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Expansion in high dimension for the

growth constants of lattice trees and lattice animals

Yuri Mej́ıa Miranda∗ and Gordon Slade∗
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Abstract

We compute the first three terms of the 1/d expansions for the growth constants and one-
point functions of nearest-neighbour lattice trees and lattice (bond) animals on the integer
lattice Zd, with rigorous error estimates. The proof uses the lace expansion, together with a
new expansion for the one-point functions based on inclusion-exclusion.

AMS 2010 Subject Classification: 60K35, 82B41

1 Main result

For d ≥ 1, we consider the integer lattice Zd as a regular graph of degree 2d, with edges consisting
of the nearest-neighbour bonds {x, y} with ‖x − y‖1 = 1. A lattice animal is a finite connected
subgraph, and a lattice tree is a lattice animal without cycles. These are fundamental objects in
combinatorics and in the theory of branched polymers [21].

We denote the number of lattice animals containing n bonds and containing the origin of Zd

by an, and the number of lattice trees containing n bonds and containing the origin of Zd by
tn. Standard subadditivity arguments [22, 23] provide the existence of the d-dependent growth

constants (which we express in the notation of [8])

λ0 = lim
n→∞

t1/nn , λb = lim
n→∞

a1/nn . (1.1)

A deeper analysis shows that λ0 = limn→∞ tn+1/tn and λb = limn→∞ an+1/an [24]. The one-point

functions are the generating functions of the sequences an and tn, namely

g(t)(z) =
∞∑

n=0

tnz
n and g(a)(z) =

∞∑

n=0

anz
n. (1.2)
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These have radii of convergence z
(t)
c = λ−1

0 and z
(a)
c = λ−1

b , respectively. We refer to z
(t)
c and z

(a)
c as

the critical points. We use superscripts to differentiate between lattice trees and lattice animals,
and we write zc or g(z) below for statements that apply to both models. We use the abbreviation

gc = g(zc). (1.3)

Also, to make statements simultaneously for lattice trees and lattice animals, we use the indicator
function 1a which takes the value 1 for the case of lattice animals, and the value 0 for the case of
lattice trees.

Our main result is the following theorem, which gives detailed information on the asymptotic
behaviour of the critical points and critical one-point functions as d → ∞. The notation f(d) =
o(h(d)) means limd→∞ f(d)/h(d) = 0.

Theorem 1.1. For lattice trees or lattice animals, as d → ∞,

zc = e−1

[
1

2d
+

3
2

(2d)2
+

115
24

− 1a
1
2
e−1

(2d)3

]

+ o(2d)−3, (1.4)

gc = e

[

1 +
3
2

2d
+

263
24

− 1ae
−1

(2d)2

]

+ o(2d)−2. (1.5)

Theorem 1.1 extends our results in [26], where it was proved that, for both models,

zc =
1

2de
+ o(2d)−1, gc = e + o(1). (1.6)

The leading terms (1.6) were obtained in [26] from the lace expansion results of [12, 13], together
with a comparison with the mean-field model studied in [3]. Our proof of Theorem 1.1 provides
a different and self-contained proof of the asymptotic behaviour of the leading terms, as part of a
systematic development of further terms.

The lattice trees and lattice animals we are considering are bond clusters. For the closely
related models of site trees and site animals, it was proved in [1] and [2] respectively, using very
different methods than ours, that the corresponding growth constants Λ0 and Λs (in the notation
of [8]) are both asymptotic to 2de as d → ∞. For related results for spread-out models of lattice
trees and lattice animals, see [29, 26].

The behaviour of z
(t)
c and z

(a)
c as d → ∞ has been extensively studied in the physics literature.

For lattice trees, the expansion

z(t)c = e−1

[
1

2d
+

3
2

(2d)2
+

115
24

(2d)3
+

309
16

(2d)4
+

619103
5760

(2d)5
+

543967
768

(2d)6

]

+ . . . . (1.7)

is equivalent to the expansion given in [8] for λ0, but in [8] no rigorous estimate for the error term
is obtained. Similarly, the series

z(a)c = e−1

[
1

2d
+

3
2

(2d)2
+

115
24

− 1
2
e−1

(2d)3
+

309
16

− 2e−1

(2d)4
+

619103
5760

− 113
12
e−1

(2d)5

+
543967
768

− 395
12
e−1 − 55

24
e−2

(2d)6

]

+ . . . . (1.8)
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is equivalent to the result of [16, 27] for λb, but again no rigorous error estimate was obtained in
[16, 27]. Equation (1.4) provides rigorous confirmation of the first three terms in (1.7)–(1.8), using
completely different methods than [8, 16, 27].

The formulas (1.4)–(1.8) are examples of 1/d expansions. Such expansions have a long history
and have been developed for several models, in particular for self-avoiding walk and percola-
tion. Let cn denote the number of n-step self-avoiding walks starting at the origin. For nearest-
neighbour self-avoiding walk on Zd, it was proved in [15] that the inverse connective constant

z
(s)
c = [limn→∞ c

1/n
n ]−1 has an asymptotic expansion z

(s)
c ∼

∑∞
i=1mi(2d)

−i to all orders, with all
coefficients mi integers. The first six coefficients had been computed much earlier, in [7], but with-
out rigorous control of the error, and these six values were confirmed with rigorous error estimate
in [15]. Subsequently, seven additional coefficients in the expansion were computed in [4]. The
values of mi for i ≤ 11 are positive, whereas m12 and m13 are negative. It appears likely that the
series

∑

i mix
i has radius of convergence equal to zero. It may however be Borel summable, and

a partial result in this direction is given in [11]. Some related results for nearest-neighbour bond
percolation on Zd are obtained in [15, 18, 19]. In particular, it is shown in [18] that the critical
probability pc = pc(d) has an asymptotic expansion pc ∼

∑∞
i=1 qi(2d)

−1 to all orders, with all qi
rational. The values of q1, q2, q3 are computed in [15, 19], and qi is given for i ≤ 5 in [10] but
without rigorous error estimate. Results for spread-out models of percolation and self-avoiding
walk can be found in [17, 28, 29].

An interesting problem which we do not solve in this paper is to prove existence of asymptotic
expansions to all orders for z

(t)
c and z

(a)
c ; we believe that the methods we develop would be useful

for approaching this problem. An existence proof would then open up the additional problems
of proving that the series have zero radius of convergence but are Borel summable—the latter
problems seem considerably more difficult than the existence problem. Also, both the formula
(1.7) and the insights in our proof strongly suggest that there exists an asymptotic expansion

z
(t)
c ∼ e−1

∑∞
i=−1 ri(2d)

−i, with ri rational, but we do not prove this either. The formula (1.4) does

prove that the coefficients for z
(a)
c are not all rational multiples of e−1, as was already apparent

from the nonrigorous formula (1.8). In our proof, the appearance of the term −1
2
e−1 in (1.4) arises

due to the contribution from animals in which the origin lies in a cycle of length 4, which of course
cannot occur in a lattice tree. It is in this way that the strict inequality z

(a)
c < z

(t)
c [9] (equivalently

λ0 < λb) first manifests itself in the 1/d expansions.
Much has been proved about lattice trees and lattice animals above the upper critical dimension

dc = 8, using the lace expansion. The lace expansion was first adapted to lattice trees and lattice
animals in [13]. For sufficiently high dimensions, it has been proved that tn ∼ Aλn

0n
−3/2 and that

the length scale of an n-bond lattice tree is typically of order n1/4 [14]. Much stronger results
relate the scaling limit of high-dimensional lattice trees to super-Brownian motion [6, 20, 30].

The proof of Theorem 1.1 relies heavily on the lace expansions for lattice trees and lattice
animals, and in particular on estimates of [12, 13]. The lace expansions are expansions for the
two-point functions

G(t)
z (x) =

∞∑

n=0

tn(x)z
n, G(a)

z (x) =
∞∑

n=0

an(x)z
n, (1.9)

where tn(x) and an(x) respectively denote the number of n-bond lattice trees and n-bond lattice

3



animals containing the two points 0, x ∈ Zd. Equivalently,

Gz(x) =
∑

C∋0,x

z|C|, (1.10)

where the sum is over lattice trees or lattice animals containing 0, x, according to which model is
considered, and where |C| denotes the number of bonds in C.

To prove Theorem 1.1, it is not enough just to have an expansion for the two-point function:
an expansion for the one-point function is needed as well. This is a difficulty for lattice trees and
lattice animals that does not occur for self-avoiding walk or percolation. In this paper, we develop
a new expansion for the one-point function, based on inclusion-exclusion.

The lace expansion and the expansion we present here for the one-point function have been
developed so far only in the context of bond trees and bond animals. To apply our approach to
related models, such as site animals or site trees, it would be necessary to extend the expansions
to these models, and also to extend the estimates of Section 5 below to these models.

Theorem 1.1 first appeared in the PhD thesis [25]; the proof here has been reorganised and
simplified.

2 Recursive structure of the proof

The susceptibility χ is defined, for lattice trees or lattice animals, by

χ(z) =
∑

x∈Zd

Gz(x). (2.1)

For z ∈ [0, zc], the lace expansion of [13] expresses χ in terms of another function Π̂z (discussed
below in Section 4) via

χ(z) =
g(z) + Π̂z

1− 2dz(g(z) + Π̂z)
. (2.2)

For d sufficiently large, the susceptibility has been proven to diverge at zc [12, 13], and this is
reflected by the vanishing of the denominator of the right-hand side of (2.2) when z = zc (see [12,
(1.30)]), namely

1− 2dzc(gc + Π̂zc) = 0. (2.3)

We rewrite (2.3) as

zc =
1

2d

1

gc + Π̂zc

, (2.4)

which expresses zc in terms of gc and Π̂zc .
Our main tool in obtaining rigorous error estimates is stated in Lemma 5.1 below. This lemma

applies the infrared bound of [13], which is a bound on the Fourier transform of the two-point
function, to obtain estimates on certain convolutions of the two-point function. Using Lemma 5.1,
we prove the following expansions for Gzc(s) and for Π̂zc , where s ∈ Zd is a neighbour of the origin.
Recall that 1a equals 1 for lattice animals and equals 0 for lattice trees.

4



Theorem 2.1. Let s ∈ Zd be a neighbour of the origin. For lattice trees or lattice animals,

Gzc(s) = e

[
1

2d
+

7
2

(2d)2

]

+ o(2d)−2. (2.5)

Theorem 2.2. For lattice trees or lattice animals,

Π̂zc = e

[

−
3

2d
−

27
2
− 1a

3
2
e−1

(2d)2

]

+ o(2d)−2. (2.6)

Our method of proof follows a recursive procedure in which the calculation of the terms in the
expansion for zc is intertwined with the computation of the terms in the expansions for Gzc(s), Π̂zc

and gc. A key ingredient is the new expansion for the one-point function developed in Section 3.
Although (1.6) has been proved already in [26], we give a different proof as the initial step in the
recursion. Our proof here is conceptually simpler and more direct than that of [26], and also serves
as a good introduction to the systematic computation of higher order terms. Our starting point
consists of the estimates (valid for large d)

1 ≤ gc ≤ 4, 2dzcgc = 1 + o(1). (2.7)

The first of these bounds is proved in [13] for both lattice trees and lattice animals (the lower bound
is trivial), and the second is a consequence of (2.3) together with the estimate Π̂zc = O(2d)−1

proved in [13]. We comment in more detail on the previously known bounds on Π̂z in Section 4
below. It is an immediate consequence of (2.7) that for large d we have 2dzcgc ∈ [1

2
, 2], and hence

1
8

2d
≤ zc ≤

2

2d
. (2.8)

Our procedure consists of the three steps depicted in Figure 1. In Section 6, we first apply
Lemma 5.1 to prove that Gzc(s) = o(1), as a very preliminary version of Theorem 2.1. With (2.7),
this permits us to apply the simplest version of our new expansion for the one-point function to
improve (2.7)–(2.8) to gc = e+ o(1) and zc = (2de)−1 + o(2d)−1, yielding (1.6). Then in Section 7,
we apply (1.6) to compute the first terms on the right-hand sides of (2.5)–(2.6), then use the result
of that computation together with the expansion for the one-point function to compute the second
term of (1.5), and then from (2.4) obtain the second term of (1.4). In Section 8, we repeat the
process, obtaining an additional term for Π̂zc , then an additional term for gc. Once we have proved
Theorem 2.2 and (1.5), the expansion (1.4) follows immediately by substitution into (2.4). Due to
the algorithmic nature of the procedure, there is no reason in principle why further terms could
not be computed with further effort. The results in Sections 3 and 6–8 heavily rely on several
technical estimates which we collect and prove in Section 9.

3 Expansion for one-point function

In this section, we develop a new expansion for the one-point functions of lattice trees and lattice
animals, simultaneously. The expansion may be considered as a systematic use of inclusion-
exclusion to compare with the mean-field model of lattice trees of [3], which is based on the
Galton–Watson branching process with critical Poisson offspring distribution.
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First order correction

Second order correction

Starting point Leading terms

Figure 1: Flow of the proof of Theorem 1.1. The steps represented by the three arrows are
implemented in Sections 6, 7 and 8, respectively.

3.1 Estimate for the one-point function

We begin by stating the one result from Section 3, in Theorem 3.1 below, that will be used later in
the proof of Theorem 1.1. The proof of Theorem 3.1 uses only the starting bounds (2.7), together
with the important Lemma 5.1 which is used to bound errors.

In the case of g(a)(z), it is convenient to separate the sum over lattice animals depending on
whether the origin is contained in a cycle or not, which we denote by 0 ∈ cycle and 0 6∈ cycle,
respectively. For the former, we define

g◦(z) = 1a

∑

A∋0:0∈cycle

z|A|. (3.1)

Then we obtain, for either model,

g(z) =
∑

C∋0

z|C| =
∑

C∋0:06∈cycle

z|C| + g◦(z), (3.2)

where the clusters C are lattice trees or lattice animals depending on which model we consider.
We will expand the first term on the right-hand side of (3.2), but do not expand g◦(z).

We introduce the notion of a planted tree or animal as one which contains the origin as a vertex
of degree 1. An important role will be played by the generating function

r(z) =
∑

S∋s

z|S|, rc = r(zc), (3.3)

6



for clusters planted via the bond {0, s} with s a specific neighbour of the origin (by symmetry
r(z) does not depend on the choice of s). We emphasise that in (3.3) we are abusing notation by
writing S ∋ s to denote that the bond {0, s} is contained in the planted cluster S; we will continue
to use this notational convention. The generating function r is related to the one- and two-point
functions by the identity

r(z) = zg(z)− zGz(s). (3.4)

To see this, we use the definition of r and inclusion-exclusion to write

r(z) = z
∑

C∋s:C 6∋0

z|C| = z
∑

C∋s

z|C| − z
∑

C∋s,0

z|C|, (3.5)

and observe that the resulting right-hand side is identical to the right-hand side of (3.4).
At the critical value zc, we can use (2.3) to replace g by Π̂ in (3.4), and obtain

2drc = 1− 2dzcΠ̂zc − 2dzcGzc(s). (3.6)

The identity (3.6) will be useful in conjunction with the following theorem.

Theorem 3.1. For lattice trees or lattice animals,

gc = e2drc
[

1−
1

2
(2d)r2c +

1

8
(2d)2r4c −

7
6

(2d)2

]

+ g◦(zc) + o(2d)−2. (3.7)

The proof of Theorem 3.1 will be discussed at the end of Section 3. It is based on the expansion
for g which we discuss next. The remainder of Section 3 is needed only for the proof of Theorem 3.1.

3.2 Expansion for the one-point function

The one-point function for trees, and for animals in which the origin does not belong to a cycle,
have the following similar structure. A tree T , or an animal A for which the origin is not in a
cycle, consists either of the single vertex 0, or of some number m ∈ {1, . . . , 2d} of planted clusters
Si which intersect pairwise only at the origin. This is depicted in Figure 2.

Figure 2: Decomposition into planted clusters Si, for a lattice tree and for a lattice animal with
0 6∈ cycle.

Given 0 ≤ i < j ≤ m and a set ~S = {S1, . . . , Sm} of m planted clusters, we define

Vij(~S) =

{

−1 if Si and Sj share a common vertex other than 0

0 if Si and Sj share no common vertex other than 0.
(3.8)

7



Let E = {e1, e2, . . . , e2d} consist of the 2d nearest neighbours of the origin ordered such that
ei = (0, . . . , 1, 0, . . . , 0), where the 1 is located at the i-th coordinate for 1 ≤ i ≤ d, and ei = −ei−d

for d+ 1 ≤ i ≤ 2d. Then we can rewrite the one-point function as

g(z) =
∞∑

m=0

1

m!

∑

s1,...,sm∈E

∑

S1∋s1

z|S1| · · ·
∑

Sm∋sm

z|Sm|
∏

1≤i<j≤m

(1 + Vij) + g◦(z). (3.9)

The factor (1 + Vij) ensures that Si and Sj do not intersect each other except at the origin; in
particular, this excludes the possibility that si = sj. It also ensures that the sum over m in (3.9)
is actually a finite sum, since the terms vanish for m > 2d.

It follows easily by induction on n ≥ 0 that

∏

1≤a≤n

(1 + xa) = 1 +
∑

1≤a≤n

xa

∏

a<b≤n

(1 + xb). (3.10)

Throughout the paper, an empty product equals 1 and an empty sum equals 0. Iteration of (3.10)
gives

∏

1≤a≤n

(1 + xa) = 1 +
∑

1≤a≤n

xa +
∑

1≤a<b≤n

xaxb +
∑

1≤a<b<c≤n

xaxbxc

+
∑

1≤a<b<c<d≤n

xaxbxcxd

∏

d<e≤n

(1 + xe). (3.11)

We apply (3.11) to the product
∏

1≤i<j≤m(1 + Vij) in (3.9), with the lexicographic order on the
indices (i, j). To facilitate this, for m ≥ 2 we define

Aij = Aij(m) = {(i, l) : j < l ≤ m} ∪ {(k, l) : i < k < l ≤ m}; (3.12)

thus Aij consists of the indices that are lexicographically larger than (i, j). Then (3.11) gives

∏

1≤i<j≤m

(1 + Vij) = J (0)
m − J (1)

m + J (2)
m −J (3)

m + J̃ (4)
m , (3.13)

where

J (0)
m = 1, (3.14)

J (1)
m =

∑

1≤i<j≤m

(−Vij), (3.15)

J (2)
m =

∑

1≤i<j≤m

∑

(k,l)∈Aij

VijVkl, (3.16)

J (3)
m =

∑

1≤i<j≤m

∑

(k,l)∈Aij

∑

(p,q)∈Akl

(−VijVklVpq), (3.17)

J̃ (4)
m =

∑

1≤i<j≤m

∑

(k,l)∈Aij

∑

(p,q)∈Akl

∑

(r,s)∈Apq

VijVklVpqVrsIrs, (3.18)
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with Irs =
∏

(t,u)∈Ars
(1 + Vtu). This leads to the expansion

g(z) = Γ(0)(z)− Γ(1)(z) + Γ(2)(z)− Γ(3)(z) + Γ̃(4)(z) + g◦(z), (3.19)

where

Γ(i)(z) =
∞∑

m=0

1

m!

∑

s1,...,sm∈E

∑

S1∋s1

z|S1| · · ·
∑

Sm∋sm

z|Sm|J (i)
m (i = 0, 1, 2, 3), (3.20)

Γ̃(4)(z) =
∞∑

m=2

1

m!

∑

s1,...,sm∈E

∑

S1∋s1

z|S1| · · ·
∑

Sm∋sm

z|Sm|J̃ (4)
m . (3.21)

Note that i in Γ(i) counts the number of factors of V in each term, and the remainder term Γ̃(4)

also contains the factor Irs. This last factor could be expanded further, and the process continued
indefinitely, but for the proof of Theorem 1.1 the expansion (3.19) suffices.

3.3 Identities and estimates for the one-point function

In this section, we first prove identities needed for the analysis of the Γ(i). These are then used,
together with estimates whose proofs are deferred to Section 9, to provide an expansion for gc in
terms of rc.

The term Γ(0)(z) can be immediately computed. Indeed, by its definition in (3.20) and (3.14),
and by (3.3),

Γ(0)(z) =

∞∑

m=0

1

m!
(2d)mr(z)m = e2dr(z). (3.22)

The term Γ(1) is also straightforward, as we show below. For the analysis of Γ(2)(z) and Γ(3)(z), it
will be useful to decompose according to the cardinality of the label sets {i, j, k, l} and {i, j, k, l, p, q}

(respectively in J
(2)
m and J

(3)
m ) and we write Γ(m,n) for the contribution to Γ(m) arising from label

sets of cardinality n. Thus, for m = 2, 3, Γ(m) =
∑

n Γ
(m,n), where m counts the number of V

factors and n counts the cardinality of the label set. In particular, when m = 2 we have the two
possibilities n = 3, 4, while for m = 3 the possibilities are n = 3, 4, 5, 6. As we discuss in more
detail below, Γ(3,n) is an error term for n = 4, 5, 6, as is Γ̃(4). For Theorem 1.1, we will need an
accurate calculation of Γ(2,3)(z), Γ(2,4)(z) and Γ(3,3)(z). To obtain convenient expressions for these
important terms, we make the definitions

Z(1)(z) =
∑

s1,s2∈E

∑

S1∋s1

∑

S2∋s2

z|S1|+|S2|(−V12), (3.23)

Z(2)(z) =
∑

s1,s2,s3∈E

∑

S1∋s1

∑

S2∋s2

∑

S3∋s3

z|S1|+|S2|+|S3|V12V13, (3.24)

Z(3)(z) =
∑

s1,s2,s3∈E

∑

S1∋s1

∑

S2∋s2

∑

S3∋s3

z|S1|+|S2|+|S3|(−V12V13V23). (3.25)
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Lemma 3.2. The following identities hold:

Γ(1)(z) =
1

2!
Γ(0)(z)Z(1)(z), (3.26)

Γ(2,3)(z) =
3

3!
Γ(0)(z)Z(2)(z), (3.27)

Γ(2,4)(z) =
3

4!
Γ(0)(z)Z(1)(z)2, (3.28)

Γ(3,3)(z) =
1

3!
Γ(0)(z)Z(3)(z). (3.29)

Proof. For Γ(1)(z), we interchange the sums over s1, . . . , sm ∈ E and 1 ≤ i < j ≤ m which arise by
substitution of (3.15) into (3.20) to obtain

Γ(1)(z) =

∞∑

m=2

1

m!
(2dr(z))m−2

∑

1≤i<j≤m

∑

si,sj∈E

∑

Si∋si

z|Si|
∑

Sj∋sj

z|Sj |(−Vij)

=
∞∑

m=2

1

m!
(2dr(z))m−2

(
m

2

)

Z(1)(z)

=
1

2
Γ(0)(z)Z(1)(z), (3.30)

where we used (3.22) in the last step.
For Γ(2,3), the condition |{i, j, k, l}| = 3 is satisfied when k = i, k = j or l = j. In all cases, we

choose three labels from a set of m and order them; this order automatically determines which one
corresponds to i, j, k and l. Hence, the number of options for the labels is 3

(
m
3

)
. Using symmetry,

we obtain

Γ(2,3)(z) =
∞∑

m=3

1

m!
(2dr(z))m−3 3

(
m

3

)
∑

s1,s2,s3∈E

∑

S1∋s1

∑

S2∋s2

∑

S3∋s3

z|S1|+|S2|+|S3|V12V13

=
3

3!
Γ(0)(z)Z(2)(z). (3.31)

For the case Γ(2,4), the labels i, j, k, l are distinct. To determine the number of possibilities for
the labels we chose four labels from a set of m and order them. Then i is the smallest by definition,
j has the remaining 3 options, and once j is determined, so are k and l. Hence, there are 3

(
m
4

)

possibilities. By interchanging sums and using symmetry, we obtain

Γ(2,4)(z) =

∞∑

m=4

1

m!
(2dr(z))m−4 3

(
m

4

)
∑

s1,s2,s3,s4∈E

∑

S1∋s1

∑

S2∋s2

∑

S3∋s3

∑

S4∋s4

z|S1|+|S2|+|S3|+|S4|V12V34

=
3

4!
Γ(0)(z)Z(1)(z)2. (3.32)

For Γ(3,3), it must be the case that i < j < l, k = i, p = j and q = l. Thus the number of
possibilities for the labels is given by choosing three labels from a set of m and ordering them in

10



this way. By interchanging sums and using symmetry, we obtain

Γ(3,3)(z) =

∞∑

m=3

1

m!
(2dr(z))m−3

(
m

3

)
∑

s1,s2,s3∈E

∑

S1∋s1

∑

S2∋s2

∑

S3∋s3

z|S1|+|S2|+|S3|(−V12V13V23)

=
1

3!
Γ(0)(z)Z(3)(z). (3.33)

This completes the proof.

Now we can prove Theorem 3.1, using estimates from Section 9.1. The estimates we require
are that

Z(1)
c = 2dr2c +

3

(2d)2
+ o(2d)−2, Z(2)

c =
1

(2d)2
+ o(2d)−2, Z(3)

c =
1

(2d)2
+ o(2d)−2 (3.34)

(proved in Lemma 9.1), and that the terms Γ(3,n)(zc) (n = 4, 5, 6) and Γ̃(4)(zc) are all O(2d)−3

(proved in Lemma 9.2). The proofs of Lemmas 9.1–9.2 depend only on the starting bounds (2.7),
together with Lemma 5.1 which gives error estimates.

Proof of Theorem 3.1. We substitute the identities of Lemma 3.2 into (3.19), and apply the results
of Lemmas 9.1–9.2 mentioned above (together with rc ≤ zcgc = O(2d)−1 by (2.7)), to obtain

gc = e2drc
[

1−
1

2!
Z(1)

c +

(
3

3!
Z(2)

c +
3

4!
(Z(1)

c )2
)

−
1

3!
Z(3)

c

]

+ g◦(zc) + o(2d)−2

= e2drc
[

1−
1

2
(2d)r2c +

1

8
(2d)2r4c −

7
6

(2d)2

]

+ g◦(zc) + o(2d)−2, (3.35)

and the proof is complete.

4 Lace expansion

We recall some fundamental facts about the lace expansion for lattice trees and lattice animals
from [13] (see also [12, 30]).

4.1 Lace expansion for lattice trees

A lattice tree containing 0, x, which contributes to the two-point function Gz(x) =
∑

T∋0,x z
|T | of

(1.10), can be decomposed into a unique path joining 0 and x, which we call the backbone, together
with the disjoint collection of subtrees consisting of the connected components that remain after
the bonds in the backbone (but not the vertices) are removed. We refer to the subtrees (which
may consist of a single vertex) as ribs. The definitions should be clear from Figure 3.

By definition, the ribs are mutually avoiding. However, in high dimensions, if this avoidance
restriction were relaxed then intersections between ribs should be in some sense still rare. The
lace expansion is a way of making this vague intuition precise, via a systematic use of inclusion-
exclusion. To describe the basic idea, we need the following definitions.

11



Figure 3: Decomposition of a lattice tree T into the backbone from 0 to x (bold) and the ribs
~R = {R0, . . . , R9}.

Let D : Zd → R denote the one-step transition probability function for simple random walk on
Zd, i.e.,

D(x) =

{

(2d)−1 if ‖x‖1 = 1,

0 otherwise.
(4.1)

The convolution of absolutely summable functions f : Zd → R and h : Zd → R is given by

(f ∗ h)(x) =
∑

y∈Zd

f(y)h(x− y). (4.2)

If it were the case that the rib R0 were permitted to intersect the remaining ribs, then the
two-point function G

(t)
z (x) (for x 6= 0) would be given by the convolution

g(t)(z)(2dzD ∗G(t)
z )(x) = g(t)(z)

∑

y∈Zd

2dzD(y)G(t)
z (x− y), (4.3)

where the factor g(t)(z) captures the rib at the origin, y is the location of the next vertex after

0 along the backbone, and G
(t)
z (x − y) captures the backbone from y to x together with its ribs.

Compared to the two-point function, (4.3) permits disallowed intersections and thus includes too
much. In fact, it provides the basis of the mean-field model introduced in [5] and further studied
in [3, 30]. The lace expansion corrects the overcounting in (4.3) with the help of the function
Πz : Z

d → R which appears in the identity

G(t)
z (x) = δ0,xg

(t)(z) + Π(t)
z (x) + g(t)(z)(2dzD ∗G(t)

z )(x) + (Π(t)
z ∗ 2dzD ∗G(t)

z )(x). (4.4)

In [13], an expansion for Π̂
(t)
z =

∑

x∈Zd Π
(t)
z (x) is given, of the form

Π̂(t)
z =

∞∑

N=1

(−1)N Π̂(t,N)
z . (4.5)

It is known (see [12]) that there is a c > 0 such that for all N ≥ 1 and all z ∈ [0, zc],

0 ≤ Π̂(t,N)
z ≤ cNd−N (4.6)

12



and this implies that the only terms that can contribute to (2.6) for lattice trees are those with
N = 1, 2. We define these terms next.

We define Uij(~R) by

Uij(~R) =

{

−1 if ribs Ri and Rj share a common vertex

0 if ribs Ri and Rj share no common vertex.
(4.7)

Let W(x) denote the set of simple random walk paths ω from 0 to x, i.e., sequences x0 =
0, x1, . . . , xn = x with ‖xi+1 − xi‖1 = 1 for all i, for any length n = |ω| ≥ 0. The function

Π
(t,1)
z (x) is defined by

Π(t,1)
z (x) =

∑

ω∈W(x):|ω|≥1

z|ω|
∑

R0∋ω(0)

z|R0| · · ·
∑

R|ω|∋x

z|R|ω||(−U0|ω|)
∏

0≤i<j≤|ω|
(i,j) 6=(0,|ω|)

(1 + Uij) .
(4.8)

For a nonzero contribution, the factor U0|ω| forces the first and last ribs to intersect, while the final

product disallows all other intersection among the ribs. The function Π
(t,2)
z (x) is defined by

Π(t,2)
z (x) =

∑

ω∈W(x):|ω|≥2

z|ω|
∑

R0∋ω(0)

z|R0| · · ·
∑

R|ω|∋x

z|R|ω||
∑

L∈L(2)[0,|ω|]

∏

ij∈L

Uij

∏

i′j′∈C(L)

(1 + Ui′j′) , (4.9)

where the set L(2)[0, |ω|] of (2-edge) laces is given by:

L(2)[0, n] =
{
{0j, jn} : 0 < j < n

}
∪
{
{0j, in} : 0 < i < j < n

}
, (4.10)

and where the set C(L) compatible with L ∈ L(2)[0, n] is given:
(i) for L = {0j, jn}, by all pairs kl with 0 ≤ k < l ≤ n except 0l with l > j and kn with k < j;
(ii) for L = {0j, in} with i < j, by all pairs kl excepting both 0l with l > j and kn with k < i.
For more details, see [13] or [12, 30].

4.2 Lace expansion for lattice animals

The two-point function G
(a)
z (x) =

∑

A∋0,x z
|A| for lattice animals was defined in (1.10) as the sum

over lattice animals that contain both vertices 0 and x. An animal A with this characteristic
contains a path connecting 0 to x; however, unlike the lattice tree case, this path is not necessarily
unique. To deal with this we use the following definitions.

Let A be an animal containing the vertices x and y. We say that A has a double connection

from x to y if there are two bond-disjoint self avoiding walks in A between x and y (the walks
may share a common vertex, but not a common bond), or if x = y. The set of all animals having
a double connection between x and y is denoted by Dx,y. A bond {x, y} in A is pivotal for the
connection from x to y, if its removal would disconnect the animal into two connected components
with x contained in one of them and y in the other.

An animal A ∋ x, y that is not an element of Dx,y has at least one pivotal bond for the
connection from x to y. To establish an order among these edges, we define the first pivotal bond
to be the unique bond for which there is a double connection between x and one of the endpoints
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of this bond. This endpoint is the first endpoint of the first pivotal bond. To determine the second
pivotal bond, the role of x is played by the second endpoint of the first pivotal bond, and so on.

For a lattice animal A that contains x and y, the backbone is the ordered set of oriented pivotal
bonds for the connection from x to y. The backbone is not necessarily connected. The ribs are
the connected components that remain after the bonds in the backbone (but not the vertices) are
removed from A. By definition, the ribs are doubly connected between the corresponding backbone
vertices, and are mutually avoiding. See Figure 4 for an example.

Figure 4: Decomposition of a lattice animal A into the backbone from 0 to x (bold), and the ribs
~R = {R0, R1, R2, R3}. The rib R2 consists only of the vertex in the backbone.

Let B be an arbitrary finite ordered set of directed bonds

B =
(
(u1, v1) , . . . ,

(
u|B|, v|B|

))
,

and let v0 = 0 and u|B|+1 = x. Then we can regard the two-point function as a sum over the

backbone B and mutually nonintersecting ribs ~R =
{
R0, . . . , R|B|

}
. It is shown in [13] how to

apply inclusion exclusion to obtain an identity

G(a)
z (x) = δ0,xg

(a)(z) + Π(a)
z (x) + g(a)(z)(2dzD ∗G(a)

z )(x) + (Π(a)
z ∗ 2dzD ∗G(a)

z )(x), (4.11)

with Π
(a)
z given by the alternating series

Π̂(a)
z =

∞∑

N=0

(−1)N Π̂(a,N)
z . (4.12)

It is known (see [12]) that there is a c > 0 such that for all N ≥ 0 and all z ∈ [0, zc],

0 ≤ Π̂(a,N)
z ≤ cNd−(N∨1) (4.13)

and this implies that the only terms that can contribute to (2.6) for lattice animals are those with
N = 0, 1, 2.

The following explicit formulas are obtained in [13]. First,

Π(a,0)
z (x) = (1− δ0,x)

∑

R∈D0,x

z|R|. (4.14)
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With Uij(~R) as in (4.7) but for the new notion of ribs ~R,

Π(a,1)
z (x) =

∑

B:|B|≥1

z|B|





|B|
∏

k=0

∑

Rk∈Dvk,uk+1

z|Rk |



 (−U0,|B|)
∏

0≤i<j≤|B|
(i,j) 6=(0,|B|)

(1 + Uij) , (4.15)

with v0 = 0 and u|B|+1 = x. The factor U0,|B| in the previous expression forces an intersection
between the first and last ribs, and the last product forbids all other rib intersections. Finally,

Π(a,2)
z (x) =

∑

B:|B|≥1

z|B|





|B|
∏

k=0

∑

Rk∈Dvk,uk+1

z|Rk |




∑

L∈L(2)[0,|B|]

∏

ij∈L

Uij

∏

i′j′∈C(L)

(1 + Ui′j′) , (4.16)

with L(2) and C(L) as defined around (4.10).

5 Fourier estimates

In this section, we formulate an essential ingredient for the error estimates in Theorem 1.1, in
Lemma 5.1 below. The proof is based on the Fourier transform.

The Fourier transform of an absolutely summable function f : Zd → C is defined by

f̂(k) =
∑

x∈Zd

f(x)eik·x, (5.1)

where k ∈ [−π, π]d and k · x =
∑d

j=1 kjxj . For example, the transition probability D of (4.1) has

Fourier transform D̂(k) = d−1
∑d

j=1 cos kj. The inverse Fourier transform, which recovers f from

f̂ , is given by

f(x) =

∫

[−π,π]d
f̂(k)e−ik·x dk

(2π)d
. (5.2)

Recall that the convolution of the functions f and g was defined in (4.2). We denote by f ∗l the
convolution of l factors of f , i.e.,

f ∗l(x) = (f ∗ f ∗ · · · ∗ f)
︸ ︷︷ ︸

l

(x).

The Fourier transform of a convolution is the product of Fourier transforms: f̂ ∗ g = f̂ ĝ.
In this notation, D∗l(x) is the l-step transition probability that simple random walk travels

from 0 to x in l steps. We take f = D∗2m and x = 0 in (5.2) to obtain

D∗2m(0) =

∫

[−π,π]d
D̂(k)2m

dk

(2π)d
. (5.3)

A proof of the elementary fact that D∗2m(0) ≤ Cm(2d)
−m for some constant Cm (uniformly in d)

can be found in [19, (3.12)]. Therefore,
∫

[−π,π]d
D̂(k)2m

dk

(2π)d
≤

Cm

(2d)m
. (5.4)
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The infrared bound for nearest-neighbour lattice trees and lattice animals, given in [12, (1.25)],
states that for dimensions d ≥ d0 (for some sufficiently large d0), there is a positive constant c
independent of z and d, such that for 0 ≤ z ≤ zc,

0 ≤ Ĝz(k) ≤
cd

|k|2
, (5.5)

where |k| = (k2
1 + · · ·+ k2

d)
1/2

. The definition of Ĝz(k) requires some care when z = zc, because
Gzc(x) is not summable. Nevertheless it is possible to define Ĝzc(k) in a natural way such that its
inverse Fourier transform is Gzc(x). The subtleties associated with this point are discussed in [12,
Appendix A].

Let i be a non-negative integer and let C be a cluster (a tree or an animal) containing the
vertices x and y. We denote by

{x ↔
i
y} (5.6)

the event that there exists a self-avoiding path in C, of length at least i, connecting x and y. We
define the two-point function for clusters in which x is connected to y by a path of length at least
i by

G(i)
z (x) =

∑

C∋0,x : 0↔
i
x

z|C|. (5.7)

Then
Gz(x) = G(0)

z (x) = g(z)δ0,x +G(1)
z (x),

since for x = 0 the two-point function Gz(x) reduces to the one-point function g(z), and for x 6= 0
a path connecting these two vertices requires at least one step.

For integers m,n ≥ 1, and vertices x, y ∈ Zd, we define

S(m,n)
z (x) =

∑

i1+···+in=m

(G(i1)
z ∗ · · · ∗G(in)

z )(x), (5.8)

where the sum is over nonnegative integers i1, . . . , in. Let

S(m,n)
z = sup

x∈Zd

S(m,n)
z (x). (5.9)

The statement and proof of the following lemma are closely related to [19, Lemma 3.1].

Lemma 5.1. Let m and n be non-negative integers and let d > max {d0, 4n}. There is a constant

Cm,n, whose value depends only on m and n, such that

S(m,n)
zc ≤

Cm,n

(2d)m/2
. (5.10)

Proof. We first prove that there is a constant Km,n such that

sup
x

(
D∗m ∗G∗n

zc

)
(x) ≤

Km,n

(2d)m/2
. (5.11)

16



Using the inverse Fourier transform (5.2) and f̂ ∗ g = f̂ ĝ, we have

(D∗m ∗G∗n
zc )(x) =

∫

[−π,π]d
D̂(k)mĜzc(k)

ne−ik·x dk

(2π)d
.

By the Cauchy–Schwarz inequality,

(D∗m ∗G∗n
zc )(x) ≤

(∫

[−π,π]d
D̂(k)2m

dk

(2π)d

)1/2(∫

[−π,π]d
Ĝzc(k)

2n dk

(2π)d

)1/2

. (5.12)

Then (5.4) gives (5.11), once we show that the second factor on the right-hand side of (5.12) is
bounded uniformly in large d. By (5.5), it suffices to verify that the integral

Id,n =

∫

[−π,π]d

d2n

|k|4n
dk

(2π)d
, (5.13)

which is finite for d > 4n, is monotone nonincreasing in d.
This monotonicity has been encountered many times previously in the literature (e.g., [19]),

and can be proved as follows. For A > 0 and j > 0, a change of variables in the integral leads to

1

Aj
=

1

Γ(j)

∫ ∞

0

uj−1e−uAdu. (5.14)

We apply this identity with A = d−1|k|2 and j = 2n, and then use Fubini’s theorem to obtain

Id,n =
1

Γ(2n)

∫

[−π,π]d

∫ ∞

0

u2n−1e−u|k|2/ddu
dk

(2π)d

=
1

Γ(2n)

∫ ∞

0

u2n−1

(∫ π

−π

e−ut2/d dt

2π

)d

du =
1

Γ(2n)

∫ ∞

0

u2n−1‖fu‖1/d du, (5.15)

where fu(t) = e−ut2 and ‖f‖p = (
∫ π

−π
f(t)p dt/2π)1/p. Since dt/2π is a probability measure on

[−π, π],
||f ||1/(d+1) ≤ ||f ||1/d . (5.16)

Therefore, as required, Id+1,n ≤ Id,n, and the proof of (5.11) is complete.
Turning now to (5.10), we first consider the case of lattice trees. In (5.7), if we neglect the

self-avoidance restriction among the first i steps in the path connecting x and y, and treat the first
i ribs as independent of each other and of the subtree that comes after the ith step, we obtain the
upper bound

G(i)
z (x) ≤ (2dzg(z))i(D∗i ∗Gz)(x). (5.17)

For the case of lattice animals, the same bound is plausible and indeed also holds; this can be
seen using a small modification in the proof of [13, Lemma 2.1]. With the definition of S

(m,n)
z (x)

in (5.8), this implies that for either model

S(m,n)
z (x) =

∑

i1+···+in=m

(G(i1)
z ∗ · · · ∗G(in)

z )(x) ≤ C̃m,n (2dzg(z))
m (D∗m ∗G∗n

z )(x), (5.18)
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where C̃m,n is the number of terms in the sum (its exact value is unimportant). By (2.7), 2dzcgc ≤ 2
for d large enough. Together with (5.11), this implies that

S(m,n)
zc (x) ≤ C̃m,n2

m Km,n

(2d)m/2
,

and the proof is complete.

6 First term

In this section, we apply (2.7) to compute the leading behaviour (1.6) for gc and zc. This provides
an alternate approach to that used in [26] to reach the same conclusion, and makes our proof of
Theorem 1.1 more self-contained. The following lemma provides some preliminary bounds.

Lemma 6.1. For s a neighbour of the origin,

Gzc(s) = o(1), (6.1)

2drc = 1 + o(1), (6.2)

g◦(zc) = O(2d)−2. (6.3)

Proof. Since a lattice tree or lattice animal containing 0 and s must contain a path of length at
least 1 joining those vertices, we have Gzc(s) ≤ S

(1,1)
zc ≤ O(2d)−1/2, where the last inequality follows

from Lemma 5.1. This proves (6.1).
The limit (6.2) follows from the identity 2drc = 2dzcgc − 2dzcGzc(s) of (3.4), together with

(2.7)–(2.8) and (6.1).
Finally, since the minimal length of a cycle containing the origin in a lattice animal is 4, it

follows that g◦(zc) ≤ S
(4,1)
zc , and then (6.3) is a consequence of Lemma 5.1.

Lemma 6.2. For lattice trees or lattice animals, gc = e + o(1) and zc = (2de)−1 + o(2d)−1.

Proof. According to (2.7), it suffices to prove that gc = e+o(1), and this follows immediately from
Theorem 3.1 and (6.2)–(6.3).

7 Second term

In this section, we compute the (2d)−2 term in the expansion for zc in (1.4), and the (2d)−1 term
in the expansion for gc in (1.5). We follow the strategy discussed in Section 2: we first compute
the (2d)−1 terms in the expansions for Gzc(s) and for Π̂zc in (2.5)–(2.6), then use this to compute
the desired term for gc, and finally obtain the desired term for zc.

A useful quantity is

Q(x) =
∑

C0∋0

∑

Cx∋x

z|C0|+|Cx|
c 1C0∩Cx 6=∅, (7.1)
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where the sum is over clusters (both trees or both animals) containing 0 and x, respectively. It
is shown in Lemma 9.3 that for s a neighbour of the origin, and for both lattice trees and lattice
animals, the leading behaviour

Q(s) = 2z2cg
3
c + o(2d)−1 =

2e

2d
+ o(2d)−1 (7.2)

arises from the presence of the bond {0, s} in one of the two clusters C0 or C1. The proof of
Lemma 9.3 uses only Lemmas 6.2 and 5.1.

Lemma 7.1. For lattice trees or lattice animals, and for a neighbour s of the origin,

Gzc(s) =
e

2d
+ o(2d)−1. (7.3)

Proof. For a lattice tree or lattice animal containing 0 and s, either the bond {0, s} is occupied or
it is not. In the latter case, there must be an occupied path connecting 0 and s of length at least
3. In the former case, we overcount with independent clusters at 0 and s. This gives

Gzc(s) ≤ zcg
2
c +G(3)

zc (s) ≤ zcg
2
c + S(3,1)

zc , (7.4)

where the last inequality comes from (5.8)–(5.9). By Lemmas 6.2 and 5.1, it follows that

Gzc(s) ≤
e

2d
+ o(2d)−1. (7.5)

For a lower bound, we consider only the case where the edge {0, s} is occupied and not part of a
cycle (for lattice animals). It follows from inclusion exclusion that

Gzc(s) ≥ zcg
2
c − zcQ(s), (7.6)

and it then follows from (7.2) and Lemma 6.2 that

Gzc(s) ≥
e

2d
+ o(2d)−1. (7.7)

This completes the proof.

Lemma 7.2. For lattice trees or lattice animals,

Π̂zc = −
3e

2d
+ o(2d)−1. (7.8)

Proof. It follows from (4.6) and (4.13) that we need only consider the contributions due to Π̂
(t,1)
zc

for trees, and due to Π̂
(a,0)
zc and Π̂

(a,1)
zc for animals, since larger values of N contribute O(2d)−2.

Moreover, we can neglect Π̂
(a,0)
zc . To see this, we recall the definition (4.14) and apply the BK

inequality of [13, Lemma 2.1] and Lemma 5.1 to see that

Π̂(a,0)
zc ≤

∑

i+j=4

∑

x∈Zd

G(i)
zc (x)G

(j)
zc (x) = S(4,2)

zc ≤ O(2d)−2, (7.9)
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where the restriction to i + j = 4 arises because only animals in which the origin is in a cycle of
length at least 4 can occur. Therefore, we can restrict attention to the case N = 1.

By definition,

Π̂(1)
zc = Π(1)

zc (0) +
∑

s:‖s‖1=1

Π(1)
zc (s) +

∑

x:‖x‖1≥2

Π(1)
zc (x). (7.10)

A nonzero contribution to Π
(1)
zc (x) requires the existence of three bond-disjoint paths as indicated

in Figure 5 (with y = 0 or y = x allowed), to ensure that U0|ω| = −1 in (4.8) or U0|B| = −1 in
(4.15). This implies that

Π̂(1)
zc ≤

∑

x,y∈Zd

Gzc(x)Gzc(y)Gzc(y − x) = S(0,3)
zc (0) ≤ S(0,3)

zc ; (7.11)

a detailed derivation of this estimate can be found, e.g., in [30, Theorem 8.2]. The crude bound

(7.11) can be greatly improved by replacing two-point functions by factors G
(i)
zc when there must

be at least i steps taken. In this way, for contributions to Π̂
(1)
zc in which there must exist paths

from 0 to x, from 0 to y, and from x to y, of total length at least m, we can improve the upper
bound S

(0,3)
zc to S

(m,3)
zc ≤ O(2d)−m/2. In particular, this implies that the last sum on the right-hand

side of (7.10) is bounded by S
(4,3)
zc ≤ O(2d)−2 and thus is an error term.

Figure 5: Intersection required for a nonzero contribution to Π
(1)
z (x).

The leading behaviour arises from the other two terms. We consider both trees and animals
simultaneously. Consider first the lower bound. For Π

(1)
zc (0), we count only configurations with

backbone (0, s, 0) where ‖s‖1 = 1. By using inclusion-exclusion to account for the avoidance
between the rib at s and the two ribs at 0, we obtain

Π(1)
zc (0) ≥ 2dz2c (g

3
c − 2gcQ(s)) =

e

2d
+ o(2d)−1, (7.12)

by Lemma 6.2 and (7.2). Similarly, by considering the symmetric cases where either the rib at 0
contains {0, s} or the rib at s contains {0, s}, we obtain

Π(1)
zc (s) ≥ 2z2c (g

3
c − gcQ(s)), (7.13)

and hence
∑

s:‖s‖1=1

Π(1)
zc (s) ≥

2e

2d
+ o(2d)−1. (7.14)

Altogether, this gives

Π̂(1)
zc ≥

3e

2d
+ o(2d)−1. (7.15)
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For the upper bound, excepting the configurations which contributed the leading behaviour to
the lower bound, the remaining configurations that contribute to Π̂

(1)
zc all contain three paths of

total length at least 4, and hence are bounded above by S
(4,3)
zc ≤ O(2d)−2. This completes the

proof.

Lemma 7.3. For lattice trees or lattice animals,

gc = e

[

1 +
3
2

2d

]

+ o(2d)−1, (7.16)

zc = e−1

[
1

2d
+

3
2

(2d)2

]

+ o(2d)−2. (7.17)

Proof. We begin by noting that g◦(zc) = O(2d)−1, by (6.3). Next, we combine the identity
2drc = 1− 2dzcΠ̂zc − 2dzcGzc(s) of (3.6) with Lemmas 6.2 and 7.1–7.2 to obtain

2drc = 1 +
3

2d
−

1

2d
+ o(2d)−1 = 1 +

2

2d
+ o(2d)−1. (7.18)

Then (7.16) follows immediately after substitution of (7.18) into the right-hand side of the identity
for gc in Theorem 3.1. Finally, (7.17) follows from substitution of (7.16) and the formula for Π̂zc

of Lemma 7.2 into (2.4).

8 Third term

We now complete the proof of Theorem 1.1. To do this, we first extend the estimates on Gzc(s)
and Π̂zc obtained in Lemmas 7.1–7.2. With these extensions, we then extend the estimate on
gc of Lemma 7.3, and finally combine these results with (2.4) to extend the estimate on zc and
thereby complete the proof of Theorem 1.1. To begin, we insert the formulas of Lemma 7.3 into
the formula for Q(s) of Lemma 9.3, to obtain

Q(s) = 2zcg
3
c −

e2

(2d)2
+ o(2d)−2 = e2

[
2

2d
+

11

(2d)2

]

+ o(2d)−2. (8.1)

The estimate we need for Gzc(s) was stated earlier as Theorem 2.1, which for convenience we
restate as follows.

Theorem 8.1. For lattice trees or lattice animals, and for a neighbour s of the origin,

Gzc(s) = e

[
1

2d
+

7
2

(2d)2

]

+ o(2d)−2. (8.2)

Proof. It follows from Lemma 5.1 that G
(5)
zc (s) ≤ O(2d)−5/2, so we need only consider clusters in

which a path of length 1 or 3 joins the points 0 and s.
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For the lower bound, we consider clusters that either contain the bond {0, s} with this bond
not in a cycle, or that do not contain {0, s} but contain one of the 2d− 2 paths of length 3 from
0 to s with this path not part of a cycle. The first contribution is equal to

zc(g
2
c −Q(s)) = e

[
1

2d
+

5
2

(2d)2

]

+ o(2d)−2, (8.3)

by (8.1) and Lemma 7.3. With s′ a neighbour of the origin that is not equal to ±s, the second
contribution is bounded below by

(2d− 2)z3c
∑

R0∋0,R1∋s′

R2∋s+s′,R3∋s

z|R0|+|R1|+|R2|+|R3|
c

∏

0≤i<j≤3

(1 + Uij)

≥ (2d− 2)z3c
∑

R0∋0,R1∋s′

R2∋s+s′,R3∋s

z|R0|+|R1|+|R2|+|R3|
c

(

1 +
∑

0≤i<j≤3

Uij

)

= (2d− 2)z3c
(
g4c − 4g2cQ(s)− 2g2cQ(s+ s′)

)
. (8.4)

Now we apply Lemma 6.2, and the fact that Q(x) = o(1) by Lemma 9.3, to see that this last
expression is equal to

(2d− 2)z3c
(
g4c − 4g2cQ(s)− 2g2cQ(s+ s′)

)
=

e

(2d)2
+ o(2d)−2. (8.5)

Combining the above results gives the lower bound

Gzc(s) ≥ e

[
1

2d
+

7
2

(2d)2

]

+ o(2d)−2. (8.6)

For an upper bound, we again need only consider the cases where there is a path of length 1
or 3 connecting 0 and s. Suppose first that there is a path of length 1. If the bond {0, s} is not in
a cycle, then the above argument again gives a contribution

zc(g
2
c −Q(s)) = e

[
1

2d
+

5
2

(2d)2

]

+ o(2d)−2. (8.7)

On the other hand, if {0, s} is part of a cycle, then we need only consider the case where this
bond is part of a cycle of length 4, because otherwise there is a path from 0 to s of length at
least 5. The contribution from animals containing {0, s} within a cycle of length 4 is at most
(2d − 2)z4cg

4
c = O(2d)−3, so this is an error term. Thus the upper bound for the case of direct

connection agrees with the lower bound. In addition, the contribution when there is a path of
length 3 is at most

(2d− 2)z3cg
4
c =

e

(2d)2
+ o(2d)−2, (8.8)

so here too the upper and lower bounds match, and the proof is complete.
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Next, we present three lemmas which extract the terms in Π̂
(N)
zc up to o(2d)−2, for N = 0, 1, 2.

The case N = 0 occurs only for lattice animals, and we begin with this case.

Lemma 8.2. For lattice animals,

Π̂(a,0)
zc =

3
2

(2d)2
+ o(2d)−2, (8.9)

g◦(z
(a)
c ) =

1
2

(2d)2
+ o(2d)−2. (8.10)

Proof. According to its definition in (4.14),

Π̂(a,0)
zc =

∑

x 6=0

∑

R∈D0,x

z|R|
c . (8.11)

The main contribution to the right-hand side arises when R is a unit square containing 0, with x a
nonzero vertex on the square. Therefore, since there are 1

2
(2d)(2d− 2) such squares and 3 nonzero

vertices in each one,

Π̂(a,0)
zc ≤ 3

1

2
(2d)(2d− 2)z4cg

4
c + S(6,2) =

3
2

(2d)2
+ o(2d)−2, (8.12)

where we used Lemmas 6.2 and 5.1 in the last equality. For a lower bound, we count only the
contributions with 0, x in a cycle of length 4, and use inclusion-exclusion for the branches emanating
from the unit square, to obtain

Π̂(a,0)
zc ≥ 3

1

2
(2d)(2d− 2)z4c

[
g4c − 4g2cQ(s1)− 2g2cQ(s+ s′))

]
=

3
2

(2d)2
+ o(2d)−2, (8.13)

where we have used Lemma 6.2 together with the fact that Q(x) = o(1) by Lemma 9.3. This
proves (8.9).

A similar argument gives (8.10), with the factor 3 missing due to the fact that there is no sum
over x in g◦.

Lemma 8.3. For lattice trees or lattice animals,

Π̂(1)
zc = e

[
3

2d
+

49
2

(2d)2

]

+ o(2d)−2. (8.14)

Proof. We give the proof only for the case of lattice trees. With minor changes, the arguments
presented here also lead to a proof for lattice animals.

By definition,

Π̂(1)
zc =

∑

x∈Zd

Π(1)
zc (x). (8.15)

Contributions from x 6= 0, s, s+s′, where s, s′ are orthogonal neighbours of the origin, are bounded
above by S(6,3) = O(2d)−3 and need not be considered further. By symmetry, we therefore have

Π̂(1)
zc = Π(1)

zc (0) + 2dΠ(1)
zc (s) +

2d(2d− 2)

2
Π(1)

zc (s+ s′) + O(2d)−3. (8.16)
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Consider Π
(1)
zc (s + s′). The shortest backbones have length 2 and there are 2 of these. The

shortest allowed rib intersections complete the unit square and there are 3 of these corresponding
to the 3 possible nonzero intersection points for the ribs at 0 and s+ s′. Thus we obtain

Π(1)
zc (s+ s′) ≤ 3 · 2z4cg

5
c + S(6,3) +O(2d)−3 ≤

6e

(2d)4
+O(2d)−3. (8.17)

Arguments like those we have been using previously can be used to verify that the first term on
the right-hand side is also the leading behaviour of a lower bound, and hence

Π(1)
zc (s+ s′) =

6e

(2d)4
+ o(2d)−2. (8.18)

This shows that

Π̂(1)
zc = Π(1)

zc (0) + 2dΠ(1)
zc (s) +

3e

(2d)2
+ o(2d)−2. (8.19)

Consider Π
(1)
zc (s). We need only consider the contributions due to rib intersections which to-

gether with the backbone form a double bond or a unit square, because the remaining contributions
are bounded by S(6,3) = O(2d)−3. These backbones have length 1 or 3, respectively. Thus we obtain
(the first term is due to the length-1 backbone and the second to the length-3 backbone)

Π(1)
zc (s) ≤ zcQ(s) + (2d− 2)z3cg

2
cQ(s) +O(2d)−3

= e

[
2

(2d)2
+

16

(2d)3

]

+ o(2d)−2, (8.20)

by Lemma 6.2 and (8.1). It is routine to prove a matching lower bound, yielding

2dΠ(1)
zc (s) = e

[
2

2d
+

16

(2d)2

]

+ o(2d)−2, (8.21)

and hence

Π̂(1)
zc = Π(1)

zc (0) + e

[
2

2d
+

19

(2d)2

]

+ o(2d)−2. (8.22)

Finally, we consider the contributions to Π
(1)
zc (0) due to backbones of length 2 and 4, which we

denote as Π
(1,2)
zc (0) and Π

(1,4)
zc (0) respectively. First,

Π(1,4)
zc (0) ≤ 2d(2d− 2)z4cg

5
c + S(6,1) =

e

(2d)2
+O(2d)−3, (8.23)

and a routine matching lower bound gives

Π(1,4)
zc (0) =

e

(2d)2
+O(2d)−3. (8.24)
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Next,

Π(1,2)
zc (0) = 2dz2c

∑

R0∋0,R1∋s
R2∋0

z|R0|+|R1|+|R2|
c (1 + U01 + U12 + U01U12)

= 2dz2c

[

g3c − 2gcQ(s) +
∑

R0∋0,R1∋s
R2∋0

z|R0|+|R1|+|R2|
c U01U12

]

= e

[
1

2d
+

7
2

(2d)2

]

+ o(2d)−2 + 2dz2c

[
e3

2d
+ o(2d)−1

]

, (8.25)

where we used Lemma 7.3 and Lemmas 9.3–9.4 in the last equality. With Lemma 6.2, this gives

Π(1,2)
zc (0) =

e

2d
+

9
2
e

(2d)2
+ o(2d)−2. (8.26)

Thus we obtain

Π(1)
zc (0) = e

[
1

2d
+

11
2

(2d)2

]

+ o(2d)−2. (8.27)

Altogether, we have

Π̂(1)
zc = e

[
3

2d
+

49
2

(2d)2

]

+ o(2d)−2, (8.28)

which proves (8.14).

Lemma 8.4. For lattice trees or lattice animals,

Π̂(2)
zc =

11e

(2d)2
+ o(2d)−2. (8.29)

Proof. We defer the proof to Lemma 9.5.

For convenience, we now restate Theorem 2.2, supplemented with an asymptotic formula for
g◦(z

(a)
c ). Note that the factor e is not present for g◦(z

(a)
c ). It is in Theorem 8.5 that we first see a

difference between lattice trees and lattice animals.

Theorem 8.5. For lattice trees or lattice animals,

Π̂zc = e

[

−
3

2d
−

27
2
− 1a

3
2
e−1

(2d)2

]

+ o(2d)−2, (8.30)

g◦(z
(a)
c ) =

1a
1
2

(2d)2
+ o(2d)−2. (8.31)

Proof. This follows immediately from Lemmas 8.2–8.4, together with the bounds on Π̂
(N)
zc forN > 2

given by (4.6) and (4.13).
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The next theorem restates Theorem 1.1, and completes its proof (apart from the technical
lemmas of Section 9).

Theorem 8.6. For lattice trees or lattice animals,

gc = e

[

1 +
3
2

2d
+

263
24

− 1ae
−1

(2d)2

]

+ o(2d)−2, (8.32)

zc = e−1

[
1

2d
+

3
2

(2d)2
+

115
24

− 1a
1
2
e−1

(2d)3

]

+ o(2d)−3. (8.33)

Proof. By (3.7) and (8.31),

gc = e2drc
[

1−
1

2
(2d)r2c +

1

8
(2d)2r4c −

7
6

(2d)2

]

+
1a

1
2

(2d)2
+ o(2d)−2. (8.34)

The identity (3.6), together with the results for zc, Π̂zc and Gzc(s) in Lemma 7.3 and Theorems 8.1
and 8.5, imply that

2drc = 1− 2dzcΠ̂zc − 2dzcGzc(s) = 1 +
2

2d
+

13− 1a
3
2
e−1

(2d)2
+ o(2d)−2. (8.35)

Substitution of (8.35) into (8.34) gives (8.32). Finally, (8.33) follows immediately by substituting
(8.30) and (8.32) into (2.4).

9 Cluster intersection estimates

The analysis in Sections 3, 6, 7, and 8 relies on the estimates in this section, which in turn rely on
Lemma 5.1. Section 9.1 provides the estimates needed for the proof of Theorem 3.1, and assumes
only the starting bounds (2.7). Section 9.2 provides estimates needed in Sections 7–8, and relies
on knowledge of the leading behaviour gc ∼ e and zc ∼ (2de)−1.

9.1 Estimates for one-point function

Throughout this section, we assume only the starting bounds (2.7) and do not make use of higher
order asymptotics. In particular, we will make use of (6.2), which states that 2drc = 1+ o(1). We
prove two lemmas which provide estimates needed in the proof of Theorem 3.1. The first gives
estimates for Z(i) (i = 1, 2, 3) defined in (3.23)–(3.25), as well as for Z ′, Z ′′ defined by

Z
′

(z) =
∑

s1,s2,s3,s4∈E

∑

S1∋s1

∑

S2∋s2

∑

S3∋s3

∑

S4∋s4

z|S1|+|S2|+|S3|+|S4|(−V12V13V14), (9.1)

Z
′′

(z) =
∑

s1,s2,s3,s4∈E

∑

S1∋s1

∑

S2∋s2

∑

S3∋s3

∑

S4∋s4

z|S1|+|S2|+|S3|+|S4|(−V12V13V24). (9.2)

We use the subscript c to denote quantities evaluated at zc.
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Lemma 9.1. For lattice trees or lattice animals,

Z(1)
c = 2dr2c +

3

(2d)2
+ o(2d)−2, (9.3)

Z(2)
c =

1

(2d)2
+ o(2d)−2, (9.4)

Z(3)
c =

1

(2d)2
+ o(2d)−2, (9.5)

Z
′

c = Z
′′

c = O(2d)−3. (9.6)

Proof. We consider the four equations in turn.

Proof of (9.3). According to its definition in (3.23),

Z(1)
c =

∑

s1,s2∈E

∑

S1∋s1

∑

S2∋s2

z|S1|+|S2|
c (−V12). (9.7)

We distinguish the two possibilities |{s1, s2}| = 1, 2 for the vertices s1, s2, i.e., we distinguish
whether the two vertices are equal or not. If s1 = s2 then automatically −V12 = 1 because both
clusters contain s1, and this contribution gives exactly 2dr2c .

For s1 6= s2, we consider separately the cases where s1 and s2 are parallel and perpendicular.
This contributes

2d
∑

S1∋s1
S2∋−s1

z|S1|+|S2|
c (−V12) + 2d(2d− 2)

∑

S1∋s1
S2∋s2

z|S1|+|S2|
c (−V12). (9.8)

For the first term, at least six steps are required for an intersection of S1 and S2, so this term is
bounded above by S

(6,2)
zc = O(2d)−3, by Lemma 5.1. The leading behaviour of the second term is

3(2d)(2d − 2)z4cg(zc)
4 (due to a square containing 0, s1 and s2, and where the factor 3 takes into

account the three nonzero vertices of the square at which S1, S2 might intersect). The remaining

contributions are bounded above by S
(6,2)
zc = O(2d)−3. It is not difficult to prove a corresponding

lower bound, to conclude that (9.8) equals

3(2d)2z4cg
4
c + o(2d)−2 =

3

(2d)2
+ o(2d)−2, (9.9)

where we used (2.7) for the last equality. When combined with the contribution from s1 = s2, this
completes the proof of (9.3).

Proof of (9.4). By definition

Z(2)
c =

∑

s1,s2,s3∈E

∑

S1∋s1

∑

S2∋s2

∑

S3∋s3

z|S1|+|S2|+|S3|
c V12V13. (9.10)

We distinguish the three possibilities |{s1, s2, s3}| = 1, 2, 3 for the vertices s1, s2 and s3.
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If |{s1, s2, s3}| = 1, then automatically V12V13 = 1. In this case, using (6.2), we find that the

contribution to Z
(2)
c becomes simply

2dr3c =
1

(2d)2
+ o(2d)−2. (9.11)

If |{s1, s2, s3}| = 2, then we consider the case s1 6= s2 = s3 (the other cases can be handled
with similar arguments). In this case, we use |V13| ≤ 1 and perform the sum over S3 to obtain a

factor rc. The remaining sum is the case s1 6= s2 studied in the bound on Z
(1)
c and shown above

in (9.9) to be O(2d)−2. Thus this contribution is an error term, since rc = O(2d)−1 by (6.2).
If |{s1, s2, s3}| = 3, then all three vertices are different. At least seven bonds are required to

obtain V12V13 = 1 in this case. As depicted in Figure 6, this contribution is bounded above by
∑

i+j=7 S
(i,2)
zc S

(j,3)
zc and hence is O(2d)−7/2, another error term. This completes the proof of (9.4).

Figure 6: Intersections required for the case |{s1, s2, s3}| = 3 of Z(2), with corresponding bound.
The paths have lengths at least ik and jl, with i1 + i2 = i, j1 + j2 + j3 = j, and i+ j = 7.

Proof of (9.5). By definition,

Z(3)
c =

∑

s1,s2,s3∈E

∑

S1∋s1

∑

S2∋s2

∑

S3∋s3

z|S1|+|S2|+|S3|
c (−V12V13V23). (9.12)

If |{s1, s2, s3}| = 1, then automatically −V12V13V23 = 1 and hence

Z(3)
c ≥ 2dr3c =

1

(2d)2
+ o(2d)−2. (9.13)

On the other hand the inequality −V23 ≤ 1, together with (9.4), shows that

Z(3)
c ≤ Z(2)

c =
1

(2d)2
+ o(2d)−2. (9.14)

This completes the proof of (9.5).

Proof of (9.6). We prove that Z
′

c and Z
′′

c are O(2d)−3. For each, we distinguish the four possibilities
|{s1, s2, s3, s4}| = 1, 2, 3, 4.

If |{s1, s2, s3, s4}| = 1, the products −V12V13V14 = 1 and −V12V13V24 are equal to 1, and the
sums in (9.1) and (9.2) reduce to 2dr4c , which is O(2d)−3 by (6.2).

If |{s1, s2, s3, s4}| = 2, we decompose the products −V12V13V14 and −V12V13V24 into a factor
that involves the two different vertices, and the remaining two factors. We bound these last two
factors by 1, so their corresponding sums are bounded by r2c = O(2d)−2. The remaining sums are
equal to (9.8), which by (9.9) is of order O(2d)−2.
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If |{s1, s2, s3, s4}| = 3, we decompose −V12V13V14 and −V12V13V24 into two factors involving
the three distinct vertices, and one remaining factor. We bound the latter factor by 1, and the
corresponding sum becomes rc = O(2d)−1. The remaining sums are bounded by Z

(2)
c for the case

−V12V13V14, and by Z
(2)
c or (Z

(1)
c )2 for the case −V12V13V24. The overall contribution in both cases

is therefore O(2d)−3, by (9.3) and (9.4),
If |{s1, s2, s3, s4}| = 4, an example of the required intersections for Z ′ is depicted in Figure 7.

By taking into account all possibilities for Z ′ and Z ′′, we draw the crude conclusion that at least
six bonds are needed to achieve the required intersections, and this leads to an upper bound of
the form

∑

n1+n2+n3=6O(S
(n1,M)
zc S

(n2,M)
zc S

(n3,M)
zc ), for a fixed value of M , and hence is O(2d)−3.

This completes the proof of (9.6) and of the lemma.

Figure 7: Example of intersections for the case |{s1, s2, s3, s4}| = 4 of Z ′.

Lemma 9.2. For lattice trees or lattice animals,

Γ(3,n)
c = O(2d)−3 (n = 4, 5, 6), (9.15)

Γ̃(4)
c = O(2d)−3. (9.16)

Proof. We consider the two equations in turn.

Proof of (9.15). First we consider Γ(3,4), and will show that

Γ(3,4)(z) = Γ(0)(z)

(
4

4!
Z

′

(z) +
12

4!
Z

′′

(z)

)

. (9.17)

This is sufficient, by (9.6) together with the fact that Γ
(0)
c = e2drc = O(1) by (3.22) and (6.2).

To prove (9.17), we are considering the case where the set of labels {i, j, k, l, p, q} in (3.17) has
cardinality 4, and we may assume the labels are 1, 2, 3, 4. We find 16 possible arrangements for
the labels, which can be reduced to the two cases:
(i) Three labels are equal and the other three are different from the first ones and among them,
e.g., i = k = p = 1, j = 2, l = 3 and q = 4. There are 4 arrangements of this type.
(ii) There are two pairs of equal labels and a pair of distinct labels, e.g., i = k = 1, j = p = 2,
l = 3 and q = 4. There are 12 arrangements of this type.
Interchanging the sums in which arise from substitution of (3.17) into (3.20) (with i = 3) and
using symmetry, as in the proof of Lemma 3.2, gives (9.17).

For Γ
(3,5)
c , one of the factors Vij has labels that do not repeat, and the other two factors

share one of the labels. The sums over the s and S with the two non-repeating labels yield
Z

(1)
c = O(2d)−1. The sums over the remaining labels are bounded above by Z

(2)
c = O(2d)−2. It is

then straightforward to verify that Γ
(3,5)
c ≤ O(2d)−3.
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For Γ
(3,6)
c , the six sums over s give (Z(1))3 = O(2d)−3, and this leads to Γ

(3,6)
c ≤ O(2d)−3. This

completes the proof of (9.15).

Proof of (9.16). We use the bound |Irs| ≤ 1 in (3.17) and (3.21) to obtain

|Γ̃(4)
c | ≤

∞∑

m=4

1

m!

∑

s1,...,sm∈E

∑

S1∋s1

z|S1|
c · · ·

∑

Sm∋sm

z|Sm|
c

∑

1≤i<j≤m

∑

(k,l)∈Aij

∑

(p,q)∈Akl

∑

(r,s)∈Apq

VijVklVpqVrs.

(9.18)

We denote the cardinality of the label set by n = |{i, j, k, l, p, q, r, s}|, so n ∈ {4, 5, 6, 7, 8}, and
exchange the sums over vertices and labels. As in (9.17), this allows us to rewrite the upper bound
of (9.18) in the form

|Γ̃(4)
c | ≤ Γ(0)

c

8∑

n=4

∑

i

αn,iZ
(4,n,i)
c , (9.19)

where the sum over i is a finite sum, the αn,i are constants whose values are immaterial, and each
Z(4,n,i) is of the form

Z(4,n,i)
c =

∑

s1,...,sn∈E

∑

S1∋s1

z|S1|
c · · ·

∑

Sn∋sn

z|Sn|
c V(n,i), (9.20)

with V(n,i) a product of 4 factors of Vab having n distinct labels in all. Since Γ
(0)
c = O(1) (as

observed below (9.17)), it suffices to show that each Z
(4,n,i)
c is O(2d)−3.

For n = 4, 5 or 6, we substitute one of the factors in |VijVklVpqVrs| by 1, with the restriction
that the remaining three factors have at least four different labels. The sums involving the replaced
factor yield 1 or 2drc or (2drc)

2 depending on whether this factor has 0,1 or 2 distinct labels from
the remaining three factors; all three cases are O(1) by (6.2). The sums involving the other three

factors reduce to the cases Γ
(3,4)
c , Γ

(3,5)
c or Γ

(3,6)
c which by (9.15) are O(2d)−3.

For n = 7 or 8, we consider three factors in the product |VijVklVpqVrs| that have six different
labels and bound the fourth factor by 1. The sums involving the fourth factor yield 2drc and
(2drc)

2 for n = 7 and n = 8, respectively. By (6.2), in both cases the contribution is O(1). By the

bound on Γ
(3,6)
c of (9.15), the sums involving the six distinct labels is O(2d)−3. This completes the

proof of (9.16) and of the lemma.

9.2 Estimates for lace expansion

Throughout this section, we assume the leading behaviour (1.6) (proved in the present paper in
Lemma 6.2) but do not make use of higher order asymptotics. We prove three lemmas that were
used in Sections 7–8. Recall from (7.1) the definition

Q(x) =
∑

C0∋0

∑

Cx∋x

z|C0|+|Cx|
c 1C0∩Cx 6=∅. (9.21)

The following lemma gives a good estimate for Q(s) when ‖s‖1 = 1, and gives a crude (but
sufficient) estimate for ‖x‖1 > 1.
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Lemma 9.3. For lattice trees or lattice animals, and for a neighbour s of the origin,

Q(s) = 2zcg
3
c −

e2

(2d)2
+ o(2d)−2 =

2e2

2d
+ o(2d)−1. (9.22)

In addition, for any x, Q(x) ≤ O(2d)−
1
2
‖x‖1.

Proof. In (9.21), the clusters C0 and Cx only contribute to the sum in Q(x) if they have a vertex
in common, say y. There is a path connecting 0 and y contained in C0, and a path connecting
y and x contained in Cx, and we can choose these paths to intersect only at y. We denote the
paths by ω0 and ωx, respectively. The union of ω0 and ωx forms a path connecting 0 to x and
passing through y, which we call ω. It has length at least ‖x‖1, and this leads to the upper bound

Q(x) ≤ S
(‖x‖1,2)
zc . Together with Lemma 5.1, this proves that Q(x) ≤ O(2d)−

1
2
‖x‖1 .

It remains to prove the first equality of (9.22), as the second equality then follows immediately
from Lemma 6.2. We write Qn(s) to refer to the contribution to Q(s) due to configurations where
there exists such a path ω of length n (the union of ω0 and ωs as in the previous paragraph) and
no shorter path. Since

Q≥5(s) ≤ S(5,2)
zc ≤ O(2d)−5/2, (9.23)

we can restrict attention to Qn for n ≤ 4. For the case of lattice animals, the contributions in
which C0 or Cs has a cycle containing both 0 and s is easily seen to be o(2d)−2. Therefore, we
assume henceforth that each of C0 and Cs does not have a cycle that contains both 0 and s.

For Q3, we have ω = (0, s′, s′ + s, s) for some neighbour s′ of the origin perpendicular to s.
There are 2d− 2 such paths and each of them has four possibilities for y. If we treat the clusters
attached to the vertices in ω0 and ωs as five independent clusters, we obtain the upper bound

Q3(s) ≤ 4(2d− 2)z3cg
5
c =

4e2

(2d)2
+ o(2d)−2, (9.24)

with the last equality due to Lemma 6.2. For a lower bound, we use inclusion-exclusion and
subtract from the upper bound the contribution when there are pairwise intersections among the
ribs that belong to the same path, either ω0 or ωs. This gives

Q3(s) ≥ 4(2d− 2)z3cg
3
c

[
g2c − 4Q(s)− 2Q(s′ + s)

]
=

4e2

(2d)2
+ o(2d)−2 (9.25)

(subtraction of Q(s) in the middle expression also accounts for configurations which are counted
by Q1(s) rather than Q3(s)). We conclude that

Q3(s) =
4e2

(2d)2
+ o(2d)−2. (9.26)

For Q1, the path ω is given by ω = (0, s). This means that the bond {0, s} is contained in
either C0 or Cs, say in C0. In this case, C0 consists of the edge {0, s} and two nonintersecting
subclusters, C∗

0 and C∗
s , the first one attached at 0 and the second at s. Let U∗

01 = −1 if the
subclusters C∗

0 and C∗
s have a common vertex, and 0 otherwise. Exchanging the roles of C0 and
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Cs, and subtracting the contribution due to the event in which both clusters C0 and Cs contain
the bond {0, s}, yields

Q1(s) = 2zcgc
∑

C∗
0∋0

∑

C∗
s∋s

z|C
∗
0 |+|C∗

s |
c (1 + U∗

01)− z2c

[
∑

C∗
0∋0

∑

C∗
s∋s

z|C
∗
0 |+|C∗

s |
c (1 + U∗

01)

]2

= 2zcg
3
c − 2zcgcQ(s)− z2c

[
g2c −Q(s)

]2
. (9.27)

Since z2cQ(s) = o(2d)−2, together with the contributions analysed previously this gives

Q(s) = 2zcg
3
c − 2zcgcQ(s)− z2cg

4
c +

4e2

(2d)2
+ o(2d)−2. (9.28)

We conclude from this that

(1 + 2zcgc)Q(s) = 2zcg
3
c +

3e2

(2d)2
+ o(2d)−2. (9.29)

The factor multiplying Q(s) is equal to 1 + 2(2d)−1 + o(2d)−1, so we obtain Q(s) by multiplying
the right-hand side of (9.29) by 1− 2(2d)−1 + o(2d)−1. This yields the first equality of (9.22) and
completes the proof.

The next lemma is applied in Lemmas 8.3 and 9.5. For a neighbour s of the origin, we define

Q∗(s) =
∑

C0∋0

∑

C1∋s

∑

C2∋0

z|R0|+|R1|+|R2|
c U01U12. (9.30)

Lemma 9.4. For lattice trees or lattice animals, and for a neighbour s of the origin,

Q∗(s) =
e3

2d
+ o(2d)−1, (9.31)

Proof. It is straightforward to verify that the contribution when C1 contains a cycle containing 0
and s produces an error term, so we assume that there is no such cycle. If C1 contains the bond
(0, s), then U01U12 = 1. In this case, we can regard C1 as consisting of the edge (0, s) and two
non-intersecting clusters C0

1 and C1
1 attached at 0 and s, respectively. Let U∗

01 = −1 if C0
1 and C1

1

have a common vertex, and 0 otherwise. We obtain

Q∗(s) = zcg
2
c

∑

R0
1∋0,R

1
1∋e1

z|R
0
1|+|R1

1|
c (1 + U∗

01) +
∑

R0,R2∋0
R1∋e1,R1 6∋(0,e1)

z|R0|+|R1|+|R2|
c U01U12 + o(2d)−1.

(9.32)

Arguments of the type used several times previously show that the second sum on the right-hand
side is o(2d)−1. Therefore,

Q∗(s) = zcg
4
c − zcg

2
cQ(s) + o(2d)−1 =

e3

2d
+ o(2d)−1, (9.33)

where the second equality is due to Lemmas 6.2 and 9.3.
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Finally, we prove the following lemma, which is a restatement of Lemma 8.4. It provides an
important ingredient in the proof of Theorem 8.5.

Lemma 9.5. For lattice trees or lattice animals,

Π̂(2)
zc =

11e

(2d)2
+ o(2d)−2. (9.34)

Proof. We give the proof only for the case of lattice trees. With minor changes, the proof extends
to lattice animals. Recall from (4.9) that

Π̂(2)
zc =

∑

x∈Zd

Π(2)
zc (x) =

∑

x∈Zd

∑

ω∈W(x)
|ω|≥2

z|ω|c





|ω|
∏

i=0

∑

Ri∋ω(i)

z|Ri|
c








∑

L∈L(2)[0,|ω|]

∏

ij∈L

Uij

∏

i′j′∈C(L)

(1 + Ui′j′)



 ,

(9.35)
where the set of laces is

L(2)[0, |ω|] =
{
{0j, j|ω|} : 0 < j < |ω|

}
∪
{
{0j, i|ω|} : 0 < i < j < |ω|

}
, (9.36)

and where the set C(L) compatible with L is defined below (4.9). Let Π
(2,n)
zc (x) denote the contri-

bution to Π
(2)
zc (x) due to |ω| = n on the right-hand side of (9.35). We will show that

Π̂(2,2)
zc =

5e

(2d)2
+ o(2d)−2, (9.37)

Π̂(2,3)
zc =

5e

(2d)2
+ o(2d)−2, (9.38)

Π̂(2,4)
zc =

e

(2d)2
+ o(2d)−2, (9.39)

Π̂(2,>4)
zc = o(2d)−2, (9.40)

which proves (9.34).
Before entering into the details, we recall diagrammatic estimates for lattice trees that have

been developed and discussed at length in [12, 13, 30] (for lattice animals the best reference is
[12]). These techniques are based on the diagrams in Figure 8, which inspire the upper bound

Π̂(2)
zc ≤ 2S(1,4)

zc S(1,3)
zc . (9.41)

Here the occurrence of S(1,n) on the right-hand side is connected with the fact that each loop in
the bounds on diagrams in Figure 8 must consist of at least one bond, while the appearance of 3
and 4 is due to the 7 lines in the adjacent squares, each of which represents a two-point function.
When we consider configurations for which it is guaranteed that those two-point functions must
take at least k steps in total, the upper bound (9.41) can be improved to an upper bound

2
∑

i+j=k

S(i,4)
zc S(j,3)

zc = O(2d)−k/2, (9.42)
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Intersections Bounds on diagramsLaces

Figure 8: The two generic laces consisting of two bonds, schematic diagrams showing the corre-
sponding rib intersections for a nonzero contribution to Π(2)(x), and diagrammatic bounds for the
contributions to Π(2)(x). Diagram lines corresponding to the backbone joining 0 and x are shown
in bold.

and once k = 5 this is an error term. We will exploit this principle in the following, beginning
with (9.40) for its simplest illustration.

Proof of (9.40). When ω has length at least 5, then from (9.42) we immediately obtain

Π̂(2,>4)
zc ≤ 2

∑

i+j=5

S(i,3)
zc S(j,4)

zc ≤ O(2d)−5/2, (9.43)

which gives (9.40).

Proof of (9.37). When |ω| = 2, there is only the lace L = {01, 12}, and C(L) = ∅. Therefore,

Π̂(2,2)
zc =

∑

x:‖x‖1∈{0,2}

∑

ω∈W(x)
|ω|=2

z2c
∑

R0∋ω(0),R1∋ω(1)
R2∋ω(2)

z|R0|+|R1|+|R2|
c U01U12. (9.44)

For x = 0, we have ω = (0, s, 0), where s is a neighbour of the origin, and Lemma 9.4 gives

Π(2,2)
zc (0) = 2dz2c

[
e3

2d
+ o(2d)−1

]

=
e

(2d)2
+ o(2d)−2. (9.45)

When ‖x‖1 = 2, one way to achieve U01U12 = 1 is to have either R0 orR1 contain the bond (0, s),
and either R1 or R2 contain the bond (s, x). To obtain a lower bound from such configurations,
we treat the subribs emanating from these bonds as independent and use inclusion-exclusion to
subtract the possible intersections among them. This yields

∑

x:‖x‖1=2

Π(2,2)
zc (x) ≥ 4(2d)(2d− 1)z4cgc

[
g4c − 2Q(s)zcg

2
c

]
=

4e

(2d)2
+ o(2d)−2. (9.46)

If (0, s) is not present in R0 and R1, or (s, x) is not present in R1 and R2, then an intersection
among the corresponding ribs requires at least four edges (including the step in ω), so as in Figure 8

we obtain for this case the crude upper bound S
(4,4)
zc S

(1,3)
zc + S

(1,4)
zc S

(4,3)
zc . This implies

∑

x:‖x‖1=2

Π(2,2)
zc (x) ≤ 4(2d)(2d− 1)z4cg

5
c + S(4,4)

zc S(1,3)
zc + S(1,4)

zc S(4,3)
zc =

4e

(2d)2
+ o(2d)−2, (9.47)
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and, with (9.45)–(9.46), this completes the proof of (9.37).

Proof of (9.38). When |ω| = 3, there are three laces: L = {01, 13}, L = {02, 23}, L = {02, 13}.

The laces L = {01, 13}, L = {02, 23}. By symmetry, both laces give the same contribution
to (9.35), so of these we only study the contribution due to L = {01, 13} (with C(L) = {12, 23}),
which is

∑

x:‖x‖1∈{1,3}

∑

ω∈W(x)
|ω|=3

z3c
∑

R0∋ω(0),R1∋ω(1)
R2∋ω(2),R3∋ω(3)

z|R0|+|R1|+|R2|+|R3|
c U01U13 (1 + U12) (1 + U23) . (9.48)

Case of ‖x‖1 = 1. When ‖x‖1 = 1, ω either has the form ω = (0, x, y, x) for y a neighbour of
x (possibly y = 0), or ω = (0, s, s + y, x) for a neighbour s of the origin distinct from x and for
y ∈ {−s, x}. In the first case, when ω = (0, x, y, x), we have U13 = −1 since ω(1) = x = ω(3).
Using (1 + U12) (1 + U23) ≤ 1, Lemmas 6.2 and 9.3, we find that this contribution to (9.48) is
bounded above by

(2d)2z3c g
2
cQ(x) =

2e

(2d)2
+ o(2d)−2. (9.49)

Also, using (−U01) (1 + U12) (1 + U23) ≥ (−U01) (1 + U12 + U23), this contribution to (9.48) is
bounded below by

(2d)2z3c
[
g2cQ(x)− O(2d)−2 −Q(x)2

]
=

2e

(2d)2
+ o(2d)−2, (9.50)

where we omit the straightforward details for the U01U12 term. This contribution gets counted
twice to account also for the lace L = {02, 23}.

In the second case, when ω = (0, s, s+ x, x), the contribution to (9.48) is bounded above by

(2d)2z3cg
2
c

∑

R1∋s,R3∋x

z|R1|+|R3|
c (−U13) = (2d)2z3cg

2
cQ(x− s) = o(2d)−2, (9.51)

where we have employed the straightforward improvement Q(x−s) ≤ O(2d)−2 to the crude bound
of Lemma 9.3, for ‖x−s‖1 = 2. Also, when ω = (0, s, 0, x), it can be checked that due to the factor
(1 + U12) at least 6 bonds are required to accomplish the intersections required for U01U13 = 1.
Therefore, using the upper bound (9.42), this contribution is at most O(2d)−3.

Case of ‖x‖1 = 3. When ‖x‖1 = 3, it can be checked that the required intersections cannot be
accomplished without using at least 5 bonds, and we conclude from the upper bound (9.42) that
the total contribution from all such x is at most O(2d)−5/2.

The lace L = {02, 13}. Its contribution to (9.35) is

∑

x:‖x‖1∈{1,3}

∑

ω∈W(x)
|ω|=3

z3c
∑

R0∋ω(0),...,
R3∋ω(3)

z|R0|+···+|R3|
c U02U13 (1 + U01) (1 + U12) (1 + U23) . (9.52)
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When ‖x‖1 = 1, either ω = (0, x, 0, x), or ω = (0, s, s+y, x) for a neighbour s of the origin distinct
from x and for y ∈ {−s, x}. In the first case, automatically U0,2U13 = 1 since ω(0) = 0 = ω(2) and
ω(1) = x = ω(3). The contribution to (9.52) is bounded above by

2dz3cg
4
c =

e

(2d)2
+ o(2d)−2. (9.53)

A matching lower bound is given by

2dz3c
∑

R0∋0,...,
R3∋x

z|R0|+···+|R3|
c (1 + U01 + U12 + U23) ≥ 2dz3c

[
g4c − 3g2cQ(x)

]
=

e

(2d)2
+ o(2d)−2. (9.54)

In the second case, when ω = (0, s, s+ y, x), the contribution to (9.52) is bounded above by

2d(2d− 1)z3cg
2
c

∑

R1∋s,R3∋x

z|R1|+|R3|
c (−U13) ≤ 2d(2d− 1)z3cg

2
cQ(x− s) = o(2d)−2. (9.55)

If ‖x‖1 = 3, the lace L = {02, 13} forces an intersection between the ribs R1 and R3, without
intersecting R2 (due to 12, 23 ∈ C(L)). It can be argued that the contribution in this case is
o(2d)−2.

Proof of (9.39). For |ω| = 4, we first consider the lace L = {02, 24} with x = 0, which is the
only case that contributes. After discussing this case in detail, we will argue that all remaining
contribution belong to the error term.

For L = {02, 24} and x = 0, the significant walks are ω = (0, s, 0, s′, 0) with s, s′ neighbours of
the origin. There are (2d)2 such walks and they have U02U24 = 1. Treating the five ribs emanating
from the walks as independent, we obtain the upper bound

(2d)2z4cg
5
c =

e

(2d)2
+ o(2d)−2, (9.56)

and it is straightforward to verify that this is also a lower bound. This gives the formula e(2d)−2+
o(2d)−2 that we seek for Π̂(2,4), so it remains to prove that the remaining terms contribute o(2d)−2.

The other walks of length four with x = 0 form unit squares containing the origin (the walk
(0, s, s+ s′, s, 0) does not contribute since it has 1 + U13 = 0). If we bound U02 by 1, and use the

fact that there are O(2d)2 such squares, then we find that this contribution to Π
(2,4)
zc (0) is bounded

by (with s, s′ orthogonal)
O(2d)2z4c g

3
cQ(s + s′) = o(2d)−2, (9.57)

where Q(s+ s′) takes into account the intersection of R2 and R4 forced by U24.
For the remaining case x 6= 0 for L = {02, 24}, and for all other laces occurring for |ω| = 4, it

can be checked that there must be at least one additional bond, besides the backbone, in order to
create the intersections for a nonzero contribution. Then (9.42) gives an upper bound

∑

i+j=5

S(i,4)
zc S(j,3)

zc = O(2d)−5/2 (9.58)

for these contributions, which thus belong to the error term. This completes the proof.

36



Acknowledgements

The work of YMM was supported in part by CONACYT of Mexico. The work of GS was supported
in part by NSERC of Canada.

References

[1] G. Aleksandrowicz and G. Barequet. The growth rate of high-dimensional tree polycubes.
Preprint, (2012).

[2] R. Barequet, G. Barequet, and G. Rote. Formulae and growth rates of high-dimensional
polycubes. Combinatorica, 30:257–275, (2010). MR2728490

[3] C. Borgs, J.T. Chayes, R. van der Hofstad, and G. Slade. Mean-field lattice trees. Ann.

Combinatorics, 3:205–221, (1999). MR1772346

[4] N. Clisby, R. Liang, and G. Slade. Self-avoiding walk enumeration via the lace expansion. J.
Phys. A: Math. Theor., 40:10973–11017, (2007). MR2396212

[5] E. Derbez and G. Slade. Lattice trees and super-Brownian motion. Canad. Math. Bull.,
40:19–38, (1997). MR1443722

[6] E. Derbez and G. Slade. The scaling limit of lattice trees in high dimensions. Commun. Math.

Phys., 193:69–104, (1998). MR1620301

[7] M.E. Fisher and D.S. Gaunt. Ising model and self-avoiding walks on hypercubical lattices and
“high-density” expansions. Phys. Rev., 133:A224–A239, (1964).

[8] D.S. Gaunt and P.J. Peard. 1/d-expansions for the free energy of weakly embedded site animal
models of branched polymers. J. Phys. A: Math. Gen., 33:7515–7539, (2000). MR1802107

[9] D.S. Gaunt, P.J. Peard, C.E. Soteros, and S.G. Whittington. Relationships between growth
constants for animals and trees. J. Phys. A: Math. Gen., 27:7343–7351, (1994). MR1310273

[10] D.S. Gaunt and H. Ruskin. Bond percolation processes in d dimensions. J. Phys. A: Math.

Gen., 11:1369–1380, (1978).

[11] B.T. Graham. Borel-type bounds for the self-avoiding walk connective constant. J. Phys. A:
Math. Theor., 43:235001, (2010). MR2646672

[12] T. Hara. Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees
and animals. Ann. Probab., 36:530–593, (2008). MR2393990

[13] T. Hara and G. Slade. On the upper critical dimension of lattice trees and lattice animals. J.
Stat. Phys., 59:1469–1510, (1990). MR1063208

[14] T. Hara and G. Slade. The number and size of branched polymers in high dimensions. J.

Stat. Phys., 67:1009–1038, (1992). MR1170084

37

http://dx.doi.org/10.1007/s00493-010-2448-8
http://www.ams.org/mathscinet-getitem?mr=MR1772346
http://www.ams.org/mathscinet-getitem?mr=MR2396212
http://dx.doi.org/10.4153/CMB-1997-003-8
http://www.ams.org/mathscinet-getitem?mr=MR1620301
http://www.ams.org/mathscinet-getitem?mr=MR1802107
http://stacks.iop.org/0305-4470/27/7343
http://www.ams.org/mathscinet-getitem?mr=MR2646672
http://www.ams.org/mathscinet-getitem?mr=MR2393990
http://www.ams.org/mathscinet-getitem?mr=MR1063208
http://dx.doi.org/10.1007/BF01049008


[15] T. Hara and G. Slade. The self-avoiding-walk and percolation critical points in high dimen-
sions. Combin. Probab. Comput., 4:197–215, (1995). MR1356575

[16] A.B. Harris. Renormalized (1/σ) expansion for lattice animals and localization. Phys. Rev.

B, 26:337–366, (1982). MR0668821

[17] R. van der Hofstad and A. Sakai. Critical points for spread-out self-avoiding walk, percolation
and the contact process. Probab. Theory Related Fields, 132:438–470, (2005). MR2197108

[18] R. van der Hofstad and G. Slade. Asymptotic expansions in n−1 for percolation critical values
on the n-cube and Zn. Random Struct. Alg., 27:331–357, (2005). MR2162602

[19] R. van der Hofstad and G. Slade. Expansion in n−1 for percolation critical values on the n-cube
and Zn: the first three terms. Combin. Probab. Comput., 15:695–713, (2006). MR2248322

[20] M. Holmes. Convergence of lattice trees to super-Brownian motion above the critical dimen-
sion. Electr. J. Probab., 13:671–755, (2008). MR2399294

[21] E. J. Janse van Rensburg. The Statistical Mechanics of Interacting Walks, Polygons, Animals

and Vesicles. Oxford University Press, Oxford, (2000). MR1858028

[22] D.A. Klarner. Cell growth problems. Canad. J. Math., 19:851–863, (1967). MR0214489

[23] D.J. Klein. Rigorous results for branched polymer models with excluded volume. J. Chem.

Phys., 75:5186–5189, (1981). J. Chem. Phys., 75:5186–5189, (1981).

[24] N. Madras. A pattern theorem for lattice clusters. Ann. Combinatorics, 3:357–384, (1999).
MR1772355

[25] Y. Mej́ıa Miranda. The critical points of lattice trees and lattice animals in high dimensions.
PhD thesis, University of British Columbia, (2012). 43087

[26] Y. Mej́ıa Miranda and G. Slade. The growth constants of lattice trees and lattice animals in
high dimensions. Elect. Comm. Probab., 16:129–136, (2011). MR2775351

[27] P.J. Peard and D.S. Gaunt. 1/d-expansions for the free energy of lattice animal models of a
self-interacting branched polymer. J. Phys. A: Math. Gen., 28:6109–6124, (1995). MR1364786

[28] M.D. Penrose. On the spread-out limit for bond and continuum percolation. Ann. Appl.

Probab., 3:253–276, (1992). MR1202526

[29] M.D. Penrose. Self-avoiding walks and trees in spread-out lattices. J. Stat. Phys., 77:3–15,
(1994). MR1300525

[30] G. Slade. The Lace Expansion and its Applications. Springer, Berlin, (2006). Lecture Notes in
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