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EXCLUDED FOREST MINORS AND THE ERDŐS–PÓSA PROPERTY

SAMUEL FIORINI, GWENAËL JORET, AND DAVID R. WOOD

Abstract. A classical result of Robertson and Seymour states that the set of graphs

containing a fixed planar graph H as a minor has the so-called Erdős-Pósa property;

namely, there exists a function f depending only on H such that, for every graph G and

every positive integer k, the graph G has k vertex-disjoint subgraphs each containing

H as a minor, or there exists a subset X of vertices of G with |X| 6 f(k) such that

G − X has no H-minor (see N. Robertson and P. D. Seymour. Graph minors. V.

Excluding a planar graph. J. Combin. Theory Ser. B, 41(1):92–114, 1986). While the

best function f currently known is exponential in k, a O(k log k) bound is known in

the special case where H is a forest. This is a consequence of a theorem of Bienstock,

Robertson, Seymour, and Thomas on the pathwidth of graphs with an excluded forest-

minor. In this paper we show that the function f can be taken to be linear when H is

a forest. This is best possible in the sense that no linear bound is possible if H has a

cycle.

1. Introduction

Let F be a finite set of graphs, which we will typically think of as a set of excluded

(or forbidden) minors. Given a graph G, an F-packing (or simply packing) in G is a

collection of vertex-disjoint subgraphs of G each containing a member of F as a minor.

The maximum size of such a collection is denoted νF (G). A dual notion is that of an

F-transversal (or simply transversal) of G, which is defined as a subset X of vertices of

G such that G −X contains no member of F as a minor. The minimum size of such a

set X is denoted τF (G).

Thus if G is a proper minor-closed class of graphs and F is the corresponding set of

minimal forbidden minors (which is finite by the graph minor theorem [28]), then τF (G)

is the minimum number of vertices to remove from G to obtain a graph in the class G,
while νF (G) is the maximum number of vertex-disjoint forbidden minors in G.

These two graph invariants generalize some classical invariants in graph theory and com-

binatorial optimization: If F = {K2} then it is easily seen that νF (G) is the maximum

size of a matching in G, while τF (G) is the minimum size of a vertex cover in G. Simi-

larly, if F = {K3}, then νF (G) is the maximum size of a cycle packing in G, and τF (G)

is the minimum size of a cycle transversal (also known as a feedback vertex set) of G.

Clearly τF (G) > νF (G) for every F and every graph G. If at least one graph in F is

planar then the two parameters are “tied” to each other in the following sense: There
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exists a function f depending only on F such that τF (G) 6 f(νF (G)) for every graph

G. This was shown by Robertson and Seymour [27]∗ and is a consequence of their well-

known excluded grid theorem [27]. It is often referred to as the Erdős–Pósa property of

F (or more accurately, of the set of graphs contractible to some graph in F), because

Erdős and Pósa [11] proved the existence of such a function f when F = {K3}.

Robertson and Seymour’s result is best possible in the sense that no such function f

exists if no graph in F is planar (see [27]). However, the function f that follows from

their proof is huge (exponential). This is because, as mentioned above, the proof relies

on their excluded grid theorem, namely for every r ∈ N there exists a minimum integer

g(r) such that every graph with no r× r-grid minor has treewidth at most g(r), and the

current best upper bound on g(r) is exponential: g(r) ∈ 2O(r2 log r) [20, 23]. (As for lower

bounds, only g(r) ∈ Ω(r2 log r) is known [26].)

The situation changes drastically if instead of simply assuming that some graph in F is

planar, we further require that F contains a forest F . Bienstock, Robertson, Seymour,

and Thomas [2] proved that every graph with pathwidth at least |F | − 1 contains F as a

minor. Using this result, one can derive without much difficulty that τF (G) ∈ OF (k log k)

where k = νF (G); see Proposition 2.6 in Section 2. As far as we are aware, this is the

best bound that is currently known.

In this paper we prove that a linear bound holds when F contains a forest:

Theorem 1.1. Let F be a finite set of graphs containing at least one forest. Then there

exists a computable constant c = c(F) such that τF (G) 6 c · νF (G) for every graph G.

If for some t ∈ N, we let F be the (finite) set of minimal forbidden minors for the class

of graphs with pathwidth at most t, then F contains at least one tree. This follows from

the fact that trees have unbounded pathwidth (for instance, the complete binary tree of

height h has pathwidth h). Using that F is computable [1, 22], we obtain the following

corollary from Theorem 1.1.

Corollary 1.2. For every t ∈ N there exists a computable constant c = c(t) such that,

for every graph G and every k ∈ N, either G contains k vertex-disjoint subgraphs each

with pathwidth at least t + 1, or G has a vertex subset X of size at most c · k such that

G−X has pathwidth at most t.

Interestingly, Corollary 1.2 becomes false if we replace pathwidth by treewidth, even for

t = 1: A graph has treewidth at least 2 if and only if it contains a cycle, and there

are graphs with no k vertex-disjoint cycles such that every cycle transversal has size

Ω(k log k) (see [11]). More generally, for every fixed set F containing a planar graph but

no forest, there are graphs G with νF (G) = k and τF (G) ∈ ΩF (k log k); this follows from

the existence of n-vertex graphs G with treewidth Ω(n) and girth Ω(log n).† In this sense

Theorem 1.1 is best possible.

∗It should be noted that this result is proved in [27] in the special case where F consists of a single

planar graph H . However the general case follows by a straightforward modification of the proof of (8.8)

in [27].
†Indeed, by [27] graphs containing no member of F as a minor have treewidth at most c for some

constant c = c(F) (since F contains a planar graph). Thus G − X has treewidth at most c for every
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Our proof of Theorem 1.1 can very briefly be described as follows: First suppose for

simplicity that F = {T} with T a tree; the general case can be reduced to this one without

much difficulty. We show that every graph G either has a model of T of constant size, or a

reduction operation can be applied to G, producing a graph G′ with νF (G) = νF (G
′) and

τF (G) = τF (G
′) which is smaller than G. In the first case we remove all vertices of the

model and apply induction, while in the second case we are done by applying induction

on G′. The reduction operation is described in Section 3. Section 4 is devoted to the

proof that every reduced graph contains a constant-size T -model. Section 5 describes a

number of algorithmic applications of (the proof of) Theorem 1.1.

We conclude the introduction by mentioning two recent related results. First, Diestel,

Kawarabayashi, and Wollan [9] studied the F = {Kt} case and showed that, while τF (G)

cannot be bounded from above by a function of νF (G) when t > 5, such a function exists

for graphs with high enough vertex-connectivity compared to νF (G) and t: There exists

a function f such that, for every t, k > 0, every (k(t− 3) + 14t+ 14)-connected graph G

either has an F-packing of size k or an F-transversal of size at most f(k, t). Moreover,

for fixed t the connectivity requirement is best possible up to an additive constant.

Second, Fomin, Saurabh, and Thilikos [15] considered restricting the graphs G under

consideration to belong to some fixed proper minor-closed family of graphs G, and showed

that if F = {H} with H a connected planar graph, then there exists a constant c =

c(F ,G) such that τF (G) 6 c · νF (G) for every G ∈ G. Note that, as mentioned above,

there is no such linear bound if we do not impose G ∈ G.

2. Definitions and Preliminaries

All graphs in this paper are finite, simple, and undirected, unless otherwise stated. Let

V (G) and E(G) denote the vertex and edge sets of a graph G. Let [i, j] := {i, i+1, . . . , j}.

A tree decomposition of a graph G is a pair (T, {Bx : x ∈ V (T )}) where T is a tree, and

{Bx : x ∈ V (T )} is a family of subsets of V (G) (called bags) such that

•
⋃

x∈V (T )Bx = V (G);

• for every edge uv ∈ E(G), there exists x ∈ V (T ) with u, v ∈ Bx, and

• for every vertex u ∈ V (G), the set {x ∈ V (T ) : u ∈ Bx} induces a subtree of T .

The width of a tree decomposition (T, {Bx : x ∈ V (T )}) is max{|Bx| − 1 : x ∈ V (T )}.
The treewidth of G is the minimum width among all tree decompositions of G. See

[8] for an introduction to the theory of treewidth. A path decomposition of G is a

tree decomposition of G where the underlying tree T is a path. We will denote such a

decomposition simply by the sequence B1, . . . , Bp of its bags (in order). The pathwidth

of G is the minimum width of a path decomposition of G.

F-transversal X of G, and hence τF (G) = Ω(n). On the other hand, every subgraph of G containing a

member of F as a minor has a cycle, and thus has Ω(log n) vertices, implying νF (G) = O(n/ log n).

We remark that to obtain n-vertex graphs G with treewidth Ω(n) and girth Ω(log n) it suffices to

consider d-regular n-vertex expanders of girth Ω(log n) for some fixed d, such as the Ramanujan graphs

constructed by Lubotzky, Phillips, and Sarnak [24] for instance. The fact that the treewidth is Ω(n) is a

direct consequence of their positive vertex-expansion (or see [16, Proposition 1]).
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A graph H is a minor of a graph G if H can be obtained from a subgraph of G by

contracting edges. (Note that, since we only consider simple graphs, loops and parallel

edges created during an edge contraction are deleted.) An H-model in G is a collection

M = {Sx : x ∈ V (H)} of vertex-disjoint connected subgraphs of G (called branch sets)

such that, for every edge xy ∈ E(H), some edge in G joins a vertex in Sx to a vertex in

Sy. The vertex set of M is V (M) := ∪{V (Sx) : x ∈ V (H)}. Clearly, H is a minor of G

if and only if G contains an H-model.

The following result of Bienstock, Robertson, Seymour, and Thomas [2] will be routinely

used in our proofs (see [7] for a short proof).

Theorem 2.1 ([2]). Every graph with pathwidth at least t− 1 contains every forest on t

vertices as a minor.

Note that the bound in Theorem 2.1 is best possible.

We proceed with a few simple lemmas that will be used in our proof of Theorem 1.1.

The following lemma is a special case of (8.6) in [27].

Lemma 2.2 ([27]). Let P be a path and let P1, . . . ,Pm be families of subpaths of P . Let

x1, . . . , xm > 0 be integers, and let k := x1 + · · · + xm. Suppose that for each i ∈ [1,m]

there are k members of Pi that are pairwise vertex-disjoint. Then there exist xi members

P i
1, . . . , P

i
xi

in Pi for each i ∈ [1,m] such that P 1
1 , . . . , P

1
x1
, P 2

1 , . . . , P
2
x2
, . . . , Pm

1 , . . . , Pm
xm

are all pairwise vertex-disjoint.

The next lemma can be derived from the proof of (8.8) in [27]. We provide a proof for

completeness.

Lemma 2.3. Let F be a set of q > 1 graphs, each with at most r components, and let

t > 1. Then τF (G) 6 2qrt · νF (G) for every graph G with pathwidth strictly less than t.

Proof. The claim is trivially true if νF (G) = 0, so assume νF (G) > 1. Let F =

{H1, . . . ,Hq}. For each i ∈ [1, q], let Hi,1, . . . ,Hi,ci denote the components of Hi, where

ci 6 r. Let s := νF (G)+1. Let B1, . . . , Bp denote a path decomposition of G of width at

most t− 1. Let P denote the path on p vertices with vertex set {B1, . . . , Bp} (in order).

For each i ∈ [1, q] and j ∈ [1, ci], let Mi,j be the set of Hi,j-models in G. Observe that

for each M ∈ Mi,j we have that V (M) induces a connected subgraph of G, since Hi,j is

connected; thus vertices in V (M) appear in consecutive bags of the path decomposition,

and hence M defines a corresponding subpath PM of P . Notice that a sufficient condition

for two models M ∈ Mi,j and M ′ ∈ Mi′,j′ being vertex-disjoint is that PM and PM ′ are

vertex-disjoint; this will be used below.

First suppose that there exists an index i ∈ [1, q] such that for each j ∈ [1, ci], there

are sci pairwise vertex-disjoint paths in {PM : M ∈ Mi,j}. Then by Lemma 2.2 (with

m = ci, k = sci and x1 = · · · = xm = s), one can find s Hi,j-models M1
i,j , . . . ,M

s
i,j in

Mi,j for each j ∈ [1, ci] such that M1
i,1, . . . ,M

s
i,1,M

1
i,2, . . . ,M

s
i,2, . . . ,M

1
i,ci

, . . . ,M s
i,ci

are all

pairwise vertex-disjoint. In particular, G has s vertex-disjoint Hi-models, which implies

νF (G) > s, a contradiction. Hence there is no such index i.
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For each i ∈ [1, q], consider an index j ∈ [1, ci] such that {PM : M ∈ Mi,j} has no sci
pairwise vertex-disjoint paths. Then, as is well-known, one can find a subset of at most

(in fact, strictly less than) sci vertices of P that meet all the paths in {PM : M ∈ Mi,j};
let Xi denote the union of the bags in the path decomposition corresponding to such a

subset (thus |Xi| 6 scit). Observe that G−Xi has noHi,j-minor, and hence noHi-minor.

Therefore, X1∪· · ·∪Xq is an F-transversal of G of size at most sc1t+ · · ·+scqt 6 sqrt =

qrt · νF (G) + qrt 6 2qrt · νF (G). �

If F is a set consisting of a single graph H, we simple write νH(G) and τH(G) for the

invariants νF (G) and τF (G), respectively.

Suppose that F is a finite set of graphs containing a forest F , and let T be a tree on |F |
vertices containing F . The next lemma allows us to reduce the task of finding a small

F-transversal of G to that of finding a small {T}-transversal of G. This will be used in

the proof of Theorem 1.1.

Lemma 2.4. Let F be a set of q > 1 graphs, each with at most r components, containing

a forest F on t vertices. Let T be a tree on t vertices with F ⊆ T . Then

νT (G) 6 νF (G) 6 τF (G) 6 τT (G) + 2qrt · νF (G)

for every graph G.

Proof. The inequalities νT (G) 6 νF (G) 6 τF (G) are obvious; let us show that τF(G) 6

τT (G) + 2qrt · νF (G). Let X be a {T}-transversal of G with |X| = τT (G). Then G−X

has no T -minor, and hence has pathwidth at most t− 2 by Theorem 2.1. By Lemma 2.3,

G −X has an F-transversal Y with |Y | 6 2qrt · νF (G − X) 6 2qrt · νF (G). It follows

that X ∪ Y is an F-transversal of G of size at most τT (G) + 2qrt · νF (G). �

As mentioned in the introduction, it is not difficult to derive from Theorem 2.1 that, when

F is a finite set of graphs containing a forest, τF(G) ∈ OF (k log k) where k = νF (G). We

conclude this section with a proof of this statement, for completeness.

First we consider the case where F consists of a single tree.

Lemma 2.5. Let T be a tree on t vertices. Then τT (G) 6 3(t+1)k log2((t+1)k)− t for

every graph G with νT (G) = k.

Proof. The proof is by induction on k. If the pathwidth of G is at least t(k+1)− 1, then

G contains every forest on at most t(k + 1) vertices as a minor, and thus contains k + 1

disjoint copies of T as a minor. This implies νT (G) > k + 1, a contradiction. Hence, G

has pathwidth at most t(k + 1)− 2.

Let B1, . . . , Bp be a path decomposition of G of width at most t(k+1)−2. By modifying

the decomposition if necessary, we may assume that |Bi△Bi+1| = 1 for each i ∈ [1, p−1].

For each i ∈ [1, p], let Li := G[(B1 ∪ · · · ∪ Bi−1) − Bi] and ℓi := νT (Li), and similarly

let Ri := G[(Bi+1 ∪ · · · ∪ Bp) − Bi] and ri := νT (Ri). Observe that ℓi + ri 6 k, since

Li and Ri are vertex-disjoint subgraphs of G. Also, since |Bi △ Bi+1| = 1, we have
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ℓi+1 ∈ {ℓi, ℓi + 1} for each i ∈ [1, p − 1]. Thus there exists an index j ∈ [1, p] such that

ℓj 6
⌈

k
2

⌉

and rj 6
⌊

k
2

⌋

.

For the base case of the induction, namely k = 1, we have ℓj 6 1 and rj = 0. If ℓj = 0

then Z := Bj is an {T}-transversal of G of size at most t(k + 1)− 1. Otherwise, ℓj = 1

and j > 1 (since ℓ1 = 0). We may further assume that j is chosen so that ℓj−1 = 0. Then

Z := Bj−1∪Bj is an {T}-transversal of G of size at most t(k+1) (since |Bj−1△Bj | = 1).

Thus in each case the transversal Z has size at most t(k+1) = 2t 6 3(t+1) log2(t+1)−t.

For the inductive step, assume k > 2. By induction there are {T}-transversals X and

Y of Lj and Rj , respectively, such that |X| 6 3(t + 1)
⌈

k
2

⌉

log2
(

(t+ 1)
⌈

k
2

⌉)

− t and

|Y | 6 3(t+ 1)
⌊

k
2

⌋

log2
(

(t+ 1)
⌊

k
2

⌋)

− t. Then X ∪ Y ∪Bj is an {T}-transversal of G of

size at most

3(t+ 1)
⌈

k
2

⌉

log2
(

(t+ 1)
⌈

k
2

⌉)

− t+ 3(t+ 1)
⌊

k
2

⌋

log2
(

(t+ 1)
⌊

k
2

⌋)

− t+ t(k + 1)− 1

6 3(t+ 1)k log2(t+ 1) + 3(t+ 1)k log2
(

k+1
2

)

+ tk − t− 1

= 3(t+ 1)k log2(t+ 1) + 3(t+ 1)k log2(k + 1)− 2tk − 3k − t− 1

6 3(t+ 1)k log2(t+ 1) + 3(t+ 1)k log2
(

3k
2

)

− 2tk − 3k − t− 1

6 3(t+ 1)k log2((t+ 1)k) − t,

as desired. �

Combining Lemmas 2.4 and 2.5, we obtain the aforementioned OF (k log k) bound.

Proposition 2.6. Let F be a set of q > 1 graphs, each with at most r components,

containing a forest on t vertices. Then τF (G) 6 3(t + 1)k log2((t + 1)k) + 2qrtk − t for

every graph G with νF (G) = k.

3. A Reduction Operation

First we need to introduce some definitions. A rooted graph is a pair (G,R) where G

is a graph and R = (v1, . . . , vk) is a (possibly empty) ordered subset of vertices of G

called roots. The notions of minors and models generalize in a natural way to rooted

graphs: A rooted graph (H,R′) with R′ = (w1, . . . , wℓ) is a minor of (G,R) if k = ℓ

and there exists a collection {Vu : u ∈ V (H)} of disjoint vertex subsets of G (the branch

sets), each inducing a connected subgraph in G, such that vi ∈ Vwi
for each i ∈ [1, k],

and there exists an edge between Vu and Vv in G for every uv ∈ E(H). The collection

M := {Vu : u ∈ V (H)} is called a model of (H,R′) in (G,R). We write V (M) to denote

the set ∪u∈V (H)Vu of vertices of the model M .

Isomorphism between rooted graphs is defined in the expected way (the i-th root of the

first graph is required to be mapped to the i-th root of the second). We write R′ ⊆ R

for an ordered subset of an ordered set R (thus, the ordering of R′ is consistent with the

ordering of R). Also, if X is an (unordered) set then R−X is ordered as in R.

For our reduction operation we will need to keep track of rooted minors of bounded sizes

of a given rooted graph (G,R). For an integer q > 1, the q-folio of (G,R) is the 2|R|-

tuple which, for each set R′ ⊆ R, records the set of all minors (H,R′) of (G,R′) with
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|H| 6 q (keeping one member per isomorphism class). For integers p > 0 and q > 1, the

p-deletion q-folio of (G,R) is the (p+ 1)-tuple which, for each i ∈ [0, p], records for each

X ⊆ R with |X| 6 i the set of all q-folios of (G− (X ∪ Y ), R−X) taken over all subsets

Y ⊆ V (G)−R with |X|+ |Y | = i. (Informally speaking, we record the different q-folios

obtained by deleting i vertices in or outside the set of roots, for each i ∈ [0, p].)

The following lemma on p-deletion q-folios is an adaptation of Lemma 2.2 in [18], its

proof relies on standard monadic second-order logic techniques.

Lemma 3.1. Let p, r, z > 0 and q > 1. Then there exists a computable function

g(p, q, r, z) such that, for every rooted graph (G,R) such that G has treewidth at most

z and |R| = r, there exists a rooted graph (G′, R) with |G′| 6 g(p, q, r, z) and such that

(G,R) and (G′, R) have the same p-deletion q-folio.

Proof. Fix an ordered set R with |R| = r. Let G(R, q) denote the set of (non-isomorphic)

rooted graphs (G,R) with |G| 6 q. Clearly |G(R, q)| is bounded from above by a function

of r and q.

Let S(R, q) denote the set of vectors s having one entry s(R′) per subset R′ ⊆ R and such

that s(R′) ⊆ G(R′, q). Again, |S(R, q)| is bounded from above by a function of r and q.

By definition, for each rooted graph (G,R) there is exactly one vector in S(R, q) that

encodes the q-folio of (G,R). (Note that, on the other hand, some vectors s ∈ S(R, q)

might not correspond to the q-folio of any rooted graph (G,R).)

Let D(R, q, p) denote the set of vectors d = (D0, . . . ,Dp) such that, for each i ∈ [0, p], Di

has one entry Di(X) for each X ⊆ R with |X| 6 i, and Di(X) ⊆ S(R −X, q) for each

such set X. The size of D(R, q, p) is bounded from above by a function of r, q, and p.

By the definition of D(R, q, p), the p-deletion q-folio of a rooted graph (G,R) is encoded

by exactly one vector in D(R, q, p).

It is well-known that the property that a fixed graph H is a minor of a graph G can be

expressed by a monadic second-order logic (MSO) sentence ϕH (see Grohe [17] for an

introduction to monadic second-order logic). Similarly, for each s ∈ S(R, q) one can write

an MSO-sentence ϕs such that a rooted graph (G,R) satisfies ϕs if and only if its q-folio

equals s. More generally, for each d ∈ D(R, q, p) one can express by an MSO-sentence

ϕd the property that d is the p-deletion q-folio of (G,R).

By Seese’s theorem [29], there is an algorithm which given an MSO-sentence ϕ and an

integer t decides whether there exists a graph of treewidth at most t satisfying ϕ. It is

also known that there is a computable function h(ϕ, t) such that if an MSO-sentence ϕ

is realizable by (or more accurately, admits a model consisting of) a graph of treewidth

at most t, then there is such a graph with at most h(ϕ, t) vertices. This can be derived

using (among others) a theorem of Thatcher and Wright [30], as explained in the proof

of Lemma 2.2 in [18].

Now clearly the set D(R, q, p) is computable. It follows that, for each d ∈ D(R, q, p), we

can use Seese’s algorithm to compute the subset Dz ⊆ D(R, q, p) of vectors d ∈ D(R, q, p)

such that there exists a rooted graph (G,R) of treewidth at most z that satisfies ϕd.
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Moreover, for each d ∈ Dz, we can compute a rooted graph (G′, R) whose p-deletion q-

folio equals d and such that |G′| 6 h(ϕd, z). The lemma follows by setting g(p, q, r, z) :=

max{h(ϕd, z) : d ∈ Dz}. �

A separation of a graph G is a pair (G1, G2) of two induced subgraphs of G such that

G = G1 ∪G2, its order is |V (G1)∩V (G2)|. Let us point out that G1 ⊆ G2 or G2 ⊆ G1 is

allowed in this definition, that is, we do not require V (G1)− V (G2) and V (G2)− V (G1)

to be nonempty.

Lemma 3.2. For every tree T there exists a computable function b such that, for every

graph G having a separation (G1, G2) of order t with |G1| > b(t) such that G1 has

no T -minor, there exists a graph G′ satisfying νT (G
′) = νT (G), τT (G

′) = τT (G), and

|G′| < |G|.

Proof. Since G1 has no T -minor, its pathwidth is at most |T | − 2 by Theorem 2.1, and

hence so is its treewidth. We will prove the lemma with b(t) := g(t, q, t, |T |−2)+1, where

q := t(|T |+1) and g is the function from Lemma 3.1. Let X := V (G1)∩V (G2) and let R

be an arbitrary ordering of X. Using Lemma 3.1, let (G′
1, R) be a rooted graph with the

same t-deletion q-folio as (G1, R), and with |G′
1| 6 g(t, q, t, |T |−2) < b(t) 6 |G1|. Assume

without loss of generality that V (G′
1) ∩ V (G2) = X. Let G′ be the graph obtained from

G′
1 ∪G2 by removing every edge linking two vertices in X that is included in G2 but not

in G′
1. (Thus G[X] and G′[X] could possibly be distinct graphs.) Then |G′| < |G|, and

it remains to show that νT (G
′) = νT (G) and τT (G

′) = τT (G).

First we prove that νT (G
′) = νT (G) by showing that νT (L) > νT (K) for (K,L) ∈

{(G,G′), (G′, G)}. If K = G, let K1 := G1 and L1 := G′
1, otherwise let K1 := G′

1

and L1 := G1. Consider k := νT (K) vertex-disjoint T -models M1, . . . ,Mk in K, where

Mi = {V i
u : u ∈ V (T )} for each i ∈ [1, k]. We may assume that these models are ordered

so that V (M1), . . . , V (Mℓ) each intersects V (K1), while none of V (Mℓ+1), . . . , V (Mk)

intersects V (K1), for some index ℓ ∈ [1, k]. Observe that, since T is connected and K1

has no T -minor, each of V (M1), . . . , V (Mℓ) must intersect X. It follows that ℓ 6 t.

For each i ∈ [1, ℓ], let Xi := V (Mi) ∩X (thus Xi and Xj are disjoint for i 6= j), let Ai

be the set of vertices u ∈ V (T ) such that V i
u intersects Xi, and, for every u ∈ Ai, let

su,i := |V i
u ∩Xi| and arbitrarily partition V i

u ∩ V (K1) into su,i parts W
i
u,1, . . . ,W

i
u,su,i

, so

that each part induces a connected subgraph of K1 and contains exactly one vertex from

V i
u ∩Xi. Also let Bi be the set of vertices u ∈ V (T ) such that V i

u intersects V (K1) but

not Xi (thus Ai and Bi are disjoint). For u ∈ Bi, let su,i := 1 and let W i
u,1 := V i

u .

Let H∗ be the graph with one vertex per triple (i, u, j) where i ∈ [1, ℓ], u ∈ Ai ∪ Bi,

and j ∈ [1, su,i], and where two distinct vertices (i, u, j) and (i′, u′, j′) are adjacent if and

only if there is an edge in K1 connecting a vertex of W i
u,j to a vertex of W i′

u′,j′. Observe

that V i
u corresponds to one vertex of H∗ if V i

u ⊆ V (K1) − X, and to su vertices of H∗

otherwise. Let R∗ be the ordering of X1 ∪ · · · ∪ Xℓ induced by R. By the definition of

H∗, the rooted graph (H∗, R∗) is a minor of (K1, R
∗). Since

|H∗| =
ℓ
∑

i=1

∑

u∈Ai

su,i +

ℓ
∑

i=1

|Bi| =
ℓ
∑

i=1

|Xi|+
ℓ
∑

i=1

|Bi| 6 |X|+ ℓ|T | 6 t+ t|T | = q,
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(H∗, R∗) is in the q-folio of (K1, R). (More precisely, the R∗-entry of the q-folio of (K1, R)

contains (H∗, R∗).) Hence (H∗, R∗) is also in the q-folio of (L1, R), since the q-folios of

(K1, R) and (L1, R) are the same (up to isomorphism, as always). Now consider a model

of (H∗, R∗) in (L1, R
∗), and let Y i

u,j denote the branch set corresponding to the vertex

(i, u, j) of H∗. Define, for each i ∈ [1, k] and u ∈ V (T ), the set Zi
u as follows:

Zi
u :=

{

(V i
u − V (K1)) ∪ Y i

u,1 ∪ · · · ∪ Y i
u,su,i

if i 6 ℓ and u ∈ Ai ∪Bi,

V i
u otherwise.

For each i ∈ [1, k], we have that L[Zi
u] is connected for each u ∈ V (T ), which follows

from the fact that K[V i
u ] is connected. Also, there exists an edge between Zi

u and Zi
v in

L for each uv ∈ E(T ). Let M ′
i := {Zi

u : u ∈ V (T )}. Since Zi
u is disjoint from Zj

v for

distinct i, j ∈ [1, k] and u, v ∈ V (T ), we deduce that M ′
1, . . . ,M

′
k are k vertex-disjoint

models of T in L. Hence νT (K) 6 νT (L), as desired.

Now we show that τT (G
′) = τT (G) by showing that τT (L) > τT (K) for (K,L) ∈

{(G,G′), (G′, G)}. As before, if K = G, let K1 := G1 and L1 := G′
1, otherwise let

K1 := G′
1 and L1 := G1.

Let J be a minimum-size transversal of L, and let J1 := J ∩V (L1). We have |J1| 6 |X| =
t, because (J − J1) ∪X is also a transversal of L, and thus must have size at least that

of J . (Here we use the fact that L1 has no T -minor, and that T is connected.) Since the

t-deletion q-folios of (K1, R) and (L1, R) are the same, there exists a subset I1 of vertices

of K1 with |I1| = |J1| such that the q-folios of (L1− J1, R− J1) and (K1− I1, R− I1) are

the same (by definition).

We claim that the set I := (J − J1) ∪ I1, which has the same size as J , is a transversal

of K. Arguing by contradiction, assume not, and let M := {Vu : u ∈ V (T )} denote a

T -model in K − I. Let A be the subset of vertices u ∈ V (T ) such that Vu intersects X,

and let B be the set of those such that Vu ⊆ V (K1)−X (thus A and B are disjoint). For

every u ∈ A, let su := |Vu ∩X|, and partition Vu ∩ V (K1) into su parts Wu,1, . . . ,Wu,su,

so that each part induces a connected subgraph of K1 and contains exactly one vertex

from Vu ∩ X. Also let su := 1 and Wu,1 := Vu for every u ∈ B. We define H∗ as the

minor of K1 − I1 modeled by the Wu,js, exactly as previously: H∗ has one vertex for

every couple (u, j) where u ∈ A ∪ B and j ∈ {1, . . . , su}, and two distinct vertices (u, j)

and (u′, j′) of H∗ are adjacent if and only if there is an edge between Wu,j and Wu′,j′ in

K1 − I1.

Let R∗ be the ordered subset of R induced by the vertices in V (M) ∩X. Thus (H∗, R∗)

is a minor of (K1 − I1, R
∗). Since |H∗| = ∑

u∈A su + |B| 6 |X| + |T | 6 q, the rooted

graph (H∗, R∗) is in the q-folio of (K1 − I1, R − I1), and hence also in the q-folio of

(L1 − J1, R − J1). Consider a model of (H∗, R∗) in (L1 − J1, R
∗); let W ′

u,j denote the

branch set corresponding to the vertex (u, j) of H∗ in that model. For every u ∈ V (T ),

let

V ′
u :=

{

(Vu − V (K1)) ∪W ′
u,1 ∪ · · · ∪W ′

u,su if u ∈ Ai ∪Bi,

Vu otherwise.

It can be checked that V ′
u is disjoint from V ′

v for every distinct u, v ∈ V (T ), that L[V ′
u]

is connected for every u ∈ V (T ), and that there is an edge between V ′
u and V ′

v in L for

every uv ∈ E(T ). We deduce that M ′ := {V ′
u : u ∈ V (T )} is a model of T in L − J ,
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a contradiction. Therefore, the set I is a transversal of K, and τT (K) 6 τT (L), as

claimed. �

Even though we will not use this fact, we would like to point out that Lemma 3.2 remains

true more generally if the tree T is replaced by a connected planar graph H:

Lemma 3.3. For every connected planar graph H there exists a computable function b

such that, for every graph G having a separation (G1, G2) of order t with |G1| > b(t) such

that G1 has no H-minor, there exists a graph G′ satisfying νH(G′) = νH(G), τH(G′) =

τH(G), and |G′| < |G|.

This can be shown using the exact same proof as for Lemma 3.2, the only difference

being that G1 now has treewidth at most cH for some constant cH (by [27]), and thus

the function b(t) should now be defined as b(t) := g(t, q, t, cH ) + 1.

4. Proof of Main Theorem

Let us start by recalling the overview of the proof of Theorem 1.1 given in the introduction

for the special case where F consists of a single tree T . The proof is by induction on |G|;
we show that one can always either apply the reduction operation described in Lemma 3.2

(in which case we are done by induction), or find a T -model in G of size at most c. In

the latter case, we delete all vertices of the model and apply induction on the remaining

graph. The key step is thus proving that T -models of constant size can be found in G

when the reduction operation cannot be applied. This is achieved by Lemma 4.6, which

is the main lemma of this section.

Our basic strategy for finding a T -model of constant size when the reduction operation

cannot be applied to G is to consider a ball B of large but constant radius around an

arbitrary vertex of G. If all vertices in B have bounded degree then B has bounded size,

and it turns out it is not difficult to show that B must contain T as a minor (in which

case we found a T -model of constant size) because otherwise the reduction operation

could have been applied to G. However, difficulties arise when B contains vertices of

high degrees. This is why in Lemma 4.6 we do not directly try and find a T -model of

constant size, but instead look for a subgraph of G of constant size having some specified

pathwidth t. This is enough, since by Theorem 2.1 every graph with pathwidth at least

|T |−1 contains T as a minor, and allows us to set up an inductive argument that handles

vertices of high degree in G.

First we need to introduce a few definitions and results. Lemmas 4.1, 4.2, 4.3, 4.4, and

4.5 below are short lemmas that will be used in the proof of Lemma 4.6.

Given a graph G and t ∈ N, a pw-t-separation of G is a separation (G1, G2) of G such that

G1 has a path decomposition B1, . . . , Bp of width at most t with V (G1)∩V (G2) = B1∪Bp.

Notice that the order of such a separation is at most 2t+ 2.

Lemma 4.1. Let G be a graph of pathwidth at most t with k > 0 marked vertices. Then

there is a pw-t-separation (G1, G2) of G with |G1| > |G|−k(t+1)
k+1 such that no vertex in

V (G1)− V (G2) is marked.
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Proof. Consider a path decomposition B1, . . . , Bp of G with width at most t. If k = 0,

then G1 := G and G2 := G[B1 ∪ Bp] defines the desired pw-t-separation (G1, G2) of G.

Now assume k > 1.

For each marked vertex v, choose an arbitrary bag that contains v and mark it. Let

m1, . . . ,mℓ denote the indices of the marked bags. Observe that 1 6 ℓ 6 k (note that

ℓ < k if some bag is marked more than once). Also let m0 := 1 and mℓ+1 := p.

For 1 6 i < j 6 p, let Yi,j := (Bi+1 ∪ · · · ∪Bj−1)− (Bi ∪Bj). Observe that Yi,j is disjoint

from Yi′,j′ when j 6 i′ (this is a consequence of the axioms of path decompositions). In

particular, the ℓ+ 1 sets Y1,m1
, Ym1,m2

, . . . , Ymℓ−1,mℓ
, Ymℓ,p are pairwise disjoint. Hence,

among them there is a set Ya,b satisfying

|Ya,b| >
∑ℓ

j=0 |Ymj ,mj+1
|

ℓ+ 1
>

|G| −∑ℓ
j=1 |Bmj

|
ℓ+ 1

>
|G| − ℓ(t+ 1)

ℓ+ 1
>

|G| − k(t+ 1)

k + 1
.

On the other hand, none of Y1,m1
, Ym1,m2

, . . . , Ymℓ−1,mℓ
, Ymℓ,p contains a marked vertex

(as follows again from the axioms of path decompositions). Thus G1 := G[Ya,b∪Ba∪Bb]

and G2 := G[V (G)−Ya,b] define a separation (G1, G2) of G with V (G1)∩V (G2) = Ba∪Bb

such that |G1| > |G|−k(t+1)
k+1 and V (G1) − V (G2) (= Ya,b) has no marked vertex. Since

Ba, Ba+1, . . . , Bb is a path decomposition of G1 with width at most t, we deduce that

(G1, G2) is the desired pw-t-separation of G. �

Lemma 4.2. Let (G1, G2) be a pw-t-separation of a graph G with k > 0 marked vertices,

and let ℓ be an integer satisfying 1 6 ℓ 6 ⌈|G1|/(k + 1)⌉. Then there exists a pw-t-

separation (G′
1, G

′
2) of G with G′

1 ⊆ G1, G2 ⊆ G′
2, and |G′

1| = ℓ, such that no vertex in

V (G′
1)− V (G′

2) is marked.

Proof. Case 1: ℓ 6 t+1. Let Y be an arbitrary subset of ℓ vertices of G1, let G
′
1 := G[Y ]

and let G′
2 := G. Then V (G′

1)−V (G′
2) is empty and G′

1 has a trivial path decomposition

of width at most t consisting of a single bag B1 := Y . Hence (G′
1, G

′
2) is a pw-t-separation

of G as desired.

Case 2: ℓ > t + 1. Let B1, . . . , Bp be a path decomposition of G1 of width at most t

such that B1 ∪ Bp = V (G1) ∩ V (G2). We may assume that |Bi △ Bi+1| = 1 for each

i ∈ [1, p− 1], by modifying the path decomposition if necessary (observe that this can be

done without changing the first and last bags).

Mark bags B1, Bp, and for each marked vertex v mark an arbitrarily chosen bag that

contains v (thus the same bag can be chosen several times). Let q be the total number of

marked bags, and let m1, . . . ,mq denote the indices of these bags, in order. (Thus m1 = 1

and mq = p.) Since |B1| 6 t+1 and ℓ > t+1, it follows that p > 2, and hence q > 2. Let

Ya,b := Ba ∪ Ba+1 ∪ · · · ∪ Bb for 1 6 a < b 6 p. Since Ym1,m2
∪ · · · ∪ Ymq−1,mq = V (G1)

and q − 1 6 k + 1, there exists j ∈ [1, q − 1] such that

|Ymj ,mj+1
| >

⌈ |G1|
q − 1

⌉

>

⌈ |G1|
k + 1

⌉

> ℓ.

Now, since |Bi △ Bi+1| = 1 for each i ∈ [1, p − 1] and since ℓ > |Bmj
|, there exists

an index b ∈ [mj + 1,mj+1] such that |Ymj ,b| = ℓ. It follows from the axioms of a

path decomposition that no vertex in Ymj ,b − (Bmj
∪ Bb) is marked. Therefore, setting
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G′
1 := G[Ymj ,b] and G′

2 := G− (Ymj ,b− (Bmj
∪Bb)), and using that Bmj

, . . . , Bb is a path

decomposition of G′
1 of width at most t, we deduce that (G′

1, G
′
2) is a pw-t-separation of

G with the required properties. �

With a slight abuse of notation, we simply write (G, v) to denote the rooted graph (G,R)

where R consists only of the vertex v. The height of a rooted tree (T, v) is the maximum

length of a path from v to a leaf, where the length of a path is the number of its edges.

(Thus the height of (T, v) is zero if |T | = 1.) For u ∈ V (T ), the notions of parent,

ancestors, children, descendants of u in (T, v) are defined as expected. When the root v

is clear from the context, we simply denote by Tu the subtree of (T, v) induced by u and

all its descendants. For h > 1, the complete binary tree of height h, denoted Bh, is the

unique rooted tree of height h where the root has degree 2, every other non-leaf vertex

has degree 3, and every path from the root to a leaf has length exactly h. It is known,

and not difficult to prove, that the pathwidth of Bh equals h.

Lemma 4.3. Let (T, v) be a rooted tree of height h and maximum degree ∆. If (T, v)

does not contain Bk+1 as a (rooted) minor, then |T | 6 (h+ 1)k+1(∆ + 1)k+1.

Proof. The proof is by induction on k. If k = 0, then the tree T is a path, and thus

satisfies |T | = h + 1 6 (h + 1)(∆ + 1). For the inductive step, assume k > 1. We may

assume that Bk is a minor of (T, v), because otherwise we are done by induction. Let

u ∈ V (T ) be a vertex such that (Tu, u) contains Bk as a minor and u is at maximum

distance from v in T . Let q denote that distance. Let u1, . . . , uℓ denote the children of

u. Observe that ℓ > 2 since (Tu, u) has a Bk-minor, k > 1, and q is maximum. Let

v1, . . . , vq+1 be the vertices on the path from v to u in T , in order. Thus v1 = v and

vq+1 = u. For each i ∈ [1, q], let wi,1, . . . , wi,ai denote the children of vi in T that are

distinct from vi+1 (note that possibly ai = 0).

We claim that, for each i ∈ [1, q] and j ∈ [1, ai], the rooted tree (Twi,j
, wi,j) has no Bk

minor. Indeed, otherwise a model of Bk in (Twi,j
, wi,j) could be combined with a model of

Bk in (Tvi+1
, vi+1) (which exists, by the definition of u) and the v1–vi path in T to give a

model of Bk+1 in (T, v), a contradiction. By induction, we thus have |Twi,j
| 6 hk(∆+1)k,

since the height of (Twi,j
, wi,j) is at most h− 1.

By the definition of u, the rooted tree (Tui
, ui) has no Bk minor either for each i ∈ [1, ℓ].

(Recall that u1, . . . , uℓ are the children of u.) Hence |Tui
| 6 hk(∆ + 1)k by induction. It

follows

|T | = q + 1 +

q
∑

i=1

ai
∑

j=1

|Twi,j
|+

ℓ
∑

i=1

|Tui
|

6 h+ 1 +





q
∑

i=1

ai
∑

j=1

hk(∆ + 1)k



+ ℓhk(∆ + 1)k

6 hk(∆ + 1)k + h(∆ + 1)hk(∆ + 1)k +∆hk(∆ + 1)k

= hk+1(∆ + 1)k+1 + hk(∆ + 1)k+1

6 (h+ 1)k+1(∆ + 1)k+1,
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as desired. (In the second inequality, we used that h + 1 6 hk(∆ + 1)k, which follows

from the fact that h, k > 1 and ∆ > 2.) �

Lemma 4.4. If (T, v) is a rooted tree on t vertices and (G,w) is a connected rooted graph

with pathwidth at least 2t− 2, then (G,w) contains (T, v) as a minor.

Proof. Let (T ′, v′) be a copy of (T, v). Let T ∗ be the (unrooted) tree obtained from the

disjoint union of T and T ′ by identifying v and v′. Thus T ∗ has 2t− 1 vertices. Since G

has pathwidth at least 2t− 2, it contains a T ∗-minor (by Theorem 2.1), and hence has a

model of T ∗. Since G is connected, we may assume that every vertex of G is in a branch

set of this model. Let Bv denote the branch set of vertex v = v′. Exchanging T and T ′

if necessary, we may assume that the root w of (G,w) is in a branch set corresponding

to a vertex from T . Thus we can find a path P in G with one endpoint being w and the

other endpoint in Bv such that P avoids all branch sets of vertices in V (T ′)−{v′}. Now,
replacing the branch set Bv by Bv ∪ V (P ) and taking all branch sets corresponding to

vertices of T ′ distinct from v′, we obtain a model of (T ′, v′) in (G,w). Therefore, (G,w)

contains (T, v) as a minor. �

The following lemma is well known; a proof is included for completeness (see Corollary

3.1 in [10] for a similar result).

Lemma 4.5. Let G1, G2, G3 be three connected graphs, each with pathwidth at least k,

and let vi be an arbitrary vertex of Gi, for i = 1, 2, 3. Let G be the graph obtained from

the disjoint union of G1, G2, G3 by adding a new vertex v adjacent to v1, v2, v3. Then G

has pathwidth at least k + 1.

Proof. Arguing by contradiction, assume G has a path decomposition B1, . . . , Bp of width

at most k. For every w ∈ V (G), let [ℓw, rw] denote the interval of indices j such that

w ∈ Bj. For each i ∈ [1, 3], let Ii := ∪{[ℓw, rw] : w ∈ V (Gi)}. Since Gi is connected,

Ii is again an interval; we denote by ℓi and ri its left and right endpoints, respectively.

Reindexing G1, G2, G3 if necessary, we may assume that ℓ1 6 ℓ2 and r2 6 r3. Since

vvi ∈ E(G), it follows that Ii ∩ [ℓv, rv] 6= ∅ for each i ∈ [1, 3]. This implies that

I1 ∪ I3 ∪ [ℓv, rv] is again an interval, and this interval contains I2. Hence, every bag

Bj (j ∈ [1, p]) that includes a vertex of V (G2) contains also at least one vertex from

V (G)− V (G2). Therefore, B1 ∩V (G2), . . . , Bp ∩V (G2) is a path decomposition of G2 of

width at most k − 1, a contradiction. �

The next lemma is our main tool. Informally, it shows that every connected graph G

with pathwidth at least t and no pw-(t− 1)-separation (G1, G2) of G with |G1| “big” has

a connected subgraph G′ of constant size with pathwidth at least t. It turns out that a

slightly stronger statement is easier to prove by induction, namely that for every vertex

w of G one can find such a subgraph G′ containing it. We note that the vertex w will be

an arbitrary vertex when this lemma is used in the proof of Theorem 1.1.

Lemma 4.6. There exists a computable function f : N × N → N such that for every

t, r ∈ N, every connected graph G of pathwidth at least t, and every vertex w ∈ V (G), at

least one of the following holds:
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(a) there exists a connected subgraph G′ of G with w ∈ V (G′) such that G′ has pathwidth

at least t and |G′| 6 f(t, r),

(b) there exists a pw-(t− 1)-separation (G1, G2) of G with |G1| > r.

Proof. The proof is by induction on t. For t = 0, the vertex w itself provides a connected

subgraph G′ of G of pathwidth 0, and thus the claim holds with f(0, r) := 1. Now assume

t > 1. If r 6 1, letting G1 be the graph induced by an arbitrary vertex of G and letting

G2 := G, we obtain a pw-(t − 1)-separation (G1, G2) of G with |G1| > r. Thus we may

also assume r > 2.

Let

r1 := (r + t− 1) + (r + t)2t+ r

r2 := (r + t− 1)
(

1 + f(t− 1, r1)
)

+ (r + t)2t+ r

r3 := (r + t− 1)
(

1 + f(t− 1, r1) + f(t− 1, r2)
)

+ (r + t)2t+ r.

Let ∆, ε, and d be constants defined as follows:

∆ := (r + t)

(

3
∑

i=1

f(t− 1, ri) + 2t+ 1

)

+ r − 1;

ε :=
1

2r + t
;

d := max

{

2t ln(∆ + 1)

ln(1 + ε)
,

(

2t

ln(1 + ε)

)2
}

.

We will prove the claim with

f(t, r) :=
⌈

max
{

∆d+1,∆+ d+ 1
}⌉

.

(We remark that the ceiling is there only to ensure that f(t, r) is an integer.) We may

assume that |G| > f(t, r), since otherwise we are done with G′ = G.

Case 1: Every vertex at distance at most d from w has degree at most ∆.

For i = 0, 1, . . . , d, let Hi be the subgraph of G induced by all vertices at distance at

most i from w, and let Ji be an arbitrary breadth-first search tree of Hi from w. Since

|Hd| 6 ∆d+1 6 f(t, r) < |G|, we deduce that V (Hi) − V (Hi−1) is not empty for each

i ∈ [1, d]. The graph Hd is connected, includes the vertex w, and has at most f(t, r)

vertices. Thus we are done if the pathwidth of Hd is at least t. So let us assume that Hd

has pathwidth at most t− 1 (and thus, in particular, Jd has pathwidth at most t− 1).

The tree Bt, which has pathwidth t, cannot be a minor of (Jd, w). Hence we have

(1) |Hd| = |Jd| 6 (d+ 1)t(∆ + 1)t

by Lemma 4.3.

By the definition of d,

d >
d

2
+

√
d ln(d+ 1)

2
>

t ln(∆ + 1)

ln(1 + ε)
+

t ln(d+ 1)

ln(1 + ε)
,
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which implies (1+ ε)d > (d+1)t(∆+1)t. Thus, if |Hi| > (1+ ε)|Hi−1| for each i ∈ [1, d],

then

|Hd| > (1 + ε)d > (d+ 1)t(∆ + 1)t,

contradicting (1). Hence there exists j ∈ [1, d] such that |Hj| 6 (1 + ε)|Hj−1|. Mark all

k := |Hj| − |Hj−1| vertices of Hj that are in V (Hj) − V (Hj−1). We have k > 1, since

V (Hj) − V (Hj−1) is not empty, and also k 6 ε|Hj−1| 6 ε|Hj |. Since the pathwidth of

Hj is at most that of Hd, by Lemma 4.1 there is a pw-(t− 1)-separation (L1, L2) of Hj

such that no vertex in V (L1)− V (L2) is marked and such that

|L1| >
|Hj | − kt

k + 1
>

|Hj| − εt|Hj|
2k

>
1− εt

2ε
= r.

Now, the fact that no vertex in V (L1)− V (L2) is marked implies that V (L1)− V (L2) ⊆
V (Hj−1), and hence no vertex in V (L1)− V (L2) is adjacent in G to a vertex in V (G)−
V (L1). Therefore, G1 := L1 and G2 := G − (V (L1) − V (L2)) defines a pw-(t − 1)-

separation (G1, G2) of G with |G1| > r. This concludes the proof of Case 1.

Case 2: Some vertex at distance at most d from w has degree more than ∆.

Let x be such a vertex and let x1, . . . , xp denote its neighbors, where p > ∆+ 1.

First we prove a few easy claims.

Claim 4.7. If there exists a connected subgraph H of G of pathwidth at least t such that

|H| 6 f(t, r)− d and x ∈ V (H), then the lemma holds.

Proof. Let P be a shortest w–x path in G and let G′ := G[V (H) ∪ V (P )]. Then G′ is

connected and has pathwidth at least t; moreover, w ∈ V (G′) and |G′| 6 |H| + d 6

f(t, r). �

Claim 4.8. If there exists X ⊆ V (G) with |X| 6
f(t,r)−d−r

r+t
− 2t such that G[X] is

connected, x ∈ X, and H := G − X has a pw-(t − 1)-separation (H1,H2) with |H1| >
(r + t− 1)|X| + (r + t)2t+ r, then the lemma holds.

Proof. Using Lemma 4.2 with k = 0 and ℓ = (r + t − 1)|X| + (r + t)2t + r, we may

assume that the pw-(t − 1)-separation (H1,H2) of H has been chosen so that |H1| =
(r + t− 1)|X| + (r + t)2t+ r.

Let J := G[V (H1) ∪ X]. If J has pathwidth at least t, then since H1 has pathwidth

at most t − 1 there is a unique component J ′ of J of pathwidth at least t, namely the

one containing X (recall that G[X] is connected). Since x ∈ V (J ′) and |J ′| 6 |J | =
|H1|+ |X| = (r + t)|X|+ (r + t)2t+ r 6 f(t, r)− d, we are done by Claim 4.7. Thus we

may assume that J has pathwidth at most t− 1.

Let Y := X ∪ (V (H1) ∩ V (H2)) and mark all vertices of J that are in Y . Since |J | =
(r+ t)|X|+ (r+ t)2t+ r > (r+ t)|Y |+ r, by Lemma 4.1 there is a pw-(t− 1)-separation

(J1, J2) of J with |J1| > r such that Y ⊆ V (J2). Observe that no vertex in V (J1)− Y is

adjacent in G to a vertex in V (G)− V (J1). Hence, G1 := J1 and G2 := G− (V (J1)− Y )

defines a pw-(t− 1)-separation (G1, G2) of G with |G1| > r. �
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Claim 4.9. If there exists X ⊆ V (G) with |X| 6 1 +
∑3

i=1 f(t − 1, ri) such that G[X]

is connected, x ∈ X, and every component of G − X that includes some vertex in

{x1, . . . , xp} has pathwidth at most t− 1, then the lemma holds.

Proof. Let q be the number of neighbors of x that are not in X; let us assume without loss

of generality that these neighbors are x1, . . . , xq. Let H be the union of all components

of G − X that include at least one of these vertices. Thus H has pathwidth at most

t − 1 by the assumption of the claim. Since |H| > q > p − |X| > ∆ + 1 − |X| >

(r + t − 1)|X| + (r + t)2t + r, by Lemma 4.1 there is a pw-(t − 1)-separation (H1,H2)

of H with |H1| > (r + t− 1)|X| + (r + t)2t+ r. The claim follows then from Claim 4.8,

since |X| 6∑3
i=1 f(t− 1, ri) + 1 6

f(t,r)−d−r
r+t

− 2t. �

Let X0 := {x}. Apply the following argument first with j = 1, then j = 2, then

j = 3. Since |Xj−1| 6 1 +
∑j−1

i=1 f(t − 1, ri), the graph G[Xj−1] is connected, and

x ∈ Xj−1, by Claim 4.9 we may assume that there is a component C of G −Xj−1 with

pathwidth at least t that includes a neighbor xnj
of x (otherwise we are done). By

induction (on t), either C has a connected subgraph Hj of pathwidth at least t− 1 with

|Hj | 6 f(t − 1, rj) and xnj
∈ V (Hj), or there is a pw-(t − 2)-separation (C1, C2) of C

with |C1| > rj. In the second case, (C1, C
′
2) is a pw-(t − 2)-separation of G − Xj−1,

where C ′
2 is the union of C2 with all components of G − Xj−1 distinct from C. Since

|Xj−1| 6 1 +
∑j−1

i=1 f(t − 1, ri) 6
f(t,r)−d−r

r+t
− 2t and by the definition of rj we have

|C1| > rj > (r+ t− 1)|Xj−1|+ (r+ t)2t+ r, we are done by Claim 4.8. In the first case,

let Xj := Xj−1 ∪ V (Hj). Observe that |Xj | 6 1 +
∑j

i=1 f(t − 1, ri) and that G[Xj ] is

connected (because of the vertex x).

Now that the sets X0,X1,X2,X3 are defined, let P be a shortest path in G from w to

X3. Thus |P | 6 d + 1, since x ∈ X3 and x is at distance at most d from w in G. Since

Hi is connected and has pathwidth at least t− 1 for each i ∈ [1, 3], and since H1,H2,H3

are pairwise vertex-disjoint, the graph G[X3] has pathwidth at least t by Lemma 4.5.

It follows that G′ := G[X3 ∪ V (P )] is a connected subgraph of G that includes w, with

pathwidth at least t, and satisfying |G′| 6 |X3|+|P |−1 6 1+
∑3

i=1 f(t−1, ri)+d 6 f(t, r).

This concludes the proof. �

Now we turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. The proof is in two steps: First we prove the theorem in the

special case where F consists of a single tree, which we then use to handle the general

case.

First consider the case where F = {T}, where T is a tree on t vertices. Let r := max{b(i) :
0 6 i 6 2t − 2}, where b is the function from Lemma 3.2. Let G be an arbitrary graph.

Let c := max{1, 2(t− 1), r, f(t− 1, r)}, where f is the function from Lemma 4.6. We will

show that τF (G) 6 c · νF (G) by induction on |G|. If |G| = 1 then the claim obviously

holds since c > 1. Now assume that |G| > 1. Since T is connected, we have that

νF (G) = νF (G1) + · · · + νF (Gℓ) and τF (G) = τF (G1) + · · · + τF(Gℓ), where G1, . . . , Gℓ

are the components of G. We may thus assume that G is connected, since otherwise we

are done by applying induction on its components.
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If the pathwidth of G is at most t − 2, then we directly obtain that τF (G) 6 2(t − 1) ·
νF (G) 6 c · νF (G) by Lemma 2.3. Hence assume that G has pathwidth at least t− 1.

Apply Lemma 4.6 on G (with w an arbitrary vertex of G) to obtain one of the two

possible outcomes. If the outcome is a pw-(t− 2)-separation (G1, G2) of G with |G1| > r

then by Lemma 4.2 (with no marked vertices) we may assume that |G1| = r 6 c. If

G1 contains T as a minor then νF (G − V (G1)) 6 νF (G) − 1. By induction, there is

an F-transversal Y of G − V (G1) of size at most c · νF (G − V (G1)) 6 c · νF (G) − c,

and hence V (G1) ∪ Y is an F-transversal of G of size at most c · νF (G). If G1 has no

T -minor, then since q := |V (G1) ∩ V (G2)| 6 2t− 2 and r > b(q), by Lemma 3.2 there is

a graph G′ with νF (G
′) = τF (G), τF (G

′) = τF (G), and |G′| < |G|. Since by induction

τF (G
′) 6 c · νF (G′), we are done in this case.

Suppose now that the outcome of Lemma 4.6 is a subgraph G′ of G of pathwidth at least

t− 1 with |G′| 6 f(t− 1, r) 6 c. Then, since G′ contains T as a minor (by Theorem 2.1),

νF (G− V (G′)) 6 νF (G)− 1. By induction, there is an F-transversal Y of G− V (G′) of

size at most c · νF (G− V (G′)) 6 c · νF (G)− c, and hence V (G′) ∪ Y is an F-transversal

of G of size at most c · νF (G). This concludes the proof of the case where F consists of

a single tree.

Now let F be an arbitrary finite set of graphs containing a forest F . Let q := |F| and
let r denote the maximum number of components of a graph in F . Let t := |F |. Let T

be an arbitrary tree obtained from F by adding edges. By the proof above, there is a

constant c′ such that τT (G) 6 c′ · νT (G) for every graph G. Using Lemma 2.4, we obtain

τF(G) 6 τT (G) + 2qrt · νF (G) 6 c′ · νT (G) + 2qrt · νF (G) 6 (c′ + 2qrt) · νF (G)

for every graph G. Therefore, the theorem holds with c := c′ + 2qrt. �

We remark that, while Corollary 1.2 was deduced from Theorem 1.1 and the computabil-

ity of the obstruction set for graphs of pathwidth at most t (see [1, 22]), it can alternatively

be derived directly from Lemma 4.6.

5. Algorithmic Implications

While the focus of this article is not algorithms, we would nevertheless like to point out

a few algorithmic implications of our results.

First, the proof of Theorem 1.1 can be turned into a polynomial-time algorithm that,

for fixed F , computes in polynomial time an F-packing and an F-transversal of a given

input graph G differing in size by at most a factor c. This is explained in part by the

fact that the graph (G′, R) in Lemma 3.1 can be computed in polynomial time using

standard monadic second-order logic techniques (as done in [18], for instance), and the

same is true for G′ in Lemma 3.2. Moreover, it is not difficult to extend Lemma 3.2 to

obtain that, given an F-packing in G′, one can compute an F-packing in G of the same

size in polynomial time, and similarly given an F-transversal of G′, one can compute an

F-transversal in G of no larger size in polynomial time. (This is needed when applying
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a reduction operation in the proof of Theorem 1.1, since after having obtained an F-

packing and an F-transversal of a reduced graph G′, we have to “lift back” these to the

input graph G.)

Furthermore, the outcomes of Lemmas 4.1 and 4.2 can easily be computed in polynomial

time (for fixed t). The same is true for Lemma 4.6 (for fixed t and r), as its main

computational steps are (i) breadth-first searches, (ii) calls to Lemmas 4.1 and 4.2, and

(iii) tests of whether a graph has pathwidth at most i for some i 6 t (which can be done

in linear time when t is fixed, see [3]), and each is performed at most linearly-many times

(in fact, only a constant number of times for (i) and (ii)).

Since the proof of Theorem 1.1 makes at most linearly-many calls to Lemmas 3.2, 4.6,

and 2.3, it remains to show that Lemma 2.3 can be realized in polynomial time. While

the proof itself does not directly yield such an algorithm, we note that the problem of

finding a maximum F-packing and that of finding a minimum F-transversal can both be

defined in monadic second-order logic. Hence, by Courcelle’s Theorem [4], both problems

can be solved in linear time on graphs of bounded pathwidth, and therefore an F-packing

and an F-transversal such as promised by Lemma 2.3 can be found in linear time.

Second, a closer inspection shows that the running time of the algorithm sketched above

is not only polynomial for fixed F , but is moreover of the form O(g(F) ·nα) for n-vertex

graphs, where g is a function depending only on F , and α is a constant independent of F .

Building on this observation we now sketch a modification of the proof of Theorem 1.1 to

obtain a single-exponential fixed-parameter tractable (FPT) algorithm for the problem

of computing a minimum-size Pt-transversal of a graph when parameterized by the size

of the optimum, where Pt is the finite set of minimal excluded minors for the class of

graphs with pathwidth strictly less than t. Here single-exponential FPT means that the

running time of the algorithm is O(dk · nα) on instances G with τPt(G) = k, where d is

a constant depending only on t, and as before α is an absolute constant. Finding such

an algorithm was posed as an open problem by Philip et al. [25], who gave one for the

t = 2 case.

Given a pair (G, k), our (recursive) FPT algorithm either finds a Pt-transversal (abbre-

viated transversal) of G of size at most k, or correctly answers that there is no such

transversal. The algorithm can be briefly described as follows (leaving some details to

the reader): (I) If G is not connected, let G1, . . . , Gp denote its components, and for each

i ∈ [1, p] and ℓ ∈ [0, k] recurse on (Gi, ℓ). Given the results of these recursive calls, decide

whether G has a transversal of size at most k.‡ (II) If G is connected but has pathwidth

strictly less than t, return an empty transversal. (III) If G is connected with pathwidth

at least t, apply Lemma 4.6 on G (with r defined as in the proof of Theorem 1.1). (III.a)

If the outcome of Lemma 4.6 is a pw-(t− 1)-separation (G1, G2) of G, apply Lemma 3.2

to obtain a smaller graph G′ and recurse on (G′, k); if G′ has no transversal of size at

most k then so does G, otherwise “lift” the transversal of G′ found back to G and return

it. (III.b) If the outcome of Lemma 4.6 is a connected subgraph G′ of G with pathwdith

at least t and at most f(t, r) vertices, branch on every non-empty subset of V (G′) of size

at most k, namely, for every such subset Y , recurse on (G − Y, k − |Y |). Observe that

‡Here we use the fact that all graphs in Pt are connected, which implies that X is a transversal of G

if and only if X ∩ V (Gi) is a transversal of Gi for each i ∈ [1, p].
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every transversal of G contains at least one vertex of G′. If a transversal of G−Y of size

at most k− |Y | is found for some subset Y , return the union of that transversal with Y .

If no transversal is found for any of the subsets Y , then G has no transversal of size at

most k.

It should be clear that the algorithm finds a transversal of size at most k if there is one.

The running time is O(dk · nα) with d := 2f(t,r) and α some absolute constant, since we

perform at most d recursive calls in a branching step, and in each one the parameter is

decreased by at least one.

We conclude this section by mentioning that the optimization problem of finding a mini-

mum F-transversal in a graph has been considered for various families F in several recent

works, see [5, 6, 12, 14, 19, 21, 25].

Very recently, and independently of this work, Fomin et al. [13] obtained a single-

exponential FPT algorithm for the minimum F-transversal problem for every finite set

F of connected graphs containing at least one planar graph. Since all graphs in Pt are

connected, this includes in particular a single-exponential FPT algorithm for finding a

minimum-size Pt-transversal. The authors of [13] also presented a randomized (Monte

Carlo) constant-factor approximation algorithm for finding a minimum-size F-transversal

when F is a finite set of graphs containing at least one planar graph (here the graphs in

F are not assumed to be connected). We note that, while our constant-factor approxima-

tion algorithm described at the beginning of this section is restricted to the case where

F contains a forest, it is fully deterministic, and provides an F-packing of size within a

constant factor of optimal as well.

6. An Open Problem

For a finite set F of graphs containing a forest, let

ρ(F) := sup
τF (G)

νF (G)

over all graphs G with νF (G) > 0. By Theorem 1.1 this quantity is well defined. When

F consists of a single forest F , we simply write ρ(F ) for ρ(F). For t > 1, let φ(t) :=

max{ρ(F ) : F forest, |F | = t}.

A natural next step would be to investigate the order of magnitude of φ(t). Our proof

gives an upper bound which is exponential in t, and almost certainly far from the truth.

In particular, it would be interesting to decide whether φ(t) is polynomial in t. As for

lower bounds, we have that ρ(F ) > |F | for every forest F , as can be seen by taking G to

be a large complete graph, and hence φ(t) > t. But we do not know of any super-linear

lower bound.
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Université Libre de Bruxelles

Brussels, Belgium

E-mail address: sfiorini@ulb.ac.be
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