1, ..., Td) is a vector

tree S = (S1, ..., Sd) such that Si is a strong subtree of Ti for every i ∈ {1, ..., d}

and LT1
(S1) = ... = LTd

(Sd).
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2.4. Homogeneous trees and vector homogeneous trees. Let b ∈ N with

b > 2. By b<N we shall denote the set of all finite sequences having values in

{0, ..., b−1}. The empty sequence is denoted by ∅ and is included in b<N. We view

b<N as a tree equipped with the (strict) partial order ⊏ of end-extension. Notice

that b<N is a homogeneous tree with branching number b. For every n ∈ N by bn

we denote the n-level of b<N. If n > 1, then b<n stands for the initial subtree of

b<N of height n. By <lex we denote the usual lexicographical order on bn. For every

t, s ∈ b<N by tas, or simply by ts, we shall denote the concatenation of t and s.

For technical reasons, that will become transparent below, we will not work

with abstract homogeneous trees but with a concrete subclass. Observe that all

homogeneous trees with the same branching number are pairwise isomorphic, and

so, such a restriction will have no effect in the generality of our results.

Convention. In the rest of the paper by the term “homogeneous tree” (respectively,

“finite homogeneous tree”) we will always mean a strong subtree of b<N of infinite

(respectively, finite) height for some integer b > 2. For every, possibly finite, ho-

mogeneous tree T by bT we shall denote the branching number of T . We follow the

same convention for vector trees. In particular, by the term “vector homogeneous

tree” we will mean a vector strong subtree of (b<N

1 , ..., b<N

d ) of infinite height for

some integers b1, ..., bd with bi > 2 for every i ∈ {1, ..., d}.

The above convention has two basic advantages. Firstly, it enables us to effectively

enumerate the set of immediate successors of a given node of a, possibly finite,

homogeneous tree T . Specifically, for every t ∈ T and every p ∈ {0, ..., bT − 1} let

(14) taTp = ImmSuccT (t) ∩ Succb<N

T
(tap)

and notice that

(15) ImmSuccT (t) =
{

taTp : p ∈ {0, ..., bT − 1}
}

.

Also observe that for every p, q ∈ {0, ..., bT − 1} we have taTp <lex t
aTq if and only

if p < q.

Secondly, under the above convention, the infimum operation has a particularly

simple description. Namely, the infimum of a non-empty subset F of a, possibly

finite, homogeneous tree T is the maximal common initial subsequence of every

finite sequence in F . Having this representation in mind, we will drop the subscript

in the infinmum operation and we will denote it simply by ∧.

2.5. Canonical embeddings and canonical isomorphisms. Let T and S be

two, possibly finite, homogeneous trees with the same branching number. We say

that a map f : T → S is a canonical embedding if for every t, t′ ∈ T the following

conditions are satisfied.

(a) We have ℓT (t) = ℓT (t
′) if and only if ℓS

(

f(t)
)

= ℓS
(

f(t′)
)

.

(b) We have t ⊏ t′ if and only if f(t) ⊏ f(t′).
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(c) If ℓT (t) = ℓT (t
′), then t <lex t

′ if and only if f(t) <lex f(t
′).

(d) We have f(t ∧ t′) = f(t) ∧ f(t′).

Observe that a canonical embedding f : T → S is an injection and its image f(T )

is a strong subtree of S. Also notice that if S and T have the same height, then

there exists a unique bijection between T and S satisfying the above conditions.

This unique bijection will be called the canonical isomorphism between T and S

and will be denoted by I(T, S).

2.6. Milliken’s Theorem. Let T be a, possibly finite, homogeneous tree. For

every integer k > 1 by Strk(T ) we shall denote the set of all strong subtrees of

T of height k while by Str∞(T ) we shall denote the set of all strong subtrees of

T of infinite height. For every vector homogeneous tree T = (T1, ..., Td) the sets

Strk(T) and Str∞(T) are analogously defined. It is easy to see that Str∞(T) is a

Gδ (hence Polish) subspace of 2T1 × ...× 2Td . We will need the following result due

to K. Milliken.

Theorem 7 ([9]). Let T be a vector homogeneous tree. Then for every Borel subset

C of Str∞(T) there exists a vector strong subtree S of T of infinite height such that

either Str∞(S) ⊆ C or Str∞(S) ∩ C = ∅.

In particular, for every integer k > 1 and every subset F of Strk(T) there exists

a vector strong subtree R of T of infinite height such that either Strk(R) ⊆ F or

Strk(R) ∩ F = ∅.

By Theorem 7 and a standard compactness argument, we get the following.

Corollary 8. For every integer b > 2, every pair of integers m > k > 1 and every

integer r > 2 there exists an integer M with the following property. For every finite

homogeneous tree T with branching number b and of height at least M and every

r-coloring of the set Strk(T ) there exists a strong subtree S of T of height m such

that the set Strk(S) is monochromatic. The least integer M with this property will

be denoted by Mil(b,m, k, r).

Notice that the reduction of Corollary 8 to Theorem 7 via compactness is non-

effective and gives no estimate for the numbers Mil(b,m, k, r). An analysis of the

finite version of Milliken’s Theorem has been carried out by M. Sokić yielding

explicit and reasonable upper bounds. In particular, we have the following.

Theorem 9 ([14]). For every integer k > 1 there exists a primitive recursive

function φk : N3 → N belonging to the class E5+k of Grzegorczyk’s hierarchy such

that for every integer b > 2, every integer m > k and every integer r > 2 we have

(16) Mil(b,m, k, r) 6 φk(b,m, r).

2.7. Probabilistic preliminaries. We recall the following well-known fact. The

proof is sketched for completeness.
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Lemma 10. Let 0 < θ < ε 6 1 and N ∈ N with N > (ε2−θ2)−1. Also let (Ai)
N−1
i=0

be a family of measurable events in a probability space (Ω,Σ, µ) satisfying µ(Ai) > ε

for every i ∈ {0, ..., N − 1}. Then there exist i, j ∈ {0, ..., N − 1} with i 6= j such

that µ(Ai ∩ Aj) > θ2.

Proof. For every i ∈ {0, ..., N − 1} let 1Ai
be the indicator function of the event Ai

and set X =
∑N−1

i=0 1Ai
. Then E[X ] > εN so, by convexity,

∑

i∈{0,...,N−1}

∑

j∈{0,...,N−1}\{i}

µ(Ai ∩ Aj) = E[X(X − 1)] > εN(εN − 1).

Therefore, there exist i, j ∈ {0, ..., N−1} with i 6= j such that µ(Ai∩Aj) > θ2. �

Finally, for every probability space (Ω,Σ, µ), every Y ∈ Σ with µ(Y ) > 0 and

every A ∈ Σ by µ(A | Y ) we shall denote the conditional probability of A relative

to Y ; that is,

(17) µ(A | Y ) =
µ(A ∩ Y )

µ(Y )
.

The conditional probability measure of µ relative to Y will be denoted by µY .

Notice that µY (A) = µ(A | Y ) for every A ∈ Σ.

3. Proof of Proposition 5

This section is devoted to the proof of Proposition 5 stated in the introduction.

It is organized as follows. In §3.1 we introduce the class of generalized Shelah

lines and we present some of their basic properties. In §3.2 we define the primitive

recursive function Φ. The proof of Proposition 5 is given in §3.3. In §3.4 we prove

a “relativized” version of Proposition 5; this “relativized” version is needed for the

proof of Theorem 4. Finally, in §3.5 we make some comments concerning the upper

bounds for the numbers Cor(b, 2, θ, ε) obtained by Proposition 5.

3.1. Generalized Shelah lines. We start with the following definition.

Definition 11. Let T be a finite homogeneous tree of height at least 2. Also let

F ∈ Str2(T ) and P be a (possibly empty) subset of {0, ..., bT −1}. The P -restriction

of F , denoted by F |P , is defined to be the set

(18) F |P = {F (0)} ∪
{

F (0)aFp : p ∈ P
}

.

Notice that F |∅ = {F (0)} and F |{0,...,bT−1} = F . Moreover, it easy to see that

F |P∪Q = F |P ∪F |Q for any pair P and Q of subsets of {0, ..., bT −1}. We are ready

to introduce the main object of study in this subsection.

Definition 12 (Standard generalized Shelah lines and their components). Let b ∈ N

with b > 2. Also let i ∈ {0, ..., b−1}, P ⊆ {0, ..., b−1} and N ∈ N with N > 1. The
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standard (b, i, P,N)-generalized Shelah line, denoted by L(b, i, P,N), is the subset

of b<N defined by

(19) L(b, i, P,N) =

N−1
⋃

k=0

{ik} ∪
{

ikpN−1−k : p ∈ P
}

.

For every k ∈ {0, ..., N − 1} the k-component of L(b, i, P,N) is defined by

(20) Lk(b, i, P,N) = {ik} ∪
{

ikpN−1−k : p ∈ P
}

.

Next we extend Definition 12 to all finite homogeneous trees as follows.

Definition 13 (Generalized Shelah lines of finite homogeneous trees). Let T be

a finite homogeneous tree and denote by N its height. Also let i ∈ {0, ..., bT − 1}

and P ⊆ {0, ..., bT − 1}. The (i, P )-generalized Shelah line of T is defined to be the

image of L(bT , i, P,N) under the canonical isomorphism I(b<N
T , T ) between b<N

T

and T (see §2.5). Respectively, for every k ∈ {0, ..., N − 1} the k-component of

the (i, P )-generalized Shelah line of T is defined to be the image of the correspond-

ing k-component Lk(bT , i, P,N) of L(bT , i, P,N) under the canonical isomorphism

I(b<N
T , T ).

We isolate, below, some basic properties of all generalized Shelah lines of a finite

homogeneous tree T .

(P1) Every generalized Shelah line of T is the union of its components.

(P2) The last component of every generalized Shelah line of T is a singleton.

(P3) If T has height N > 2 and k ∈ {0, ..., N − 2}, then the k-component of the

(i, P )-generalized Shelah line of T is the P -restriction of a strong subtree

of T of height 2.

Properties (P1) and (P2) are straightforward consequences of the relevant defi-

nitions. To see property (P3), consider the k-component Lk(bT , i, P,N) of the

standard generalized Shelah line L(bT , i, P,N) and set

(21) Fk = {ik} ∪
{

ikjN−1−k : j ∈ {0, ..., bT − 1}
}

.

Notice that Fk ∈ Str2(b
<N
T ) and that Fk|P = Lk(bT , i, P,N). Since strong subtrees

of height 2 and their restrictions are preserved under canonical isomorphisms, we

see that property (P3) is also satisfied. The most important property, however, of

generalized Shelah lines is included in the following proposition.

Proposition 14. Let T be a finite homogeneous tree of height at least 2. Also let

i ∈ {0, ..., bT − 1} and P be a (possibly empty) subset of {0, ..., bT − 1}. If i /∈ P ,

then the union of any two distinct components of the (i, P )-generalized Shelah line

of T contains the (P ∪ {i})-restriction of a strong subtree of T of height 2.

Proof. Clearly we may assume that T is the tree b<N
T where N is the height of T .

We fix 0 6 k0 < k1 6 N − 1 and we consider the following cases.
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Case 1: P = ∅. Let F ∈ Str2(b
<N
T ) be defined by

F = {ik0} ∪
{

ik0jk1−k0 : j ∈ {0, ..., bT − 1}
}

and observe that F |{i} = {ik0} ∪ {ik1} = Lk0
(bT , i,∅, N) ∪ Lk1

(bT , i,∅, N).

Case 2: P 6= ∅. We set p = minP . Let G ∈ Str2(b
<N
T ) be defined by

G = {ik0} ∪
{

ik0jN−1−k0 : j ∈ {0, ..., bT − 1} and j 6= i
}

∪ {ik1pN−1−k1}.

Notice that G|P = Lk0
(bT , i, P,N) and G|{i} = {ik0} ∪ {ik1pN−1−k1}. Thus,

G|P∪{i} = G|P ∪G|{i} ⊆ Lk0
(bT , i, P,N) ∪ Lk1

(bT , i, P,N).

The proof is completed. �

3.2. The primitive recursive function Φ. For every b, i,m ∈ N with b > 2 and

m > 2 we define recursively the integer M (i)(b,m) by the rule

(22)

{

M (0)(b,m) = m,

M (i+1)(b,m) = Mil
(

b,M (i)(b,m), 2, 2
)

.

Inductively, it is easy to show that

(23) M (i)(b,m) > m.

Moreover, we have the following.

Fact 15. There exists a primitive recursive function Φ : N2 → N belonging to the

class E8 of Grzegorczyk’s hierarchy such that for every integer b > 2 and every

integer m > 2 we have

(24) M (b−1)(b,m) 6 Φ(b,m).

Proof. The result follows easily by Theorem 9 and elementary properties of primi-

tive recursive functions (see, e.g., [12]). We will provide the details for the benefit

of the reader. To this end, we need first to recall some pieces of notation. For every

j ∈ {1, 2} by πj : N2 → N we denote the projection function to the j-coordinate;

it belongs to the class E0. Also, let ms : N2 → N be the modified substraction

function defined by ms(n, k) = n− k if n > k and ms(n, k) = 0 if n < k; it belongs

to the class E3.

Now, let φ2 : N3 → N be the primitive recursive function obtained by Theorem 9

for “k = 2”. Recall that φ2 belongs to the class E7 and that for every integer b > 2,

every integer m > 2 and every integer r > 2 we have Mil(b,m, 2, r) 6 φ2(b,m, r).

Define ψ : N3 → N by the rule
{

ψ(0, x) = π2(x),

ψ(i + 1, x) = φ2
(

π1(x), ψ(i, x), 2
)

.

Since φ2 belongs to the class E7, we see that the function ψ belongs to the class E8.

Finally, let Φ : N2 → N be defined by

Φ(x) = ψ
(

ms(π1(x), 1), π1(x), π2(x)
)

.
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Clearly the function Φ belongs to the class E8. It is easy to check that Φ is as

desired. �

3.3. Proof of Proposition 5. By Fact 15, it is enough to show the following.

Lemma 16. Let 0 < θ < ε 6 1. Also let T be a finite homogeneous tree such that

(25) h(T ) >M (bT−1)
(

bT ,
⌈ 2bT − 1

ε2
bT − θ2

bT

⌉)

and {At : t ∈ T } be a family of measurable events in a probability space (Ω,Σ, µ)

satisfying µ(At) > ε for every t ∈ T . Then there exists F ∈ Str2(T ) such that

(26) µ
(

⋂

t∈F

At

)

> θ2
bT
.

Proof. In what follows, for notational simplicity, by b we shall denote the branching

number of the tree T . We set

(27) δ =
ε2

b

− θ2
b

2b − 1
.

Recursively, for every i ∈ {0, ..., b− 1} we will select

(i) a positive real εi,

(ii) a positive integer Ni and

(iii) a strong subtree Ri of T

such that the following conditions are satisfied.

(C1) We have ε0 = ε and ε2
i+1

i+1 = ε2
i+1

i − δ for every i ∈ {0, ..., b− 2}.

(C2) For every i ∈ {0, ..., b− 1} we have Ni =M (b−1−i)
(

b, ⌈δ−1⌉
)

.

(C3) For every i ∈ {0, ..., b− 2} the tree Ri+1 is a strong subtree of Ri.

(C4) For every i ∈ {0, ..., b− 1} the height of the tree Ri is Ni.

(C5) For every i ∈ {0, ..., b− 1} and every F ∈ Str2(Ri) we have

(28) µ
(

⋂

t∈F |{0,...,i−1}

At

)

> ε2
i

i .

with the convention that {0, ..., i− 1} = ∅ if i = 0.

We proceed to the recursive selection. For i = 0 we set “ε0 = ε”, “N0 =

M (b−1)(b,
⌈

δ−1⌉)” and “R0 = T ↾ (N0 − 1)” and we observe that with these choices

conditions (C1), (C2) and (C4) are satisfied. Noticing that F |∅ = {F (0)} for every

F ∈ Str2(T ) we see that condition (C5) is also satisfied. Since condition (C3) is

meaningless in this case, the first step of the recursive selection is completed.

Let i ∈ {0, ..., b − 2} and assume that the recursive selection has been carried

out up to i so that conditions (C1)-(C5) are satisfied. We start the next step of the

recursive selection setting “εi+1 =
(

ε2
i+1

i − δ
)1/2i+1

” and we observe that with this

choice condition (C1) is satisfied. Next we set “Ni+1 =M (b−1−i−1)
(

b, ⌈δ−1⌉
)

” and
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we notice that condition (C2) is also satisfied. Now, let

(29) F =
{

F ∈ Str2(Ri) : µ
(

⋂

t∈F |{0,...,i}

At

)

> ε2
i+1

i+1

}

.

By our inductive assumptions, the height of the tree Ri is Ni. Moreover,

Ni
(C2)
= M (b−1−i)

(

b, ⌈δ−1⌉
) (22)

= Mil
(

b,M (b−1−i−1)
(

b, ⌈δ−1⌉
)

, 2, 2
)

= Mil(b,Ni+1, 2, 2).

Therefore, by Corollary 8, there exists a strong subtree R of Ri of height Ni+1 such

that either Str2(R) ⊆ F or Str2(R) ∩ F = ∅. We set “Ri+1 = R” and we claim

that with this choice all the other conditions are satisfied. It is clear that (C3) and

(C4) are satisfied, and so, we only need to check condition (C5). Notice that it

is enough to show that Str2(R) ∩ F 6= ∅. To this end we argue as follows. Let

L be the (i, {0, ..., i − 1})-generalized Shelah line of R (recall that, by convention,

we set {0, ..., i − 1} = ∅ if i = 0). For every k ∈ {0, ..., Ni+1 − 1} let Lk be the

k-component of L and set

(30) Ak =
⋂

t∈Lk

At.

By property (P3) in §3.1, if k ∈ {0, ..., Ni+1 − 2}, then the k-component Lk of

L is the {0, ..., i − 1}-restriction of some strong subtree of R of height 2. This

fact and condition (C5) of our inductive assumptions yield that µ(Ak) > ε2
i

i if

k ∈ {0, ..., Ni+1− 2}. On the other hand, if k = Ni+1− 1, then by property (P2) in

§3.1 the k-component of L is a singleton. Noticing that ε > ε2
i

i we conclude that

(31) µ(Ak) > ε2
i

i

for every k ∈ {0, ..., Ni+1 − 1}. Moreover, by the choice of Ni+1 and εi+1, we have

(32) Ni+1 =M (b−1−i−1)
(

b, ⌈δ−1⌉
)

(23)
> ⌈δ−1⌉ >

1

δ
=

1

(ε2
i

i )2 − (ε2
i

i+1)
2
.

Hence, by Lemma 10 applied for “N = Ni+1”, “ε = ε2
i

i ” and “θ = ε2
i

i+1”, there

exist 0 6 k < k′ < Ni+1 such that µ(Ak ∩ Ak′ ) > ε2
i+1

i+1 . By Proposition 14,

there exists G ∈ Str2(R) such that G|{0,...,i−1}∪{i} ⊆ Lk ∪ Lk′ . Observing that

G|{0,...,i} = G|{0,...,i−1}∪{i} we see that

(33) µ
(

⋂

t∈G|{0,...,i}

At

)

> µ
(

⋂

t∈Lk∪Lk′

At

)

= µ(Ak ∩Ak′ ) > ε2
i+1

i+1 .

Therefore, G ∈ Str2(R) ∩ F . This shows that condition (C5) is also satisfied, and

so, the recursive selection is completed.

We isolate, for future use, the following consequence of condition (C1). The

proof is left to the interested reader.

Fact 17. For every i ∈ {0, ..., b− 1} we have ε2
i

i > ε2
i

− (2i − 1)δ.



MEASURABLE EVENTS INDEXED BY TREES 15

We are ready for the final step of the argument. Let Rb−1 be the strong subtree

of T obtained above. We will show that there exists F ∈ Str2(Rb−1) satisfying the

estimate in (26). This will finish the proof. To this end we set

(34) r = ε2
b−1

b−1 and η =
(

r2 − δ
)1/2

.

By condition (C5) and the choice of r, for every F ∈ Str2(Rb−1) we have

(35) µ
(

⋂

t∈F |{0,...,b−2}

At

)

> r.

Moreover,

(36) h(Rb−1)
(C4)
= Nb−1

(C2)
= M (0)

(

b, ⌈δ−1⌉
) (22)

= ⌈δ−1⌉ >
1

δ

(34)
=

1

r2 − η2
.

Let G be the (b − 1, {0, ..., b− 2})-generalized Shelah line of Rb−1. Also, for every

k ∈ {0, ..., h(Rb−1)− 1} let Gk be the k-component of G and set

(37) Bk =
⋂

t∈Gk

At.

Arguing precisely as in the “one-step extension” of the recursive selection and using

the estimates in (35) and (36), it is possible to find 0 6 k < k′ < h(Rb−1) and

F ∈ Str2(Rb−1) such that µ(Bk ∩ Bk′) > η2 and F |{0,...,b−2}∪{b−1} ⊆ Gk ∪ Gk′ .

Since F = F |{0,...,b−2}∪{b−1} we see that

(38) µ
(

⋂

t∈F

At

)

> µ(Bk ∩Bk′ ) > η2.

Moreover, by (34) and Fact 17, we have

(39) η2 >
(

ε2
b−1

− (2b−1 − 1)δ
)2

− δ > ε2
b

− (2b − 1)δ
(27)
= θ2

b

.

The proof of Lemma 16 is completed. �

As we have already indicated in the beginning of the subsection, having com-

pleted the proof of Lemma 16, the proof of Proposition 5 is also completed.

3.4. Consequences. We have already mentioned that in this subsection we will

give a “relativized” version of Proposition 5. To this end we need, first, to introduce

some quantitative invariants closely related to the numbers Cor(b, 2, θ, ε).

Definition 18. For every integer b > 2 and every pair of reals 0 < θ < ε 6 1

by Rel(b, θ, ε) we shall denote the least integer N (if it exists) with the following

property. For every finite homogeneous tree T with branching number b and of height

at least N and every family {At : t ∈ T } of measurable events in a probability space

(Ω,Σ, µ) satisfying µ(At) > ε for every t ∈ T , there exists F ∈ Str2(T ) such that

(40) µ
(

⋂

t∈F (1)

At

∣

∣ AF (0)

)

> θ2
b−1.
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We will show that the numbers Rel(b, θ, ε) exist. In fact, we shall obtain upper

bounds which are expressed in terms of the Milliken’s numbers. Specifically, for

every integer b > 2 and every 0 < θ < ε 6 1 we set

(41) λ(b, θ, ε) =
(

ε · θ−1
)

2b−1

2b+1

and we notice that λ(b, θ, ε) > 1. Also let

(42) r(b, θ, ε) =
⌈ ln ε−1

lnλ(b, θ, ε)

⌉

.

Finally, for every i ∈ {0, ..., r(b, θ, ε)} let

(43) εi = ε · λ(b, θ, ε)i−1

and define

(44) m(b, θ, ε) = max
{

M (b−1)
(

b,
⌈ 2b − 1

ε2
b

i − ε2
b

i−1

⌉)

: 1 6 i 6 r(b, θ, ε)
}

.

We have the following.

Corollary 19. For every integer b > 2 and every 0 < θ < ε 6 1 we have

(45) Rel(b, θ, ε) 6 Mil
(

b,m(b, θ, ε), 1, r(b, θ, ε)
)

.

Proof. The result follows easily by Lemma 16 and a stabilization argument. Let us

give the details. For notational simplicity we set λ = λ(b, θ, ε), r = r(b, θ, ε) and

m = m(b, θ, ε). Also let εr+1 = ελr and notice that εr+1 > 1 by the choice of r in

(42). Since λ > 1, by (43), we see that

ε = ε1 < ε2 < ... < εr < εr+1.

Let T be a finite homogeneous tree with branching number b and of height at least

Mil(b,m, 1, r) and {At : t ∈ T } be a family of measurable events in a probability

space (Ω,Σ, µ) satisfying µ(At) > ε for every t ∈ T . There exist a strong subtree

R of T of height m and i0 ∈ {1, ..., r} such that for every t ∈ R we have

(46) εi0 6 µ
(

At

)

6 εi0+1.

Therefore, µ(At) > εi0 > εi0−1 and

h(R) = m
(44)
> M (b−1)

(

b,
⌈ 2b − 1

ε2
b

i0
− ε2

b

i0−1

⌉)

.

By Lemma 16 applied for “θ = εi0−1”, “ε = εi0” and the family “{At : t ∈ R}”,

there exists F ∈ Str2(R) such that

(47) µ
(

⋂

t∈F

At

)

> ε2
b

i0−1.
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By (41), (43), (46) and (47) and taking into account that λ > 1 and i0 > 1, we

conclude that

µ
(

⋂

t∈F (1)

At

∣

∣ AF (0)

)

=
µ
(
⋂

t∈F At

)

µ(AF (0))
>
ε2

b

i0−1

εi0+1
= ε2

b−1 · λ2
bi0−2b+1−i0

> ε2
b−1 · λ−2b−1 = θ2

b−1.

This shows that Rel(b, θ, ε) 6 Mil(b,m, 1, r), as desired. �

3.5. Comments. By Fact 15 and Lemma 16, the numbers Cor(b, 2, θ, ε) are con-

trolled by a primitive recursive function belonging to the class E8 of Grzegorczyk’s

hierarchy. We point out that this upper bound is not optimal and, in fact, we

can have significantly better upper bounds. Precisely, by appropriately modifying

the arguments in the proof of Proposition 5 (avoiding, in particular, the use of

Milliken’s Theorem), it is possible to show the estimate in (9) is satisfied for the

function Ψ : N2 → N defined by

(48) Ψ(b,m) = m(m+1)b .

Such a modification, however, is technically involved and conceptually less natural

to grasp, and so, we prefer to omit it.

4. Proof of Theorem 4

We fix an integer b > 2 and a pair of reals 0 < θ < ε 6 1. We will define the

numbers Cor(b, k, θ, ε) by recursion on k. It is clear that Cor(b, 1, θ, ε) = 1. The

definition of the number Cor(b, 2, θ, ε) is the content of Proposition 5.

So let k ∈ N with k > 2 and assume that the number Cor(b, k, θ, ε) has been

defined. Let

(49) η =
ε+ θ

2

and set

(50) n(k) = max
{

Rel(b, η, ε),Cor(b, k, θ2
b−1, η2

b−1)
}

+ 1.

Claim 20. We have

(51) Cor(b, k + 1, θ, ε) 6 Mil(b, n(k), 2, 2).

It is, of course, clear that Theorem 4 follows by Claim 20. So, what remains is

to prove Claim 20. To this end let T be a finite homogeneous tree with branching

number b such that

(52) h(T ) > Mil(b, n(k), 2, 2)

and a family {At : t ∈ T } of measurable events in a probability measure space

(Ω,Σ, µ) satisfying µ(At) > ε for every t ∈ T . We need to find a strong subtree S
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of T of height k + 1 such that

(53) µ
(

⋂

t∈S

At

)

> θp(b,k+1).

We argue as follows. First we set

(54) F =
{

F ∈ Str2(T ) : µ
(

⋂

t∈F (1)

At

∣

∣ AF (0)

)

> η2
b−1

}

.

By Corollary 8 and the estimate in (52), there exists a strong subtree R of T of

height n(k) such that either Str2(R) ⊆ F or Str2(R) ∩ F = ∅. By the choice of

n(k) made in (50), we have n(k) > Rel(b, η, ε). It follows that Str2(R) ⊆ F .

Let {r0 <lex ... <lex rb−1} be the lexicographical increasing enumeration of the

1-level R(1) of R. Since the height of R is n(k), for every i ∈ {0, ..., b− 1} we have

that SuccR(ri) is a strong subtree of R of height n(k)−1. In particular, SuccR(ri) is

a finite homogeneous tree with branching number b and of height n(k)−1. This ob-

servation permits us to consider the canonical isomorphism I
(

b<n(k)−1, SuccR(ri)
)

between b<n(k)−1 and SuccR(ri). For notational simplicity we shall denote it by Ii.

We set

(55) Y = AR(0).

Also, for every u ∈ b<n(k)−1 let

(56) Fu = {R(0)} ∪
{

Ii(u) : i ∈ {0, ..., b− 1}
}

and define

(57) Bu =
⋂

t∈Fu

At ∈ Σ.

Observe that Fu ∈ Str2(R) with Fu(1) =
{

I0(u), ..., Ib−1(u)
}

and Fu(0) = R(0).

Since Str2(R) ⊆ F , we get that

(58) µY (Bu) =
µ(Bu ∩ AR(0))

µ(AR(0))
= µ

(

⋂

t∈Fu(1)

At

∣

∣ AFu(0)

)

> η2
b−1.

Moreover, by (50), we have n(k)− 1 > Cor(b, k, θ2
b−1, η2

b−1). Therefore, applying

our inductive assumptions to the probability space “(Ω,Σ, µY )” and the family

of measurable events “{Bu : u ∈ b<n(k)−1}”, we may find a strong subtree U of

b<n(k)−1 of height k such that

(59) µY

(

⋂

u∈U

Bu

)

>
(

θ2
b−1

)p(b,k)
.

We are now in the position to define the desired tree S. In particular, let

(60) S = {R(0)} ∪
{

Ii(u) : u ∈ U and i ∈ {0, ..., b− 1}
}

.
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It is easy to see that S is a strong subtree of T of height k + 1 and with the same

root as R. Moreover,

µ
(

⋂

t∈S

At

)

(60)
= µ

(

AR(0) ∩
⋂

u∈U

b−1
⋂

i=0

AIi(u)

)

(56)
= µ

(

⋂

u∈U

⋂

t∈Fu

At

)

(61)

(57)
= µ

(

⋂

u∈U

Bu

)

= µ
(

AR(0) ∩
⋂

u∈U

Bu

)

= µ(AR(0)) · µY

(

⋂

u∈U

Bu

)

(59)
> ε · θ(2

b−1)p(b,k) > θ1+(2b−1)p(b,k).

Finally, notice that p(b, k) =
∑k−1

i=0 (2
b − 1)i. Therefore,

(62) 1 + (2b − 1)p(b, k) = 1 +

k
∑

i=1

(2b − 1)i =

k
∑

i=0

(2b − 1)i = p(b, k + 1).

Combining (61) and (62), we conclude that the estimate in (53) is satisfied for the

tree S. This completes the proof of Claim 20, and as we have already indicated,

the proof of Theorem 4 is also completed.

5. Proof of Theorem 1 and its consequences

This section is devoted to the proofs of Theorem 1 and Corollary 2 stated in the

introduction. We start with the following lemma which is essentially a multidimen-

sional version of Corollary 19.

Lemma 21. Let b ∈ N with b > 2 and T = (T1, ..., Td) be a vector homogeneous tree

such that bTi
= b for every i ∈ {1, ..., d}. Also let

{

At : t ∈ Ti and i ∈ {1, ..., d}
}

be a family of measurable events in a probability space (Ω,Σ, µ) and Y ∈ Σ with

µ(Y ) > 0 such that for every (t1, ..., td) in the level product of T we have

(63) µ
(

d
⋂

i=1

Ati

∣

∣ Y
)

> ε > 0.

Then for every 0 < θ < ε there exists a vector strong subtree S of T of infinite

height such that for every (F1, ..., Fd) ∈ Str2(S) we have

(64) µ
(

d
⋂

i=1

⋂

t∈Fi(1)

At

∣

∣ Y ∩
d
⋂

i=1

AFi(0)

)

> θ2
b−1.

Proof. We fix 0 < θ < ε. Let F be the set of all vector strong subtrees ofT of height

2 for which the estimate in (64) is satisfied for the fixed constant θ. By Theorem 7,

there exists vector strong subtree S = (S1, ..., Sd) of T of infinite height such that

either Str2(S) ⊆ F or Str2(S) ∩ F = ∅. The proof will, of course, be completed

once we show that Str2(S) ∩ F 6= ∅.
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To this end we argue as follows. For every u ∈ b<N we set

(65) Bu =

d
⋂

i=1

AIi(u) ∩ Y ∈ Σ

where Ii stands for the canonical isomorphism I(b<N, Si) between b<N and Si for

every i ∈ {1, ..., d}. By (63), we have µY (Bu) > ε for every u ∈ b<N. Therefore, by

Corollary 19, there exist an integer N 6 Rel(b, θ, ε) and F ∈ Str2(b
<N) such that

(66) µY

(

⋂

u∈F (1)

Bu

∣

∣ BF (0)

)

> θ2
b−1.

For every i ∈ {1, ..., d} we set Fi = Ii(F ). Notice that (F1, ..., Fd) ∈ Str2(S).

Moreover,

µ
(

d
⋂

i=1

⋂

t∈Fi(1)

At

∣

∣ Y ∩
d
⋂

i=1

AFi(0)

)

=
µ
(
⋂d

i=1

⋂

t∈Fi
At ∩ Y

)

µ
(

Y ∩
⋂d

i=1AFi(0)

)
=
µ
(
⋂

u∈F Bu

)

µ(BF (0))

=
µY

(
⋂

u∈F Bu

)

µY (BF (0))
= µY

(

⋂

u∈F (1)

Bu

∣

∣ BF (0)

)

.

By (66) and the above equalities, we conclude that (F1, ..., Fd) ∈ Str2(S) ∩ F and

the proof is completed. �

The following lemma is the final step of the proof of Theorem 1. It shows that,

under the assumptions of Theorem 1, we can control the joint probability of the

events over all initially subtrees of an appropriately chosen strong subtree of T .

Lemma 22. Let T be a homogeneous tree. Also let {At : t ∈ T } be a family of

measurable events in a probability space (Ω,Σ, µ) satisfying µ(At) > ε > 0 for every

t ∈ T . Then for every 0 < θ < ε there exists a strong subtree W of T of infinite

height such that for every k ∈ N we have

(67) µ
(

⋂

t∈W↾k

At

)

> θp(bT ,k+1).

Proof. We fix 0 < θ < ε. Let us denote by b the branching number of T . We set

(68) α = 2b − 1.

We select a sequence (δk) of reals in the interval (0, 1) satisfying

(69)
∏

k∈N

(1 − δk) >
θ

ε
.

Also let (εk) be the sequence of positive reals defined by the rule

(70)

{

ε0 = ε,

εk+1 =
(

εk(1 − δk)
)α
.

We isolate, for future use, the following elementary fact. The proof is left to the

interested reader.
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Fact 23. For every integer k > 1 we have

(71)

k
∏

i=0

εi =
(

ε
∑

k
j=0

αj)

·

k−1
∏

i=0

(

(1− δi)
∑k−i

j=1
αj
)

.

Recursively we will select a sequence (Rk) of strong subtrees of T of infinite

height such that for every k ∈ N the following conditions are satisfied.

(C1) The tree Rk+1 is a strong subtree of Rk.

(C2) We have Rk+1 ↾ k = Rk ↾ k.

(C3) We have µ
(
⋂

t∈Rk↾k
At

)

>
∏k

i=0 εi.

(C4) If {rk1 <lex ... <lex r
k
bk+1} is the lexicographical increasing enumeration of

the (k + 1)-level Rk(k + 1) of Rk, then for every (t1, ..., tbk+1) in the level

product of
(

SuccRk
(rk1 ), ..., SuccRk

(rkbk+1)
)

we have

(72) µ
(

bk+1

⋂

i=1

Ati

∣

∣

⋂

t∈Rk↾k

At

)

> εk+1.

The recursive selection is somewhat lengthy, and so, we will briefly comment on

it for the benefit of the reader. Conditions (C1) and (C2) are natural and quite

common in constructions of this sort. We are mainly interested in condition (C3).

It will be used, later on, to complete the proof of the lemma. Condition (C4) is a

technical one. It will be used to show that the recursive selection can be carried

out.

We proceed to the details. For k = 0 we apply Lemma 21 for “T = (T )”,

“Y = Ω” and “θ = ε(1− δ0)” and we find a strong subtree S of T of infinite height

such that for every F ∈ Str2(S) we have

(73) µ
(

⋂

t∈F (1)

At

∣

∣ AF (0)

)

>
(

ε(1− δ0)
)α
.

We set “R0 = S” and we observe that with this choice condition (C3) is satisfied.

To see that condition (C4) is satisfied, let {r01 <lex ... <lex r
0
b} be the lexicographical

increasing enumeration of R0(1) and fix an element (t1, ..., tb) in the level product

of
(

SuccR0
(r01), ..., SuccR0

(r0b )
)

. We set F = {R0(0)} ∪ {t1, ..., tb} and we notice

that F ∈ Str2(R0) = Str2(S), F (0) = R0(0) and F (1) = {t1, ..., tb}. By (73) and

taking into account the previous observations and the choice of ε1 made in (70), we

conclude that condition (C4) is also satisfied. Since conditions (C1) and (C2) are

meaningless in this case, the first step of the recursive selection is completed.

Let k ∈ N and assume that the recursive selection has been carried out up to k

so that conditions (C1)-(C4) are satisfied. Let {rk1 <lex ... <lex r
k
bk+1} be the lexico-

graphical increasing enumeration of Rk(k+1). Notice that conditions (C3) and (C4)

allow us to apply Lemma 21 for “(T1, ..., Td) =
(

SuccRk
(rk1 ), ..., SuccRk

(rkbk+1)
)

”,

“Y =
⋂

t∈Rk↾k
At”, “ε = εk+1” and “θ = εk+1(1 − δk+1)”. Hence, there exists a
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vector strong subtree S = (S1, ..., Sbk+1) of
(

SuccRk
(rk1 ), ..., SuccRk

(rkbk+1)
)

of infi-

nite height such that for every (F1, ..., Fbk+1) ∈ Str2(S) we have

(74) µ
(

bk+1

⋂

i=1

⋂

t∈Fi(1)

At

∣

∣

⋂

t∈Rk↾k

At ∩
bk+1

⋂

i=1

AFi(0)

)

>
(

εk+1(1− δk+1)
)α
.

We set

(75) Rk+1 = (Rk ↾ k) ∪

bk+1

⋃

i=1

Si

and we claim that with this choice conditions (C1)-(C4) are satisfied. Indeed, it is

clear that Rk+1 is a strong subtree of Rk and Rk+1 ↾ k = Rk ↾ k. Thus, conditions

(C1) and (C2) are satisfied. To see that condition (C3) is satisfied, notice first that

(76) Rk+1(k + 1) = {S1(0) <lex ... <lex Sbk+1(0)}.

Since (S1, ..., Sbk+1) is a vector strong subtree of
(

SuccRk
(rk1 ), ..., SuccRk

(rkbk+1)
)

,

we see that
(

S1(0), ..., Sbk+1(0)
)

is an element of the level product of the vector

tree
(

SuccRk
(rk1 ), ..., SuccRk

(rkbk+1 )
)

. Therefore, by condition (C4) of our inductive

assumptions and (76), we get

(77) µ
(

⋂

t∈Rk+1(k+1)

At

∣

∣

⋂

t∈Rk↾k

At

)

> εk+1.

Since Rk+1 ↾ k = Rk ↾ k, we also have that

(78) µ
(

⋂

t∈Rk+1↾k+1

At

)

= µ
(

⋂

t∈Rk↾k

At

)

· µ
(

⋂

t∈Rk+1(k+1)

At

∣

∣

⋂

t∈Rk↾k

At

)

.

Therefore, by (78), (77) and condition (C3) of our inductive assumptions,

(79) µ
(

⋂

t∈Rk+1↾k+1

At

)

>

(

k
∏

i=0

εi

)

· εk+1 =

k+1
∏

i=0

εi.

Thus, condition (C3) is satisfied for the tree Rk+1. So, what remains is to check

that condition (C4) is also satisfied. To this end let {rk+1
1 <lex ... <lex r

k+1
bk+2} be

the lexicographical increasing enumeration of the (k + 2)-level Rk+1(k + 2) of the

tree Rk+1. Also let (t1, ..., tbk+2) be an arbitrary element of the level product of
(

SuccRk+1
(rk+1

1 ), ..., SuccRk+1
(rk+1

bk+2)
)

. For every i ∈ {1, ..., bk+1} we define

(80) Fi = {Si(0)} ∪
{

t(i−1)b+j : j ∈ {1, ..., b}
}

.

Notice that (F1, ..., Fbk+1) ∈ Str2(S). Moreover, for every i ∈ {1, ..., bk+1},

(81) Fi(0) = Si(0) and Fi(1) =
{

t(i−1)b+j : j ∈ {1, ..., b}
}

.

By (81), we see that

(82)

bk+1

⋂

i=1

⋂

t∈Fi(1)

At =

bk+2

⋂

i=1

Ati
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while by (81) and (76) and the fact that Rk ↾ k = Rk+1 ↾ k, we have

(83)
⋂

t∈Rk↾k

At ∩

bk+1

⋂

i=1

AFi(0) =
⋂

t∈Rk+1↾(k+1)

At.

Since (F1, ..., Fbk+1) ∈ Str2(S), by (74) and the identities isolated in (82) and (83),

we conclude that

(84) µ
(

bk+2

⋂

i=1

Ati

∣

∣

⋂

t∈Rk+1↾(k+1)

At

)

>
(

εk+1(1− δk+1)
)α (70)

= εk+2.

As (t1, ..., tbk+2) was arbitrary, we see that condition (C4) is satisfied. Hence, the

recursive selection is completed.

We are now in the position to complete the proof of the lemma. We define

(85) W =
⋃

k∈N

Rk(k).

By conditions (C1) and (C2), we see that W is a strong subtree of T of infinite

height. It suffices to show that the estimate in (67) holds for every k ∈ N. If

k = 0, then this is straightforward. So, let k ∈ N with k > 1 and observe that

W ↾ k = Rk ↾ k. Therefore,

µ
(

⋂

t∈W↾k

At

)

= µ
(

⋂

t∈Rk↾k

At

) (C3)

>

k
∏

i=0

εi

(71)
=

(

ε
∑

k
j=0

αj )

·
k−1
∏

i=0

(

(1− δi)
∑k−i

j=1
αj
)

>
(

ε
∑k

j=0
αj )

·
(

k−1
∏

i=0

(1− δi)
)

∑
k
j=0

αj

>

(

ε ·
∏

i∈N

(1− δi)
)

∑
k
j=0

αj

(69)
>

(

ε ·
θ

ε

)

∑
k
j=0

αj

= θ
∑k

j=0
αj

= θp(b,k+1).

The proof of Lemma 22 is thus completed. �

We are ready to give the proof of Theorem 1.

Proof of Theorem 1. We fix 0 < θ 6 ε. Let

C =
{

W ∈ Str∞(T ) : µ
(

⋂

t∈W↾k

At

)

> θp(b,k+1) for every k ∈ N

}

.

It is easy to see that C is a closed subset of Str∞(T ). Therefore, by Theorem

7 and Lemma 22, there exists a strong subtree S of T of infinite height such that

Str∞(S) ⊆ C. The strong subtree S is the desired one. Indeed, let k ∈ N with k > 1

and R be an arbitrary strong subtree of S of height k. There exists a strong subtree
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W of S of infinite height such that R = W ↾ (k − 1). Since W ∈ Str∞(S) ⊆ C we

see that

µ
(

⋂

t∈R

At

)

= µ
(

⋂

t∈W↾(k−1)

At

)

> θp(b,k)

as desired. �

We proceed to the proof of Corollary 2.

Proof of Corollary 2. Follows by Theorem 1 and Corollary 37 in Appendix B. �

6. Free sets

This section is organized as follows. In §6.1 we introduce the class of free subsets

of homogeneous trees and we present some of their properties. In §6.2 we give the

proof of Proposition 6. Finally, in §6.3 we give the proof of Theorem 3.

6.1. Definition and basic properties. We start with the following.

Definition 24. Let T be a homogeneous tree. Recursively, for every integer k > 1

we define a family Frk(T ) of finite subsets of T as follows. First, let Fr1(T ) and

Fr2(T ) consist of all singletons and all doubletons of T respectively. Let k ∈ N

with k > 2 and assume that the family Frk(T ) has been defined. Then Frk+1(T )

consists of all subsets of T which can be written in the form {t} ∪ G where t ∈ T

and G ∈ Frk(T ) are such that ℓT (t) < ℓT (∧G). We set

(86) Fr(T ) =
⋃

k>1

Frk(T ).

An element of Fr(T ) will be called a free subset of T .

We have the following characterization of free sets. The proof is straightforward.

Fact 25. Let T be a homogeneous tree and k ∈ N with k > 3. Also let F be a subset

of T of cardinality k. Then F is free if and only if there exists an enumeration

{t1, ..., tk} of F such that

(a) ℓT (t1) < ... < ℓT (tk−1) 6 ℓT (tk) and

(b) ℓT (tm) < ℓT
(

∧ {tm+1, ..., tk}
)

for every m ∈ {1, ..., k − 2}.

Using Fact 25 it is easily seen that the class of free sets includes various well-

known classes of finite subsets of homogeneous trees; for instance, all finite chains

are free, as well as, the class of “combs” studied in [15, §6.4]. Moreover, we have

the following.

Lemma 26. Every infinite subset A of a homogeneous tree T contains an infinite

subset B such that every non-empty finite subset of B is free.
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Proof. Recursively, it is possible to select a sequence (tn) in A such that for every

m ∈ N and every non-empty finite subset F of N with m < minF we have that

ℓT (tm) < ℓT
(

∧ {tn : n ∈ F}
)

. We set B = {tn : n ∈ N}. By Fact 25, we see that

every non-empty finite subset of B is free, as desired. �

Finally, we isolate below some elementary properties of all free subsets of a

homogeneous tree T .

(P1) If F ∈ Frk(T ), then F has cardinality k.

(P2) If F ∈ Fr(T ) and G is a non-empty subset of F , then G ∈ Fr(T ).

(P3) If S ∈ Str∞(T ) and F ⊆ S, then F ∈ Fr(T ) if and only if F ∈ Fr(S).

Properties (P1) and (P2) are immediate consequences of Definition 24. Property

(P3) follows from the fact that strong subtrees preserve infima.

6.2. Proof of Proposition 6. For the proof of Proposition 6 we need to do some

preparatory work which is of independent interest. To motivate the reader let us

point out that, by Corollary 37 in Appendix B, every doubleton of a homogeneous

tree is contained in a strong subtree of height 3. The first step in the proof of

Proposition 6 is to analyze how this embedding is achieved. As a consequence of

this analysis and Theorem 7, the set of all doubletons of a homogeneous tree will

be categorized in a finite list of classes each of which is partition regular. This

information will be used, later on, to complete the proof of Proposition 6.

We proceed to the details. In what follows, T will be a homogeneous tree.

Doubletons of type I. Let p ∈ {0, ..., bT − 1} and for every F ∈ Str3(T ) we set

(87) F [p] =
{

F (0), F (0)aFp
}

.

We say that a doubleton of T is of type I with parameter (p) if it is of the form F [p]

for some F ∈ Str3(T ). We set

(88) D(p)(T ) =
{

F [p] : F ∈ Str3(T )
}

.

Doubletons of type II. Let p, q ∈ {0, ..., bT − 1} with p 6= q and for every

F ∈ Str3(T ) we set

(89) F [p, q] =
{

F (0)aFp, F (0)aFq
}

.

We say that a doubleton of T is of type II with parameters (p, q) if it is of the form

F [p, q] for some F ∈ Str3(T ). As above, we set

(90) D(p,q)(T ) =
{

F [p, q] : F ∈ Str3(T )
}

.
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Doubletons of type III. Let p, q, r ∈ {0, ..., bT − 1} with p 6= q. For every

F ∈ Str3(T ) we set

(91) F [p, q, r] =
{

F (0)aFp, (F (0)aFq)aFr
}

.

We say that a doubleton of T is of type III with parameters (p, q, r) if it is of the

form F [p, q, r] for some F ∈ Str3(T ) and we set

(92) D(p,q,r)(T ) =
{

F [p, q, r] : F ∈ Str3(T )
}

.

Observe that for every p ∈ {0, ..., bT−1} the classD(p)(T ) is hereditary when passing

to strong subtrees; that is, if S ∈ Str∞(T ), then D(p)(S) ⊆ D(p)(T ). Also notice

that, by Theorem 7, for every finite coloring of the set D(p)(T ) there exists S ∈

Str∞(T ) such that the set D(p)(S) is monochromatic. Of course, these properties

are also shared by the classes D(p,q)(T ) and D(p,q,r)(T ). Moreover, we have the

following.

Fact 27. Every doubleton of a homogeneous tree T is either of type I, or of type

II, or of type III.

Proof. Let s, t ∈ T with s 6= t be arbitrary. We may assume that ℓT (s) 6 ℓT (t).

We set w = s ∧ t and we consider the following cases.

Case 1: ℓT (w) = ℓT (s). In this case we see that s = s∧ t. Since s 6= t, there exists

p ∈ {0, ..., bT − 1} such that t ∈ SuccT (s
aTp). Therefore, it is possible to select

F ∈ Str3(T ) such that F (0) = s and F (0)aFp = t. So in this case the doubleton

{s, t} is of type I with parameter (p).

Case 2: ℓT (w) < ℓT (s) and ℓT (s) = ℓT (t). There exist p, q ∈ {0, ..., bT − 1} such

that s ∈ SuccT (w
aTp) and t ∈ SuccT (w

aTq). Observe that p 6= q. It is then

possible to select F ∈ Str3(T ) such that F (0) = w, F (0)aFp = s and F (0)aFq = t.

Therefore, in this case the doubleton {s, t} is of type II with parameters (p, q).

Case 3: ℓT (w) < ℓT (s) < ℓT (t). Notice, first, that there exist p, q ∈ {0, ..., bT − 1}

with p 6= q such that s ∈ SuccT (w
aTp) and t ∈ SuccT (w

aTq). Since ℓT (s) < ℓT (t),

there exist t′ ∈ SuccT (w
aTq) and r ∈ {0, ..., bT − 1} such that ℓT (t

′) = ℓT (s)

and t ∈ SuccT (t
′aTr). Hence, we may select F ∈ Str3(T ) such that F (0) = w,

F (0)aFp = s, F (0)aFq = t′ and (F (0)aFq)aFr = t. It follows that the doubleton

{s, t} is of type III with parameters (p, q, r). The proof is completed. �

We are now ready to proceed to the proof of Proposition 6.

Proof of Proposition 6. We fix 0 < θ < ε. Let p, q, r ∈ {0, ..., bT − 1} with p 6= q be

arbitrary. We set

(93) FI =
{

F ∈ Str3(T ) : µ
(

⋂

t∈F [p]

At

)

> θ2
}

,
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(94) FII =
{

F ∈ Str3(T ) : µ
(

⋂

t∈F [p,q]

At

)

> θ2
}

and

(95) FIII =
{

F ∈ Str3(T ) : µ
(

⋂

t∈F [p,q,r]

At

)

> θ2
}

.

By Theorem 7, there exists S ∈ Str∞(T ) such that for every i ∈ {I, II, III} we have

that either Str3(S) ⊆ Fi or Str3(S) ∩ Fi = ∅. Therefore, by Fact 27, the proof

will be completed once we show that Str3(S) ∩ Fi 6= ∅ for every i ∈ {I, II, III}.

The argument below is not uniform and depends on the type of doubletons we are

dealing with. We set N = ⌈(ε2 − θ2)−1⌉. Notice that we may (and we will) assume

that S is the tree b<N

T .

Case 1: type I doubletons. We set tk = pk ∈ b<N

T for every k ∈ {0, ..., N − 1}. By

our assumptions, Lemma 10 can be applied to the family (Atk)
N−1
k=0 and the fixed

constant θ. Hence, there exist 0 6 k0 < k1 < N such that µ(Atk0
∩Atk1

) > θ2. We

select F ∈ Str3(b
<N

T ) such that

F ↾ 1 = {pk0} ∪
{

pk0jk1−k0 : j ∈ {0, ..., bT − 1}
}

.

Since F [p] = {pk0 , pk1} = {tk0
, tk1

}, we conclude that F ∈ Str3(b
<N

T ) ∩ FI.

Case 2: type II doubletons. In this case we set sk = qkpN−1−k ∈ b<N

T for every

k ∈ {0, ..., N − 1}. By Lemma 10, there exist 0 6 k0 < k1 < N such that µ(Ask0
∩

Ask1
) > θ2. We select G ∈ Str3(b

<N

T ) such that

G ↾ 1 = {qk0} ∪
{

qk0jk1−k0pN−1−k1 : j ∈ {0, ..., bT − 1}
}

.

Observe that G[p, q] = {qk0pN−1−k0 , qk1pN−1−k1} = {sk0
, sk1

}. It follows that

G ∈ Str3(b
<N

T ) ∩ FII.

Case 3: type III doubletons. We set wk = (qr)kp ∈ b<N

T for every k ∈ {0, ..., N − 1}

where (qr)k stands for the k-times concatenation of (qr) if k > 1 and (qr)0 = ∅.

Arguing as above, we find 0 6 k0 < k1 < N such that µ(Awk0
∩ Awk1

) > θ2. Let

H = {(qr)k0} ∪
{

(qr)k0j : j ∈ {0, ..., bT − 1}
}

∪
{

(qr)k0 jv(qr)k1−k0−1p : j, v ∈ {0, ..., bT − 1}
}

.

Notice that H ∈ Str3(b
<N

T ) and H [p, q, r] = {(qr)k0p, (qr)k1p} = {wk0
, wk1

}. Hence,

H ∈ Str3(b
<N

T ) ∩ FIII. The proof is completed. �

We close this subsection with the following consequence of Proposition 6. It is

the analogue of Corollary 19 and it will be used in the proof of Theorem 3.

Corollary 28. Let T be a homogeneous tree. Also let {At : t ∈ T } be a family of

measurable events in a probability space (Ω,Σ, µ) and Y ∈ Σ with µ(Y ) > 0 such

that µ(At | Y ) > ε > 0 for every t ∈ T . Then for every 0 < θ < ε there exists

S ∈ Str∞(T ) such that for every s, t ∈ S we have µ(At | Y ∩ As) > θ.
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Proof. We fix 0 < θ < ε and we set

(96) λ =
(

ε · θ−1
)

1
3 .

Notice that λ > 1. Also let

(97) r =
⌈ ln ε−1

lnλ

⌉

.

By Theorem 7 and the choice of r, there exist R ∈ Str∞(T ) and i0 ∈ {1, ..., r} such

that for every t ∈ R we have

(98) ελi0−1 6 µY (At) 6 ελi0 .

By Proposition 6 applied for “θ = ελi0−2”, “ε = ελi0−1”, the family “{At : t ∈ R}”

and the probability space “(Ω,Σ, µY )”, there exists S ∈ Str∞(R) such that

(99) µY (At ∩ As) > ε2λ2i0−4.

for every s, t ∈ S. By (98) and (99) and taking into account that λ > 1 and i0 > 1,

we conclude that

µ(At | Y ∩ As) =
µ(At ∩ Y ∩ As)

µ(Y ∩ As)
=
µY (At ∩ As)

µY (As)
>
ε2λ2i0−4

ελi0

= ελi0−4 > ελ−3 (96)
= θ

for every s, t ∈ S. The proof is completed. �

6.3. Proof of Theorem 3. Throughout the proof we will use the following nota-

tion. For every tree U and every finite subset F of U we set

depthU (F ) =

{

min{n ∈ N : F ⊆ U ↾ n} if F is non-empty,

−1 otherwise.

The quantity depthU (F ) is called the depth of F in U (see, e.g., [15]).

Now, fix 0 < θ < ε 6 1. We select a sequence (δn) in (0, 1) such that

(100)
∏

n∈N

(1 − δn) >
θ

ε
.

Let (εn) be the sequence of positive reals defined recursively by the rule

(101)

{

ε0 = ε,

εn+1 = εn(1 − δn).

Notice that the sequence (εn) is strictly decreasing. Moreover, it is easy to see that

for every integer n > 1 we have

(102)

n
∏

i=0

εi = εn+1 ·
(

n−1
∏

i=0

(1− δi)
n−i

)

.

Recursively, we will select a sequence (Rn) of strong subtrees of T of infinite

height such that for every n ∈ N the following conditions are satisfied.

(C1) The tree Rn+1 is a strong subtree of Rn.
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(C2) We have Rn+1 ↾ n = Rn ↾ n.

(C3) For every finite subset F of Rn with depthRn
(F ) 6 n− 1 and every t ∈ Rn

with n 6 ℓRn
(t), if F ∪ {t} ∈ Fr(Rn) then

(103) µ
(

⋂

w∈F∪{t}

Aw

)

>

|F |
∏

i=0

εi.

(C4) For every finite subset F of Rn with depthRn
(F ) 6 n−1 and every s, t ∈ Rn

with s 6= t and n 6 min{ℓRn
(s), ℓRn

(t)}, if F ∪ {s, t} ∈ Fr(Rn) then

(104) µ
(

At

∣

∣

⋂

w∈F∪{s}

Aw

)

> ε|F |+1.

As the reader might have already guess, the above recursive selection is the main

step of the proof of Theorem 3. We are mainly interested in conditions (C3) and

(C4). The analytical information guaranteed by estimates (103) and (104) will be

used, later on, to complete the proof of Theorem 3.

We proceed to the details. For n = 0 we apply Corollary 28 for “Y = Ω” and

“θ = ε1” and we get a strong subtree S of T of infinite height such that for every

s, t ∈ S we have µ(At | As) > ε1. We set “R0 = S” and we observe that with this

choice conditions (C3) and (C4) are satisfied. Since (C1) and (C2) are meaningless

for n = 0, the first step of the recursive selection is completed.

Let n ∈ N and assume that we have selected the trees R0, ..., Rn so that condi-

tions (C1)-(C4) are satisfied. We need to find the tree Rn+1. We start with the

following fact.

Fact 29. Let F be a non-empty finite subset of Rn with depthRn
(F ) 6 n and

t ∈ Rn with n+ 1 6 ℓRn
(t). If F ∪ {t} ∈ Fr(Rn), then the following hold.

(i) There exist k ∈ {0, ..., n}, a (possibly empty) subset G of Rk satisfying

depthRk
(G) 6 k− 1 and a node s ∈ Rk with k = ℓRk

(s) < ℓRk
(t) such that

F ∪ {t} = G ∪ {s, t}.

(ii) We have

(105) µ
(

At

∣

∣

⋂

w∈F

Aw

)

> ε|F |.

Proof. Part (i) follows by the definition of free sets and conditions (C1) and (C2)

of the recursive selection. To see that part (ii) is also satisfied let k, G and s be as

in part (i). By property (P3) in §6.1 and our inductive assumptions, we have that

G ∪ {s, t} ∈ Fr(Rk). Therefore, by condition (C4) for the tree Rk applied for the

set G and the doubleton {s, t}, we see that

µ
(

At

∣

∣

⋂

w∈F

Aw

)

= µ
(

At

∣

∣

⋂

w∈G∪{s}

Aw

)

> ε|G|+1 = ε|F |

and the proof is completed. �
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The following consequence of Fact 29 shows that for the selection of the tree

Rn+1 we only have to worry about conditions (C1), (C2) and (C4).

Corollary 30. Let W ∈ Str∞(Rn) be such that W ↾ n = Rn ↾ n. Then condition

(C3) is satisfied if we set Rn+1 =W .

Proof. Let F be a finite subset of W satisfying depthW (F ) 6 n and t ∈ W with

n+ 1 6 ℓW (t) and assume that F ∪ {t} ∈ Fr(W ). If F is the empty set, then the

estimate in (103) is straightforward. So we may assume that F is non-empty. Since

W ∈ Str∞(Rn) and W ↾ n = Rn ↾ n, we see that

(a) F is a non-empty finite subset of Rn with depthRn
(F ) 6 n,

(b) n+ 1 6 ℓRn
(t) and

(c) F ∪ {t} ∈ Fr(Rn).

By (a), (b) and (c) above and part (ii) of Fact 29, we have the estimate

µ
(

At

∣

∣

⋂

w∈F

Aw

)

> ε|F |.

Also let k,G and s be as in part (i) of Fact 29. Since Rn ∈ Str∞(Rk), by properties

(P2) and (P3) in §6.1, we have G∪{s} ∈ Fr(Rk). Hence, by condition (C3) for the

tree Rk applied for the set G and the node s, we see that

µ
(

⋂

w∈F

Aw

)

= µ
(

⋂

w∈G∪{s}

Aw

)

>

|G|
∏

i=0

εi =

|F |−1
∏

i=0

εi.

Noticing that

µ
(

⋂

w∈F∪{t}

Aw

)

= µ
(

At

∣

∣

⋂

w∈F

Aw

)

· µ
(

⋂

w∈F

Aw

)

and combining the previous estimates we conclude that condition (C3) is satisfied

if we set Rn+1 =W . The proof of Corollary 30 is completed. �

We need one more preparatory step for the selection of the tree Rn+1.

Claim 31. Let F be a finite subset of Rn such that depthRn
(F ) 6 n. Also let

U ∈ Str∞(Rn) with U ↾ n = Rn ↾ n. Then there exists W ∈ Str∞(U) with the

following properties.

(P1) We have W ↾ n = U ↾ n.

(P2) For every s, t ∈ W with s 6= t and such that n+ 1 6 min{ℓW (s), ℓW (t)}, if

F ∪ {s, t} ∈ Fr(W ) then

(106) µ
(

At

∣

∣

⋂

w∈F∪{s}

Aw

)

> ε|F |+1.

Proof. Notice that we may assume that F is non-empty; indeed, for the empty set

the result follows by condition (C3) for the tree R0. Let {u1 <lex ... <lex ud} be the

lexicographical increasing enumeration of the (n + 1)-level U(n + 1) of U (notice
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that d = bn+1
T ). Recursively, we will select a family

{

Zj : j ∈ {1, ..., d}
}

of strong

subtrees of T such that the following are satisfied.

(A1) For every j ∈ {1, ..., d} we have Zj ∈ Str∞
(

SuccU (uj)
)

.

(A2) For every j ∈ {1, ..., d− 1} we have LT

(

Zj+1

)

⊆ LT

(

Zj

)

.

(A3) If j ∈ {1, ..., d} is such that F ∪ {uj} ∈ Fr(U), then for every s, t ∈ Zj with

s 6= t we have

µ
(

At

∣

∣

⋂

w∈F∪{s}

Aw

)

> ε|F |+1.

As the first step is identical to the general one, let us assume that the selection

has been carried out up to some j ∈ {1, ..., d− 1} so that properties (A1)-(A3) are

satisfied. Let Z be a strong subtree of SuccU (uj+1) such that LT (Z) = LT (Zj); for

the first step we simply set Z = SuccU (u1). We consider the following cases.

Case 1: the set F ∪ {uj+1} is not a free subset of U . We set “Zj+1 = Z” and we

observe that with this choice properties (A1)-(A3) are satisfied.

Case 2: the set F ∪ {uj+1} is a free subset of U . In this case we see that for every

t ∈ SuccU (uj+1) the set F ∪ {t} is also a free subset of U . Since U ∈ Str∞(Rn), by

part (ii) of Fact 29, for every t ∈ SuccU (uj+1) we have

µ
(

At

∣

∣

⋂

w∈F

Aw

)

> ε|F |.

We apply Corollary 28 for “T = Z”, “Y =
⋂

w∈F Aw”, “ε = ε|F |” and “θ = ε|F |+1”

and we get S ∈ Str∞(Z) such that for every s, t ∈ S we have

(107) µ
(

At

∣

∣

⋂

w∈F∪{s}

Aw

)

= µ(At | Y ∩ As) > ε|F |+1.

We set “Zj+1 = S” and we notice that with this choice properties (A1)-(A3) are

satisfied. The recursive selection is thus completed.

Now, for every j ∈ {1, ..., d − 1} we select a strong subtree Wj of Zj with

LT (Wj) = LT (Zd). We set Wd = Zd and we define

W = (U ↾ n) ∪

d
⋃

j=1

Wj .

It is clear that W ∈ Str∞(U) and W ↾ n = U ↾ n. What remains is to show that

property (P2) is satisfied for the tree W . To this end, let s, t ∈ W with s 6= t and

n + 1 6 min{ℓW (s), ℓW (t)} and assume that F ∪ {s, t} ∈ Fr(W ). Since W is a

strong subtree of U , we see that

min{ℓU (s), ℓU (t)} > min{ℓW (s), ℓW (t)} > n+ 1.

Therefore, by Fact 25, there exists j0 ∈ {1, ..., d} such that F ∪ {uj0} ∈ Fr(U) and

s, t ∈ SuccU (uj0) ∩ W = Wj0 ⊆ Zj0 . Hence, by (A3) above, we conclude that

property (P2) is satisfied. The proof of Claim 31 is completed. �
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After this preliminary discussion we are ready to start the process for selecting

the tree Rn+1. In particular, let {F1, ..., Fm} be an enumeration of the set of all

subsets F of Rn with depthRn
(F ) 6 n. By repeated applications of Claim 31, it is

possible to construct a family
{

Wj : j ∈ {1, ...,m}
}

of strong subtrees of Rn with

the following properties.

(a) For every j ∈ {1, ...,m} we have Wj ↾ n = Rn ↾ n.

(b) For every j ∈ {1, ...,m− 1} the tree Wj+1 is a strong subtree of Wj .

(c) For every j ∈ {1, ...,m} and every s, t ∈ Wj with s 6= t and such that

n+ 1 6 min{ℓWj
(s), ℓWj

(t)}, if Fj ∪ {s, t} ∈ Fr(Wj) then

µ
(

At

∣

∣

⋂

w∈Fj∪{s}

Aw

)

> ε|Fj|+1.

The construction is fairly standard and the details are left to the reader. We set

“Rn+1 =Wm”. By (a), (b) and (c) above, it is clear that with this choice conditions

(C1), (C2) and (C4) are satisfied. On the other hand, by Corollary 30, condition

(C3) is also satisfied. Therefore, the recursive selection is completed.

We are finally in the position to complete the proof of Theorem 3. We set

(108) S =
⋃

n∈N

Rn(n)

and we observe that S ∈ Str∞(T ). We will show that S is the desired strong

subtree. So let G ∈ Fr(S) be arbitrary. We need to prove that

µ
(

⋂

t∈G

At

)

> θ|G|.

To this end, clearly, we may assume that |G| > 2. We will show, first, that

(109) µ
(

⋂

t∈G

At

)

>

|G|−1
∏

i=0

εi.

Indeed, by conditions (C1) and (C2) of the recursive selection and the choice of the

tree S in (108), there exist n ∈ N, a (possibly empty) subset F of Rn satisfying

depthRn
(F ) 6 n − 1 and s, t ∈ Rn with s 6= t and n = ℓRn

(s) 6 ℓRn
(t) such

that G = F ∪ {s, t}. Since S ∈ Str∞(Rn), by property (P3) in §6.1, we see that

F ∪ {s, t} ∈ Fr(Rn). Therefore, by condition (C4) for the tree Rn applied for the

set F and the doubleton {s, t}, we have

(110) µ
(

At

∣

∣

⋂

w∈F∪{s}

Aw

)

> ε|F |+1.

By property (P2) in §6.1, we have F ∪ {s} ∈ Fr(Rn). Thus, by condition (C3),

(111) µ
(

⋂

w∈F∪{s}

Aw

)

>

|F |
∏

i=0

εi.
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Combining (110) and (111), we conclude that the estimate in (109) is satisfied.

Therefore,

µ
(

⋂

t∈G

At

) (109)
>

|G|−1
∏

i=0

εi
(102)
= ε|G| ·

(

|G|−2
∏

i=0

(1− δi)
|G|−1−i

)

> ε|G| ·
(

|G|−2
∏

i=0

(1− δi)
)|G|−1

> ε|G| ·
(

∏

i∈N

(1− δi)
)|G|−1

(100)
> ε|G| ·

(θ

ε

)|G|−1

> ε · θ|G|−1 > θ|G|.

The proof of Theorem 3 is thus completed.

7. Appendix A

We start by introducing some pieces of notation and terminology. For every

finitely branching tree T and every t ∈ T the branching number of t in T , denoted

by bT (t), is defined to be cardinality of the set of all immediate successors of t in

T . Next we introduce the following class of trees.

Definition 32. Let (bn) be a strictly increasing sequence of positive integers. A tree

T will be called (bn)-large if it is uniquely rooted, finitely branching and bT (t) > bn

for every n ∈ N and every t ∈ T (n).

A tree T will be called large if it is (bn)-large for some strictly increasing sequence

(bn) of positive integers.

We gather, below, some elementary properties of large trees.

Fact 33. Let (bn) be a strictly increasing sequence of positive integers and T be a

(bn)-large tree. Then the following hold.

(i) If S ∈ Str∞(T ), then S is (bn)-large.

(ii) For every strictly increasing sequence (cn) of positive integers there exists

S ∈ Str∞(T ) such that S is (cn)-large.

We have the following trichotomy.

Proposition 34. For every uniquely rooted, pruned and finitely branching tree T

there exists a strong subtree S of T of infinite height such that either

(i) S is a chain, or

(ii) S is homogeneous, or

(iii) S is large.

Proof. Assume that neither (i) nor (ii) are satisfied. Recursively and using the

Halpern–Läuchli Theorem [7], we may select a sequence (Rn) of strong subtrees of

T of infinite height such that for every n ∈ N the following hold.
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(C1) The tree Rn+1 is a strong subtree of Rn.

(C2) We have Rn+1 ↾ n = R ↾ n.

(C3) For every t ∈
⋃∞

m=nRn(m) we have bT (t) > n+ 1.

The recursive selection is fairly standard and the details are left to the reader. Let

(112) S =
⋃

n∈N

Rn(n).

By conditions (C1) and (C2), we have that S ∈ Str∞(T ). On the other hand, by

condition (C3), we see that S is a (bn)-large tree where bn = n+1 for every n ∈ N.

The proof is completed. �

We remark that, by Proposition 34, Theorem 1 still holds if the events are

indexed by a uniquely rooted, pruned and boundedly branching tree.

On the other hand, if T is a uniquely rooted, pruned and finitely branching

tree not containing a strong subtree of infinite height which is either a chain or

homogeneous then, by Proposition 34 and Fact 33, for every strictly increasing

sequence (bn) of positive integers there exists a strong subtree of T which is (bn)-

large. Concerning this class of trees we have the following.

Proposition 35. Let 0 < δ < 1. Also let (bn) be a strictly increasing sequence of

positive integers such that

(113)
∑

n∈N

1

bn
6 δ.

Then for every (bn)-large tree T there exists a family {At : t ∈ T } of Borel subsets

of the interval [0, 1] satisfying λ(At) > 1− δ for every t ∈ T and such that

(114)
⋂

t∈F

At = ∅

for every F ∈ Str2(T ).

Proof. We fix a (bn)-large tree T . The family {At : t ∈ T } will be defined by

recursion on the length of nodes in T . For n = 0 we set AT (0) = [0, 1]. Let n ∈ N

and assume that we have defined the family {At : t ∈ T (n)}. Let t ∈ T (n) be

arbitrary. We partition the set At into a family {∆s : s ∈ ImmSuccT (t)} of Borel

sets of equal measure and for every s ∈ ImmSuccT (t) we set

(115) As = At \∆s.

We notice two properties guaranteed by the above construction.

(P1) For every t ∈ T and every w ∈ SuccT (t) we have Aw ⊆ At.

(P2) For every n ∈ N, every t ∈ T (n) and every s ∈ ImmSuccT (t) we have

λ(As) = λ(At) ·
(

1− bT (t)
−1

)

> λ(At)− 1/bn.
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Therefore, for every t ∈ T we have

λ(At) > λ(AT (0))−
∑

n∈N

1

bn

(113)
> 1− δ.

Finally if F ∈ Str2(T ), then
⋂

t∈F

At ⊆
⋂

t∈F (1)

At ⊆
⋂

s∈ImmSuccT (F (0))

As = ∅.

The proof is completed. �

8. Appendix B

Our goal is this appendix is to give the proof of the following result.

Proposition 36. Let k ∈ N with k > 1. Then for every uniquely rooted and

balanced tree T of height k and every non-empty finite subset F of T there exists a

strong subtree S of T with h(S) 6 min{k, 2|F | − 1} such that F ⊆ S.

Since every homogeneous tree is uniquely rooted and balanced, by Proposition

36 we get the following.

Corollary 37. Let T be a homogeneous tree and n ∈ N with n > 1. Then every

subset F of T of cardinality n is contained in a strong subtree of T of height 2n−1.

Before we give the proof of Proposition 36 let us remark that the estimate on

the height of the strong subtree obtained by Corollary 37 is sharp.

Example 1. For every integer i > 1 let ti = 02i1 ∈ 2<N. Observe that for every

pair of integers 1 6 i < j we have ti ∧ tj = 02i. Now, fix an integer n > 2 and set

An =
{

ti : i ∈ {1, ..., n}
}

. Let S be an arbitrary strong subtree of 2<N with An ⊆ S.

Notice, first, that the level set of S must contain the set
{

2i + 1 : i ∈ {1, ..., n}
}

.

Since strong subtrees preserve infima, we see that {ti∧ti+1 : i ∈ {1, ..., n−1}
}

⊆ S,

and so, the level set of S must also contain the set
{

2i : i ∈ {1, ..., n−1}
}

. Therefore,

the height of S is at least 2n− 1.

We proceed to the proof of Proposition 36.

Proof of Proposition 36. The result will be proved by induction on k. The case

k = 1 is straightforward. Let k ∈ N with k > 1 and assume that the result has been

proved for every uniquely rooted and balanced tree of height at most k. Let T be a

uniquely rooted and balanced tree of height k+1 and F be a non-empty finite subset

of T . We need to find a strong subtree S of T with h(S) 6 min{k + 1, 2|F | − 1}

such that F ⊆ S. Clearly we may assume that |F | > 2.

Let w0 = ∧TF be the infimum of F in T and set

I(F ) =
{

t ∈ ImmSuccT (w0) : F ∩ SuccT (t) 6= ∅
}

.
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Notice that

(116)
⋃

t∈I(F )

(

F ∩ SuccT (t)
)

⊆ F ⊆ {w0} ∪
⋃

t∈I(F )

(

F ∩ SuccT (t)
)

and so

(117)
∑

t∈I(F )

|F ∩ SuccT (t)| 6 |F | 6 1 +
∑

t∈I(F )

|F ∩ SuccT (t)|.

Observe that I(F ) is non-empty (for if not, by (116), we would have that F = {w0}).

Let t ∈ I(F ) be arbitrary. Since T is a balanced tree of height k + 1, we see

that SuccT (t) is a uniquely rooted and balanced tree of height at most k. By our

inductive assumptions, there exists a strong subtree Wt of SuccT (t) such that

(118) F ∩ SuccT (t) ⊆Wt

and

(119) h(Wt) 6 2|F ∩ SuccT (t)| − 1.

Observe that |F ∩ SuccT (t)| < |F | (for if not, we would have that F ⊆ SuccT (t)

which yields that w0 ∈ SuccT (t), a contradiction). Therefore,

(120) h(Wt) 6 2|F | − 2.

We set

(121) L =
⋃

t∈I(F )

LT (Wt)

and we select a family {St : t ∈ ImmSuccT (w0)} of strong subtrees of T such that

(P1) St ⊆ SuccT (t) and LT (St) = L for every t ∈ ImmSuccT (w0), and

(P2) Wt ⊆ St for every t ∈ I(F ).

Such a selection is possible since the tree T is balanced. Finally, let

(122) S = {w0} ∪
{

St : t ∈ ImmSuccT (w0)
}

.

By (116) and properties (P1) and (P2), we see that S is a strong subtree of T and

that F ⊆ S. The proof will be completed once we show that h(S) 6 2|F | − 1.

Indeed notice that, by (122) and property (P1), we have

(123) h(S) = |L|+ 1.

We consider the following cases.

Case 1: |I(F )| = 1. Let t0 ∈ ImmSuccT (w0) be the unique element of I(F ). By

(121), we have L = LT (Wt0). Hence,

h(S)
(123)
= |L|+ 1 = |LT (Wt0 )|+ 1 = h(Wt0) + 1

(120)
6 2|F | − 1.
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Case 2: |I(F )| > 2. Notice that

|L|
(121)
6

∑

t∈I(F )

|LT (Wt)|
(119)
6 2

∑

t∈I(F )

|F ∩ SuccT (t)| − |I(F )|

(117)
6 2|F | − |I(F )| 6 2|F | − 2.

Combining (123) and the above estimate we conclude that h(S) 6 2|F | − 1. The

above case are exhaustive, and so, the proof is completed. �
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