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Abstract

In the present paper we prove a certain lemma about the structure
of “lower level-sets of convolutions”, which are sets of the form {x ∈
ZN : 1A ∗ 1A(x) ≤ γN} or of the form {x ∈ ZN : 1A ∗ 1A(x) < γN},
where A is a subset of ZN . One result we prove using this lemma
is that if |A| = θN and |A + A| ≤ (1 − ε)N , 0 < ε < 1, then this
level-set contains an arithmetic progression of length at least N c, c =
c(θ, ε, γ) > 0. It is perhaps possible to obtain such a result using
Green’s arithmetic regularity lemma (in combination with some ideas
of Bourgain [6]); however, our method of proof allows us to obtain
non-tower-type quantitative dependence between the constant c and
the parameters θ and ε. For various reasons (discussed in the paper)
one might think, wrongly, that such results would only be possible for
level-sets involving triple and higher convolutions.

AMS Subject Classification: 11B30

1 Introduction

There are many conditions that one can give on a subset A ⊆ G,
where G is a finite additive abelian group, guaranteeing that A+A =
{a + b : a, b ∈ G} = G or that A + A is nearly all of G (e.g. if
|A| > |G|/2 or if the non-trivial Fourier coefficients of the indicator
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function 1A are all “small”). And one might wonder whether there
are some simple conditions on the set A+ A itself guaranteeing that
it is all of G, or at least a substantial proportion of G; for example, is
there a particular small set S such that if we know that A+A contains
S and |A| > |G|/ log |G|, say, then A + A must essentially be all of
G? In the present paper we develop some related results. The key
idea behind most of them is a lemma (actually, Corollary 3) on the
structure of level-sets of convolutions given in a later section. It may be
possible to obtain versions of some of our results (particularly Theorem
4 and its corollaries) using Green’s arithmetic regularity lemma [12]
in combination with ideas of Bourgain on Bohr neighborhoods [6];
however, such techniques typically give weaker quantitative bounds
than what we produce in the present paper.

In order to discuss some of these results, we will need some nota-
tion: suppose that G is a finite group and that g : G→ C. We define
the expectation operator

Eg = Exg := |G|−1
∑

x∈G

g(x);

we define for an additive abelian group G the (unnormalized) convo-
lution f ∗ g of two functions f, g : G→ C to be

f ∗ g(x) :=
∑

a+b=x
a,b∈G

f(a)g(b) = |G| · Ea∈Gf(a)g(x− a);

given f : G → C we define the (unnormalized) Fourier transform at
χ ∈ Ĝ to be

f̂(χ) :=
∑

x∈G

f(x)χ(x) = |G| · Exf(x)χ(x);

and lastly, we say that a function f : G→ C is α-uniform if

max
χ∈Ĝ
|f̂(χ)| ≤ α|G|.

An easy consequence of the triangle inequality and the linearity of the
Fourier transform is that if f1, ..., fk are α1, ..., αk-uniform, respec-
tively, then their sum f1 + · · · + fk is α1 + · · ·+ αk-uniform.

Our first result is along the lines of what we described above, except
that we replace the condition that A+A contains S with the condition
that 1A∗1A(s) is “large” for all s ∈ S – such a condition is often easier
and more natural to work with than having A+A contain S:
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Theorem 1 Suppose G is an additive abelian group with |G| = N ,
and suppose that 0 < θ ≤ 1 and δ, ε > 0. Then, there exists a set
S ⊆ G satisfying

|S| ≪ ε−2δ−6θ−10(logN − log(δθε)),

such that if A ⊆ G, |A| = θ0N ≥ θN satisfies 1A ∗ 1A(x) > δθ20N for
every x ∈ S, then |A+A| > (1− ε)N .

Note: The expected value of 1A ∗ 1A is θ20N ; so, the condition 1A ∗
1A(x) > δθ20N is just requiring that the convolution be more than δ
times as big as this expected value.

This theorem is not far from best-possible in that |S| needs to be
Ω(logN) in order for the conclusion of the theorem to hold, as the
following result demonstrates for θ ≥ 1/3:

Theorem 2 For every sufficiently large prime N , and every set S ⊆
ZN of size at most (logN)/2, there exists a set A ⊆ ZN of size |A| ≥
N/3 such that |A + A| < 2N/3 and such that 1A ∗ 1A(x) > N/6 for
every x ∈ S.

Not only is it possible to show that there exists a set S having the
requisite properties given in Theorem 1, but, in fact, if we allow |S| to
be somewhat larger than Theorem 1 requires then we can show that
any set S whose non-trivial Fourier coefficients are sufficiently “small”
(indicated below) will do.

Theorem 3 Suppose that G is an additive abelian group satisfying
|G| = N , and suppose that δ, ε, θ > 0 are parameters that we allow to
depend on N . Let S ⊆ G be a set such that

max
χ∈Ĝ
χ6=χ0

|1̂S(χ)| < (δ3θ4.5
√
ε/512π)2

16δ−6θ−10ǫ−1+1|S|,

where χ0 denotes the principal character. Then, if A ⊆ G satisfies
|A| ≥ θN and 1A ∗ 1A(x) > δθ2N for every x ∈ S, we will have that
|A+A| ≥ (1− ε)N .

See [1] for some explicit constructions of small sets S, all of whose
non-trivial Fourier coefficients are small.
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The last set of results we prove are rather different from the ones
listed above and pertain to the existence of long arithmetic progres-
sions and other structures in level-sets of the convolution 1A ∗ 1A(x).
By level-set here we mean a set having the form {x ∈ G : 1A∗1A(x) ≤
γ|G|} or having the form {x ∈ G : 1A ∗ 1A(x) < γ|G|}. As these
results make use of Bohr neighborhoods, now is a good time to define
them:

Definition. Suppose that Λ := {χ1, ..., χk} ⊆ Ĝ and that ε > 0.
Then, the Bohr neighborhood of radius ε determined by Λ is defined
to be the set

B(Λ, ε) := {x ∈ G : for i = 1, ..., k, |1− χi(x)| ≤ ε}.

The dimension of a Bohr neighborhood is the least number of places χi

needed to define the set; so, this B(Λ, ε) we wrote down has dimension
at most k.

Our first result along these lines is stated as follows:

Theorem 4 Suppose that G is an additive abelian group satisfying
|G| = N ; suppose that A ⊆ G, |A| = θN ; and suppose that for δ > 0,

|{x ∈ G : 1A ∗ 1A(x) < δ3θ6N/128}| ≥ εN. (1)

Then, we have that the level-set

{x ∈ G : 1A ∗ 1A(x) < δθ2N} (2)

contains a translate of a Bohr neighborhood of dimension at most
216δ−6θ−10ǫ−1 + 1 and radius δ3θ4.5

√
ε/128.

Furthermore, if G = ZN , where N is prime, then using the fact that
large Bohr neighborhoods always contain long arithmetic progressions,
we have in this case that (2) contains an arithmetic progression of
length at least N c, where c = c(θ, ε, δ).

It is relatively straightforward to use standard Fourier arguments
to deduce that the level-set (2) contains most of a translate of a
Bohr neighborhood; and, using ideas due originally to Bogolyubov
[5] one can deduce that the triple-convolution analogue of (2) – e.g.
{x ∈ G : 1A ∗ 1A ∗ 1A(x) < δθ3N2} – contains a complete shifted
Bohr neighborhood (see also [11] and [17]). Using Green’s arithmetic
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regularity lemma [12] in combination with some techniques in the ma-
nipulation of Bohr neighborhoods due to Bourgain [6], it is perhaps
possible to prove a version of Theorem 4, but with worse bounds on
the radius and dimension of the Bohr neighborhood (due to the fact
tower-type dependencies of certain parameters inherent in the regu-
larity lemma).

By replacing the condition (1) with simply an upper bound for
|A+A| we arrive at the following corollary:

Corollary 1 Suppose that A ⊆ G, |A| = θN , and |A + A| ≤ (1 −
ε)N . Then, we deduce that the set (2) contains the same translate
of the Bohr neighborhood indicated by Theorem 4 (and the associated
arithmetic progression of length at least N c in the case G = ZN , N
prime).

Interestingly, a consequence of a construction of Ruzsa [16] is that
there exist sets A for which the complement of this level-set cannot
contain progressions of length larger than exp((logN)2/3+ε). So, there
is something seemingly paradoxical going on: the “lower level sets”
{x ∈ ZN : 1A ∗ 1A(x) ≤ δθ2N} always contain power-of-N -length
arithmetic progressions provided |A + A| isn’t too large, whilst the
“upper level sets” {x ∈ ZN : 1A ∗ 1A(x) ≥ δθ2N} sometimes do not.

From (the contrapositive of) Corollary 1 one can immediately de-
duce the following additional corollary, which gives another way to
think about the result:

Corollary 2 Suppose that A ⊆ ZN satisfies |A| = θN , where N is
prime. Furthermore, suppose that for every x ∈ ZN satisfying 1A ∗
1A(x) ≥ δθ2N and for every d ∈ ZN , d 6= 0, we have that there exists
0 < t ≤ N c, c = c(θ, ε, δ) > 0, such that 1A ∗ 1A(x+ dt) ≥ δθ2N . (In
other words, the gaps along APs of common difference d = 1, ..., N −1
where 1A ∗1A(x) is “large”, are all bounded from above by N c.) Then,
|A+A| ≥ (1− ε)N .

The remainder of the paper is organized as follows: in section 2 we
list some conjectures that, if true, would give much stronger structural
information about lower level-sets than Theorem 4 provides; in section
3 we list out two technical lemmas used throughout the rest of the
paper; in section 4 we state and prove the main lemma of the paper,
and discuss some immediate consequences of it; in section 5 we prove
Theorems 1, 2, 3, 4; finally, the remaining sections are devoted to
acknowledgements and the bibliography.
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2 Future directions

In this section we list some conjectures motivated by Theorem 4 that
would be natural “next steps” for where to continue this work.

We begin by noting that Theorem 4 shows that certain level-sets
always contain long arithmetic progressions (when the group is G =
ZN , N prime), and one might wonder wether complements of sumsets
always contain such long arithmetic progressions (which is itself the
level-set {x : 1A ∗ 1A(x) = 0}); in other words, in order to get the
long-progressions conclusion in Theorem 4, must one necessarily work
with level-sets of the form {x : 1A ∗ 1A(x) < δθ2N}, where δ > 0?
This motivates the following conjecture:

Conjecture 1. For every sufficiently large prime N there exists a set
A ⊆ ZN , |A| > N/4, say, such that |A+A| ≤ 99N/100 (say), and such
that the longest arithmetic progression in the complement of A + A
has length at most No(1).

Perhaps something like Ruzsa’s construction [16] can be made to
prove this conjecture; however, the author has not yet been able to do
so.

The author also cannot immediately see any reason why the results
in Theorem 4 could not be made much stronger; perhaps, in fact, the
following is true:

Conjecture 2. The following holds for certain absolute constants
0 < c1, c2, c3, c4 < 1 and primes N sufficiently large: suppose that A ⊆
ZN , |A| > N exp(−(logN)c1) and |A+A| ≤ N(1− exp(−(logN)c2)).
Then, the lower level-set {x ∈ ZN : 1A ∗ 1A(x) < N exp(−(logN)c3)}
contains an arithmetic progression of length at least exp((logN)c4).

An even stronger conjecture would be that, up to some small error,
the level-set above is, in fact, covered by disjoint translates of some
given large Bohr neighborhood. One formulation of such a conjecture
is as follows:

Conjecture 3. The following holds for certain absolute constants
0 < c1, c2, c3, c4, c5 < 1 and primes N sufficiently large: suppose that
A ⊆ G, where G is a finite abelian group of size N , where |A| >
N exp(−(logN)c1) and |A+A| ≤ N(1−exp(−(logN)c2)). Then, there
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exists a Bohr neighborhood B of dimension at most (logN)c3 and size
|B| ≥ N exp(−(logN)c4), and a set of translates t1, ..., tk with B + ti
all disjoint, such that if we let

S := ∪ki=1(ti + B),

then the symmetric difference between S and the lower level-set {x ∈
ZN : 1A ∗ 1A(x) < N exp(−(logN)c5)} has size at most |S|/100.

The sort of approach that might work here would be to combine
ideas from the present paper with those from [7] and [17]; however,
the author currently cannot see how to do this.

Besides being interesting problems in their own right, the two last
conjectures above could perhaps be used to deduce good upper bounds
on the largest subset A ⊆ ZN having no non-trivial solutions x, y, z
to a given linear equations a1x + a2y + a3z ≡ 0 (mod N), where
a1+a2+a3 ≡ 0 (mod N), thereby sharpening the already remarkable
results of Sanders [18], to achieve a similar success for such problems as
was recently done by Schoen and Shkredov in their sensational paper
[19] for equations involving six or more variables (that produced upper
bounds for |A| of the general form of the Behrend [3] [9] [13] bound for
particular choices of the ai’s) and by Bloom [4] for equations involving
four variables and higher (in this paper he beautifully generalized
Sanders’s proof [18]). Both of these papers [4] and [19] make use
of ideas from [8], [17] and [18].

There might also be a way to use a proof of Conjecture 3 to improve
upon the breakthrough results of Bateman and Katz [2].

Here is a rough idea of exactly how the last two conjectures above
might be applicable to problems about solutions to linear equations:
it is easiest to describe this in the case where G = Zn

3 , so let us make
this assumption; and, let us suppose that A ⊆ G has no solutions to
x+y−2z = 0 – that is, no solutions to x+y+z = 0, since −2 = 1 in Z3.
It follows that −A is a subset of the level-set {x ∈ G : 1A ∗1A(x) ≤ 1}.
If we knew that this level-set were approximately the disjoint union
of translates of some large Bohr neighborhood B, then one of those
translates t + B should intersect −A in many elements; indeed, one
would expect that (−A) ∩ (t + B) has a higher density in t+ B than
−A does in G. This is exactly what we need in order to implement
a “density increment strategy” for showing that |A| must be rather
small, as was first done by Roth [15].
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3 Some auxiliary lemmas

In this section we list some basic lemmas (and prove two of them) that
we use in later sections in the proofs of our main theorems.

Lemma 1 Suppose that G is an additive abelian group with |G| = N ,
and that g, h : G → [0, 1], Eg = θ. Then, if g − h is δ1-uniform we
will have

∑

x∈G

|g ∗ g(x) − h ∗ h(x)|2 ≤ δ21(4θ + δ1)N
3.

Proof of the Lemma. First note that since g − h is δ1-uniform and
since E(g) = θ, we have that E(h) ≤ θ + δ1; and so, since g, h : ZN →
[0, 1] this implies that

∑

x∈G

(g + h)(x)2 ≤ (4θ + δ1)N. (3)

And now from Parseval’s identity we then have:

∑

x∈G

|g ∗ g(x) − h ∗ h(x)|2 =
∑

x∈G

|(g − h) ∗ (g + h)(x)|2

= N−1
∑

χ∈Ĝ

| ̂(g − h)(χ)|2|̂(g + h)(χ)|2

≤ δ21N
∑

χ∈Ĝ

| ̂(g + h)(χ)|2

= δ21N
2
∑

x∈G

(g + h)(x)2,

which, in combination with (3), proves the lemma. �

Lemma 2 Suppose that h : G→ [0, 1], where G is an additive abelian
group satisfying |G| = N . Then, if we place the Fourier coefficients
in order from largest to smallest,

|ĥ(χ1)| ≥ |ĥ(χ2)| ≥ · · · ≥ |ĥ(χN )|, (4)

where {χ1, ..., χN} = Ĝ, we will have that

|ĥ(χk)| ≤ N
√

E(h)/k.
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Note: Because we may have |ĥ(χi)| = |ĥ(χi+1)| for some i = 1, ..., N ,
the order of the χi’s is not necessarily well-defined. However, the con-
clusion of the lemma does not depend on this choice; furthermore, for
the applications of this lemma in later sections the choice of ordering
of the χi’s does not matter so long as they respect (4).

Proof of the lemma. We have from Parseval’s identity that

k|ĥ(χk)|2 ≤
∑

χ∈Ĝ

|ĥ(χ)|2 ≤ E(h)N2.

Solving for |ĥ(χk)|, the lemma follows. �

Finally, we will need the following lemma, which can be found in
[20, sec. 4.4], that gives a lower bound on the cardinalities of certain
Bohr neighborhoods:

Lemma 3 Suppose G is an additive abelian group satisfying |G| = N .
If Λ ⊆ Ĝ, |Λ| = d, then for r ∈ [0, 2] we have |B(Λ, r)| ≥ (r/2π)dN .
Furthermore, if G = ZN where N is prime then this Bohr neighborhood
contains an arithmetic progression of size at least rN1/d/2π.

4 The key lemma and its proof

Before we can state the main lemma, we need to define the notion
of a “generalized convolution” for finite groups: suppose that G is
a finite group (possibly non-abelian) where the operation is written
multiplicatively, and suppose that T : G × G → G. Then, for two
functions f, g : G→ C we define the T -convolution of f with g to be

f ∗T g(x) =
∑

a,b∈G
T (a,b)=x

f(a)g(b).

Associated with this generalized convolution, we define a parameter

κ = κ(T ) := max(κ1, κ2),

where

κ1 := max
x∈G

max
a∈G
|{b ∈ G : T (a, b) = x}|; and

κ2 := max
x∈G

max
a∈G
|{b ∈ G : T (b, a) = x}|.
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Note that in the case where T (a, b) = ab, the convolution f ∗T g(x)
coincides with the usual group convolution f ∗g(x) = ∑

a,b∈G
ab=x

f(a)g(b);

furthermore, the parameter κ = κ1 = κ2 = 1 in this case.
Our main lemma is given as follows:

Lemma 4 Suppose that ‖ · ‖ is a norm on the space of functions
f : G→ C, where G is a finite group (possibly non-abelian) of size N ,
and that T : G×G→ G has associated parameter κ as defined above.
Further, suppose that δ1, δ2 > 0 are parameters we allow to depend on
N , and that A ⊆ G satisfies |A| = θN ≥ δ2N > 0. Then, there exists
a function f : G→ [0, 1] satisfying ‖f − 1A‖ ≤ δ1 such that for every
B,C ⊆ G with ‖1B − 1A‖, ‖1C − 1A‖ ≤ δ1, we have that

1B ∗T 1C(x) ≤ δ−2
2 f ∗T f(x) + 2κδ2N.

In order to make much use of this lemma, it seems that the choice
of norm should somehow be related to the convolutions 1B ∗T 1B and
f ∗T f . In the case where G is an additive abelian group and T (a, b) =
a + b, Lemma 1 implies that there is a natural choice for the norm
having this property, namely we can use ‖g‖ = N−1maxχ∈Ĝ |ĝ(χ)|,
N = |G|. This now brings us to the following immediate corollary of
Lemma 4:

Corollary 3 Suppose that G is an additive abelian group with |G| =
N . Suppose that δ1, δ2 > 0 are parameters we allow to depend on N ,
and that A ⊆ G satisfies |A| = θN ≥ δ2N > 0. Then, there exists
a function f : G → [0, 1] such that f − 1A is δ1-uniform and such
that for every B,C ⊆ G having the properties that both 1B − 1A and
1C − 1A are δ1-uniform, we have

1B ∗ 1C(x) ≤ δ−2
2 f ∗ f(x) + 2δ2N.

We now will try to give some idea of what Lemma 4 is saying by
considering the special case of the above corollary with G = ZN : fix a
subset A ⊆ ZN of size θN and then consider all the other sets B ⊆ ZN

such that 1B−1A is “highly uniform” – that is, 1B−1A is δ1-uniform,
where δ1 > 0 is “small”. Lemma 1 then implies that the convolutions
1B ∗ 1B and 1A ∗ 1A are “close” to one another in an L2 sense; but
they need not be close in an L∞ sense, and in fact they cannot be in
general. A good example to demonstrate the point is to consider the
case where N ≡ 3 (mod 4) is a prime number, and where A = {x2
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(mod N) : 1 ≤ x ≤ N − 1}, which has size about N/2. This set has
the property that 1A ∗ 1A(0) = 0, while 1A ∗ 1A(x) ∼ N/4 for x 6= 0.
Furthermore, all the non-zero Fourier coefficients of 1A are “small”;
indeed, for a 6≡ 0 (mod N) we have from Gauss sum estimates that
|1̂A(a)| ≪

√
N . If we now define the set At := A+ t then we likewise

will have that 1At ∗ 1At(2t) = 0, and that |1̂At(a)| ≪
√
N for a 6≡ 0

(mod N). In particular, the level-sets {x ∈ ZN : 1A ∗ 1A(x) < N/8}
and {x ∈ ZN : 1At ∗ 1At(x) < N/8}, are disjoint for t 6≡ 0 (mod N)
(the first level-set here is {0}, while the second is {2t}), even though
1A − 1At is O(1/

√
N)-uniform; in addition,

‖1A ∗ 1A − 1At ∗ 1At‖∞ = max
x∈ZN

|1A ∗ 1A(x)− 1At ∗ 1At(x)| ∼ N/4,

which is rather large.
It would seem that this is pretty much all that one can say on

the intersection of level-sets; but Corollary 3 says that if the lower
level-sets we are considering are all rather large (instead of just a
single element as in the example involving the squares mod N), then
in fact they all have large intersection. The following corollary of the
Corollary 3 gives a quantitative version of this fact:

Corollary 4 Suppose G is an additive abelian group satisfying |G| =
N , and fix a subset A ⊆ G, |A| = θN . Then, letting 0 < γ ≤ 1 and
letting

I :=
⋂

B⊆G
1A−1B is δ−uniform

{x ∈ G : 1B ∗ 1B(x) ≤ γθ2N},

we have that

|I| ≥ |{x ∈ G : 1A ∗1A(x) ≤ γ3θ6N/128}|−214γ−6θ−12δ2(4θ+δ)N.

If we furthermore suppose that |A+A| ≤ (1− ε)N then we imme-
diately deduce from this corollary that

|I| ≥ (ε− 214γ−6θ−12δ2(4θ + δ))N.

For fixed θ, ε, γ > 0, then, we see that if δ > 0 is sufficiently small in
terms of θ, ε and γ, we must have that |I| ≫ εN .

Proof of the Corollary. Let δ1 = δ, δ2 = γθ2/4, and then let
f : G → [0, 1] be the function given by our Corollary 3. We have
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then for every x ∈ G such that f ∗ f(x) ≤ γ3θ6N/64 and for every set
B ⊆ G where 1A − 1B is δ-uniform,

1B ∗ 1B(x) ≤ δ−2
2 f ∗ f(x) + 2δ2N ≤ 3γθ2N/4.

Next we apply Lemma 1 using g = 1A, h = f , and deduce that if
we let S be the set of all x ∈ G such that 1A ∗ 1A(x) ≤ γ3θ6N/128,
and T ⊆ S be those x ∈ S where f ∗ f(x) > γ3θ6N/64, then

|T |(γ3θ6N/128)2 ≤ δ21(4θ + δ1)N
3;

that is,
|T | ≤ 214γ−6θ−12δ2(4θ + δ)N,

which completes the proof of the Corollary. �

4.1 Proof of Lemma 4

The proof of this lemma iterates on single places x ∈ G where some
convolution 1B ∗T 1C(x) is “large”, which makes it somewhat like the
Dyson e-transform and also the Katz-Koester Lemma [14].

We begin by constructing a sequence of functions f1, f2, ... accord-
ing to the following algorithm:

1. Set f1 := 1A, and set j := 1.

2. Suppose we have constructed fj . If for every pair of sets B,C ⊆
G such that ‖1A − 1B‖, ‖1A − 1C‖ ≤ δ1 we have that

1B ∗T 1C(x) ≤ fj ∗T fj(x) + 2κδ2N for every x ∈ G,

then we STOP.

3. Otherwise, there exist sets B,C ⊆ G for which ‖1A− 1B‖, ‖1A−
1C‖ ≤ δ1, and for which there exists x ∈ ZN satisfying

1B ∗T 1C(x) > fj ∗T fj(x) + 2κδ2N.

Given such sets B,C we either set fj+1 := fj + 1B or fj+1 :=
fj +1C , according to which of these two possibilities makes fj+1

have the larger support (if there is a tie in the size of the support,
simply choose fj+1 := fj + 1B). Then, set j ← j + 1.

4. And then we loop back to the second step.
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Let us see that this procedure must eventually terminate: first, we
note that 1 ≤ fj(x) ≤ j for all x ∈ supp(fj) and for all j ≥ 1. Given
fj, if there exist sets B,C ⊆ G as in the third step, we must have that
there exists x ∈ G satisfying

1B ∗T 1C(x) > fj ∗T fj(x) + 2κδ2N.

Thus, there are more than fj ∗T fj(x) + 2κδ2N pairs

(b, c) ∈ B × C with T (b, c) = x,

while there are at most fj ∗T fj(x) pairs

(b, c) ∈ supp(fj)× supp(fj) with T (b, c) = x.

It follows that there are more than 2κδ2N pairs (b, c) ∈ B × C with
T (b, c) = x for which either b or c fails to belong to supp(fj). Clearly,
then, there are either at least κδ2N pairs (b, c) ∈ B × C for which
T (b, c) = x and b 6∈ supp(fj); or, there are at least κδ2N pairs (b, c) ∈
B×C for which T (b, c) = x and c 6∈ supp(fj). Suppose that the former
holds; then, since for fixed b and x there can be at most κ choices for
c ∈ G with T (b, c) = x, it follows that there are at least δ2N elements
b ∈ B that do not belong to supp(fj). And if the latter holds, then
there are at least δ2N elements c ∈ C that do not belong to supp(fj).
Clearly, then, the support of fj+1 is larger than the support of fj by
at least δ2N elements. Iterating this, and using the fact that

|A| = supp(1A) = θN ≥ δ2N,

we deduce that the support of fj has size at least jδ2N , which implies
that the procedure must terminate with a function fJ where J ≤ δ−1

2 .
We then just let f := J−1fJ . And now, since

fJ ∗T fJ(x) = J2f ∗T f(x) ≤ δ−2
2 f ∗T f(x) for every x ∈ G,

and since at this last iteration that produced fJ we stopped at step 2
in the above algorithm, it follows that for every pair of sets B,C ⊆ G
such that ‖1A − 1B‖, ‖1A − 1C‖ ≤ δ1,

1B ∗T 1C(x) ≤ δ−2
2 f ∗T f(x) + 2κδ2N for every x ∈ G.

It remains to show that ‖1A − f‖ ≤ δ1: we first note that f =
J−1(1B1 + · · ·+ 1BJ

), where B1, ..., BJ are the sets B or C arising at
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each iteration of step 3 in the above algorithm, and satisfy ‖1Bi
−1A‖ ≤

δ1. Then, writing

f − 1A = J−1((1B1 − 1A) + · · ·+ (1BJ
− 1A))

the triangle inequality immediately gives us that ‖f − 1A‖ ≤ δ1,
thereby completing the proof of the lemma.

5 Proof of main theorems

5.1 Proof of Theorem 1

Let S0 be a random subset of G of size

K := ⌊cε−2δ−6θ−10(logN − log(δεθ))⌋,

where c > 0 is some constant to be determined later.
We will show that with positive probability the set S0 satisfies the

conclusion of the theorem (with S0 playing the role of S) for every
set A satisfying |A| = θ0N and for every possible set density θ0 ≥ θ.
And therefore, there exists a set S with the properties claimed by the
theorem.

So, let θ0 ≥ θ be an arbitrary set density, and let δ1 = δ3θ5.50

√
ε/128

and k = ⌊4δ−2
1 θ0⌋ + 1. Associate to a subset C ⊆ G, |C| = θ0N , a

vector

vC := (χ1, ..., χk,ℜ1̂C(χ1),ℑ1̂C(χ1), ...,ℜ1̂C (χk),ℑ1̂C(χk)).

where χ1, ..., χk are the places corresponding to the k largest Fourier
coefficients of h = 1C , as described in Lemma 2. From the conclusion
of that same lemma we deduce that

|1̂C(χk)| ≤ δ1N/2. (5)

Next, round the last 2k coordinates of vC to the nearest multiple of
δ1N/2. Let wC denote the new vector that results. It is obvious that
as we vary over subsets C ⊆ G satisfying |C| = θ0N , the number of
possibilities for wC is bounded (crudely) from above by Nk(δ1/4)

−2k .
Furthermore, if two sets B and C, |B| = |C| = θ0N share the

same vector wB = wC then the last 2k coordinates of vB and vC come
within δ1N/2 of one another; and, in light of (5), this implies that

max
χ∈Ĝ
|1̂B(χ)− 1̂C(χ)| ≤ δ1N.

14



The possibilities for the vectors wC give us a way of placing sets
C ⊆ G with |C| = θ0N into equivalence classes. And now suppose
we have one of these equivalence classes containing a set C such that
|C + C| ≤ (1− ε)N .

Applying Corollary 3, with the role of A in that corollary played by
our set C, the role of C played by our set B, and the role of θ played
by θ0, we find that for δ2 = δθ20/4 there exists a function f : G→ [0, 1]
such that f − 1C is δ1-uniform and such that for every set B where
1B − 1C is δ1-uniform we have for every x ∈ G,

1B ∗ 1B(x) ≤ δ−2
2 f ∗ f(x) + 2δ2N.

Let now U denote the set of x ∈ G where f ∗ f(x) ≤ δ3θ60N/32. Then,
for every x ∈ U we have

1B ∗ 1B(x) < δθ20N.

Note that the fact this holds for all sets B such that 1B − 1C is
δ1-uniform implies that it holds for all sets B in the same equivalence
class (described earlier in the proof) as C.

We next show that this set U is “large”, by showing that it contains
many elements of G\(C+C): since f−1C is δ1-uniform, from Lemma
1, using g = 1C and h = f , we have that

∑

x∈ZN

|f ∗ f(x)− 1C ∗ 1C(x)|2 ≤ δ21(4θ0 + δ1)N
3.

It follows that if we let T denote the set of all x ∈ G where 1C∗1C(x) =
0 and where f ∗ f(x) > δ3θ60N/32, then

|T |δ6θ120 N2/1024 ≤ δ21(4θ0 + δ1)N
3;

that is,
|T | ≤ 1024δ21(4θ0 + δ1)δ

−6θ−12
0 N.

Since |C + C| ≤ (1 − ε)N it follows that there are at least (ε −
1024δ21(4θ0 + δ1)δ

−6θ−12
0 )N ≥ εN/2 places x ∈ U .

And now, because there are at most Nk(δ1/4)
−2k possible vectors

wC , and therefore at most that many equivalence classes, it follows
that we have a collection of at most Nk(δ1/4)

−2k sets U such that
for every set B ⊆ G satisfying |B + B| ≤ (1 − ε)|B|, the collection
contains a set U = UB , |U | ≥ εN/2, satisfying

1B ∗ 1B(x) < δθ20N, for every x ∈ U.
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We claim that with positive probability our random set S0 (defined
at the beginning of the proof) will have non-empty intersection with
all these < Nk(δ1/4)

−2k sets U . To see this, first note that for c > 0
sufficiently large in the definition of K above, the probability that S0

fails to intersect any particular set UB is at most

((1−ε/2)N
K

)

(N
K

) ≤ (1− ε/2)K ≤ exp(−Kε/2) < N−k−1(δ1/4)
2k.

So, by the union bound, the probability that S0 intersects every one
of our sets UB is positive, even as we vary over all the ≤ N choices
for set density θ0 ≥ θ.

It follows that there exists a set S of size K that intersects all the
sets UB ; and therefore if A ⊆ G, |A| = θ0N ≥ θN , and if 1A ∗1A(x) >
δθ20N for every x ∈ S, A could not belong to an equivalence class
containing a set C such that |C + C| ≤ (1 − ε)N . In particular, this
would mean that |A+A| > (1− ε)N , thereby completing the proof of
the theorem.

5.2 Proof of Theorem 2

The proof of this theorem is not much more than the Dirichlet Box
Principle. Before we state it, we introduce the notation ‖x‖ to denote
the least residue mod N in absolute value that is congruent to x mod
N .

Lemma 5 Suppose that x1, ..., xk ∈ ZN . Then, there exists an integer
n 6≡ 0 (mod N) satisfying

‖nx1‖, ‖nx2‖, ..., ‖nxk‖ ≤ N1−1/(k+1).

Proof of the lemma. The proof of this lemma is standard: we
consider the set of vectors

{(jx1, ..., jxk) (mod N) : 0 ≤ j ≤ N1−1/(k+1)} ⊆ (R/NZ)k.

Around each point draw a k-dimensional box (so, the point (jx1, ..., jxk)
(mod N) is the center point of the box) having edge length N1−1/(k+1).
The total volume consumed by all the boxes exceeds

Nk−k/(k+1)N1−1/(k+1) = Nk.
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So, at least two of those boxes must have a point in common; say these
boxes correspond to j = a and j = b, where a < b. It follows that
for each i = 1, ..., k the numbers axi and bxi are at most N1−1/(k+1)

apart when considered mod N . Letting n = b−a it is easy to see that
this then implies the lemma. �

Given the set S, set k = |S| and {x1, ..., xk} = S, and then let n
be as in the lemma. We then let

A := n−1 ∗B ⊆ ZN , where B := {t : −N/6 < t < N/6} ⊆ ZN ,

where the notation λ∗B represents the set that results when we dilate
the elements of B by λ.

It follows that for each x ∈ S we have

1A ∗ 1A(x) = 1n−1∗B ∗ 1n−1∗B(x) = 1B ∗ 1B(nx).

We have that if k < (logN)/2 then ‖nx‖ . N/e2 for x ∈ S, and then

1A ∗ 1A(x) > 1B ∗ 1B(⌊N/e2⌋+ 1) & N(1/3 − 1/e2) > N/6.

This completes the proof of Theorem 2.

5.3 Proof of Theorem 3

To prove the theorem we will show that if A ⊆ G is any set satisfying
|A + A| < (1 − ε)|A|, where |A| = θN , then the level-set {x ∈ G :
1A ∗ 1A(x) ≤ δθ2N} must have non-trivial intersection with the set
S. And, from Theorem 4 we furthermore have that to prove this
conclusion it suffices to show that S intersects every translate of every
Bohr neighborhood of radius δ3θ4.5

√
ε/128 and dimension at most

216δ−6θ−10ε−1 + 1.
Letting B(Λ, ρ) be such a Bohr neighborhood, where ρ = δ3θ4.5

√
ε/128,

we begin by letting B′ = B(Λ, ρ/2) and setting g = 1B′ ∗ 1B′ . Since
supp(g) ⊆ B(Λ, ρ), to prove our theorem it suffices to show that for
every translate t ∈ G we have

∑

x∈G

g(x + t)1S(x) > 0. (6)

In terms of Fourier coefficients this inequality is simply
∑

χ∈Ĝ

χ(t)1̂B′(χ)21̂S(χ
−1) > 0;
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and to prove this it suffices to show that

max
χ 6=χ0

|1̂S(χ)|
∑

χ 6=χ0

|1̂B′(χ)|2 < |B′|2|S|.

From Parseval’s identity we have that this holds provided

max
χ 6=χ0

|1̂S(χ)|/|S| < |B′|/N.

To finish our proof we apply Lemma 3 using r = ρ/2, and deduce
that we have that (6) holds provided

max
χ 6=χ0

|1̂S(χ)|/|S| < (δ3θ4.5
√
ε/512π)2

16δ−6θ−10ε−1+1,

which is one of our assumptions. The theorem now follows.

5.4 Proof of Theorem 4

Arrange the Fourier coefficients of h = 1A from largest to smallest in
magnitude as in Lemma 2.

Let δ1 = δ3θ5.5
√
ε/128 and let k = ⌊4δ−2

1 θ⌋+ 1. Letting χ1, ..., χN

be as in (4), from Lemma 2 we will have that |1̂A(χk)| ≤ δ1N/2.
Next, we let B denote the Bohr neighborhood B(χ1, ..., χk; δ1/θ).

Then, for each t ∈ B define the set At := A+ t. Note that 1A+t(x) =
1A(x− t) and that 1̂At(χ) = χ(t)1̂A(χ).

We have that for i = 1, 2, ..., k,

|1̂At(χi)− 1̂A(χi)| ≤ |1− χi(t)| · |1̂A(χi)| ≤ δ1N.

And for k + 1 ≤ i ≤ N we have

|1̂At(χi)− 1̂A(χi)| ≤ |1− χi(t)| · |1̂A(χi)| ≤ 2|1̂A(χi)| ≤ δ1N.

In general, then, we have that for all χ ∈ Ĝ,

|1̂At(χ)− 1̂A(χ)| ≤ δ1N,

which implies that 1At − 1A is δ1-uniform.
We now apply Corollary 3 using δ2 = δθ2/4, and deduce the exis-

tence of a function f : G → [0, 1] having the properties indicated by
the Corollary. From the fact that f−1A is δ1-uniform we deduce from
Lemma 1, using g = 1A and h = f , that

∑

x∈G

|1A ∗ 1A(x)− f ∗ f(x)|2 = δ21(4θ + δ1)N
3. (7)
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Letting T denote the set of all x ∈ G such that 1A∗1A(x) < δ3θ6N/128,
since we are given that |T | ≥ εN we deduce from (7) that if for all
such x we also had that f ∗ f(x) ≥ δ3θ6N/32, then

9δ6θ12εN3/214 ≤ |T |(3δ3θ6N/128)2 ≤ δ21(4θ + δ1)N
3,

which is impossible. So, there exists x ∈ G such that f ∗ f(x) <
δ3θ6N/32. From Corollary 3, and the fact that 1A− 1At is δ1-uniform
(and that 1A − 1A = 0 is also δ1-uniform), we will have for this value
x that

1A ∗ 1A(x− t) = 1A ∗ 1At(x) ≤ δ−2
2 f ∗ f(x) + 2δ2N < δθ2N.

It follows that the level-set {y : 1A ∗ 1A(y) < δθ2N} contains the set
x− B, which completes the proof of the theorem.
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