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Normal numbers and normality measure

Christoph Aistleitner∗

Abstract

The normality measure N has been introduced by Mauduit and Sárközy in order to
describe the pseudorandomness properties of finite binary sequences. Alon, Kohayakawa,
Mauduit, Moreira and Rödl proved that the minimal possible value of the normality
measure of an N -element binary sequence satisfies

(

1

2
+ o(1)

)

log
2
N ≤ min

EN∈{0,1}N

N (EN ) ≤ 3N1/3(logN)2/3

for sufficiently large N . In the present paper we improve the upper bound to c(logN)2 for
some constant c, by this means solving the problem of the asymptotic order of the minimal
value of the normality measure up to a logarithmic factor, and disproving a conjecture of
Alon et al.. The proof is based on relating the normality measure of binary sequences to
the discrepancy of normal numbers in base 2.

1 Introduction and statement of results

Let a finite binary sequence EN = (e1, . . . , eN ) ∈ {0, 1}N be given. For k ≥ 1, M ≥ 1 and
X ∈ {0, 1}k, we set

T (EN ,M,X) = # {n : 0 ≤ n < M, and (en+1, . . . , en+k) = X} ,

which means that T (EN ,M,X) counts the number of occurrences of the pattern X among
the first M + k elements of EN . The normality measure N (EN ) is defined as

N (EN ) = max
1≤k≤log

2
N

max
X∈{0,1}k

max
1≤M≤N+1−k

∣

∣

∣

∣

T (EN ,M,X) − M

2k

∣

∣

∣

∣

. (1)

The normality measure has been introduced in 1997 by Mauduit and Sárközy [17], together
with several other measures of pseudorandomness for finite binary sequences1. In two papers,
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1Strictly speaking, Mauduit and Sárközy defined their pseudorandomness measures for sequences over the
alphabet {−1, 1} (instead of {0, 1}, as in the present paper). However, in the case of the normality measure
the numerical values of the digits en are of no significance whatsoever, since they are used as mere symbols.
In the present paper, it is more convenient for our purpose to study sequences defined over the alphabet {0, 1}
(since they can be related to the binary representation of real numbers), and the definitions have been modified
accordingly.
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Alon, Kohayakawa, Mauduit, Moreira and Rödl [2, 3] studied the minimal and the typical
values of the normality measure (and other measures of pseudorandomness). Concerning the
typical value of N , they proved that for any ε > 0 there exist δ1, δ2 > 0 such that for EN

uniformly distributed in {0, 1}N

δ1
√
N ≤ N (EN ) ≤ δ2

√
N

holds with probability at least 1 − ε for sufficiently large N , and conjectured that a limit
distribution of

N (EN )√
N

exists; the latter has been recently confirmed [1]. Concerning the minimal value of N , Alon
et al. proved that

(

1

2
+ o(1)

)

log2N ≤ min
EN∈{0,1}N

N (EN ) ≤ 3N1/3(logN)2/3 (2)

for sufficiently large N . The lower bound in (2) is based on a relatively simple combinatorial
argument. The proof of the upper bound in (2) is rather elaborate; however, it is entirely
constructive, using an explicit algebraic construction based on finite fields. Concerning an
possible improvement of (2), Alon et al. write in [2]

“We suspect that the logarithmic lower bound in [equation (2)] is far from the
truth.”

and formulate the open problem

“Is there an absolute constant α > 0 for which we have

min
EN

N (EN ) > Nα

for all large enough N?”

In [3] they write

“The authors believe that the answer to [the open problem above] is positive.”

The purpose of the present paper is to close the gap between the lower and upper bound in (2),
and settle the problem asking for the asymptotic order of the minimal normality measure of
binary sequences, up to a logarithmic factor. More precisely, we will prove that

min
EN∈{0,1}N

N (EN ) = O
(

(logN)2
)

, (3)

by this means giving a negative answer of the problem of Alon et al. and disproving their
conjecture.

Theorem 1. There exists a constant c such that

min
EN∈{0,1}N

N (EN ) ≤ c(logN)2

for sufficiently large N .
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The key ingredient of the proof of Theorem 1 is to relate the problem asking for binary se-
quences having small normality measure to the problem asking for normal numbers having
small discrepancy. We will describe definitions, basic properties and important results con-
cerning normal numbers in Section 2 below; the proof of Theorem 1 will be given subsequently
in Section 3. The proof of Theorem 1 is constructive, providing a more or less explicit example
of a sequence satisfying the upper bound in the theorem.

2 Normal numbers

Normal numbers have been introduced by Borel [6] in 1909. Let z ∈ [0, 1) be a real number,
and denote its binary expansion by

z = 0.z1z2z3 . . . .

Then z is called a normal number (in base 2, which is the only base that we are interested
in in the present paper) if for any k ≥ 1 and any block of digits X ∈ {0, 1}k the relative
asymptotic frequency of the number of appearances of X in the binary expansion of z is
2−k. Using the terminology from the previous section and writing ZN = (z1, . . . , zN ) for the
sequence of the first N digits of z, this can be expressed as

lim
N→∞

T (ZN , N + 1− k,X)

N
= 2−k,

where k is the length of X. Borel proved that almost all numbers (in the sense of Lebesgue
measure) are normal2. There exist many constructions of normal numbers, the first of them
being obtained by concatenating the digital representations of the positive integers (Champer-
nowne [7], 1933), primes (Copeland and Erdős [8], 1946) and values of polynomials (Davenport
and Erdős [9], 1952). Deciding whether a given real number is normal or not is a very difficult
problem, and it is unknown whether constants such as

√
2, e and π are normal or not (see [4]).

In an informal way, normal numbers (or the corresponding infinite sequences of digits) are
often considered as numbers showing “random” behavior (which is justified by the aforemen-
tioned theorem of Borel). In fact, different variants of the normality property have been
considered as a test for pseudorandomness of (infinite) sequences of digits, for example in the
monograph of Knuth [13] on The Art of Computer Programming, and the normality measure
of Mauduit and Sárközy is a quantitative version of such a pseudorandomness test for the case
of a finite sequence of digits. For a discussion of the connection between normal numbers,
pseudorandomness of (finite) sequences, and pseudorandom number generators, see the book
of Knuth and the papers of Mauduit and Sárközy On finite pseudorandom binary sequences
I-VII, as well as [5, 18].

To proceed further, we need some notation. A sequence of real numbers (yn)n≥1 from the unit
interval is called uniformly distributed modulo one (u.d. mod 1) if for all intervals [a, b) ⊂ [0, 1)
the limit relation

lim
N→∞

1

N

N
∑

n=1

1[a,b)(yn) = b− a

2This is the first ever appearance of what we call today the strong law of large numbers, for the special case
of the i.i.d. system of the Rademacher functions on the unit interval.
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holds. The quality of the uniform distribution of a sequence is measured in terms of the
discrepancy DN , which for N ≥ 1 is defined as

DN (y1, . . . , yN ) = sup
0≤a<b≤1

∣

∣

∣

∣

∣

1

N

N
∑

n=1

1[a,b)(yn)− (b− a)

∣

∣

∣

∣

∣

.

A sequence is u.d. mod 1 if and only if its discrepancy tends to zero as N → ∞.

By an observation of Wall [21], a number z is normal (in base 2) if and only if the sequence
(

〈2n−1z〉
)

n≥1
,

where 〈·〉 denotes the fractional part, is u.d. mod 1. Equivalently, z is normal if and only if

DN

(

z, 〈2z〉, . . . , 〈2N−1z〉
)

→ 0 as N → ∞.

Korobov [14] posed the problem of finding a function ψ(N) with maximal decay for which
there exists a number z such that

DN

(

z, 〈2z〉, . . . , 〈2N−1z〉
)

≤ ψ(N), N ≥ 1.

The best results concerning this question is currently due to Levin [16], who proved (con-
structively, by giving an explicit example) the existence of a z for which

DN

(

z, 〈2z〉, . . . , 〈2N−1z〉
)

= O
(

(logN)2

N−1

)

as N → ∞. (4)

This result should be compared with a lower bound of Schmidt [20], stating that for any
sequence (yn)n≥1

DN (y1, . . . , yN ) ≥ cabs
logN

N
.

Thus Korobov’s problem is solved, up to a logarithmic factor. It is also interesting to com-
pare (4) with the “typical” discrepancy of a normal number: for almost all z ∈ [0, 1),

lim sup
N→∞

√
NDN

(

z, 〈2z〉, . . . , 〈2N−1z〉
)

√
log logN

=
2
√
21

9

(Fukuyama [11]).

For more information on normal numbers we refer to [12, 19], for an introduction to uniform
distribution and discrepancy theory to [10, 15].

The main tool in the proof of Theorem 1 is the following lemma.

Lemma 1. Let z ∈ [0, 1) be a real number, whose binary expansion is given by

z = 0.z1z2z3 . . . ,

and assume that there exists a nondecreasing function Φ(N) such that

DN

(

z, 〈2z〉, . . . , 〈2N−1z〉
)

≤ Φ(N)

N
, N ≥ 1. (5)

Then for each N ≥ 1 the binary sequence ZN = (z1, . . . , zN ) satisfies

N (ZN ) ≤ Φ(N).

In view of Levin’s result (4), Theorem 1 is a direct consequence of the lemma.
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3 Proof of Theorem 1.

By the previous remark, to establish Theorem 1 it remains to prove Lemma 1. Let a number
N be fixed, and assume that

DN

(

z, 〈2z〉, . . . , 〈2M−1z〉
)

≤ Φ(M)

M

holds for 1 ≤M ≤ N . To prove N (ZN ) ≤ Φ(N) we have to show that for any values of k, X
and M satisfying 1 ≤ k ≤ log2N , X ∈ {0, 1}k and 1 ≤M ≤ N − k + 1 we have

∣

∣

∣

∣

T (ZN ,M,X) − M

2k

∣

∣

∣

∣

≤ Φ(N). (6)

Let k, X and M satisfying these assumptions be fixed and write X = (x1, . . . , xk), where
x1, . . . , xk ∈ {0, 1}. By definition,

T (ZN ,M,X) = # {n : 0 ≤ n < M, and (zn+1, . . . , zn+k) = (x1, . . . , xk)} .
To X we can assign an interval IX by setting

IX =





k
∑

j=1

xj2
−j ,





k
∑

j=1

xj2
−j



+ 2−k



 .

Then IX is a half-open interval of length 2−k. The following observation is the crucial point
of the proof of the lemma. We have

(zn+1, . . . , zn+k) = (x1, . . . , xk)

if and only if
〈2nz〉 ∈ IX .

In fact, we have
〈2nz〉 = 0.zn+1zn+2 . . . ,

and for any number y ∈ [0, 1) the relation y ∈ IX holds if and only if the first k digits of y
coincide with (x1, . . . , xk).

Consequently, we have

T (ZN ,M,X) =
M−1
∑

n=0

1IX (〈2nz〉) =
M
∑

n=1

1IX

(

〈2n−1z〉
)

. (7)

Now by the assumption on the discrepancy of z we have
∣

∣

∣

∣

∣

1

M

M
∑

n=1

1IX

(

〈2n−1z〉
)

− 1

2k

∣

∣

∣

∣

∣

≤ Φ(M)

M
, (8)

and consequently, multiplying equation (8) by M and using (7), we obtain
∣

∣

∣

∣

T (ZN ,M,X) − M

2k

∣

∣

∣

∣

≤ Φ(M).

Since by assumption the function Φ(M) is nondecreasing, this establishes (6), which proves
Lemma 1.
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