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Abstract

The mean weight of a cycle in an edge-weighted graph is the sum of the cycle’s
edge weights divided by the cycle’s length. We study the minimum mean-weight cycle
on the complete graph on n vertices, with random i.i.d. edge weights drawn from an
exponential distribution with mean 1. We show that the probability of the min mean
weight being at most c/n tends to a limiting function of c which is analytic for c ≤ 1/e,
discontinuous at c = 1/e, and equal to 1 for c > 1/e. We further show that if the
min mean weight is ≤ 1/(en), then the length of the relevant cycle is Θp(1) (i.e., it
has a limiting probability distribution which does not scale with n), but that if the
min mean weight is > 1/(en), then the relevant cycle almost always has mean weight
(1 + o(1))/(en) and length at least (2/π2 − o(1)) log2 n log log n.

1 Introduction

Many combinatorial optimization problems have been studied when the input is a complete
(directed or undirected) graph with independent random weights on the edges. This line
of work has been active since the mid-1980s for problems such as the minimum spanning
tree [Fri85, FM89], shortest path [FG85, HVM08, Jan99, HHVM06, HHVM07], traveling
salesman path [Fri04], minimum weight perfect matching (the assignment problem) [Ald01,
LW04, NPS05], spanners [CFMS09], and Steiner tree [BGRS04, AFW12]. In this paper, we
study the minimum mean-weight cycle.

Given a directed graph with arc weights, the minimum mean-weight cycle problem is
that of finding a cycle with minimum mean weight. The mean weight of a cycle is the ratio
between its total weight and its number of arcs. The min mean-weight cycle problem, and
the closely related minimum ratio cycle problem (where each arc has a cost and a transit
time, and the mean ratio of a cycle is the total cost divided by the total transit time), have
applications in areas ranging from discrete event systems and computer-aided design to graph
theory; see Dasdan [Das04] for a detailed discussion and references. An experimental study of
various algorithms for min mean cycle can be found in [GGTW09], including experiments on
random graphs. An algorithm by Young, Tarjan, and Orlin [YTO91] emerges as particularly
efficient. Their algorithm is based on the parametric shortest path problem, which is the
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problem of finding shortest paths in graph where the edge costs are of the form wi,j + λ,
where each wi,j is constant and λ is a parameter that varies. This problem is well-defined
when λ is at least

− min
cycle C

∑

ij∈C wi,j

|C| ,

but when λ is below this value there is a negative cycle, so the problem becomes ill-defined.
The authors of [YTO91] conjectured that their algorithm is faster on average than in the
worst case, by a factor of n; analyzing the structure of the min mean cycle is an intermediate
step towards that conjecture.

In this paper, we study the min mean-weight cycle in the complete graph on n vertices,
with random i.i.d. edge weights drawn from an exponential distribution with mean 1, so that
P[we > x] = e−x. We do this for both the directed complete graph, which is relevant to the
experiments of Young, Tarjan, and Orlin [YTO91] and subsequent experiments, and for the
undirected complete graph, so that we can more readily compare our results to earlier work
on cycles in the random graph Gn,p [Jan87, FKP89].

The min max -weight cycle has been studied by Janson [Jan87] and others [FKP89].
One way to instantiate the random graph Gn,p is to start with the undirected complete
graph with i.i.d. exponential edge weights, and put each edge in Gn,p if its weight is smaller
than log 1/(1−p) (or if we instead use weights that are uniform in [0, 1], the edge is included
if its weight is smaller than p). As the parameter p is increased from 0 to 1, the first cycle
to appear is the min max -weight cycle. Janson [Jan87] gives formulas for when that cycle
occurs (i.e., its max-weight), and for its length distribution: the probability that the min
max-weight cycle has max weight less than c/n tends as n → ∞ to a continuous function
of c, which is analytic and increases from 0 to 1 as c increases from 0 to 1, is non-analytic but
continuous at c = 1, and equals 1 for c > 1 (see Figure 1). The limiting length distribution
(see Table 1) is completely supported on finite values (i.e., which don’t grow with n), but
this distribution has a fat tail which gives it an infinite expected value. (For finite n, the
expected length is order n1/6 [FKP89].)

We find that the min mean-weight cycle has a qualitatively different behavior: the prob-
ability that the min mean-weight cycle has mean weight at most c/n tends as n → ∞ to
a function of c which is piece-wise analytic, but which is discontinuous at c = 1/e (see
Figure 1). More precisely, the mean weight of the min mean-weight cycle is with constant
probability within an interval (1/e, 1/e + o(1))/n, where the o(1) term goes to 0 as n → ∞.
Furthermore, the limiting length distribution of the min mean-weight cycle is not supported
on finite values. In other words, probability that the min mean-weight cycle has length k
tends to a positive limiting value pk, but

∑

k pk < 1 (see Table 1). What this means is that
with constant probability the cycle has length order 1, and with constant probability the
cycle has a length which is a function of n tending to infinity.

It is natural to ask what this function of n is. The behavior of the long cycles is compli-
cated, and we do not conjecture a value for the true answer. The best that we could prove
is that the length of the min mean-weight cycle is almost always either O(1) or else at least
(2/π2 − o(1)) log2 n log log n.
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Figure 1: The probability that the min max/mean-weight cycle in the undirected/directed
complete graph has max/mean-weight less than c/n. (The upper left panel was computed
by Janson [Jan87].) For the min max-weight cycle, the function is non-analytic at c = 1, but
is continuous. For the min mean-weight cycle, the function is discontinuous at c = 1/e.

In the related problem of finding the maximum length path whose mean weight is at
most c/n, Aldous [Ald98] found that there is a transition point at c = 1/e, where for fixed
c < 1/e the length is o(n), and for fixed c > 1/e the length is order n. Recently Ding [Din11]
studied the behavior of this path length when c is at or near 1/e, and proved that the length
exhibits a transition at c = 1/e + Θ(1/ log2 n), with unspecified constants. By comparison,
we prove that with probability 1− o(1) the min mean-weight cycle has mean weight at most
(1/e + (π2 + o(1))/(2e log2 n))/n, but we do not know if the O(1/ log2 n) correction term is
sharp.

Whether the complete graph is directed or undirected will affect the length distribution
and the max/mean-weight of the min max/mean-weight cycle, but each of the qualitative
behaviors discussed above is unaffected by whether the graph is directed or undirected (as
shown in Figure 1 and Table 1), though the exponent characterizing the fatness of the tail
of the length distribution does change for the min max-weight cycle.

We call a cycle c-light if its mean weight is < c/n. We start with an elementary calculation
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undirected graph directed graph undirected graph directed graph
min max cycle min max cycle min mean cycle min mean cycle

p2 — 0.281718 — 0.116616
p3 0.121608 0.154845 0.035248 0.061750
p4 0.084915 0.098900 0.022796 0.039132
p5 0.063827 0.068937 0.016229 0.027417
p6 0.050329 0.050915 0.012283 0.020485
p7 0.041047 0.039195 0.009701 0.016005
p8 0.034331 0.031129 0.007905 0.012923
p9 0.029280 0.025334 0.006598 0.010701
p10 0.025365 0.021027 0.005613 0.009039
p100 0.000921 0.000264 0.000165 0.000238

pk
1

2

∫ 1

0

ck−1
√

1−c e
c
2
+ c2

4 dc

∫ 1

0

ck−1(1−c)ec dc
kk

2k!

∫ 1

e

0

ck−
1

2 e
c
2
+ c2

2

√

T (c)
dc

kk

k!

∫ 1

e

0

ckec

T (c)
dc

pk (1+o(1))
e3/4

√
π

4k3/2
(1+o(1))

e

k2
(1+o(1))

e−
1

2
+ 1

2e
+ 1

2e2

√
8πk3/2

(1+o(1))
e−1+ 1

e

√
2πk3/2

pk
0.938071 . . .+o(1)

k3/2

2.71828 . . .+o(1)

k2

0.155598 . . .+o(1)

k3/2

0.212023 . . .+o(1)

k3/2

∑

k pk 1 1 1 − e−
1

2
+ 1

2e
+ 1

2e2 1 − e−1+ 1

e

= 0.219946 . . . = 0.468536 . . .

Table 1: The limiting length distribution of the min max/mean-weight cycle. The leftmost
column is due to Janson [Jan87]. Here T (c) =

∑∞
k=1 k

k−1ck/k! is the “tree function”. For
the min max-weight cycle, the length distribution is supported on finite values, while for the
min mean-weight cycle, a constant fraction of the probability mass (1 −

∑

k pk) drifts off to
infinity. The size of the jumps at the discontinuities in Figure 1 is 1 −∑k pk.

of the expected number of c-light cycles of length k. Then we show that for c ≤ 1/e, the
set of light cycles is well approximated by a Poisson process with intensity given by the
first-moment computation. For c > 1/e, the number of c-light cycles diverges. Given this
Poisson approximation, it is straightforward to do the computations illustrated in Figure 1
and Table 1. A key difference between the min mean-weight cycle and min max-weight cycle
is that the expected number of c-light cycles is finite at the critical value c = 1/e, while
for the max-weight cycles, the expected number of light cycles diverges at the critical value
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of c. As we will explain, the finite expected number of light cycles at the critical value of c is
what leads to the discontinuity in the curves in Figure 1 and it is also why

∑

k pk < 1. With
probability tending to 1 −

∑

k pk the min mean-weight cycle is long (has length tending
to infinity with n) and has mean weight (1/e + o(1))/n; analyzing its length is difficult
because the Poisson approximation breaks down in this regime, but we bound it below by
(2/π2 − o(1)) log2 n log log n.

2 Review of the tree function

Because it plays a key role in the formulas for min mean-weight cycles in the subcritical
regime, i.e., for weight < 1/(en), we briefly review the tree function and the closely related
Lambert W function. The tree function T is the exponential generating function for rooted
spanning trees. Recalling Cayley’s formula that there are kk−1 rooted spanning trees on k
nodes, we have

T (z) =
∞
∑

k=1

kk−1 z
k

k!
.

From Stirling’s formula
√

2πk
kk

ek
≤ k! ≤

√
2πk

kk

ek
e1/(12k),

this sum converges when |z| ≤ 1/e. Using techniques from the theory of generating functions,
one can see that

T (z) = z eT (z) (2.1)

(see e.g., [Sta99, Proposition 5.3.1]). It is straightforward to check that T (1/e) = 1. Near
this critical point, using (2.1), one can deduce

T (1−δ
e

) = 1 −
√

2δ + O(δ). (2.2)

The Lambert W function is defined by the equation

z = W (z) eW (z).

This is a multivalued function, but the principal branch is defined so that W (z) = −T (−z)
when |z| ≤ 1/e, and by analytic continuation elsewhere. The tree function figures promi-
nently in the analysis of random graphs near the phase transition (see e.g., [JK LP93]),
and the Lambert W function is an important function in applied mathematics; for further
background see [CGHJK96].

3 The expected number of light cycles

Given c > 0, say that a directed or undirected k-cycle C or k-path P is c-light if its mean
weight w(C)/k is at most c/n.
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Lemma 3.1. With exponential edge weights, if 0 ≤ c1 ≤ c2 then

P[k-cycle or k-path is c2-light but not c1-light]















∼ kk

k!

ck2 − ck1
nk

if k = o(n)

≤ kk

k!

ck2 − ck1
nk

for any k.

Proof. The weight w(C) of a k-cycle or k-path C is distributed as the sum of k independent
exponential random variables, that is, according to the Gamma distribution with shape
parameter k, which has density function

φ : x 7→ e−xxk−1/Γ(k), (3.1)

where Γ is the gamma function, which is Γ(k) = (k − 1)! for positive integers k. Thus

P[c1k/n < w(C) ≤ c2k/n] =
∫ c2k/n

c1k/n
φ(x) dx. Now e−k/n ≤ 1 and when k = o(n) we have

e−k/n = 1 − o(1).

Lemma 3.2. Let Nk denote the number of directed k-cycles in the complete graph on n
vertices. For k ≥ 2 we have

Nk















∼ nk

k
if k = o(

√
n)

≤ nk

k
for any k.

(For k ≥ 3, the number of undirected k-cycles is of course 1
2
Nk.)

Proof.

kNk

nk
=

n(n− 1) · · · (n− k + 1)

nk
=

k−1
∏

i=0

(

1 − i

n

)

= exp

[

− k2

2n
+ O

(

k

n

)

+ O

(

k3

n2

)

+ · · ·
]

which is 1 − o(1) when k = o(
√
n), and at most 1 in all cases.

Theorem 3.3. For the directed complete graph, let Z
(k)
c denote the number of directed k-

cycles with mean weight less than c/n, and Zc =
∑

k Z
(k)
c denote the total number of c-light

directed cycles. If 0 ≤ c1 ≤ c2 then

E[Z(k)
c2

− Z(k)
c1

] =















∼ (ck2 − ck1)kk

k × k!
if k = o(

√
n)

≤ (ck2 − ck1)kk

k × k!
for any k,

(3.2)

and

lim
n→∞

E[Zc] =











∑

2≤k<∞

(ck)k

k × k!
= T (c) − c for c ≤ 1/e,

∞ for fixed c > 1/e.

(3.3)
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For the undirected complete graph, the expected number of undirected c-light k-cycles is
1
2
E[Z

(k)
c ] for k ≥ 3, and the total expected number of c-light cycles is

lim
n→∞

E[# undirected c-light cycles] =







T (c) − c− c2

2
for c ≤ 1/e,

∞ for fixed c > 1/e.
(3.4)

Proof. Equation (3.2) is immediate from Lemmas 3.1 and 3.2. For large k, by Stirling’s
formula the expression in (3.2) is asymptotic to

(ck2 − ck1)ek√
2πk3/2

.

Thus for fixed c > 1/e, the expected number Zc of c-light cycles tends to ∞. For c ≤ 1/e,

note that E[Zc] ≤ T (c) − c, and that E[Zc] ≥
∑

k≤k0
E[Z

(k)
c ], whose summands converge to

the k ≤ k0 terms for the series for T (c) − c. Taking the k0 → ∞ limit then yields (3.3).
The formulas for the undirected complete graph follow immediately from the formulas for
the directed complete graph.

4 Poisson approximation for short light cycles

Next we show that the short c-light cycles are well approximated by a Poisson process. Here
“short” means length at most L0 = log n/(2 log log n), though for our main results it would
suffice to prove this Poisson approximation for any L0 which tends to infinity as n → ∞. For
c ≤ 1/e, we know from the first-moment bounds in Theorem 3.3 that with high probability
there are no cycles of length ω(1). It will then follow that the set of all c-light cycles is well
approximated by a Poisson process when c ≤ 1/e.

For our purposes, the most convenient method to show Poisson approximation is the
Chen–Stein method, as formulated by Arratia, Goldstein, and Gordon [AGG89, Theorem 2]:

Theorem 4.1 ([AGG89]). Let {Xα : α ∈ I} be a finite set of indicator random variables
of dependent events, and let {Yα : α ∈ I} be a set of mutually independent Poisson random
variables such that E[Yα] = E[Xα] for each α. For each α let Bα be a subset of I, which
is interpreted as the “neighborhood of α”. Then the total variation distance between the
dependent Bernoulli process (Xα)α∈I and the independent Poisson process (Yα)α∈I is at most

2
∑

α∈I

∑

β∈Bα

E[Xα]E[Xβ ]+2
∑

α∈I

∑

β∈Bα
β 6=α

E[XαXβ]+
∑

α∈I

E

[

∣

∣E[Xα|{Xβ : β /∈ Bα}]−E[Xα]
∣

∣

]

. (4.1)

With a suitable choice of the neighborhood sets Bα, the third term above can easily be
made zero, and analyzing the first two terms above is manageable.
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Theorem 4.2. Suppose c0 is fixed and L0 = logn/(2 log log n). For both the directed and
undirected complete graphs with exponential edge weights, for any ε, for sufficiently large n,
the collection of c0-light cycles with length at most L0 is within total variation distance ε of a
Poisson process whose intensity is the expected number of such cycles. In particular, except
with probability ε, for all k ≤ L0 and all c ≤ c0, the number of c-light cycles of length k
equals the number of points in the corresponding region of the Poisson process.

Proof. We divide the interval (0, c0] into subintervals of length ∆. To apply Theorem 4.1, let
I denote the set of pairs (C, c), where C is a k-cycle (directed or undirected) with k ≤ L0,
and (c−∆, c] is one of the subintervals. Let XC,c be the indicator random variable for cycle C
being c-light (i.e., a cycle with mean weight at most c/n), but not (c− ∆)-light.

Let BC,c denote the subset of pairs (C ′, c′) ∈ I for which cycles C and C ′ have at least
one edge in common. The variables {XC′,c′ : (C ′, c′) /∈ BC,c} only depend on edges that are
disjoint from cycle C, so conditioning on them has no effect on the weight of cycle C. Thus

E[XC,c|{XC′,c′ : (C ′, c′) /∈ BC,c}] − E[XC,c] = 0,

and so the third term in (4.1) is zero.
Next we observe that the first two terms of (4.1) are unaffected by the subdivision of

the interval (0, c0]: We can define XC =
∑

cXC,c, where the sum is over the right endpoints
of the intervals in the subdivision of (0, c0], which are still Bernoulli random variables, and
define BC to be the set of cycles that have at least one edge in common with C. Then
∑

C

∑

C′∈BC
E[XC ]E[XC′ ] =

∑

C,c

∑

(C′,c′)∈BC,c
E[XC,c]E[XC′,c′], and similarly for the second

term. Therefore we work with the XC ’s and BC ’s.
For the first term of (4.1), we write:

∑

C

∑

C′∈BC

E[XC ]E[XC′ ] =
∑

k≤L0

∑

ℓ≤L0

qkqℓNkNℓP[k-cycle and ℓ-cycle share an edge],

where qk is the probability that a k-cycle is c0-light. The expected number of edge inter-
sections between a k-cycle and an ℓ-cycle is kℓ/n2 for the directed case, and kℓ/

(

n
2

)

for the
undirected case, so they intersect with probability at most kℓ/

(

n
2

)

. Thus the first term is at
most

4

n(n− 1)

[

∑

k≤L0

qkNkk

]2

.

But from Theorem 3.3, qkNk ≤ (c0e)
k/
√

2πk3. So the first term of (4.1) is bounded by

O

(

(c0e)
2L0

n2

)

=
1

n2−o(1)
,

which tends to 0 as n → ∞.
For the second term of (4.1), we consider all possible pairs of distinct non-edge-disjoint

cycles C,C ′ of I. Let k be the number of edges common to C and to C ′, k + ℓ be the length
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of C and k +m be the length of C ′. We let w/n denote the total weight of the edges C and
C ′ share, v/n denote the total weight of edges in C but not C ′, and x/n denote the total
weight of edges in C ′ but not C. The probability that both cycles are c0-light is:

E[XCXC′] =

∫∫∫

w+v<(k+ℓ)c0
w+x<(k+m)c0

e−w/n(w/n)k−1

Γ(k)

e−v/n(v/n)ℓ−1

Γ(ℓ)

e−x/n(x/n)m−1

Γ(m)

dw dv dx

n3
.

We can bound the e−w/n, e−v/n, and e−x/n terms by 1:

E[XCXC′] ≤ 1

nk+ℓ+m

∫∫∫

w+v<(k+ℓ)c0
w+x<(k+m)c0

wk−1

Γ(k)

vℓ−1

Γ(ℓ)

xm−1

Γ(m)
dw dv dx.

We enlarge the domain of integration to the set of (w, v, x) for which w < (k + ℓ)c0, v <
(k + ℓ)c0, and x < (k + m)c0, so that the triple integral has a product form that can be
evaluated explicitly:

E[XCXC′] ≤ 1

nk+ℓ+m

((k + ℓ)c0)
k

k!

((k + ℓ)c0)
ℓ

ℓ!

((k + m)c0)
m

m!

≤ ck+ℓ+m
0

nk+ℓ+m
(k + ℓ)k+ℓ(k + m)m

≤ (c0L0)
2L0

nk+ℓ+m
.

We now count the number of cycle pairs (C,C ′) which are distinct and have at least one
edge in common given k, ℓ,m.

Suppose C ′ \C consists of i ≥ 1 paths. There are at most Li
0 possibilities for the lengths

m1, m2, . . . , mi of the paths of C ′ \ C. With those lengths specified, we can list the k + ℓ
vertices of C in order from some arbitrary starting point, specify where along C each path
of C ′ \ C starts and ends, and specify the mj − 1 vertices of each path. Thus, for either the
directed or undirected setting, the number of such configurations is at most nk+ℓLi

0L
2i
0 n

m−i.
Altogether the number of overlapping cycles (C,C ′) is bounded by

L0
∑

i=1

L3i
0

ni
nk+ℓ+m ≤ 2

L3
0

n
nk+ℓ+m,

provided L0 ≤ 3

√

n/2. There are at most L0 choices for each of k, ℓ, and m. The second

term of (4.1) is then bounded by 4c2L0

0 L2L0+6
0 /n (provided L0 ≤ 3

√

n/2). When L0 =
1
2

logn/ log logn, we have

4

n
c2L0

0 L2L0+6
0 ≤ 4

n
exp[(log log n− log log log n)(logn/ log logn + 6) + log c0 log n/ log logn]

= 4 exp[6(log log n− log log logn)

− logn log log log n/ log log n + log c0 logn/ log logn],

which tends to 0 as n → ∞.



The min mean-weight cycle in a random network Mathieu & Wilson 10

5 Below the critical point: short light cycles

Given the Poisson approximation result in Theorem 4.2 and the first-moment estimate in
Theorem 3.3, it is straightforward to derive the formulas for the mean-weight of the min
mean-weight cycle (shown in Figure 1), and the probability that the length of the cycle is k
for any fixed k (in Table 1). Similar computations were done by Janson [Jan87] for the min
max-weight cycle.

5.1 Weight of the cycle

Theorem 5.1. For the directed complete graph, for fixed c, there is a cycle with mean weight
≤ c/n with probability

lim
n→∞

P[∃ cycle with mean-weight ≤ c/n] =

{

1 − exp[−T (c) + c] c ≤ 1/e

1 c > 1/e,

while for the undirected complete graph the probability is

lim
n→∞

P[∃ cycle with mean-weight ≤ c/n] =

{

1 − exp[(−T (c) + c + c2)/2] c ≤ 1/e

1 c > 1/e.

Proof. For c ≤ 1/e, by the first moment estimate, with probability 1−o(1) there are no c-light
cycles with length > L0 = log n/(2 log log n). By the Poisson approximation, there is a c-light
cycle of length ≤ L0 with probability exp[−µ]+o(1), where µ = (1+o(1))

∑L0

k=2 k
k−1ck/k! =

T (c) − c + o(1) for the directed complete graph, and µ = (T (c) − c − c2)/2 + o(1) for the
undirected complete graph. For fixed c > 1/e, the sum (1 + o(1))

∑L0

k=2 k
k−1ck/k! tends to

infinity with n, and the Poisson approximation still holds, so with probability 1− o(1) there
is a c-light cycle.

So the finiteness of T (c)−c and (T (c)−c−c2)/2 at c = 1/e accounts for the discontinuities
in the curves in Figure 1. Recalling the behavior of the tree function near c = 1/e, we see
that these curves for the min mean-weight cycle have a square-root plus constant behavior
to the left of the critical point.

5.2 Length of the cycle

Theorem 5.2. Suppose k is fixed as n → ∞. For the directed complete graph, for k ≥ 2

lim
n→∞

P[min mean-weight cycle has length k] =

lim
n→∞

P

[

min mean-weight cycle has length k and weight ≤ k

e

]

=

∫ 1/e

0

ck−1kk

k!
e−T (c)+c dc.
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For the undirected complete graph, for k ≥ 3

lim
n→∞

P[min mean-weight cycle has length k] =

lim
n→∞

P

[

min mean-weight cycle has length k and weight ≤ k

e

]

=

∫ 1/e

0

ck−1kk

2k!
e(−T (c)+c+c2)/2 dc.

Proof. We subdivide the interval [0, 1/e] into subintervals of width ∆, and let [c, c + ∆]
be one of these subintervals. By Theorem 3.3, the expected number of k-cycles which are
(c + ∆)-light but not c-light is

(1 + o(1))
(kck−1∆)kk

k × k!
+ O(∆2)

in the directed setting, and half that in the undirected setting (for k ≥ 3), where the o(1)
term goes to 0 for fixed k when ∆ → 0 and n → ∞. Using Poisson approximation for
cycles of length at most L0 = log n/(2 log logn) and mean weight ≤ 1/e (Theorem 4.2), the
fact that it is unlikely that there is any cycle with mean weight ≤ 1/e and length more
than L0 (Theorem 3.3), and the probability that there is a cycle with mean weight ≤ c/n
(Theorem 5.1), we see that the probability that the min-mean weight cycle has length k and
weight between c and c + ∆ is

(1 + o(1))
ck−1kk

k!
× e−T (c)+c ∆ + O(∆2)

in the directed setting, and

(1 + o(1))
1

2

ck−1kk

k!
× e(−T (c)+c+c2)/2 ∆ + O(∆2)

in the undirected setting, where the o(1) terms go to 0 uniformly in c for fixed k when
n → ∞ and ∆ → 0. Summing these expressions over the subintervals of [0, 1/e] and taking
the ∆ → 0 limit gives the integral expressions for the probability that the min mean-weight
cycle has length k and mean weight ≤ 1/e.

Next we consider the possibility that the min mean-weight cycle has length k and mean
weight > 1/e. Suppose 0 < δ < 1. With probability tending to 1 as n → ∞, there is a
(1 + δ/k)/e-light cycle. But the expected number of k-cycles that are (1 + δ/k)/e-light but
not 1/e-light tends to 0 as δ → 0. So the probability that the min mean-weight cycle has
length k and mean weight > 1/e tends to 0 as n → ∞.

The formulas in Table 1 are rewritten slightly using Equation 2.1 to write e−T (c) = c/T (c).
Theorem 5.1 and Theorem 5.2 imply

lim
n→∞

P[min mean-weight cycle has mean weight > 1/e] > 0
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but
∑

k

lim
n→∞

P[min mean-weight cycle has length k and mean weight > 1/e] = 0.

There is no contradiction of course. In Section 6 we further investigate the length of the min
mean-weight cycle when its mean weight is > 1/e.

5.3 Tail behavior of the length distribution

We can approximate the large-k behavior of the probability pk that the min mean-weight
cycle has length k (sending n to infinity first and then k). We make the substitution c =
(1 − δ)/e to obtain, for the directed complete graph,

pk =
e−kkk

k!
e1/e

∫ 1

0

(1 − δ)k
e−δ/e

T ((1 − δ)/e)

dδ

e
.

The integrand is approximately e−kδ for small δ, and large δ contribute negligibly, so the
integral is approximately 1/(ke), and so for large k

pk = (1 + o(1))
e−1+1/e

√
2π

k−3/2.

For the undirected complete graph, a similar computation yields

pk = (1 + o(1))
e−1/2+1/(2e)+1/(2e2)

2
√

2π
k−3/2.

By comparison, Janson [Jan87] shows that for the min max-weight cycle on the undirected
complete graph, the expected number of cycles with max weight at most c/n is 1

2
(log 1

1−c
−

c − c2/2), so the probability that such a cycle exists is 1 − (1 − c)1/2ec/2+c2/4 which has its
threshold at 1, and so

pk =
1

2

∫ 1

0

ck−1(1 − c)1/2ec/2+c2/4 dc,

which for large k is

pk = (1 + o(1))

√
π

4
e3/4k−3/2.

The computations for the min max-weight cycle on the directed complete graph are
similar, though it is perhaps surprising that unlike the previous three cases, the asymptotics
of pk in this case are pk = Θ(k−2). More specifically, we have

pk =

∫ 1

0

ck−1(1 − c)ec dc,
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Letting c = 1 − δ/k, the integrand is for small δ asymptotically

e−δ δ

k
e
dδ

k
,

so we see that the integral is asymptotically e/k2.

6 Above the critical point: long light cycles

Recall that a cycle C is c-light if weight(C) ≤ length(C)c/n. We say that a cycle C is
A-uniformly c-light if C is c-light, and in addition, for every subpath P of C,

weight(P ) ≤
[

length(P ) + A
] c

n
.

In the directed complete graph, let ZL,δ denote the number of (1 + δ)/e-light cycles of length

between L − 1/δ and L, and let Y L1,L2

δ,A denote the number of A-uniformly (1 + δ)/e-light
cycles of length L for which L1 < L ≤ L2. We will eventually choose the parameters δ, L1,
L2, and A so that

δ = Θ(1/ log2 n)

L1, L2 = ω(log2 n log logn)

A ≈ logn.

We aim to show that with high probability such cycles exist.
We use a theorem of Komlós, Major, and Tusnády [KMT76, Theorem 1] from the second

of two papers they wrote relating random walk to Brownian motion:

Theorem 6.1 ([KMT76]). Suppose that X1, X2, . . . are i.i.d. random variables with expected
value 0, variance 1, and finite exponential moments, i.e., their density function f(x) satisfies
∫

etxf(x) dx < ∞ for |t| ≤ t0 > 0. Then these random variables can be coupled to i.i.d.
standard normal random variables Y1, Y2, . . . such that for any λ there are constants K1 and
K2 for which

P

[

max
k≤n

∣

∣

∣

∣

∣

k
∑

i=1

Xi −
k
∑

i=1

Yi

∣

∣

∣

∣

∣

> K1 log n + x

]

< K2 e
−λx.

Lemma 6.2. Let C be a particular cycle of length L, and let W be its (random) weight. By
definition, cycle C is (nW/L)-light. The probability that C is A-uniformly (nW/L)-light is
independent of W and n, and is at least

exp[−(π2/2 + o(1))L/A2],

where the o(1) term tends to 0 as L/A2 → ∞ and L/A3 → 0.
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Proof. The edge weights W1, . . . ,WL are distributed as L independent exponential random
variables with mean 1. The total weight is W =

∑L
i=1Wi. Because the edge weights are

exponential random variables, conditioning on the total weight W does not affect the joint
distribution of relative weights Wi/W , which are distributed as the arc lengths of the arcs
between L uniformly random points placed on a circle of unit circumference. The cycle is
by definition (nW/L)-light. The cycle is A-uniformly (nW/L)-light when

ℓ
∑

i=1

Wa+i mod L ≤ (ℓ + A)

∑L
i=1Wi

L
(6.1)

for each a, ℓ ∈ {1, . . . , L}, where a + i mod L is interpreted as a value in the range 1, . . . , L.
This property is invariant under uniform scalings of the edge weights, so whether or not
the cycle is also A-uniformly (nW/L)-light is solely a function of these random arc lengths,
independent of the total weight W and n.

Let Xi = Wi − 1. Suppose that 0 < ε ≤ 1/4 and

0 ≤
L
∑

i=1

Xi ≤ εA, (6.2)

and that for each k ∈ {1, 2, . . . , L},

− 1 − ε

2
A ≤

k
∑

i=1

Xi ≤
1 − ε

2
A. (6.3)

Equation (6.2) implies
∑L

i=1Wi ≥ L. When a+ℓ ≤ L, (6.3) implies
∑ℓ

i=1Wa+i ≤ ℓ+(1−ε)A,

which then implies (6.1) when a + ℓ ≤ L. If a + ℓ > L, then
∑ℓ

i=1Wa+i mod L =
∑L

i=1Wi −
∑a

i=1+a+ℓ mod L Wi ≤ εA + (1 − ε)A + ℓ by (6.2) and (6.3), so again we have (6.1).
Now Xi has zero mean, unit variance, and finite exponential moments, so Theorem 6.1

implies that the partial sums
∑k

i=1Xi are well approximated by a standard Brownian motion.
It is known how to compute using Fourier analysis the probability that a standard Brownian
motion Bt stays within an interval up through time T . If the interval is [−a, a], then this
probability is

Θ

(

exp

[

−π2

8

T

a2

])

(see e.g., [MP10, pp. 216–218]). Conditional upon the Brownian motion remaining within
this interval, its final position within the interval at time T has a well-behaved distribution
which for large T/a2 converges to a sine function, since the other Fourier coefficients decay
more rapidly.

We set T = L and a = A(1−2ε)/2; we see that the Brownian motion Bt stays within the
interval ±A(1 − 2ε)/2 and ends within the interval (εA/3, 2εA/3) with probability at least

Θ

(

ε× exp

[

− 1

(1 − 2ε)2
π2

2

L

A2

])

. (6.4)
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If this event occurs, and the partial sums
∑k

i=1Xk are within εA/3 of the Brownian motion,
then equations (6.3) and (6.2) hold.

By assumption L/A3 → 0, so let us suppose L/A3 ≤ 1. Then A ≥ L1/3. By assumption
L/A2 → ∞, so L → ∞. Let us take

ε = 6 max
(

L/A3, K1 logL/A, e−L1/2/A
)

,

which by our assumptions tends to 0, and we can suppose that it is at most 1/4 as assumed
above.

In the KMT theorem, we choose λ = 20 and x = L/A2. By our choice of ε, the deviation
K1 logL+x is smaller than εA/3. The probability that the Brownian motion and the random
walk are not within εA/3 of one another is at most K2 e

−20L/A2

. Now 20 > π2/(2(1 − 2ε)2),
so provided L/A2 is sufficiently large, even if we condition on the unlikely event that the
Brownian motion stays within the interval and ends within an even smaller interval, it is still
extremely likely that the random walk does not deviate more than εA/3 from the Brownian
motion. Thus, the probability that the cycle is A-uniformly c-light can be bounded below
by an expression of the form (6.4). Since ε ≥ e−L1/2/A and L/A2 → ∞, the factor of ε in
(6.4) can be absorbed into the exponent where it becomes log ε = o(L/A2), and since ε → 0,
(6.4) can be further rewritten as exp[−(π2/2 + o(1))L/A2].

Lemma 6.3. For the directed complete graph, the expected number of A-uniformly (1+δ)/e-
light directed cycles with length more than L1 and at most L2 is

E
[

Y L1,L2

δ,A

]

=
L2
∑

L=L1+1

(1 + δ)L

L3/2
exp[−(π2/2 + o(1))L/A2],

where the o(1) term tends to 0 as L2
2/n → 0, L1/A

2 → ∞, and L2/A
3 → 0. (For the

undirected graph, the expected value is half as large.)

Proof. Essentially immediate from the first moment estimates for c-light cycles (Theorem 3.3)
and Lemma 6.2. Since L/A2 → ∞, the factor of (1 + o(1))/

√
2π gets absorbed into the o(1)

term in the exponent.

Lemma 6.4. If L3
2e

A/n ≤ 1/2, then

Var
[

Y L1,L2

δ,A

]

E
[

Y L1,L2

δ,A

] ≤ 1 +
2L3

2e
A(1 + δ)L2

n
.

(This same bound holds for both the directed and undirected complete graph.)

Proof. For any cycle C of length between L1 and L2, let UC denote the indicator of the event
that C is uniformly light (within this proof, “uniformly light” means A-uniformly (1 + δ)/e-
light). Let C1, C2 be two cycles whose lengths are both in the range (L1, L2]. If C1 and C2
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have no edges in common then UC1
and UC2

are independent. So we have

Var
[

Y L1,L2

δ,A

]

=
∑

C1

∑

C2

(E[UC1
UC2

] − E[UC1
]E[UC2

])

=
∑

C1

∑

C2:|C2∩C1|≥1

(E[UC1
UC2

] − E[UC1
]E[UC2

])

≤
∑

C1

∑

C2:|C2∩C1|≥1

E[UC1
UC2

]

=
∑

C1

E[UC1
]

∑

C2:|C2∩C1|≥1

E[UC2
|UC1

= 1].

We partition the inner sum into sub-sums depending on the overlaps between C1 and C2.
If C2 = C1, then of course E[UC2

|UC1
= 1] = 1. Otherwise, C2 \C1 consists of a collection of

disjoint paths, say that there are i of them, and that their lengths are m1, m2, . . . , mi. Let
m =

∑

j mj < L2. To specify the jth path, we can specify its start and end points on C1,

as well as the internal vertices, so there are ≤ L2
2n

mj−1 possible such subpaths. Hence the
number of such C2’s is at most L2i

2 n
m−i. Conditional on the weights in C1, the probability

that C2 is uniformly light is at most the probability that for each j, the jth subpath C2 \C1

has weight at most wj := (mj + A)(1 + δ)/(en). The probability that the jth subpath is
light enough is at most

w
mj

j

mj !
≤ [(1 + δ)(1 + A/mj)]

mj

nmj
√

2πmj

≤ eA(1 + δ)mj

nmj
,

and so the conditional probability that C2 is uniformly light is at most eAi(1 + δ)m/nm.
We see that the contribution to

∑

C2:|C2∩C1|≥1E[UC2
|UC1

= 1] from the case where C2 \ C1

consists of i paths of lengths m1, . . . , mi is

∑

C2:C2\C1=i paths of lengths m1,...,mi

E[UC2
|UC1

] ≤
[

L2
2e

A

n

]i

(1 + δ)m.

Since each mj ≤ L2, the total contribution from cases where C2 \ C1 consists of i paths is

∑

C2:C2\C1=i paths

E[UC2
|UC1

] ≤
[

L3
2e

A

n

]i

(1 + δ)m.

Since by assumption L3
2e

A ≤ n/2, we can sum over i to obtain

∑

i≥1

∑

C2:C2\C1=i paths

E[UC2
|UC1

] ≤ 2
L3
2e

A

n
(1 + δ)m.

Combining this with the case C2 = C1, and using m ≤ L2, we obtain

∑

C2:|C2∩C1|≥1

E[UC2
|UC1

= 1] ≤ 1 + 2
L3
2e

A

n
(1 + δ)L2 .
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We now have the ingredients to prove our upper bound on the minimum mean weight:

Theorem 6.5. For both the directed and undirected complete graph, with probability 1−o(1)
the mean weight of the minimum mean-weight cycle is at most

1 +
π2/2 + o(1)

log2 n

en
.

Proof. We want to show that with high probability there are (1 + δ)/e-light cycles, and
we do this by showing that in fact there are A-uniformly (1 + δ)/e-light cycles with high
probability. For any real-valued random variable Y we have P[Y = 0] ≤ Var[Y ]/E[Y ]2. We

choose the parameters A, L1, and L2 so that Var
[

Y L1,L2

δ,A

]

≪ E
[

Y L1,L2

δ,A

]2
, which will imply

that with high probability Y L1,L2

δ,A > 0, i.e., that there is an A-uniformly (1 + δ)/e-light cycle
with size between L1 and L2.

We gather our constraints, which are the same for both the directed and undirected
complete graph:

L1/A
2 ≫ 1

L2/A
3 ≪ 1

L2
∑

L=L1+1

(1 + δ)L

L3/2
exp[−(π2/2 + o(1))L/A2] ≫ 1 +

2L3
2e

A(1 + δ)L2

n

2L3
2e

A

n
≤ 1

L2
2 ≪ n

Form the third constraint above we need δ > (1 + o(1))π2/(2A2), since otherwise the
left-hand side would be smaller than one. From the fourth constraint we need A ≤ log n, so
we need

δ ≥ π2 + o(1)

2 log2 n
.

In order to make δ this small, we need A = (1 + o(1)) logn and L2 ≫ log2 n log logn, since
otherwise the left-hand side of the third constraint would be smaller than one. The second
constraint then requires L2 ≪ log3 n. Choosing L1 and L2 to include many cycle lengths L
has the advantage of increasing E

[

Y L1,L2

δ,A

]

, but this increase is dwarfed by the exponential
factors, and ultimately only affects the o(1) term, so we may as well take L1 = L2 − 1.

We can make δ nearly as small as this bound by picking the following parameter values.
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Let ε > 0 be an arbitrarily small positive constant.

A = (1 − ε) logn

δ =
π2/2 + 13ε

log2 n

L2 =
1

ε
log2 n log log n

L1 = L2 − 1.

It is straightforward to verify that for sufficiently small fixed ε, the above values satisfy the
preceding constraints for all sufficiently large n.

The upper bound on the mean weight of the minimum mean-weight cycle is a key ingre-
dient in bounding its length from below in the supercritical regime.

Lemma 6.6. If δ ≪ 1, then with high probability there are no cycles of length at most

log δ−1

2δ

that are (1 + δ)/e-light but not 1/e-light. (This holds for both the directed and undirected
complete graph.)

Proof. Using the inequality version of the first-moment estimate (3.2) and Stirling’s formula,
the expected number of cycles of length ≤ L0 that are (1 + δ)/e-light but not 1/e-light is at
most

L0
∑

k=1

1√
2πk3/2

[(1 + δ)k − 1].

For k ≤ 1/δ we can use the bound

(1 + δ)k − 1 ≤ (e− 1)δk,

and find that the first 1/δ terms (if there are that many) sum up to at most

e− 1√
2π

∫ 1/δ

0

k−1/2δ dk =
e− 1
√

π/2
δ1/2 = o(1),

since by assumption δ ≪ 1.
For the remaining terms we use the bound

(1 + δ)k − 1 ≤ eδk,
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and group the terms into blocks of ⌈1/δ⌉ terms (except that the last block may have fewer
terms). For the block containing k, the block sum is O(eδk/(δk3/2)). These block-sum bounds
increase geometrically, so the total is

O

(

eδL0

δL
3/2
0

)

.

Taking L0 = (log δ−1)/(2δ), we have eδL0 = δ−1/2, so the above bound is O(1/(δL0)
3/2) =

O(1/(log δ−1)3/2) = o(1).

We can now bound from below the length of the supercritical minimal mean-weight cycle:

Theorem 6.7. For both the directed and undirected complete graph, conditional upon the
min mean-weight cycle having mean weight > 1/(en), with probability 1 − o(1) its length is
at least

(2/π2 − o(1)) log2 n log logn.

Proof. Immediate from Theorem 6.5 and Lemma 6.6, together with the fact (Theorem 5.1)
that the event being conditioned on has probability bounded away from 0.
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