Towards a weighted version of the Hajnal-Szemerédi Theorem

József Balogh * Graeme Kemkes ${ }^{\dagger}$ Choongbum Lee ${ }^{\ddagger}$ Stephen J. Young ${ }^{\text {§ }}$

Abstract

For a positive integer $r \geq 2$, a K_{r}-factor of a graph is a collection of vertex-disjoint copies of K_{r} which covers all the vertices of the given graph. The celebrated theorem of Hajnal and Szemerédi asserts that every graph on n vertices with minimum degree at least $\left(1-\frac{1}{r}\right) n$ contains a K_{r}-factor. In this note, we propose investigating the relation between minimum degree and existence of perfect K_{r}-packing for edge-weighted graphs. The main question we study is the following. Suppose that a positive integer $r \geq 2$ and a real $t \in[0,1]$ is given. What is the minimum weighted degree of K_{n} that guarantees the existence of a K_{r}-factor such that every factor has total edge weight at least $t\binom{r}{2}$? We provide some lower and upper bounds and make a conjecture on the asymptotics of the threshold as n goes to infinity. This is the long version of a "problem paper" in Combinatorics, Probability and Computing.

1 Introduction

Many results in graph theory study the relation between the minimum degree of a given graph and its spanning subgraphs. For example, Dirac's theorem asserts that a graph on n vertices with minimum degree at least $\left\lceil\frac{n}{2}\right\rceil$ contains a Hamilton cycle. Hajnal and Szemerédi [3] proved that every graph on $n \in r \mathbb{Z}$ vertices with minimum degree at least ($1-\frac{1}{r}$) n contains a spanning subgraph consisting of $\frac{n}{r}$ vertex-disjoint copies of K_{r} (we call such a subgraph a K_{r}-factor).

In this note we propose investigating this relation in edge-weighted graphs. As a concrete problem, we study the particular case when the spanning subgraph is the graph formed by vertexdisjoint copies of K_{r} (in other words, we would like to extend the Hajnal-Szemerédi theorem to edge-weighted graphs). Suppose we equip the complete graph K_{n} with edge weights $w: E\left(K_{n}\right) \rightarrow$ $[0,1]$. For a given weighted graph and vertex v we let $\operatorname{deg}_{w}(v)$ denote the weighted degree of the vertex v. Let $\delta_{w}(G)$ be the minimum weighted degree of the graph G. The main question can be

[^0]formulated as the following: How large must $\delta_{w}\left(K_{n}\right)$ be to guarantee that there exists a K_{r}-factor such that every factor has total edge weight at least $t\binom{r}{2}$ for some given $t \in[0,1]$?

More formally, for $n \in r \mathbb{Z}$ let $\mathcal{W}(r, t, n)$ be the collection of edge weightings on K_{n} such that every K_{r}-factor has a clique with weight strictly smaller than $t\binom{r}{2}$. We then define

$$
\delta(r, t, n)=\sup _{w \in \mathcal{W}(r, t, n)} \delta_{w}\left(K_{n}\right) \quad \text { and } \quad \delta(r, t)=\limsup _{n \rightarrow \infty} \frac{\delta(r, t, n)}{n} .
$$

The main open question that we raise is the following.
Question 1. Determine the value of $\delta(r, t)$ for all r and t.
Let $\mathcal{W}^{*}(r, t, n)$ be the collection of edge weightings of K_{n} such that every K_{r}-factor has a clique with weight at most $t\binom{r}{2}$ (instead of strictly smaller than $t\binom{r}{2}$), and define the functions $\delta^{*}(r, t, n)$ and $\delta^{*}(r, t)$ accordingly.

Proposition 1.1. For all r, t, and $n, \delta(r, t, n)=\delta^{*}(r, t, n)$. Therefore, $\delta(r, t)=\delta^{*}(r, t)$.
Proof. The inequality $\delta(r, t, n) \leq \delta^{*}(r, t, n)$ easily follows from the definition. Noting that the complement of $\mathcal{W}^{*}(r, t, n)$ is open in the set of all real-valued edge weightings, the set $\mathcal{W}^{*}(r, t, n)$ is compact. Thus there is a weight function $w \in \mathcal{W}^{*}(r, t, n)$ so that $\delta_{w}\left(K_{n}\right)=\delta^{*}(r, t, n)$. Let $\varepsilon<1$ be an arbitrary positive real, and let w^{\prime} be the weight function obtained from w by multiplying $1-\varepsilon$ to all the weights. One can easily see that $w^{\prime} \in \mathcal{W}(r, t, n)$, and thus $\delta(r, t, n) \geq(1-\varepsilon) \delta^{*}(r, t, n)$. Thus as ε tends to 0 , we see that $\delta(r, t, n) \geq \delta^{*}(r, t, n)$. This concludes the proof.

The proposition above shows that if an edge-weighting of K_{n} has minimum degree greater than $\delta(r, t, n)$, then there exists a K_{r}-factor such that every copy of K_{r} has weight greater than $t\binom{r}{2}$. Therefore, the Hajnal-Szemerédi theorem in fact is a special case of our problem when $t=\left(\binom{r}{2}-1\right) /\binom{r}{2}$ where we only consider the integer weights $\{0,1\}$. Thus we believe that the following special case is an important and interesting instance of the problem corresponding to the Hajnal-Szemerédi theorem for $r=3$ (which has been first proved by Corrádi and Hajnal [1]).
Question 2. What is the value of $\delta\left(3, \frac{2}{3}\right)$?
In the rest of our note we describe our partial results toward answering Question 1.

2 Lower bound

It is not too difficult to deduce the bound $\delta(r, t) \geq(1-1 / r) t$ from the graph showing the sharpness of the Hajnal-Szemerédi theorem. Our first proposition provides a better lower bound to this function.

Proposition 2.1. The following holds for every integer $r \geq 2$ and real $t \in(0,1]$:

$$
\delta(r, t) \geq \frac{1}{r}+\left(1-\frac{1}{r}\right) t .
$$

Proof. Let $n \in r \mathbb{Z}$ with $n>r$ and let $k=\frac{n}{r}$. Let A be an arbitrary set of $k-1$ vertices and let B be the remaining $k(r-1)+1$ vertices. Consider the weight function w that assigns weight t to edges whose endpoints are both in B and weight 1 to all other edges. By the cardinality of A, we see that every K_{r}-factor must contain a clique that lies entirely within B. Since our weight function gives weight at most $t\binom{r}{2}$ to this clique, we see that $w \in \mathcal{W}^{*}(r, t, n)$. Further, $\delta_{w}\left(K_{n}\right)=\min \{n-1, k-1+t(n-k)\}$. But we have that

$$
k-1+t(n-k)=\left(\frac{1}{r}-\frac{1}{n}+t\left(1-\frac{1}{r}\right)\right) n .
$$

Therefore by Proposition 1.1, we have $\delta(r, t, n) \geq\left(\frac{1}{r}-\frac{1}{n}+t\left(1-\frac{1}{r}\right)\right) n$ and $\delta(r, t) \geq \frac{1}{r}+\left(1-\frac{1}{r}\right) t$.

Proposition 2.1 illustrates the fundamental difference between the minimum degree threshold for containing a K_{r}-factor in graphs and edge-weighted graphs. For example, when $r=3$, we see that $\delta(3,2 / 3) \geq 7 / 9$, while the corresponding function for graphs has value $2 / 3$ by the HajnalSzemerédi theorem. This difference suggests that we indeed need some new ideas and techniques to solve our problem.

3 Upper bound

Next, we establish an upper bound on $\delta(r, t)$. To do so, it is helpful to consider the graph induced by the edges of heavy weights in a given edge-weighted graph. Thus, given an edge-weighted graph G_{w}, we denote by $G_{w}(t)$ the subgraph of K_{n} consisting of edges of weight at least t. For $r=2$, it is easy to establish the correct value of the function $\delta(2, t)$.

Observation 1. For every $t \in(0,1]$ we have $\delta(2, t)=\frac{1+t}{2}$.
Proof. The lower bound on $\delta(2, t)$ follows from Proposition 2.1, and thus it suffices to establish the upper bound. Let w be a weight function such that $\delta_{w}\left(K_{n}\right) \geq \frac{1+t}{2} n$. Now for any vertex $v \in G_{w}(t)$, we have $\operatorname{deg}_{w}(v)<(n-1-\operatorname{deg}(v)) \cdot t+\operatorname{deg}(v) \cdot 1$, where $\operatorname{deg}(v)$ is the degree of v in $G_{w}(t)$. But then the minimum weighted degree condition implies that $\operatorname{deg}(v) \geq \frac{n}{2}$, and so by the Hajnal-Szemerédi theorem there is a K_{2}-factor in $G_{w}(t)$. By the definition of $G_{w}(t)$, this establishes the bound $\delta(2, t) \leq \frac{1+t}{2}$.

Even for $r \geq 3$, if t is small enough, then we can determine the correct value of the function $\delta(r, t)$.

Theorem 3.1. For every $r \geq 3$, there exists a positive real t_{r} such that for every $t \in\left(0, t_{r}\right)$ we have

$$
\delta(r, t)=\frac{1}{r}+\left(1-\frac{1}{r}\right) t .
$$

Proof. We have $\delta(r, t) \geq \frac{1}{r}+\left(1-\frac{1}{r}\right) t$ by Proposition [2.1. It remains for us to establish the upper bound. Let ε be an arbitrary positive real. For n sufficiently large, let w be a weight function such that $\delta_{w}\left(K_{n}\right) \geq\left(\frac{1}{r}+\left(1-\frac{1}{r}\right) t+\varepsilon\right) n$. We will say a copy of a K_{r} is heavy if it has weight at least $\binom{r}{2} t$. A collection of vertex-disjoint copies of K_{r} is heavy if each K_{r} in the collection is heavy. An edge is overweight if it has weight at least $\binom{r}{2} t$. Let t_{r} be a sufficiently small positive real depending on r to be determined later. We will find a heavy K_{r}-factor given that $t<t_{r}$ and n is a large enough integer divisible by r.

Take a maximum heavy collection of vertex-disjoint copies of K_{r}, that maximizes the number of overweight edges. Call this collection \mathcal{R}, and suppose that $|\mathcal{R}|=\rho$. Denote by V_{R} be the vertices covered by \mathcal{R}, thus $\left|V_{R}\right|=r \rho$. We may assume that $\rho<\frac{n}{r}$, as otherwise we have a heavy K_{r}-factor. Then there exist r distinct vertices $v_{1}, v_{2}, \cdots, v_{r} \notin V_{R}$. Let $L=\left\{v_{1}, v_{2}, \cdots, v_{r}\right\}$. If there is an overweight edge whose endpoints are both in $V\left(K_{n}\right) \backslash V_{R}$, then we can find a larger collection than \mathcal{R} by taking the union of this edge with $r-2$ vertices of L. Thus all the edges within $V\left(K_{n}\right) \backslash V_{R}$ have weight at most $\binom{r}{2} t$.
Fact 1. For every $R \in \mathcal{R}$, if there exists an overweight edge between $V(R)$ and L, then there exists a unique vertex in R which intersects every overweight edge between $V(R)$ and L.

Proof. Fix a copy of K_{r} in \mathcal{R} and denote it by R. If there are two vertex-disjoint overweight edges between $V(R)$ and L, then we can find two heavy vertex-disjoint copies of K_{r} over $V(R) \cup L$. Therefore all the overweight edges between $V(R)$ and L share a common endpoint. In particular, there are at most r overweight edges between $V(R)$ and L.

Now suppose that there are at least two overweight edges between $V(R)$ and L, and that the common endpoint is in L. Without loss of generality, let $x \in V(R)$ and $v_{1} \in L$ be vertices such that there are at least two overweight edges of the form $\left\{y, v_{1}\right\}$ for $y \in V(R) \backslash\{x\}$. Then by the assumption that we maximized the number of overweight edges, there are at least two overweight edges among the edges $\{y, x\}$ for $y \in V(R) \backslash\{x\}$ (otherwise we can replace R by $R \backslash\{x\} \cup\left\{v_{1}\right\}$). However, if this is the case, then we can find two independent overweight edges in $V(R) \cup L$, and this contradicts the maximality of \mathcal{R}. Thus if there are at least two overweight edges between $V(R)$ and L, then they share a common endpoint in $V(R)$.

Let \mathcal{R}^{\prime} be the subset of copies of K_{r} of \mathcal{R} which have at least $r-1$ overweight edges incident to it whose other endpoint is in L. Let $\rho^{\prime}=\left|\mathcal{R}^{\prime}\right|$.

Fact 2. There exists a real t_{r}^{\prime} such that if $t<t_{r}^{\prime}$, then $\rho^{\prime} \geq 1$.
Proof. By Fact [we have

$$
\begin{aligned}
(1+(r-1) t) n \leq & \sum_{i=1}^{r} \operatorname{deg}_{w}\left(v_{i}\right) \leq\left(r+\left(r^{2}-r\right)\binom{r}{2} t\right) \rho^{\prime} \\
& +\left(r-2+\left(r^{2}-r+2\right)\binom{r}{2} t\right)\left(\rho-\rho^{\prime}\right)+r\binom{r}{2} t(n-r \rho)
\end{aligned}
$$

By way of contradiction, let $\rho^{\prime}=0$ and thus,

$$
(1+(r-1) t) n \leq(r-2)\left(1-\binom{r}{2} t\right) \rho+r\binom{r}{2} t n
$$

Now for sufficiently small t, the coefficient of ρ is positive so we may substitute $\rho \leq \frac{n}{r}$ and obtain,

$$
0 \leq\left(\frac{r-2}{r}\left(1-\binom{r}{2} t\right)+r\binom{r}{2} t-1-(r-1) t\right) n=\left((r-1)\binom{r}{2} t-\frac{2}{r}\right) n
$$

If t is sufficiently small this is a contradiction, and thus $\rho^{\prime} \geq 1$.
Fact 3. For $R \in \mathcal{R}^{\prime}$, there exists a unique vertex $x_{R} \in V(R)$ incident to all the overweight edges within $V(R) \cup L$. Moreover, all the edges incident to x_{R} within R are overweight.

Proof. For a fixed copy $R \in \mathcal{R}^{\prime}$, let $x_{R} \in V(R)$ be the vertex guaranteed by Fact $\mathbb{1}$. If there is an overweight edge in R which does not intersect x_{R}, then we can find two heavy vertex-disjoint copies of K_{r} over the set of vertices $V(R) \cup L$, and this violates the maximality of \mathcal{R}. Therefore, all the overweight edges within R are incident to x_{R}. Moreover, if there are less than $r-1$ such edges, then we can find a copy of K_{R} over the vertex set $\left\{x_{R}\right\} \cup L$ which contains at least $r-1$ overweight edges. This contradicts the maximality of overweight edges of \mathcal{R}. Therefore, all the edges incident to x_{R} within R are overweight.

Let X be the subset of vertices which are covered by copies of K_{r} in \mathcal{R}^{\prime} that are incident to an overweight edge (guaranteed by Fact 3), and let Y be the vertices which are covered by copies of K_{r} in \mathcal{R}^{\prime} that are not in X.

Fact 4. For every $y \in Y$ and $R \in \mathcal{R} \backslash \mathcal{R}^{\prime}, y$ is incident to R by at most one overweight edge.
Proof. Suppose that we are given vertices $x \in X$ and $y \in Y$ covered by $R \in \mathcal{R}$. Without loss of generality, suppose that x is adjacent to $v_{1}, \cdots, v_{r-1} \in L$ by overweight edges. By way of contradiction, suppose that there exists $R^{\prime} \in \mathcal{R} \backslash \mathcal{R}^{\prime}$ with $V\left(R^{\prime}\right)=\left\{z_{1}, z_{2}, \cdots, z_{r}\right\}$ such that $\left\{y, z_{1}\right\}$ and $\left\{y, z_{2}\right\}$ are both overweight. If R^{\prime} contains an edge e other than $\left\{z_{1}, z_{2}\right\}$ that is overweight, then among the edges $\left\{x, v_{1}\right\},\left\{y, z_{1}\right\},\left\{y, z_{2}\right\}, e$ (which are all overweight), we can find at least three vertex-disjoint edges. Therefore we can find three vertex-disjoint copies of K_{r} over the vertex set $V(R) \cup V\left(R^{\prime}\right) \cup L$. However, this contradicts the maximality of \mathcal{R}. If there are no overweight edges within R^{\prime} other than (possibly) $\left\{z_{1}, z_{2}\right\}$, then the two copies of K_{r} over the vertex sets $\left\{x, v_{1}, \cdots, v_{r-1}\right\},\left\{y, z_{1}, z_{2}, \cdots, z_{r-1}\right\}$ contain at least $r+1$ overweight edges, while R and R^{\prime} combined contain at most r overweight edges (see Fact (3). Therefore we conclude that there exists at most one overweight edge of the form $\left\{y, z_{i}\right\}$.

Fact 5. There does not exist a heavy K_{r} over a vertex set of the form $\left\{v_{i}, y_{1}, y_{2}, \cdots, y_{r-1}\right\}$ for $v_{i} \in L$ and $y_{1}, \cdots, y_{r-1} \in Y$.

Proof. Suppose that for some $v_{i} \in L$ and $y_{1}, \ldots, y_{r-1} \in Y$ the vertices $\left\{v_{1}, y_{1}, \ldots, y_{r-1}\right\}$ induce a heavy K_{r}. Suppose that $\left\{y_{1}, \cdots, y_{r-1}\right\}$ are contained in s disjoint copies R_{1}, \cdots, R_{s} of K_{r} belonging to \mathcal{R}, and let x_{1}, \cdots, x_{s} be the 'dominating' vertices of these K_{r} guaranteed by Fact 3 (note that $s \leq r-1$). If $s \leq r-2$, then since each x_{i} are incident to L by at least $r-1$ overweight edges, we can find $s+1$ vertex-disjoint copies of a heavy K_{r} over the vertices $L \cup$ $V\left(R_{1}\right) \cup \cdots \cup V\left(R_{s}\right)$. On the other hand, if $s=r-1$, then there exists an index j such that there exists $z \in V\left(R_{j}\right) \backslash\left\{x_{j}, y_{1}, \cdots, y_{r-1}\right\}$. Then by using the overweight edge $\left\{x_{j}, z\right\}$ (see Fact [3) and the overweight edges between $\left\{x_{1}, \cdots, x_{s}\right\}$ and L, we can find at least $s+1=r$ vertex-disjoint copies of a heavy K_{r} over the vertices $L \cup V\left(R_{1}\right) \cup \cdots \cup V\left(R_{s}\right)$. This contradicts the maximality of \mathcal{R}.

For a set of vertices T, let $w(T)=\sum_{v_{1}, v_{2} \in T} w\left(v_{1}, v_{2}\right)$. We will show

$$
\sum_{i=1}^{r} \sum_{T \subset\binom{Y}{r-1}} w\left(\left\{v_{i}\right\} \cup T\right)>\binom{r}{2} \operatorname{tr}\binom{|Y|}{r-1} .
$$

This inequality contradicts Fact 5, showing that our original assumption $\rho<\frac{n}{r}$ must be false. Note that

$$
\begin{align*}
& \sum_{i=1}^{r} \sum_{T \subset\binom{Y}{r-1}} w\left(\left\{v_{i}\right\} \cup T\right)=\binom{|Y|-1}{r-2} \sum_{i=1}^{r} \sum_{y \in Y} w\left(v_{i}, y\right)+\frac{1}{2} r\binom{|Y|-2}{r-3} \sum_{y_{1} \in Y} \sum_{y_{2} \in Y \backslash\left\{y_{1}\right\}} w\left(y_{1}, y_{2}\right) \\
= & \binom{|Y|}{r-1}\left(\frac{r-1}{|Y|} \sum_{i=1}^{r} \operatorname{deg}_{w}\left(v_{i}, Y\right)+\frac{r(r-1)(r-2)}{2|Y|(|Y|-1)} \sum_{y \in Y} \operatorname{deg}_{w}(y, Y)\right) \\
\geq & \binom{|Y|}{r-1}\left(\frac{r-1}{|Y|} \sum_{i=1}^{r} \operatorname{deg}_{w}\left(v_{i}, Y\right)+\frac{r(r-1)(r-2)}{2|Y|^{2}} \sum_{y \in Y} \operatorname{deg}_{w}(y, Y)\right) \tag{1}
\end{align*}
$$

where $\operatorname{deg}_{w}(v, Y)$ is the weighted degree of v to vertices in Y.
For the first term on the right hand side of (11), we have

$$
\begin{aligned}
& \sum_{i=1}^{r} \operatorname{deg}_{w}\left(v_{i}, Y\right) \\
= & \left.\sum_{i=1}^{r}\left(\operatorname{deg}_{w}\left(v_{i}\right)-\operatorname{deg}_{w}\left(v_{i}, X\right)-\operatorname{deg}_{w}\left(v_{i}, V_{R} \backslash(X \cup Y)\right)-\operatorname{deg}_{w}\left(v_{i}, V \backslash V_{R}\right)\right)\right) \\
\geq & (1+(r-1) t+r \varepsilon) n-r \rho^{\prime}-\left((r-2)+\left(r^{2}-r+2\right)\binom{r}{2} t\right)\left(\rho-\rho^{\prime}\right)-r\binom{r}{2} t(n-r \rho) .
\end{aligned}
$$

Since the coefficient of n is positive for small enough t, we can substitute $n>r \rho$ to get

$$
\begin{equation*}
\sum_{i=1}^{r} \operatorname{deg}_{w}\left(v_{i}, Y\right)>r(r-1) t \rho+\left(2-\left(r^{2}-r+2\right)\binom{r}{2} t\right)\left(\rho-\rho^{\prime}\right)+r \varepsilon n \tag{2}
\end{equation*}
$$

For the second term on the right hand side of (1), by Fact 4 and the fact $|Y|=(r-1) \rho^{\prime}$, for a vertex $y \in Y$, we have

$$
\begin{aligned}
\operatorname{deg}_{w}(y, Y) & \geq\left(\frac{1}{r}+\frac{r-1}{r} t+\varepsilon\right) n-\rho-\binom{r}{2} t(n-\rho-|Y|) \\
& =\left(\frac{1}{r}+\frac{r-1}{r} t-\binom{r}{2} t+\varepsilon\right) n+\binom{r}{2} t(r-1) \rho^{\prime}-\left(1-\binom{r}{2} t\right) \rho .
\end{aligned}
$$

Since the coefficient of n is positive for small enough t, we can substitute $n>r \rho$ to get

$$
\begin{equation*}
\operatorname{deg}_{w}(y, Y)>(r-1) t \rho-(r-1)\binom{r}{2} t\left(\rho-\rho^{\prime}\right)+\varepsilon n \tag{3}
\end{equation*}
$$

Using (21) and (3) in (1),

$$
\begin{aligned}
& \quad \frac{1}{\binom{|Y|}{r-1}} \sum_{i=1}^{r} \sum_{T \subset\binom{Y}{r-1}} w\left(\left\{v_{i}\right\} \cup T\right) \\
& \geq \\
& \frac{r-1}{|Y|}\left(r(r-1) t \rho+\left(2-\left(r^{2}-r+2\right)\binom{r}{2} t\right)\left(\rho-\rho^{\prime}\right)+r \varepsilon n\right) \\
& \quad+\frac{r(r-1)(r-2)}{2|Y|}\left((r-1) t \rho-(r-1)\binom{r}{2} t\left(\rho-\rho^{\prime}\right)+\varepsilon n\right)
\end{aligned}
$$

If t is small enough, then the coefficient of ρ in the right hand side is positive. Hence we can substitute $\rho \geq \rho^{\prime}$ to get,

$$
\begin{aligned}
\frac{1}{\binom{|Y|}{r-1}} \sum_{i=1}^{r} \sum_{T \subset\binom{Y}{r-1}} w\left(\left\{v_{i}\right\} \cup T\right) & \geq\left(\frac{r(r-1)^{2}}{|Y|}+\frac{r(r-1)^{2}(r-2)}{2|Y|}\right)\left(t \rho^{\prime}+\frac{\varepsilon n}{r-1}\right) \\
& =\frac{r^{2}(r-1)^{2} t \rho^{\prime}}{2|Y|}+\frac{r^{2}(r-1)}{2|Y|} \varepsilon n \\
& >\frac{r^{2}(r-1)^{2} t \rho^{\prime}}{2|Y|} \\
& =\frac{r(r-1) t}{|Y|}\binom{r}{2} \rho^{\prime} \\
& =r t\binom{r}{2} .
\end{aligned}
$$

Since $|Y|=(r-1) \rho^{\prime}$ and $\rho^{\prime} \neq 0$ by Fact 2, we have

$$
\frac{1}{\binom{|Y|}{r-1}} \sum_{i=1}^{r} \sum_{T \subset\binom{Y}{r-1}} w\left(\left\{v_{i}\right\} \cup T\right)>r\binom{r}{2} t
$$

contradicting Fact 5. Thus our initial assumption that $\rho<\frac{n}{r}$ must be false. Hence $\delta(r, t) \leq$ $\frac{1}{r}+\frac{r-1}{r} t+\varepsilon$ for every positive ε, and our claimed upper bound follows.

It is worth noting that this proof gives a value of t_{r} of $\frac{4}{\binom{r}{2}\left(r^{3}-r^{2}-2 r+4\right)}$. Thus for $r=3$, we have $t_{3} \geq \frac{1}{12}$.

For general values of t, we suggest two approaches which establish some upper bound (that unfortunately does not match the lower bound given in Proposition (2.1).

3.1 First approach: hypergraphs

In our first approach, we reduce our problem into the problem of finding a perfect matching in hypergraphs as in Observation 1 The following lemma establishes the minimum number of heavy K_{r} 's that each vertex must belong to in a given edge-weighted graph.

Lemma 3.2. If w is a weight function with minimum weighted degree at least δn, then every vertex is in at least $\left(1-\frac{1-\delta}{1-t}\right)\binom{n-1}{r-1}$ cliques of size $r \geq 3$ with weight at least $t\binom{r}{2}$.

Proof. Let w be an arbitrary weight function, v be an arbitrary vertex, and let α_{v} be the number of K_{r} 's of weight at least $t\binom{r}{2}$ containing v. Now letting S_{v} be the sum of the weights of all $\binom{n-1}{r-1}$ K_{r} 's containing v, we have that

$$
S_{v} \leq \alpha_{v}\binom{r}{2}+\left(\binom{n-1}{r-1}-\alpha_{v}\right) t\binom{r}{2} .
$$

Let W be the total weight of w. Since edges incident with v occur in $\binom{n-2}{r-2} K_{r}$'s containing v and the edges not incident to v occur in $\binom{n-3}{r-3}$ such K_{r} 's, we have

$$
S_{v} \geq\binom{ n-3}{r-3} W+\left(\binom{n-2}{r-2}-\binom{n-3}{r-3}\right) \operatorname{deg}_{w}(v)
$$

Combining these inequalities we have

$$
\begin{aligned}
\alpha_{v} & \geq \frac{1}{1-t}\binom{n-1}{r-1}\left(\frac{2(n-r)}{r(n-1)(n-2)} \operatorname{deg}_{w}(v)+\frac{2(r-2)}{r(n-1)(n-2)} W-t\right) \\
& \geq \frac{1}{1-t}\binom{n-1}{r-1}\left(\delta \frac{n}{n-1}-t\right) \\
& \geq \frac{\delta-t}{1-t}\binom{n-1}{r-1} .
\end{aligned}
$$

We now apply Daykin and Häggkvist's theorem [2] which asserts that an r-uniform hypergraph has a perfect matching if every vertex of it lies in at least $\left(1-\frac{1}{r}\right)\left(\binom{n-1}{r-1}-1\right)$ hyperedges. This gives the following bound:

Proposition 3.3. For every $t \in(0,1]$ and $r \geq 3$ we have $\delta(r, t) \leq 1-\frac{1-t}{r}$.
Hàn, Person and Schacht [4] have conjectured that Daykin and Häggkvist's theorem can be improved, and an r-uniform hypergraph has a perfect matching if every vertex lies in at least
$\left(1-\left(\frac{r-1}{r}\right)^{r-1}-o(1)\right)\binom{n}{r-1}$ hyperedges. If this conjecture were proved, then we would have $\delta(r, t) \leq 1-(1-t)\left(\frac{r-1}{r}\right)^{r-1}$.

Since in [4] the conjecture was proved for $r=3$, we have that $\delta(3, t) \leq \frac{5}{9}+\frac{4}{9} t$. It is worth noting that this technique cannot be applied to obtain an upper bound matching Proposition 2.1, Consider the case when $r=3$ and $t=\frac{2}{3}$. The lower bound from Proposition 2.1 reads as $\delta\left(3, \frac{2}{3}\right) \geq \frac{7}{9}$. To obtain a matching upper bound using this method, we would need to improve the conclusion of Lemma 3.2 so that in every edge-weighted graph of minimum degree at least $\frac{7}{9} n$, every vertex is contained in at least $\left(\frac{5}{9}+o(1)\right)\binom{n}{2}$ copies of K_{3}. However, the following graph has minimum degree $\frac{29}{36} n$, and there are vertices which are contained in at most $\frac{319}{648} n^{2}$ copies of K_{3}. Let $A \cup B$ be a vertex partition such that A has size $\frac{29}{36} n$ and B has size $\frac{7}{36} n$. First, assign weight 1 to all the edges connecting A and B and give weight 1 to an $\frac{11}{18} n$-regular graph on A. Give weight 0 to each of the remaining edges. The minimum weighted degree of this graph is $\frac{29}{36} n>\frac{7}{9} n>\frac{2}{3} n$, so this graph has a triangle factor by the Hajnal-Szemerédi theorem. However, every vertex in B is only in $\frac{29}{36} n \cdot \frac{11}{18} n \cdot \frac{1}{2}=\left(\frac{319}{648}+o(1)\right)\binom{n}{2}<\left(\frac{5}{9}+o(1)\right)\binom{n}{2}$ triangles. Similar constructions can be made for other values of r and t as well.

3.2 Second approach: induction

We improve the upper bound by using two reductive schemes to build a K_{r}-factor out of a $K_{r^{\prime}}$ factor of the graph (or a large portion of the graph).

Scheme 1. Suppose $r=p q$ with $p, q>1$, and let w be an arbitrary weight function with minimum weighted degree δn. Let \mathcal{K} be an arbitrary K_{p}-factor of K_{n} with minimum average weight t_{p} and consider the weight function $w_{\mathcal{K}}$ on $K_{n / p}$ defined as follows. Associate to each vertex in $K_{n / p}$ a distinct clique in \mathcal{K}; the weight of an edge is the average weight in w of the edges between the corresponding cliques. Now the minimum weighted degree under $w_{\mathcal{K}}$ is at least $\frac{p \delta n-p(p-1)}{p^{2}}=\left(\delta-\frac{p-1}{n}\right) \frac{n}{p}$. Letting K^{\prime} be an arbitrary K_{q}-factor of this graph with minimum average weight t_{q}, the factors \mathcal{K} and K^{\prime} induce a $K_{p q}$-factor in K_{n} with minimum weight at least $t_{q}\binom{q}{2} p^{2}+t_{p}\binom{p}{2} q$. Thus $\delta(p q, t, n) \leq \max \left\{\delta(p, t, n), \delta\left(q, t, \frac{n}{p}\right)+\frac{p-1}{p}\right\}$. Consequently, we have $\delta(p q, t) \leq \max \{\delta(p, t), \delta(q, t)\}$.

Scheme 2. Let $\delta^{\prime}=\max \left\{\delta(r-1, t), \frac{1}{2}+\frac{t}{2}\right\}$. We prove that $\delta(r, t) \leq \delta^{\prime}$. Let ε be an arbitrary fixed positive real, and assume that n_{0} is large enough so that $\delta(r-1, t, n) \leq\left(\delta(r-1, t)+\frac{\varepsilon}{2}\right) n$ for all $n \geq n_{0}$. Assume that we are given an edge-weighted graph G on $n \geq 2 n_{0}$ vertices with minimum degree at least $\left(\delta^{\prime}+\varepsilon\right) n$. We partition randomly the vertices of G into a set A of size $\frac{r-1}{r} n$ and a set B of size $\frac{1}{r} n=k$. By the Chernoff-Hoeffding inequalities, for large enough n, there is such a partition which additionally satisfies that for every vertex the weighted degree into A is at least $\left(\delta^{\prime}+\frac{\varepsilon}{2}\right) \frac{r-1}{r} n$ and into B is at least $\delta^{\prime} \frac{1}{r} n$. By the assumption on δ^{\prime}, we can find a K_{r-1}-factor \mathcal{K}_{A} on A with minimum average weight t.

Using \mathcal{K}_{A} we construct a complete weighted bipartite graph H, where the vertices on one side are associated with cliques in \mathcal{K}_{A} and the vertices on the other side are associated with vertices in B. For a clique $K \in \mathcal{K}_{A}$ and a vertex $v \in B$, we assign as weight of the edge (K, v), the average of the weights of the edges between v and the vertices in K. Notice that the minimum
weighted degree of H is at least $\delta^{\prime} k \geq\left(\frac{1}{2}+\frac{t}{2}\right) k$. Recall that $H(t)$ is the unweighted subgraph of H consisting of edges with weight at least t. By a similar argument as in Observation [1 the minimum degree in $H(t)$ is at least $\frac{k}{2}$. Thus by Hall's theorem, there is a perfect matching \mathcal{M} in $H(t)$.

Now notice that \mathcal{K}_{A} and \mathcal{M} lift to a K_{r}-factor of G with minimum weight $t\binom{r-1}{2}+t(r-1)=$ $t\binom{r}{2}$. Consequently, $\delta(r, t, n) \leq\left(\delta^{\prime}+\varepsilon\right) n$. Since ε can be arbitrarily small, we have $\delta(r, t) \leq \delta^{\prime}=$ $\max \left\{\delta(r-1, t), \frac{1}{2}+\frac{t}{2}\right\}$.

By Proposition 2.1, Observation 1, and Scheme 2, we obtain the following theorem.
Theorem 3.4. For every $r \geq 3$ and $t \in(0,1]$,

$$
\frac{1}{r}+\left(1-\frac{1}{r}\right) t \leq \delta(r, t) \leq \frac{1}{2}+\frac{t}{2}
$$

For the special case related to triangle factors that we discussed in the beginning, we have $\frac{7}{9} \leq \delta\left(3, \frac{2}{3}\right) \leq \frac{5}{6}$. We note that Theorem 3.4 has been proved without using Scheme 1, however, Scheme 1 implies that if there is an improvement on the upper bound for any r, then there is an improvement in the upper bound for an infinite class of r^{\prime}. For example, for any fixed k, $\delta\left(r^{k}, t\right) \leq \delta(r, t)$. Because of the dependence on the bipartite matching result (which cannot be improved) a similar statement does not hold using just Scheme 2.

3.3 Open Question

In this article, we proposed the study of the function $\delta(r, t)$. Based on the evidence given by Proposition 2.1 and Theorem 3.1, we make the following conjecture.
Conjecture 1. For every $r \geq 2$ and $t \in(0,1]$,

$$
\delta(r, t)=\frac{1}{r}+\left(1-\frac{1}{r}\right) t .
$$

The function $\delta(r, t)$ shows different behavior from its non-weighted counterpart (which is related to the Hajnal-Szemerédi theorem). As one can see from the discussion of Subsection 3.2, the approach of examining the function by fixing t and varying r, opens up new possibilities which have no counterpart in the Hajnal-Szemerédi theorem. We note that our results suggest, but do not quite establish, the fact that for fixed $t, \delta(r, t)$ is a decreasing function of r. Further note that the weighted case has an extra power coming from the ability to include any edge in a K_{r}-factor, even if that edge has weight 0 . This suggests that there could be a relation to results of Kuhn and Osthus [5] on the existence of H-factors in graphs.

Acknowledgement. We thank Wojciech Samotij for his valuable comments.

References

[1] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hungar., 14 (1963), pp. 423-439.
[2] D. E. Daykin and R. Häggkvist, Degrees giving independent edges in a hypergraph, Bull. Austral. Math. Soc., 23 (1981), pp. 103-109.
[3] A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdős, in Combinatorial theory and its applications, II (Proc. Colloq., Balatonfüred, 1969), North-Holland, Amsterdam, 1970, pp. 601-623.
[4] H. Hàn, Y. Person, and M. Schacht, On perfect matchings in uniform hypergraphs with large minimum vertex degree, SIAM J. Discrete Math., 23 (2009), pp. 732-748.
[5] D. Kühn and D. Osthus, The minimum degree threshold for perfect graph packings, Combinatorica, 29 (2009), pp. 65-107.

[^0]: ${ }^{*}$ Department of Mathematical Sciences, University of Illinois, Urbana, IL, 61801, Supported in part by NSF CAREER Grant DMS-0745185, UIUC Campus Research Board Grants 09072 and 11067, OTKA Grant K76099, and TAMOP-4.2.1/B-09/1/KONV-2010-0005 project. Work was partly done while at Department of Mathematics, University of California, San Diego La Jolla, CA, 92093.
 ${ }^{\dagger}$ Department of Mathematics, Ryerson University Toronto, ON, M5B 2K3
 ${ }^{\ddagger}$ Department of Mathematics, UCLA, Los Angeles, CA, 90095. Email: choongbum.lee@gmail.com. Research supported in part by a Samsung Scholarship.
 ${ }^{\S}$ Department of Mathematics, University of California, San Diego, La Jolla, CA, 92093

