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RELATIVE TUTTE POLYNOMIALS OF TENSOR PRODUCTS OF COLORED

GRAPHS

Y. DIAO AND G. HETYEI

Abstract. The tensor product (G1, G2) of a graph G1 and a pointed graph G2 (containing one
distinguished edge) is obtained by identifying each edge of G1 with the distinguished edge of a separate
copy of G2, and then removing the identified edges. A formula to compute the Tutte polynomial of
a tensor product of graphs was originally given by Brylawski. This formula was recently generalized
to colored graphs and the generalized Tutte polynomial introduced by Bollobás and Riordan. In this
paper we generalize the colored tensor product formula to relative Tutte polynomials of relative graphs,
containing zero edges to which the usual deletion-contraction rules do not apply. As we have shown in
a recent paper, relative Tutte polynomials may be used to compute the Jones polynomial of a virtual
knot.

1. Introduction

The Tutte polynomial is one of the most important invariants in graph theory. It was first introduced
and studied by Tutte for non-colored graphs, but has since been generalized to colored graphs [1] and
to colored relative graphs in which some edges cannot be treated as regular colored edges in the
computation of the Tutte polynomial [10]. The corresponding Tutte polynomial in the latter case is
called the relative Tutte polynomial.

There are many situations in applied graph theory where an actual network is represented by
a graph, whose edges turn out to denote subnetworks at closer inspection. A typical example is an
electric circuit whose components are (identical) integrated circuits themselves. Theoretically, we may
represent many such networks of subnetworks by using the tensor product operation of graphs. The
tensor product operation associates a graph G1⊗G2 to a graph G1 and a pointed graph G2 containing
one distinguished edge e. It is obtained by replacing each edge of G1 with a copy of G2 \e, where e is a
used to mark the vertices of G2 where we graft G2 to the place of the removed edge of G1 and is itself
removed in the process. The Tutte polynomial of such a tensor product of graphs was first expressed
by Brylawski [4]. He showed that the Tutte polynomial of a tensor product can be obtained from the
Tutte polynomial G1 and some ordinary and pointed Tutte polynomials associated to (G2, e) through
certain variable substitutions. The application of the initial tensor product is limited by the fact that
its definition requires all edges to be replaced by the same graph. However, in the network setting,
the components of an actual network may be integrated circuits of different kinds. Such a composite
network cannot be obtained by replacing every connection with the same subnetwork (as required by
the tensor product definition). Thus it is more practical and applicable to color the edges (links) of
G1 (a network) first and then replace only edges of a fixed color with the same graphs (subnetworks)
G2 (G2 \ e to be more precise). Repeating this operation would then allow replacing individual edges
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by different graphs. This new tensor product concept was introduced in [12] where it was shown that
the results of Brylawski [4] on the Tutte polynomial of a tensor product of non-colored graphs can be
generalized to the (generalized) Tutte polynomial of a (generalized) tensor product of colored graphs
[12].

Another application of the colored Tutte polynomial is in the area of knot theory. It is well-known
that the Jones polynomial of a link can be computed from the Kauffman bracket polynomial while
the Kauffman bracket polynomial of a link can be computed from the (signed) Tutte polynomial of
the face graph of a regular projection of the link. This was first shown for alternating links and the
ordinary Tutte polynomial by Thistlethwaite [16], then generalized to arbitrary links and a signed
Tutte polynomial by Kauffman [14]. This enables applications of the ordinary Tutte polynomials and
their signed generalizations to classical knot theory such as those in [9, 11, 13]. For virtual knots
the situation is a little more complicated. An appropriate generalization of the Kauffman bracket
polynomial was developed by Kauffman himself [15]. However, until very recently, no appropriate
generalization of the Tutte polynomial to face graphs of virtual links was known. In a series of
papers, Chmutov, Pak and Voltz [6, 7, 8] developed a generalization of Thistlethwaite’s theorem first
to checkerboard-colorable [7] then to arbitrary [6, 8] virtual link diagrams. These express the Jones
polynomial of a virtual link in terms of a signed generalization of the Bollobás-Riordan polynomial [2, 3]
of a ribbon graph, obtained from the virtual link diagram. In [10], it is shown that a relative variant
of the other generalization of the Tutte polynomial, also due to Bollobás and Riordan [1] may also
be used to compute the Jones polynomial of a virtual link, this time directly from the face graph of
the virtual link diagram. In a face graph of a virtual link diagram, edges corresponding to virtual
crossings cannot be treated as a regular edge and are called zero edges in [10]. The Tutte polynomial
of a colored graph with zero edges generalized in [10] is called a relative Tutte polynomial.

Given a colored graph G1 and a pointed colored graph G2 such that both may contain zero edges,
their tensor product can be defined just as in the case of two colored graphs, so long as the edges
in G1 to be replaced by copies of G2 are not zero edges and the distinguished edge marked in G2

for the gluing purpose is not a zero edge either. The main goal of this paper is to formulate the
relative Tutte polynomial of the tensor product of two colored graphs with zero edges, using only the
Tutte polynomials obtained from G1 and G2 and certain substitution rules. As it turned out, we have
to generalize the pointed polynomials used in the colored tensor product case, define new pointed
polynomials and introduce a set of much more complicated substitution rules. Given the complexity
level of the relative Tutte polynomial, this should not be a surprise. It is actually somewhat surprising
that such a formulation still exists!

This paper is organized as follows. In Section 2 we review the relative Tutte polynomial and, in
Section 3 we introduce the concept of the universal relative Tutte polynomial. Section 4 contains the
definition of our pointed universal relative Tutte polynomials. These include the ones generalized from
the pointed Tutte polynomials used previously and three new pointed Tutte polynomials. In Section
5 we discuss the contracting sets in a tensor product of colored graphs with zero edges. Section 6
contains our main result: the generalization of the tensor product formula to colored relative graphs.
The concluding Section 7 contains a sample application of our main result and a few further remarks.

2. A review of the relative Tutte polynomial

In this section we review the notion of the relative Tutte polynomial of a colored graph G, with
respect to a set of edges H ⊂ E(G) introduced in [10]. We observe that the results in [10] may be
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easily generalized to the situation where the edges in H do not all belong to the same color set. We
also introduce the universal relative Tutte polynomial of a colored graph.

Definition 2.1. Let G be a graph with edge set E(G) and let H ⊆ E(G). A subset C of E(G) \ H is
called a contracting set of G with respect to H if C contains no cycles and E(G) \ (C ∪ H) contains
no cocycles. Given a contracting set C, the set E(G) \ (C ∪H) is called the corresponding deleting set
and it is denoted by D.

Recall that the cocycles of a graph are its minimal sets of edges whose removal increases the number
of connected components. Sometimes we will refer to C, D and H as graphs, by which we mean the
subgraphs of G induced by the respective set of edges.

Definition 2.2. Let G be a graph and H be a subset of E(G). A proper labeling or relative labeling
of the edges of G with respect to H is a map φ : E(G) −→ N such that H = {e ∈ E(G) : φ(e) = 0}
and the restriction of φ to E(G) \ H is an injective map into Z+. We say that e1 is larger than e2 if
φ(e1) > φ(e2). Let C be a contracting set of G with respect to H, then

a) an edge e ∈ C is called internally active if D ∪ {e} contains a cocycle D0 in which e is the
smallest edge, otherwise it is internally inactive.

b) an edge f ∈ D is called externally active if C∪{f} contains a cycle C0 in which f is the smallest
edge, otherwise it is externally inactive.

As noted in [10, Remark 3.12], activities of regular edges may be given in the following equivalent
definition.

Definition 2.3. Let G be a graph and H be a subset of E(G) and that a proper labeling φ has been
given. Let C be a contracting set of G with respect to H, then

a) an edge e ∈ C is internally active if it becomes a bridge once all edges in D larger than e are
deleted, otherwise it is internally inactive;

b) an edge e ∈ D is externally active if it becomes a loop after all edges in C larger than f are
contracted, otherwise it is externally inactive.

The above equivalent definition depends of the following description of contracting and deleting
sets.

Lemma 2.4. Let G be a graph, let H be a subset of E(G), and let φ be a proper labeling. Let
C ⊆ E(G) \H be a set of regular edges and let D = E(G) \ (C ∪H). Then C is a contracting set and D
is the corresponding deleting set if and only if the following holds for regular edge e ∈ E(G) \ H after
contracting all edges in f ∈ C and all deleting edges g ∈ D satisfying φ(f) ≥ φ(e) and φ(g) ≥ φ(e):

(1) If e ∈ C then e does not become a loop;
(2) if e ∈ D then e does not become a bridge.

The proof is straightforward and left to the reader. As a consequence of Lemma 2.4 we may find
each contracting set C, together with the corresponding deleting set D by going through the list of
regular edges in the order of their labels and deciding to put each of them either into C or into D,
contracting or deleting them accordingly, subject only to the rules that we are not allowed to contract
a loop or delete a bridge.
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The definition of a relative Tutte polynomial involves contracting all edges in C and deleting all
edges in D. We perform these operations in decreasing order of the labels. The resulting graph HC

contains only zero edges and will be replaced with a graph invariant ψ(HC). The graph HC depends
on the order of deletions and contractions determined by the proper labeling φ. However, the multiset
of blocks of HC is independent of the order in which the deletions and contractions are performed,
see [10, Lemma 3.14]. That’s why we want the operator ψ to be a block invariant (see [10, Definition
3.13]), most of the times. For applications in knot theory a generalization of block invariants was
introduced in [10]: maps on isomorphism classes on graphs that are invariant under vertex pivots.
These operations are defined as sequences of vertex splicings and vertex splittings. A vertex splicing
is an operation that merges two disjoint graphs by picking a vertex from each and identifying these
selected vertices, thus creating a cutpoint. The opposite operation is vertex splitting that creates two
disjoint graphs by replacing a cutpoint v with two copies v1 and v2, and makes each block containing
v contain exactly one of v1 and v2.

Definition 2.5. Let G be a graph that has a cutpoint u. A vertex pivot is a sequence of vertex
splittings and vertex splicings, of the following kind. First we split G by creating two copies of u and
two disjoint graphs G1 and G2. Then we take a vertex v1 ∈ V (G1) from the connected component of
u1 and a vertex v2 ∈ V (G2) in the connected component of u2 and we merge G1 and G2 by identifying
u1 with u2.

As noted in [10, Section 4], HC will be the same up to performing a sequence of vertex pivots,
independently of φ.

Let G be a graph and H ⊆ E(G). In [10] a coloring c : E(G)\H → Λ of the regular edges to a color
set Λ was considered. However, the definitions and results stated in [10] may be generalized without
any substantial change to the situation where we color all edges of G, including the zero edges, using
a map c : E(G) → Λ. Let us call a graph G, together with such a coloring c : E(G) → Λ a Λ-colored
graph. We may fix a subset Λ0 ⊆ Λ and require all edges in H to be with colors from Λ0. The subgraph
H is thus also a Λ0-colored graph.

Definition 2.6. We call two Λ0-colored graphs Γ and Γ′ vertex pivot equivalent if Γ′ is isomorphic to
a graph obtained from Γ by performing a sequence of vertex pivot operations. We call an invariant
ψ of Λ0-colored graphs a vertex pivot invariant if ψ(Γ) = ψ(Γ′) whenever Γ and Γ′ are vertex pivot
equivalent. The collection of vertex pivot equivalence classes of Λ0-colored graphs is denoted by
VP(Λ0).

For any contracting set C of G with respect to H, let HC be the graph obtained by deleting all edges
in D and contracting all edges in C. Finally, we assign a proper labeling φ to the edges of G. We now
define the relative Tutte polynomial of G with respect to H and ψ as

(2.1) TψH(G) =
∑

C


 ∏

e∈G\H

w(G, c, φ, C, e)


 ψ(HC) ∈ R[xλ,Xλ, yλ, Yλ : λ ∈ Λ],

where the summation is taken over all contracting sets C and w(G, c, φ, C, e) is the weight of the edge
e with respect to the contracting set C, which is defined as (assume that e has color λ):
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(2.2) w(G, c, φ, C, e) =





Xλ if e is internally active;
Yλ if e is externally active;
xλ if e is internally inactive;
yλ if e is externally inactive.

To simplify our notation, we may use TH(G) for TψH(G), with the understanding that some ψ has
been chosen, unless there is a need to stress what ψ really is. Following [10], we then write

W (G, c, φ, C) =
∏

e∈G\H

w(G, c, φ, C, e)

so that

(2.3) TH(G,φ) =
∑

C

W (G, c, φ, C)ψ(HC ).

One of our main results [10, Theorem 3.16] extends the famous result of Bollobás and Riordan [1,
Theorem 2] on colored Tutte polynomials to colored relative Tutte polynomials. Its proof extends
without any change to the situation when the set of zero edges is a Λ0-colored subgraph.

Theorem 2.7. Assume I is an ideal of R[xλ,Xλ, yλ, Yλ : λ ∈ Λ]. Then the homomorphic image of
TH(G,φ) in R[xλ,Xλ, yλ, Yλ : λ ∈ Λ]/I is independent of φ (for any G and ψ) if and only if

(2.4) det

(
Xλ yλ
Xµ yµ

)
− det

(
xλ Yλ
xµ Yµ

)
∈ I

and

(2.5) det

(
xλ Yλ
xµ Yµ

)
− det

(
xλ yλ
xµ yµ

)
∈ I.

hold for all λ, µ ∈ Λ.

Motivated by this result, we will assume TH(G,φ) is defined in the ring

T (R,Λ) := R[xλ,Xλ, yλ, Yλ : λ ∈ Λ]/I1(R,Λ)

where I1(R,Λ) is the ideal of R[xλ,Xλ, yλ, Yλ : λ ∈ Λ] generated by all polynomials of the form (2.4)
and (2.5).

Definition 2.8. We call the ring T (R,Λ) the Tutte ring associated to the color set Λ and the ring of
coefficients R.

The relative Tutte polynomial, considered as an element of the Tutte ring T (R,Λ), becomes inde-
pendent of the choice of the proper labeling φ and we may write TH(G) for TH(G,φ). An immediate
consequence of this fact is the following corollary, see [10, Corollary 3.17].

Corollary 2.9. TH(G) can be computed via the following recursive formula, valid for any regular edge
e, i.e., any e 6∈ H:

(2.6) TH(G) =





yλTH(G− e) + xλTH(G/e), if e is neither a bridge nor a loop,
XλTH(G/e), if e is a bridge,
YλTH(G− e), if e is a loop.

In the above, e 6∈ H is a regular edge, λ = c(e), G− e is the graph obtained from G by deleting e and
G/e is the graph obtained from G by contracting e.
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Remark 2.10. In some situations, it is plausible to require that the set of colors used to color the
regular edges be disjoint from the set Λ0 used to color the zero edges, i.e. c(E(G \ H)) ⊆ Λ \ Λ0,
although we do not need this restriction in what is written above. For the sake of convenience and to
avoid possible confusions, we will assume that c(E(G \ H)) ⊆ Λ \ Λ0 in the rest of this paper.

3. The universal relative Tutte polynomial

We now introduce the universal relative Tutte polynomial associated to a color set Λ0.

Definition 3.1. Let G be a Λ-colored graph and H a Λ0-colored subset of its edges such that Λ0 ⊆ Λ
and c(E(G \ H)) ⊆ Λ \ Λ0. Let us introduce a distinct variable z[Γ] for each vertex pivot equivalence
class [Γ] ∈ VP(Λ0). Let ψΛ0

be the vertex pivot invariant that assigns to each Λ0-colored graph Γ the
variable z[Γ] in the polynomial ring R[z[Γ] : [Γ] ∈ VP(Λ0)]. We call the relative Tutte polynomial

T
ψΛ0

H (G) ∈ R[xλ,Xλ, yλ, Yλ, z[Γ] : λ ∈ Λ \ Λ0, [Γ] ∈ VP(Λ0)]/I1(R,Λ,Λ0)

the universal Λ0-colored relative Tutte polynomial of G with respect to H and denote it by TΛ0

H (G).
Here I1(R,Λ,Λ0) is the ideal of R[xλ,Xλ, yλ, Yλ, z[Γ] : λ ∈ Λ \ Λ0, [Γ] ∈ VP(Λ0)] generated by all
polynomials of the form (2.4) and (2.5) with λ, µ ∈ Λ \ Λ0. We call the ring

T (R,Λ,Λ0) := R[xλ,Xλ, yλ, Yλ, z[Γ] : λ ∈ Λ \ Λ0, [Γ] ∈ VP(Λ0)]/I1(R,Λ,Λ0)

the Λ0-pointed Tutte ring associated to the color set Λ and the ring of coefficients R.

The ideal I1(R,Λ,Λ0) in Definition 3.1 above is generated by polynomials not containing any of
the variables z[Γ]. Thus we have

(3.1) T (R,Λ,Λ0) = T (R,Λ \ Λ0)[z[Γ] : [Γ] ∈ VP(Λ0)].

In other words, the Λ0-pointed Tutte ring T (R,Λ,Λ0) is a polynomial ring in which the Tutte ring
T (R,Λ\Λ0) is the ring of coefficients and {z[Γ] : [Γ] ∈ VP(Λ0)} is the set of independent variables and

the universal relative Tutte polynomial T
ψΛ0

H (G) is a special element in the Tutte ring T (R,Λ,Λ0),
namely one that is a T (R,Λ \ Λ0)-linear combination of the terms of the form z[Γ]. This observation
makes the substitution map, given in Theorem 3.2 below, well-defined. This theorem justifies the
adjective universal in the name of the universal Λ0-pointed relative Tutte polynomial. We call it a
theorem only because of its importance, its proof is straightforward.

Theorem 3.2. Let G be a Λ-colored graph and H a Λ0-colored subset of its edges where Λ0 ⊆ Λ and
c(E(G\H)) ⊆ Λ\Λ0. Let ψ be a vertex pivot invariant of Λ0-colored graphs with values in an integral
domain R. Then the homomorphism

T (R,Λ,Λ0) → T (R,Λ \ Λ0),

sending each element of T (R,Λ \ Λ0) into itself and sending each z[Γ] into ψ(Γ), sends the universal

Λ0-colored Tutte polynomial TΛ0

H (G) into the relative Tutte polynomial TψH(G).

Remark 3.3. T (R,Λ,Λ0) is a polynomial ring with infinitely many variables z[Γ]. However, if we
consider only colored graphs with at most N edges, where N is any positive integer, then it may be
replaced with a polynomial ring with only finitely many variables.
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4. Pointed universal relative Tutte polynomials

In analogy to the main results in [11, Theorem 5.1] and [12, Theorem 3], we want to obtain a formula
for the universal relative Tutte polynomial of a λ-colored tensor product G1 ⊗λ G2 of two Λ-colored
graphs that have Λ0-colored subsets of zero edges H1 and H2 (we will assume Λ0 ⊂ Λ and λ ∈ Λ\Λ0).
Similarly to the formulation in [11, 12], our formula will make use of pointed variants of the universal
relative Tutte polynomial. Two of these variants will be generalizations of the polynomials TC(G, e)
and TL(G, e) that were already introduced in [11, 12] and which are generalizations of pointed Tutte
polynomials introduced by Brylawski [4, 5]. A third variant arises with the presence of zero edges. We
will also have to introduce two further pointed Tutte polynomials which will assume the role played
by T (G/e) and by T (G−e), respectively, in [11, 12]. As before, when considering the λ-colored tensor
product G1 ⊗λG2, all pointed relative Tutte polynomials will be computed for the pointed graph G2.

In this section we assume that G is a pointed connected graph with a distinguished edge e which
is neither a loop nor a bridge, and H is a subset of E(G) not containing e. We assume that G is a
Λ∪{ν}-colored graph where ν 6∈ Λ, H is Λ0-colored where Λ0 ⊂ Λ. The distinguished edge e is marked
by the unique color ν 6∈ Λ to avoid possible confusions. Denote the set Λ ∪ {ν} by Λ′, Λ0 ∪ {ν} by
Λ′
0 and H ∪ {e} by H′. The first three pointed Tutte polynomials to be introduced are homomorphic

images of the universal Λ′
0-colored relative Tutte polynomial T

Λ′

0

H′ (G). When we calculate T
Λ′

0

H′ (G), we
consider the distinguished edge e as a zero edge. Again, let us stress that the color ν assigned to e is
different from the colors of all other (regular or zero) edges.

We want to classify the pairs (C,D) of contracting sets and corresponding deleting sets with respect
to H′ into three classes, depending on their relation to the distinguished edge e, as follows:

Definition 4.1. Let G be a pointed graph with distinguished edge e and set of zero edges H′ = H∪{e}.
Let C be a contracting set of G with respect to H′ and let D be the corresponding deleting set.

(i) We say that (C,D) has type C if C ∪ {e} contains a cycle;
(ii) We say that (C,D) has type D if D ∪ {e} contains a cocycle;
(iii) We say that (C,D) has type zero if it has neither type C nor type D .

To simplify our terminology we will also say that a contracting set C, or a deleting set D has type C ,
D or zero, if the unique pair (C,D) formed with the corresponding deleting or contracting set has the
same type.

The choice of letters to denote the types may seem counter-intuitive in this section, the motivation
will become clear in Section 5. Notice that an equivalent condition for (C,D) to be of type zero is that
C ∪ H′ contains a cycle but C ∪ {e} does not. Furthermore, (C,D) cannot have type C and type D

simultaneously: if e closes a cycle with C in G then after removing all edges of D and the edge e from
G, the endpoints of e are still connected via a path containing the edges in C, hence deleting D ∪ {e}
will not increase the number of connected components in G. Thus another equivalent description of
the three types may be stated as follows.

Proposition 4.2. (C,D) has type C , D , or zero, respectively, if and only if after contracting the edges
of C and deleting the edges of D in G, the edge e becomes a loop, bridge, or neither loop nor bridge,
respectively. In the type zero case, after contracting the edges of C and deleting the edges of D in G,
there is a path consisting of zero edges only (in H) connecting the endpoints of e.
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The next statements depend on, and also characterize the type of (C,D).

Proposition 4.3. If (C,D) is of type C then C is a contracting set with respect to H but C ∪ {e} is
not a contracting set.

Proof. Clearly C ∪ {e} is not a contracting set since C contains a path connecting the endpoints of
e, and adding e to this path creates a cycle. As seen in the proof of Proposition 5.1, the set C does
not contain any cycle. We only need to check that D ∪ {e} contains no cocycle in G. This may
be performed in perfect analogy to the corresponding part in the proof of Proposition 5.1, the only
difference being that the path γ′ introduced in that proof may now be replaced by the path in C
connecting the endpoints of e. �

Proposition 4.4. If (C,D) is of type D then C ∪ {e} is a contracting set with respect to H but C is
not a contracting set.

Proof. Deleting all edges of D∪{e} from G disconnects the endpoints of e. Thus the set D∪{e} is not
a deleting set with respect to H and there is no path in C connecting the end points of e. Equivalently,
C is not a contracting set and C ∪ {e} contains no cycle. The proof of the fact that D contains no
cocycle of G is identical to the corresponding part of the proof of Proposition 5.1. �

Proposition 4.5. If (C,D) is of type zero then both C and C ∪ {e} are contracting sets with respect
to H.

Proof. Since (C,D) is of type zero, C ∪ {e} (hence C) contains no cycle, but there is a path consisting
of edges of C ∪ H connecting the end vertices of e. The set D contains no cocycle by Proposition 5.1.
Since there is a path consisting of edges of C ∪H connecting the end vertices of e, adding e to D does

not create a cocycle in Gf2 . �

Remark 4.6. Since the premises in Propositions 4.3, 4.4 and 4.5 mutually exclude each other, the
conclusions provide a characterization of the types of (C,D): it has type C exactly when C is a
contracting set with respect to H but C ∪ {e} is not, type D exactly when C ∪ {e} is a contracting set
with respect to H but C is not, and it type zero exactly when both C and C ∪ {e} are contracting sets
with respect to H.

To define our pointed Tutte polynomials we introduce five endomorphisms of the Λ0-pointed Tutte
ring T (R,Λ′,Λ′

0), which is a polynomial ring by (3.1). The restriction of each of these endomorphisms
to T (R,Λ) will be the identity map, thus they can be given by prescribing their effect on the variables
{z[Γ] : [Γ] ∈ VP(Λ′

0)}. The first three maps, πC , πL and π0, leave z[Γ] unchanged for select types of
graphs Γ and they send all the other z[Γ] into zero:

πC(z[Γ]) =

{
z[Γ] if Γ has exactly one edge f of color ν and f is a bridge (coloop);
0 otherwise.

πL(z[Γ]) =

{
z[Γ] if Γ has exactly one edge f of color ν and f is a loop;
0 otherwise.

π0(z[Γ]) =

{
z[Γ] if Γ has exactly one edge f of color ν and f is neither a loop nor a bridge;
0 otherwise.
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The last two maps, π/ and π− perform a contraction or deletion on some graphs Γ, and send all other
z[Γ] into zero:

π/(z[Γ]) =

{
z[Γ/f ] if Γ has exactly one edge f of color ν and f is not a loop;

0 otherwise.

π−(z[Γ]) =

{
z[Γ−f ] if Γ has exactly one edge f of color ν and f is not a bridge;

0 otherwise.

Definition 4.7. We define the pointed universal Λ0-colored relative Tutte polynomials T
Λ′

0

H,C(G, e),

T
Λ′

0

H,L(G, e) and T
Λ′

0

H,0(G, e), respectively, as the image of T
Λ′

0

H′ (G) under the endomorphism π/ ◦ πC ,
π− ◦ πL and π0, respectively.

Notice that in the special case that H = ∅, the definitions of T
Λ′

0

H,C(G, e) and T
Λ′

0

H,L(G, e) yield

TC(G, e) ·z[•] and TL(G, e)z[•], respectively. Here TC(G, e) and TL(G, e) are the polynomials defined in
[11, 12] and • is the graph containing a single vertex. Thus, in situations where there is no confusion
about the sets Λ, Λ0 and H, we will simply use TC(G, e), TL(G, e) and T0(G, e) as the abbreviations

for T
Λ′

0

H,C(G, e), T
Λ′

0

H,L(G, e) and T
Λ′

0

H,0(G, e) respectively. As a consequence of Theorem 2.7, the pointed
universal Λ0-colored relative Tutte polynomials defined above may be computed by summing weights
of contracting sets of G with respect to H′. The weights will be assigned using a proper labeling with
respect to H′, but the outcome will be independent of the labeling. The following lemmas are direct
consequences of the definitions of TC , TL and T0.

Lemma 4.8. A contracting set C of G with respect to H′ contributes a zero term to TC(G, e) unless
it has type D .

Lemma 4.9. A contracting set C of G with respect to H′ contributes a zero term to TL(G, e) unless
it has type C .

Lemma 4.10. A contracting set C of G with respect to H′ contributes a zero term to T0(G, e) unless
it has type zero.

Next we define the pointed universal relative Tutte polynomials which will assume the roles played
by T (G/e) and by T (G− e) respectively in [11, 12].

Definition 4.11. We define the pointed universal relative Tutte polynomials T
Λ′

0

H,/(G, e) and T
Λ′

0

H,−(G, e),

respectively, as TΛ0

H (G/e) − π/T
Λ′

0

H,0(G, e) and TΛ0

H (G− e)− π−T
Λ′

0

H,0(G, e), respectively.

Remark 4.12. Notice that although the type zero contracting sets of G − e are exactly those type

zero contracting sets that make non-zero contributions in π−T
Λ′

0

H,0(G, e), they may not make the same

contributions in TΛ0

H (G−e) and π−T
Λ′

0

H,0(G, e). The reason is that in TΛ0

H (G−e), the edge e is removed

first while in π/T
Λ′

0

H,0(G, e) the edge e is removed last. This means that the contributions of the type

zero contracting sets to TΛ0

H (G− e) may not cancel with the contributions of the corresponding type

zero contracting sets to π/T
Λ′

0

H,0(G, e). In general, T
Λ′

0

H,−(G, e) may even contain negative terms. The
graph on the left side of Figure 1 shows such an example. We will leave it to our reader to verify that

TΛ0

H (G − e) = Xµz[Γb] and π−T
Λ′

0

H,0(G, e) = xµz[Γb], here Γb is the graph that consists of a single zero

edge that is a bridge. Thus T
Λ′

0

H,−(G, e) = (Xµ−xµ)z[Γb]. The situation for T
Λ′

0

H,/(G, e) is similar. For the
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graph G shown on the right side of Figure 1, we have TΛ0

H (G/e) = Yµz[Γl] while π/T
Λ′

0

H,0(G, e) = yµz[Γl],

where Γb is the graph that consists of a single zero loop edge. Thus T
Λ′

0

H,/(G, e) = (Yµ − yµ)z[Γl].

µ

e 0
e 0µ

Figure 1. Simple examples of graphs G with the property that T
Λ′

0

H,−(G, e) (left) or

T
Λ′

0

H,/(G, e) (right) contains negative terms.

Of course, in the case whenH = ∅, we have T
Λ′

0

H,/(G, e) = T (G/e)·z[•] and T
Λ0

H,−(G, e) = T (G−e)·z[•].

Again, in situations where there will be no confusion about the sets H, Λ and Λ0, we will use T/(G, e)

and T−(G, e) as the abbreviations for T
Λ′

0

H,/(G, e) and T
Λ′

0

H,−(G, e) respectively.

We conclude this section with a generalization of [12, Theorem 2] and of its consequences. We will
need this result to justify why the regular Brylawski homomorphism, to be introduced in Section 6, is
well-defined.

Theorem 4.13. The pointed universal Λ0-colored relative Tutte polynomials TC(G, e), TL(G, e),
T/(G, e), and T−(G, e) satisfy the following two identities for any µ ∈ Λ:

xµ
(
T/(G, e) − TC(G, e)

)
= (Yµ − yµ)TL(G, e),(4.1)

yµ (T−(G, e) − TL(G, e)) = (Xµ − xµ)TC(G, e).(4.2)

Proof. (4.1) is proved in a way that is analogous to the establishment of equation (5) in the proof of
[12, Theorem 2]. Because of the presence of the zero edges, the proof is harder here and we choose to
provide a detailed proof for our reader. By the definition of T/(G, e), what we need to prove is

(4.3) xµ
(
T (G/e) − π/T0(G, e) − TC(G, e)

)
= (Yµ − yµ)TL(G, e).

Notice that in order to compute each of the three polynomials on the left side of (4.3), we only need to
consider type D contracting sets with respect to H′. For the calculation of TC(G, e) this observation
is stated in Lemma 4.8. To calculate T (G/e) and π/T0(G, e) we need to sum over contracting sets C of
G with respect to H′ that have the property that contracting all edges of C does not turn e into a loop.
By the converse of Proposition 4.4, stated in Remark 4.6, these are exactly the type D contracting
sets.

Let C be a type D contracting set and let f ∈ D be a regular edge in the corresponding deleting
set. Let us call the pair (C, f) a special pair if C ∪ {e, f} contains a cycle C(C, f) containing e and f
has the smallest label in C(C, f) \ {e}. Observe that the cycle C(C, f) is unique since C ∪ {e} contains
no cycle (equivalently, C is a contracting set of G/e with respect to H), thus C ∪ {f} contains at most
one cycle. Furthermore f is externally active in G/e exactly if it belongs to a special pair (C, f).

Let us consider a special pair (C, f). As seen in [10, Lemma 3.7], C′ = C ∪ {f} is a contracting set
of G that does not contain e. Thus C′ is also a contracting set of G− e and, by the external activity
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of f with respect to C in G/e, the edge f is the element on the cycle C(C, f) with the smallest label,
so it will be internally active in G − e but internally inactive in the computation of TL(G, e) (since
in the latter case e is deleted last). By the converse of Proposition 4.3, stated in Remark 4.6, C′ has
type C .

Conversely, let C′ be a type C contracting set of G with respect to H′. By Proposition 4.4, the set
C′ is a contracting set of G− e with respect to H and e closes a cycle (denoted by C(C′, e)) with some
edges from C′. Again, the cycle C(C′, e) is unique. Let f be the element in the set C′ ∩ C(C′, e) with
the smallest label. We may use [10, Lemma 3.7] again to see that C′ \ {f}∪ {e} is a contracting set of
G with respect to H containing e and it is easy to check that C := C′ \ {f} forms a special pair (C, f)
with f . We thus obtain a bijection between the type C contracting sets C′ of G \ e and the special
pairs (C, f) of G.

Let C be a type D contracting set of G with respect to H′ such that there is no edge f in the
corresponding deleting set with the property that (C, f) is a special pair. By Proposition 4.4, the
set C is also a contracting set of G/e with respect to H. Also, contracting e first or last does not
affect the activities of the edges in C and D. If we contract all edges in C and delete all edges in D
first, e will not be a loop in the resulting graph Γ(C, e). If e is a bridge in Γ(C, e), then C makes a
contribution in TC(G, e) (after e is contracted in Γ(C, e)). If e is not a bridge in Γ(C, e), then it forms
a cycle with some zero edges in Γ(C, e). In this case C makes a contribution to π/T0(G, e) after e is
contracted in Γ(C, e). So, in the case that there are no special pairs (C, f), then either all edges make
the same contributions to T (G/e) and TC(G, e) (if e is a bridge in Γ(C, e)), or all edges make the same
contributions to T (G/e) and π/T0(G, e) (if e is a not bridge in Γ(C, e)). Thus for all contracting sets
C that do not form any special pairs with edges from their corresponding deleting sets D, their total
contribution to T (G/e) − T0,/(G, e) − TC(G, e) is zero.

Now assume that C is a type D contracting set of G with respect to H′ that forms special pairs
with some edges from D. Without loss of generality, assume that f1, . . . , fk ∈ D are all the edges
that form special pairs with C and that they have been listed in the increasing order according to
their labels. Furthermore, let us assume that the color of fi is µi. Each fi is externally active in

G/e hence their total contribution to T (G/e) is
∏k
i=1 Yµi . However, in the computation of TC(G, e)

or π/T0(G, e), e is to be contracted last (hence it has the smallest label) so the total contribution of

f1, f2, . . . , fk to TC(G, e) or to T0,/(G, e) is
∏k
i=1 yµi . All other edges have the same contributions

to both polynomials, since their activities are the same, whether e is contracted first or last. Thus

the combined contribution of C and D to the left hand side of (4.3) is xµ

(∏k
i=1 Yµi −

∏k
i=1 yµi

)
z[Γ(C)]

times the product of the weights of the edges that are different from {f1, . . . , fk}, where Γ(C) is the
graph of zero edges obtained after contracting the edges in C ∪ {e} and deleting the edges in the

corresponding deleting set D. The term (
∏k
i=1 yµi)z[Γ(C)] appears either in TC(G, e) or in π/T0(G, e),

but it makes no difference in our argument. By [12, Lemma 3],

xµ

(
k∏

i=1

Yµi −
k∏

i=1

yµi

)
= (Yµ − yµ)

k∑

i=1

xµi

i−1∏

j=1

Yµj

k∏

j=i+1

yµj .

Thus it is sufficient to prove the following:

(1) The graph Γ(Ci)− e, obtained by contracting edges in Ci and deleting e and the edges in D, is
(vertex pivot equivalent to) Γ(C, e)/e.
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(2) The product of the weights of the edges f1, . . . , fk in the contribution of Ci = C ∪ {fi} to

TL(G, e) is xµi
∏i−1
j=1 Yµj

∏k
j=i+1 yµj .

(3) The weight of any edge f 6∈ {e, f1, . . . , fk} is the same in the contribution of C to T (G/e) as
in the contribution of any Ci = C ∪ {fi} to TL(G, e).

The first statement above is true since fi and e belong to the same cycle in which the other edges
are all from C. Thus deleting any one of the edges in the cycle and contracting the rest has the same
effect. The vertices of all the edges involved become one single vertex.

Since fi ∈ Ci and it belongs to C(Ci, e), it contributes a factor of xµi to TL(G, e) by the exception
rule (since e is deleted last, fi can never become a bridge). Since C(Ci, e) and C(Cj, e) both contain
e, one can show that for any i 6= j, there exist a unique cycle C(Ci, Cj), consisting of fi, fj and edges
from C(Ci, e) ∪ C(Cj, e), but not e (see [12, Lemma 2]). Furthermore, if i < j, then the label of fi is
smaller than those of the other edges in this cycle. Since fj ∈ Di and j > i, fj has a larger label (recall
that the labels of f1, f2, . . . , fk are in increasing order by our choice), it is externally inactive. But if
j < i, then fj has the smallest label among the edges in C(Ci, Cj) so it is externally active. Thus the
product of the weights of the edges f1, . . . , fk in the contribution of Ci = {fi} ∪ C \ {e} to TL(G, e) is

xµi
∏i−1
j=1 Yµj

∏k
j=i+1 yµj . This proves the second statement above.

To prove the third statement, observe that a regular edge f 6∈ {e, f1, . . . , fk} either belongs to C, in
which case it would belong to all contracting sets Ci, or it belongs to D, in which case it belongs to Di

for each i, where Di is the deleting set corresponding to Ci. Consider first the case f ∈ C, i.e., f ∈ Ci
for all i. For each i we have either f ∈ C(Ci, e) or f 6∈ C(Ci, e). If f ∈ C(Ci, e) then f is internally
inactive with respect to C since f has a label larger than that of fi. It is also internally inactive with
respect to Ci in the computation of TL(G, e) since e is considered as an edge in the corresponding
deleting set and it has the smallest label (among all edges). If f 6∈ C(Ci, e) then its activity is the
same with respect to C or with respect to Ci, since its activity is determined by comparing its label
with the labels of edges in the deleting set that are on cycles containing f , yet e and fi are not on
such cycles. Thus a regular edge f ∈ C \ {e, f1, . . . , fk} has the same weight in the contribution of C
to T (G/e) and in the contribution of Ci to TL(G, e). In the second case, f ∈ D, hence f ∈ Di holds
for all i. Here D, respectively Di is the deleting set corresponding to C, respectively Ci. In this case
f either does not close any cycle with edges from C ∪ {e} that contains e, or it closes such a cycle but
it does not have the smallest label compared to other edges from C on this cycle (since it is not one
of the fj’s). If f does not close any cycle with edges from C ∪ {e} that contains e, then f will not
close any cycle with edges from Ci that also contains fi, hence the determination of its activity does
not involve e or fi, and it has the same activity with respect to C and with respect to Ci. Assume
finally f closes a cycle C(C, f) with some edges from C ∪ {e} and e is on this cycle but f does not
have the smallest label among the edges on this cycle. Then f is externally inactive with respect to
C. In this case f also closes a (unique) cycle with edges from Ci that contains fi. Denote this cycle
C(Ci, f). Let g ∈ C(C, f) be an edge with label smaller than that of f . Then one can show that either
g ∈ C(Ci, f) or g ∈ C(C, fi). If g ∈ C(Ci, f), then f is externally inactive since g has a smaller label.
If g ∈ C(C, fi), then the label of fi is smaller than that of f since fi has the smallest label among the
edges of C(C, fi) (which contains g). So f is again externally inactive. To summarize, in all cases, f
has the same weight in (the contribution of C to) T (G/e) and in (the contribution of Ci to) TL(G, e).

Equation (4.2) is a direct generalization of equation (6) in [12, Theorem 2]. In [12] we invoked
matroid duality to derive this equation from the preceding one. We want to avoid doing so this time
since the presence of zero edges makes questions of duality less clear, and since, in an effort to state our
results in a language that is more directly applicable in knot theory, we avoided stating the matroid
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theoretic generalizations. Fortunately there is another easy way to show (4.2) after having shown
(4.1): it suffices to prove the validity of the sum of the two equations, which is equivalent to

xµT/(G, e) + yµT−(G, e) = XµTC(G, e) + YµTL(G, e).

After adding xµ(T
Λ0

H (G/e) − T/(G, e)) + yµ(T
Λ0

H (G − e) − T−(G, e)) to both sides, we obtain the
equivalent equation

xµT
Λ0

H (G/e) + yµT
Λ0

H (G− e)

= XµTC(G, e) + xµ(T
Λ0

H (G/e) − T/(G, e))

+ YµTL(G, e) + yµ(T
Λ0

H (G− e)− T−(G, e))

= XµTC(G, e) + xµπ/T0(G, e) + YµTL(G, e) + yµπ−T0(G, e).(4.4)

Let G′ be the colored graph that is identical to G, except that the edge e is colored with color µ
instead of ν. Let us consider TΛ0

H (G′), whose definition is labeling independent. We will show that

both sides of (4.4) equal to TΛ0

H (G′). First, by Corollary 2.9, TΛ0

H (G′) = xµT
Λ0

H (G/e) + yµT
Λ0

H (G− e)
if we contract and delete e first, since e is neither a bridge nor a loop. That is, the left side of (4.4) is

equal to TΛ0

H (G′). Next, let us now select any proper labeling such that the label of e is the smallest, so
e will be the last edge to be contracted and/or deleted for each given contracting set C. For each type
C contracting set C with respect to H′, e becomes a loop after all edges of C have been contracted,
hence it will contribute a Yµ term at the end. By Lemma 4.9, the collection of all such contracting
sets are exactly those that make non-zero contributions to TL(G, e), thus the combined contributions
of all such contracting sets yield YµTC(G, e). Similarly, the combined contributions of all type D

contracting sets C of G with respect to H′ yield exactly XµTL(G, e) by Lemma 4.8. Finally, for each
type zero contracting set C, the edge e becomes neither a bridge nor a loop, after all edges in C have
been contracted and all edges in D have been deleted. In this case C contributes a term to T0(G, e).
If, in the last step, e is contracted, we obtain a term xµ and C makes a contribution to π/T0(G, e) by
the definition of π/T0(G, e). Similarly, if e is deleted in the last step, we get the expected yµ term and
C makes a non-zero contribution to π−T0(G, e). Combining the above, we see that the right side of

(4.4) is also equal to TΛ0

H (G′), hence establishing the equality of (4.4). �

In analogy to equations (8) and (9) in [12], equations (4.1) and (4.2) may be restated as

(4.5) det

(
TL(G, e) TC(G, e)
xλ yλ

)
= det

(
TL(G, e) T/(G, e)
xλ Yλ

)

and

(4.6) det

(
TL(G, e)) TC(G, e)
xλ yλ

)
= det

(
T−(G, e) TC(G, e)
Xλ yλ

)
.

Remark 4.14. The analogue of Theorem 2.7 in [11] (and in [12]) is used to prove that the definition of
the pointed Tutte polynomials TC(G, e) and TL(G, e) is independent of the labeling, see [12, Corollary
2]. This time we do not prove labeling-independence of our pointed relative Tutte polynomials, since
it is obvious from the definition. Note that this also applies to the special case when H = ∅. Thus the
labeling independence of the polynomials TC(G, e) and TL(G, e) defined in [11, 12] is also a consequence
of the labeling independence of the relative Tutte polynomial shown in [10].
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5. Contracting sets in a tensor product of graphs having zero edges

A crucial idea behind proving the main results [11, Theorem 5.1] and [12, Theorem 3], providing a
formula for the Tutte polynomial of a tensor product G1 ⊗λ G2 of a colored connected graph G1 with
a pointed colored connected graph G2 (with distinguished edge e) was to understand the composite
structure of a spanning tree of G1 ⊗λ G2 in terms of considering an induced spanning tree of G1 and
a collection of spanning trees of G2 − e and G2/e. In this section we generalize this description to
understanding the composite structure of a contracting set and of the corresponding deleting set in a
tensor product G1 ⊗λ G2 where both graphs may have zero edges.

Let Λ be a color set, ν 6∈ Λ is a distinguished color and Λ′ = Λ ∪ {ν}. From now on we assume
that G1 is a Λ-colored graph, together with a set of zero edges H1 ⊂ E(G1) which form a Λ0-colored
subgraph for some Λ0 ⊂ Λ. Assume that the color λ ∈ Λ \ Λ0 appears in E(G1) as a color of regular
edges only. Let G2 be a pointed Λ′-colored graph with a distinguished edge e that is neither a loop
nor a bridge, together with a set of zero edges H2 ⊆ E(G2) \ {e}, which form a Λ0-colored subgraph.
To simplify our arguments, we will assume that no edge of G2 has color λ, e is colored with ν and
that no other edges in E(G2) are colored with ν.

As in [11] and [12] we define the λ-colored tensor product G1⊗λG2 as the graph obtained as follows.

We associate a distinct copy Gf2 of G2 to each edge f of color λ in G1 by identifying the edge f with

the copy ef of e in Gf2 , and then removing the identified edges ef and f . In particular, if f is a loop,

then we will identify the endpoints of ef in Gf2 (and remove ef ). The resulting graph will contain the
edges of H1 and several copies of the edges of H2. We define the set H of zero edges of G1 ⊗λ G2 as
the set of all edges belonging to H1 or any copy of H2.

Let us fix a contracting set C of G1 ⊗λ G2 with respect to H and let D be the corresponding

deleting set. Let f ∈ E(G1) be of color λ and let Gf2 be the copy of G2 associated to f with ef being

the corresponding distinguished edge of Gf2 . First we would like to make the following fundamental

observation on the intersection of C and D with E(Gf2 ).

Proposition 5.1. Let Cf = C ∩ E(Gf2 ), Df = D ∩ E(Gf2 ) and Hf = H ∩ E(Gf2 ). Then Cf is a

contracting set of Gf2 with respect to Hf ∪ {ef} and Df is the corresponding deleting set.

Proof. Since Cf is a subset of C, it clearly does not contain any cycle. If Df contains a cocycle, then
after deleting the edges of Df , there exist two vertices v1 and v2 that are not connected by a path in

Gf2 − Df . Since Df ⊂ D and D does not contain any cocycle in G1 ⊗λ G2, there must be a path γ

from v1 to v2 in G1 ⊗λG2. Since the only vertices where a path of G1 ⊗λG2 can leave or enter Gf2 are

the endpoints of ef , the part of γ that lies outside Gf2 must form a path γ′ connecting the endpoints

of ef . Replacing γ
′ with ef results in a path in Gf2 −Df connecting v1 and v2, a contradiction to our

assumption that v1 and v2 that are not connected by a path in Gf2 −Df . �

As a consequence of Proposition 5.1 we may use Definition 4.1 to classify the pairs (Cf ,Df ) into

type C , type D and type zero. Using this classification we define an induced partition (C1,D1, Ĥ1) of
E(G1) as follows:

(i) f ∈ C1 if the color of f is not λ and f ∈ C, or the color of f is λ and (Cf ,Df ) has type C ;
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(ii) f ∈ D1 if the color of f is not λ and f ∈ D, or the color of f is λ and (Cf ,Df ) has type D ;

(iii) f ∈ Ĥ1 if the color of f is not λ and f ∈ H1, or the color of f is λ and (Cf ,Df ) has type zero.

Proposition 5.2. Let C be a contracting set of G1 ⊗λ G2 with respect to H and let D be the corre-

sponding deleting set. Let (C1,D1, Ĥ1) be the induced partition of E(G1). Then C1 is a contracting set

of G1 with respect to Ĥ1, and D1 is the corresponding deleting set.

Proof. Assume, by way of contradiction, that C1 contains a cycle C = {f1, . . . , fk}. After replacing
each fi of color λ with a path in C connecting the endpoints of the distinguished edge e in the associated
type C copy of G2 we obtain a cycle in C, a contradiction. Therefore C1 cannot contain any cycle.
We obtain a similar contradiction if we assume that D1 contains a cocycle {f1, . . . , fk}, after replacing
each fi of color λ with a minimal set of edges belonging to D in the associated type D copy of G2. �

We conclude this section with the converse of Proposition 5.2. Consider a colored graph G1 and a
pointed colored graph G2 subject to the assumptions made at the beginning of this section. Let Hλ

be a subset of the λ colored edges of G1 and let Ĥ1 = H1 ∪ Hλ. Let C1 be a contracting set of G1

with respect to Ĥ1 and let D1 be the corresponding deleting set. For each edge f ∈ E(G1) of color

λ, let Gf2 be the copy of G2 associated to f in G1 ⊗λ G2 with ef being the distinguished edge. Let

us select a contracting set Cf (and the corresponding deleting set Df ) of G
f
2 respect to Hf ∪ {ef} in

the following way: if f ∈ C1, we select a pair (Cf ,Df ) of type C , if f ∈ D1, we select a pair (Cf ,Df )
of type D and if f ∈ Hλ, we select a pair (Cf ,Df ) of type zero. Let C be the union of all edges in C1
whose color is not λ and of all the sets Cf and let D be the union of all edges in D1 not whose color
is not λ and of all the sets Df .

Theorem 5.3. The edge set C defined above is a contracting set with respect to H and D is the
corresponding deleting set.

Proof. Clearly, D = E(G1 ⊗λ G2) \ (C ∪ H), so we only need to prove that C contains no cycle and D
contains no cocycle.

Assume, by way of contradiction, that C contains a cycle C. This cycle cannot be contained entirely

in a copy Gf2 of G2 since no set Cf contains a cycle. Thus Cf must be either the empty set or a path
γf connecting the endpoints of ef . In the latter case f ∈ E(G1) must belong to C1 since γf ∪ {ef}
forms a cycle hence is of type C . After replacing each such path γf with the edge f ∈ C1 we obtain a
cycle contained in C1, in contradiction with C1 being a contracting set.

To show that D contains no cocycle it suffices to show that for every edge g ∈ D there is a walk
contained in C ∪ H connecting the endpoints of g. We will have two cases, depending on whether g

belongs to E(G1) or it belongs to a copy Gf2 of G2. Consider first the case g ∈ E(G1). Then g ∈ D1,

and there is a path γ1(g) contained in C1 ∪ Ĥ1 connecting the endpoints of g in G1. If the color of
an edge h in γ1(g) is not λ then this edge also belongs to E(G1 ⊗λ G2). If the color of h ∈ γ1(g) is λ
then (Ch,Dh) has type C or zero and we may replace h with a path γ(h) connecting the endpoints of
h in C ∪ H. Thus we obtain a walk in C ∪ H that connects the endpoints of g. Consider finally the

case when g belongs to a copy Gf2 of G2. Then g ∈ Df , and there is a path γf (g) in Cf ∪ Hf ∪ {ef}
connecting the endpoints of g. If γf (g) does not contain ef then all of its edges belong to C ∪ H and

we are done. Thus we may assume γf (g) contains ef . If f belongs to C1 ∪ Ĥ1 then, in analogy to the
previous case, we may replace ef with a path γf (ef ) connecting its endpoints in Cf ∪Hf and obtain a
walk contained in C ∪ H connecting the endpoints of g. We are left with the case when f belongs to
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D1. Repeating the argument of the case g ∈ E(G1) for f , there is a walk connecting the endpoints of
f in C1 ∪D1 which may be transformed into a path γ(f) connecting the endpoints of f in C ∪H. We
may replace ef in γf (g) with γ(f) and obtain a walk connecting the endpoints of g in C ∪ H. �

6. The tensor product formula

This section contains the main result of our paper. The issue here is to find a way to compute the
relative Tutte polynomial of G1⊗λG2 in terms of the relative Tutte polynomial of G1 and the pointed
relative Tutte polynomials of G2 via some suitable variable substitutions. In the case that there are
no zero edges involved, this is done by keeping all variables of color µ 6= λ in T (G1) unchanged, and
using the substitutions Xλ 7→ T (G1 − e), xλ 7→ TL(G1, e), Yλ 7→ T (G1/e) and yλ 7→ TC(G1, e), see [11,
Theorem 5.1] and [12, Theorem 3]. The new obstacle we face here (when there are zero edges present)
is that a choice of contracting set in G1 ⊗λ G2 may turn some G2 copies into the zero types by the
results we have established in the previous sections. That is, a λ colored edge in G1 may not always
be treated as a regular edge (which is either in a contracting set or a deleting set). To simplify our
arguments, in this section we also assume that G1 is a connected graph and that G2 is a connected
graph in which the pointed edge e is neither a loop nor a coloop. To distinguish an edge of color λ,
treated as zero edge, from the regular edge of the same color, we will change its color to a new color
λ0 6∈ Λ, as defined more formally in the following definition.

Definition 6.1. Let G be any Λ-colored graph together with a set of zero edges H, let λ ∈ Λ be a color
used to color regular edges only and let S be any subset of the set Eλ ⊆ E(G) \ H of λ-colored edges.
Let λ0 6∈ Λ be a new color. We define the graph GS as the Λ∪ {λ0}-colored graph obtained from G by
changing the color of each edge belonging to S to λ0.

In analogy to [11, Theorem 5.1] and [12, Theorem 3], we will express TΛ0

H (G1 ⊗λ G2) as a function
of graph polynomials associated to G2 and all the graphs of the form G1S , respectively. Since we
are dealing with more than just the graphs G1 and G2 (as is the case when there are no zero edges
involved), the procedure is much more complex, we will break down our process into a sequence of
homomorphisms and T (R,Λ \ Λ0)-linear maps. The first homomorphism applied is a direct gen-
eralization of the substitutions used in [11, Theorem 5.1] and [12, Theorem 3], which generalize a
transformation introduced by Brylawski [4, 5].

Definition 6.2. Let G be a pointed Λ′-colored graph, together with a Λ0-colored subgraph H of zero
edges (recall that Λ′ = Λ∪{ν} and ν is the unique color for the pointed edge e). We define the regular
Brylawski map βλ,G ∈ End(T (R,Λ,Λ0)), as the endomorphism sending each variable xµ, Xµ, yµ, Yµ
such that µ 6= λ into itself and sending Xλ into T−(G, e), xλ into TL(G, e), Yλ into T/(G, e) and yλ
into TC(G, e). We will use βλ for βλ,G when the graph G is clear in the context of the problem.

In analogy to [12, Lemma 4], the fact that the regular Brylawski map is well-defined is a direct
consequence of equations (4.5) and (4.6). Furthermore, for each variable z[Γ] that appears in the
polynomials T−(G, e), TL(G, e), T/(G, e) and TC(G, e), the corresponding graph Γ has no edge of color
ν, thus βλ indeed takes the ring T (R,Λ,Λ0) into itself. However, when applying βλ to a relative Tutte
polynomial of a graph with k ≥ 2 λ colored edges, the result is a polynomial containing terms of the
form z[Γ1] · z[Γ2] · · · z[Γk], which is not a universal relative Tutte polynomial (recall that a universal
relative Tutte polynomial is a linear combination of the terms of the form z[Γ]). The need to change
this into a universal relative Tutte polynomial leads to the next definition.



RELATIVE TUTTE POLYNOMIALS OF TENSOR PRODUCTS 17

Definition 6.3. The regular splicing map σ : T (R,Λ,Λ0) → T (R,Λ,Λ0) is the T (R,Λ \ Λ0)-linear
map induced by σ(z[Γ1] · · · z[Γk]) = z[Σ([Γ1],...,[Γk])]. Here Σ([Γ1], . . . , [Γk]) is the connected graph obtained
by the repeated splicing of all connected components of the graph Γ1⊎· · ·⊎Γk (here ⊎ stands for disjoint
union).

When we perform the vertex splicing operation on a pair of connected graphs, the resulting graph
is connected and unique up to vertex pivot equivalence. It follows by induction on the number of
connected components m of Γ1 ⊎ · · · ⊎ Γk that, repeating the vertex splicing operation m− 1 times in
such a way that each splicing operation merges vertices from different connected components, results
in a connected graph which is unique up to vertex pivot equivalence. Thus σ is well defined.

For each S ⊆ Eλ(G1), the polynomial σβλ(T
Λ0∪{λ0}
H1∪S

(G1S)) (where βλ = βλ,G2
) is a T (R,Λ \ Λ0)-

linear combination of the variables {z[Γ] : [Γ] ∈ VP(Λ0 ∪ λ0)}. In other words,

σβλ(T
Λ0∪{λ0}
H1∪S

(G1S)) ∈
⊕

[Γ]∈VP(Λ0∪λ0)

T (R,Λ \ Λ0)z[Γ].

We will use this module as the domain of the zero Brylawski map, to be defined below. This map
is analogous to the maps introduced by Brylawski [4, 5] (and generalized in [11, Theorem 5.1] and
[12, Theorem 3]) only in the sense that they are associated to replacing edges in (a recolored variant
of) G1 with copies of G2. Let G2 be a graph with a distinguished (pointed) edge colored with the
unique color ν. Recall that T0(G2, e) is a T (R,Λ \ Λ0)-linear combination of terms of the form z[Γ]
where each Γ contains exactly one edge of color ν. Thus we have T0(G2, e) =

∑
1≤j≤n pj · z[Γj ] where

pj ∈ T (R,Λ\Λ0) and Γj contains exactly one ν-colored edge for each j. Let P = {p1, p2, . . . , pn}. For
any graph Γ consisting of only zero edges and k λ0-colored edges, let us number its λ0-colored edges
by 1, 2, . . . , k in an arbitrary way. For any choice of q1 = pj1 ∈ P, q2 = pj2 ∈ P, . . . , qk = pjk ∈ P,
let Γq1,...,qk be the graph obtained by identifying the i-th λ0-colored edge in Γ with the ν-colored edge
in Γji first, then removing the identified edge, for each 1 ≤ i ≤ k (so Γq1,...,qk is obtained through a
total of k 2-sum operations on Γ).

Definition 6.4. We define the zero Brylawski map β0,G2
as the T (R,Λ \ Λ0)-linear map from⊕

[Γ]∈VP(Λ0∪λ0)
T (R,Λ \ Λ0)z[Γ] to T (R,Λ,Λ0) induced by the mapping that sends each z[Γ] to the

symmetric sum ∑

q1∈P,...,qk∈P

q1q2 · · · qk · z[Γq1,...,qk
].

Notice that although this definition presupposes labeling the λ0-colored edges of Γ in some order,
the end result is independent of the choice of this labeling, since the summation is symmetric hence
is invariant under the permutations of the factors. Again we will use the short hand notation β0 for
β0,G2

when G2 is clear from the context of the problem.

Theorem 6.5. The universal Λ0-colored relative Tutte polynomial T λ0H (G1 ⊗λ G2) is given by

T λ0H (G1 ⊗λ G2) =
∑

S⊆Eλ(G1)

Φ(T
Λ0∪{λ0}
H1∪S

(G1S)),

where Φ = β0 ◦ σ ◦ βλ.

Proof. We generalize the proofs of [11, Theorem 5.1] and [12, Theorem 3], using the description of the

contracting and deleting sets of G1 ⊗λ G2 given in Section 5. The polynomial T λ0H (G1 ⊗λ G2) is the
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total weight of all contracting sets C of the graph G1 ⊗λ G2, calculated using any proper labeling of
the edges of G1 ⊗λ G2 with respect to H. Let us select our proper labeling in three steps as follows:

(i) Label all edges in H with zero.
(ii) Label all regular edges (including the λ-colored edges) of G1 with pairwise distinct positive

integers that are multiples of |E(G2)|.
(iii) If the label of a λ-colored edge f ∈ Eλ(G1) is k · |E(G2)| for some k > 0 then number the

regular edges in the copy of G2 replacing f using the elements of the set {(k − 1)|E(G2)| +
1, (k − 1)|E(G2)|+ 2, . . . , k|E(G2)|}.

We obtain a proper labeling of G1 ⊗λ G2 with respect to H that has the following property: if we list
the regular edges of of G1 ⊗λ G2 in increasing order of labels, the regular edges belonging to a copy
of G2 associated to the same f ∈ Eλ(G1) form a sublist of consecutive elements. By the description
given in Section 5, there is a one to one correspondence between the contracting sets C of G1 ⊗λ G2

and the contracting sets generated by the following three-step procedure:

(1a) Select a subset S of Eλ(G1) and define Ĥ1 := H1 ∪ S.

(1b) Select a contracting/deleting set pair C1, D1 of G1 with respect to Ĥ1.

(2) For each copy Gf2 of G2, associated to an edge f ∈ Eλ(G1), partition the set of regular edges

E(Gf2 ) \ (Hf ∪ {f}) of the copy into a contracting set Cf and a deleting set Df such that
(Cf ,Df ) has type C (or type D , or type zero, respectively) exactly when f ∈ C1 (or f ∈ D1,

or f ∈ Ĥ1, respectively).

We then define the contracting set C as the union of the sets Cf and of C1 \Eλ(G1). The corresponding
deleting set is the union of the sets Df and of D1 \ Eλ(G1). Note that there is no other restriction
on the choices made in the three steps of the above procedure than the ones stated. If we group the
weights of the contracting sets C according to the choices in the above procedure, the choice made
in step (1a) corresponds to summing over all subsets S of Eλ(G1). After fixing S, summing over all
possible choices C1 in step (1b) calls for summing over the same contracting sets that are used to

compute the relative Tutte polynomial T
Λ0∪{λ0}
H1∪S

(G1S). For a fixed contracting set C1 of G1S with

respect to Ĥ1 = H1∪S, step (2) calls for summing over all contracting sets Cf of the same type, where

the type depends on f belonging to C1, D1 or Ĥ1. A key observation in understanding the rest of the
proof below is that we may replace steps (1a) and (1b) above with the following step.

(1) In decreasing order of their labels, put each f ∈ Eλ(G1) into C1, D1 or S, subject to the
following restrictions: an edge f ∈ Eλ(G1) cannot be put into C1 if it becomes a loop in G1

after contracting all higher labeled edges of C1, and it cannot be put into D1 if it becomes a
bridge in G1 after deleting all higher labeled edges of D1.

The restrictions are necessary and sufficient to guarantee that the resulting C1 is a contracting set

and the resulting D1 is the corresponding deleting set with respect to Ĥ1 = H1 ∪ S. Furthermore,
as noted in the alternative Definition 2.3, the external or internal activity of an edge in C1 or D1

is determined by whether the edge in question becomes a loop or bridge after contracting all higher
labeled edges of C1 and deleting all higher labeled edges of D1. Since the labeling on the edges of

G1 ⊗λ G2 is obtained by replacing each λ-colored edge f by a consecutive run of edges of Gf2 , and
due to the special dependence of the pair (C,D) on the pair (C1,D1), the above observation regarding
activities may be extended to G1 ⊗λ G2 in the following way. Consider any f ∈ Eλ(G1). Contract all
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edges of C and delete all edges of D whose label is higher than the label of any edge in the copy Gf2
of G2. After performing these operations, the endpoints of f get identified if and only if f becomes
a loop after contracting all higher labeled edges of C1 in G1. Similarly, the endpoints of f are only

connected by paths in the copy Gf2 if and only if f becomes a bridge after deleting all higher labeled
edges of D1 in G1. The first observation is true because contracting any λ-colored edge g ∈ C1 in G1

(with higher label) identifies the endpoints of g in G1 and the same effect is achieved by contracting
all edges in Cg in G1 ⊗λ G2 as (Cg,Dg) has type C . Similarly, deleting any λ-colored edge g ∈ D1 in
G1 (with higher label) removes the possibility of going from one endpoint of g to the other endpoint,
without visiting any other vertex of G1, and the same effect is achieved by deleting all edges in Dg in
G1 ⊗λ G2, as (Cg,Dg) has type D .

We now consider three cases depending on whether an edge f ∈ Eλ(G1) becomes a loop, a bridge,
or neither after contracting all higher labeled edges of C1 and deleting all higher labeled edges of D1

in step (1) above.

Case 1. f ∈ Eλ(G1) becomes neither a loop nor a bridge after contracting all higher labeled edges of
C1 and deleting all higher labeled edges of D1. In this case, f may be put into either of C1, D1, or S.
Furthermore, if we use the contraction/deletion formula (2.6) (in the decreasing order of the labels of
the edges) to compute T (G1 ⊗λ G2) then, after contracting all edges in C and deleting all edges in D

whose label is higher than the label of the edges in Gf2 , the endpoints of f are still distinct, and there

is a path outside the copy Gf2 of G2 connecting the endpoints of f .

Subcase 1(a). f ∈ C1. Since f is inactive, it contributes a term xλ to T
Λ0∪{λ0}
H1∪S

(G1S). The total

weight of all type C contracting sets of Gf2 is precisely TL(G2, e) (Lemma 4.9).

Subcase 1(b). f ∈ D1. Since f is inactive, it contributes a term yλ to T
Λ0∪{λ0}
H1∪S

(G1S). The total

weight of all type D contracting sets of Gf2 is precisely TC(G2, e) (Lemma 4.8).

Subcase 1(c). f ∈ S. and is “inactive” in the sense that if we follow the contraction/deletion formula
(in the decreasing order of the labels of the edges) The total weight of of all type zero contracting sets

of Gf2 is precisely T0(G2, e) (Lemma 4.10).

Notice that in all three cases above, replacing f by any terminal graph resulted from a contracting
set of the corresponding type (through the splicing or the 2-sum operations defined in the mappings
βλ, σ and β0) will not affect the activities of the remaining edges. Thus, 1(a) and 1(b) prove the
validity of the substitutions xλ → TL(G2, e) and yλ → TC(G2, e), while 1(c) shows the validity of
replacing a λ0 colored edge in the terminal graph of G1S by a copy of T0(G2, e).

Case 2. f ∈ Eλ(G1) becomes a bridge after contracting all higher labeled edges of C1 and deleting all
higher labeled edges of D1. In this case, f may be put into either of C1 or S. Furthermore, if we use
the contraction/deletion formula (2.6) (in the decreasing order of the labels of the edges) to compute
T (G1 ⊗λ G2) then, after contracting all edges in C and deleting all edges in D whose label is higher

than the label of the edges in Gf2 , the endpoints of f are still distinct, but there is no path outside

the copy Gf2 of G2 connecting the endpoints of f . If we choose to put f into C1, it becomes internally

active in G1S thus contributing a term Xλ to T
Λ0∪{λ0}
H1∪S

(G1S).
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In this case, the combined contribution of all type C and type zero contracting sets of Gf2 is

TΛ0

H (Gf2 − ef ) = TΛ0

H (Gf2 − ef ) − π−T0(G
f
2 , ef ) + π−T0(G

f
2 , ef ) = T−(G2, e) + π−T0(G2, e). Since we

need to replace Xλ by a polynomial that is label independent, we will simply substitute T−(G2, e) into
Xλ. On the other hand, if f ∈ S, then we will still replace the corresponding λ0 colored edge in the

terminal graph of G1S by a copy of T0(G
f
2 , ef ). In this particular case, the terminal graphs obtained by

using the type zero contracting sets in π−T0(G
f
2 , ef ) through splicing and using the corresponding type

zero contracting sets in T0(G
f
2 , ef ) through 2-sum operation are in fact vertex pivot equivalent (since

the end points of f are cut vertices) and their total contributions are the same. Thus the combined

contribution of T−(G2, e) (for f ∈ C1) and T0(G2, 0) (for f ∈ S) is equal to TΛ0

H (Gf2 − ef ), which is the

correct contribution of Gf2 in this case. The key point of this substitution rule is that the λ0 colored
edges are now treated equally in terms of substitution and we have found a right substitution for Xλ

that is label independent.

Case 3. f ∈ Eλ(G1) becomes a loop after contracting all higher labeled edges of C1 and deleting all
higher labeled edges of D1. In this case, f may be put into either of D1 or S. Furthermore, if we use
the contraction/deletion formula (2.6) (in the decreasing order of the labels of the edges) to compute
T (G1 ⊗λ G2) then, after contracting all edges in C and deleting all edges in D whose label is higher

than the label of the edges in Gf2 , the endpoints of f become identical. If we choose to put f into C1,

it becomes externally active in G1S thus contributing a term Yλ to T
Λ0∪{λ0}
H1∪S

(G1S).

In this case the combined contribution of all type D and type zero contracting sets of Gf2 is

TΛ0

H (Gf2/ef ) = TΛ0

H (Gf2/ef ) − π/T0(G
f
2 , ef ) + π/T0(G

f
2 , ef ) = T/(G2, e) + π/T0(G2, e). As we did

in 2(a), we will simply substitute Yλ by T/(G2, e). On the other hand, if f ∈ S, then we will still

substitute the corresponding λ0 colored edge in the terminal graph of G1S by a copy of T0(G
f
2 , ef ).

Again, the terminal graphs obtained by using the type zero contracting sets in π/T0(G
f
2 , ef ) through

splicing and using the corresponding type zero contracting sets in T0(G
f
2 , ef ) through 2-sum operation

are also vertex pivot equivalent (the end points of f are identified and is also a cut vertex in G1⊗λG2)
and their total contributions are the same. Thus this substitution rule is also valid. �

7. Examples and ending remarks

Let us end this paper by a couple of examples and remarks.

Remark 7.1. In the case that G1 contains zero edges but G2 does not, there are no type zero
contracting sets in G2 and we have T−(G2, e) = T (G2 − e), T/(G2, e) = T (G2/e). In this case the
substitution rule obtained in this paper is the same as the one given [12]. That is, the main result in
[12] can be extended to the relative Tutte polynomial of G1 ⊗λ G2 without having to modifying the
definitions of the pointed Tutte polynomials of G2 and the substitution formula.

Remark 7.2. Another extreme (and trivial) example is when G2 consists of only two edges which are
not loop edges: one is the special edge e and the other a zero edge. In this case any graph G1 with
zero edges can be obtained by color the zero edges by λ and then take the tensor product G1⊗λG2. In
this case all pointed Tutte polynomials are zero except T0(G2, e). Consequently, the only non-trivial
substitution (as expected) happens only when the set S contains all λ-colored edges.

Next, let us use a relatively simple example to illustrate the application of Theorem 6.5. Figure 2
shows the graphs G1 and G2, as well as their corresponding tensor product G1⊗λG2. We will assume
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that the regular edges in G2 are labeled in such a way that the top edge has the highest label and the
bottom edge has the lowest label, see the numbers 1 through 3 in Figure 2.

3

0λ e

µ

µ

µ0

λ

G1 G2

1

2

µ 0

G1 ⊗λ G2

0

0

µ

µ

µ µ

µ

Figure 2. The graphs G1, G2 and G1 ⊗λ G2.

For the two regular edges in G1 that are λ-colored, there are three cases: none of them is in Ĥ1,

one of them is in Ĥ1 (and there are two symmetric cases here) and both are in Ĥ1. Using Corollary
2.9, we get (the details are left to our reader)

(7.1)
∑

S⊆Eλ(G1)

T
Λ0∪{λ0}
H1∪S

(G1S) = x2λz[ ] + yλ(xλ +Xλ)z[ ] + 2xλz[ ] + 2yλz[ ] + z[ ],

where the thicker edges in the graphs are of color λ0 and the rest are zero edges. Next we will compute
the pointed relative Tutte polynomials TC(G2, e), TL(G2, e), T0(G2, e), T/(G2, e) and T−(G2, e). To
help our reader, we list all possible contracting sets and their contributions in Table 1. In the case
of a type zero contracting set, the edge e in the terminal graph is marked by a thickened and dashed
line. Summing up the weights listed in the table, we obtain

C Type of C Contributions

{1} D Xµy
2
µz[ ] to TC , T (G2/e)

{2} D xµy
2
µz[ ] to TC , xµyµYµz[ ] to T (G2/e)

{3} D xµy
2
µz[ ] to TC , T (G2/e)

{1, 2} C x2µyµz[ ] to TL, X
2
µyµz[ ] to T (G2 − e)

{1, 3} zero x2µyµz[ ] to T0, x
2
µyµz[ ] to T (G2/e), xµyµXµz[ ] to T (G2 − e)

{2, 3} D x2µyµz[ ] to TC , x
2
µYµz[ ] to T (G2/e)

{1, 2, 3} C x3µz[ ] to TL, Xµx
2
µz[ ] to T (G2 − e)

Table 1. Contributions of the contracting sets to the pointed relative Tutte polyno-
mials associated to G2.

T (G2 − e) = x2µXµz[ ] + yµXµ(xµ +Xµ)z[ ],

T (G2/e) = x2µ(Yµ + yµ)z[ ] + yµ(xµyµ + xµYµ + yµXµ)z[ ],

T0(G2, e) = x2µyµz[ ]
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and

TC(G2, e) = x2µyµz[ ] + y2µ(2xµ +Xµ)z[ ]

T/(G2, e) = T (G2/e)− π/T0(G2, e)

= x2µYµz[ ] + (Xµy
2
µ + xµyµYµ + xµy

2
µ)z[ ],

TL(G2, e) = x3µz[ ] + x2µyµz[ ],

T−(G2, e) = T (G2 − e)− π−T0(G2, e)

= x2µXµz[ ] + (xµXµ +X2
µ − x2µ)yµz[ ].

We can now apply the mapping Φ = β0 ◦ σ ◦ βλ to
∑

S⊆Eλ(G1)
T
Λ0∪{λ0}
H1∪S

(G1S) in an almost term by

term fashion. The final answer contains 7 different vertex pivot equivalent classes of graphs (with

only zero edges). For example, to compute Φ(2xλz[ ]), we would replace xλ by TL(G2, e), apply the
regular splicing map σ, and perform a two sum operation on the resulting graph with Γ3

2. This leads
to

Φ(2xλz[ ]) = 2x5µyµz[ ] + 2x4µy
2
µz[ ].

Similarly,

Φ(x2λz[ ]) = x6µz[ ] + 2x5µyµz[ ] + x4µy
2
µz[ ],

Φ(yλ(xλ +Xλ)z[ ]) = x4µyµ(xµ +Xµ)z[ ] + x2µy
2
µ(2x

2
µ + 4Xµxµ + 2X2

µ)z[ ]

+Xµy
3
µ(2x

2
µ + 3xµXµ +X2

µ)z[ ],

Φ(2yλz[ ]) = 2x4µy
2
µz[ ] + 2x2µy

3
µ(2xµ +Xµ)z[ ],

Φ(z[ ]) = x4µy
2
µz[ ].

We leave the verification of the details to our reader. Summing up the previous equations yields

TΛ
H(G1 ⊗λ G2) = x6µz[ ] + x4µyµ(3xµ +Xµ)z[ ] + x2µy

2
µ(5x

2
µ + 4xµXµ + 2X2

µ)z[ ]

+ y3µ(4x
3
µ + 4x2µXµ + 3xµX

2
µ +X3

µ)z[ ] + 2x5µyµz[ ] + 2x4µy
2
µz[ ] + x4µy

2
µz[ ].

As an exercise, we encourage our reader to verify this result by direct contraction/deletion computation
using the recursive formula (2.6), keeping in mind Definition 2.3.

We end our paper with the following remark. In [10] we showed that the relative Tutte polynomial
can be used to compute the Jones polynomial of a virtual knot, with a formulation very similar to
the original work of Kauffman [14]. In the case of classical knot theory, our generalized formulation
of the Tutte polynomial for a tensor product of colored graphs [11, 12] enables one to derive a fast
computation of the Jones polynomial of a knot obtained through repeated tangle replacement oper-
ations [9]. Thus, the implication of our main result in virtual knot theory is that similar approaches
are also possible for virtual knots obtained through repeated tangle replacement operations, so long as
the tangle replacement does not occur at a virtual crossing (which corresponds to a zero edge in our
graphs). A precise formulation and detailed analysis is, however, much more involved and is beyond
the scope of this paper and shall be addressed by the authors in a future work.
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