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A NEW UPPER BOUND FOR 1324-AVOIDING

PERMUTATIONS

MIKLÓS BÓNA

Abstract. We prove that the number of 1324-avoiding permutations
of length n is less than (7 + 4

√

3)n.

1. Introduction

1.1. Definitions and Open Questions. The theory of pattern avoiding
permutations has seen tremendous progress during the last two decades.
The key definition is the following. Let k ≤ n, let p = p1p2 · · · pn be a
permutation of length n, and let q = q1q2 · · · qk be a permutation of length
k. We say that p avoids q if there are no k indices i1 < i2 < · · · < ik so that
for all a and b, the inequality pia < pib holds if and only if the inequality
qa < qb holds. For instance, p = 2537164 avoids q = 1234 because p does
not contain an increasing subsequence of length four. See [3] for an overview
of the main results on pattern avoiding permutations.

The shortest pattern for which even some of the most basic questions are
open is q = 1324, a pattern that has been studied for at least 17 years.
For instance, there is no known exact formula for the number Sn(1324)
of permutations of length n (or, in what follows, n-permutations) avoiding

1324. Even the value of L(1324) = limn→∞
n
√

Sn(1324) is unknown, though
the limit is known to exist [2].

The best known upper bound for the numbers Sn(1324) was given in 2011
by Claesson, Jelinek and Steingŕımsson [5] who proved that for all positive
integers n, the inequality Sn(1324) < 16n holds. The best known lower
bound, Sn(1324) ≥ 9.42n, was given by five authors in [1] in 2005.

In this paper, we prove the inequality Sn(1324) < (7 + 4
√
3)n. The proof

introduces a refined version of a decomposition of 1324-avoiding permuta-
tions given in [5], encodes such permutations by two words over a 4-element
alphabet, and then enumerates those words.

1.2. Preliminaries. In this section, we present a few simple facts that are
well-known among researchers working in the area that will be necessary in
order to understand some of our proofs in the subsequent sections. Readers
familiar with the area may skip this section. Proofs that are not given here
can be found in [3].

Theorem 1.1. Let q be any pattern of length three. Then Sn(q) = Cn =
(

2n

n

)

/(n + 1), the nth Catalan number. In particular, Sn(q) < 4n.
1
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An entry of a permutation is called a left-to-right minimum if it is smaller
than all entries on its left. Right-to-left maxima are defined analogously.
For instance, in p = 351624, the left-to-right minima are 3 and 1, while the
right-to-left maxima are 6 and 4. A 132-avoiding permutation is completely
determined by the set of its left-to-right minima, and the set of indices that
belong to entries that are left-to-right minima. Indeed, left-to-right minima
must always be in decreasing order. Furthermore, once the set and position
of the left-to-right minima are given, the order of elements that are not left-
to-right minima is uniquely determined. To see this, fill the positions that
belong to entries that are not left-to-right minima one by one, going left
to right. In each step, the smallest remaining entry that is larger than the
closest left-to-right minimum m on the right of the position at hand must
be placed. If we do not follow this procedure and place the entry y instead
of the smaller entry x, then the 132-pattern myx is formed. For example,
to find the unique permutation of length 6 whose left-to-right minima are
the entries 1, 3, and 4, and that has left-to-right minimia in the first, second
and fifth position, write the left-to-right minima in the specified positions in
decreasing order, to get 43 ∗ ∗1∗, where the ∗ denote positions that are still
empty. Then fill the empty slots with the remaining entries, always placing
the smallest entry that is larger than the closest left-to-right minimum on
the left. In this case, that means first placing 5, then 6, then 2, to get
435612.

In an analogous way, each 213-avoiding permutation is determined by
the set of its right-to-left maxima, and the set of indices that belong to
right-to-left maxima.

In preparation to our main results, we reformulate the facts discussed in
the last paragraphs. Permutations p = p1p2 · · · pn of length n that avoid 132
can be injectively encoded by ordered pairs of words (u(p), v(p)) of length n
defined as follows. The ith letter of u(p) is 0 if pi is a left-to-right minimum
in p, and 1 otherwise. The ith letter of v(p) is 0 if the entry i is a left-to-right
minimum in p, and 1 otherwise. The encoding of 213-avoiding permutations
is analogous.

2. Coloring entries

The starting point of our proof is the following decomposition of 1324-
avoiding permutations, given in [5].

Let p = p1p2 · · · pn be a 1324-avoiding permutation, and let us color each
entry of p red or blue as we move from left to right, according the following
rules.

(1) If coloring pi red would create a 132-pattern with all red entries,
then color pi blue, and

(2) if there already is a blue entry smaller than pi, then color pi blue;
(3) otherwise color pi red.
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It is then proved in [5] that the red entries form a 132-avoiding permu-
tation and the blue entries form a 213-avoiding permutation. From this, it
is not difficult to prove that the number of 1324-avoiding n-permutations is
less than 16n. Indeed, there are at most 2n possibilities for the set of the
red entries (the blue entries being the remaining entries), and there are at
most 2n possibilities for the positions in which red entries are placed (the
blue entries then must be placed in the remaining positions). Once the set
and positions of the k red entries are known, there are Ck < 4k possibil-
ities for their permutation, just as there are Cn−k < 4n−k possibilities for
the permutation of the blue entries, completing the proof of the inequality
Sn(1324) < 16n.

3. Refining the coloring

In this section, we improve the upper bound on Sn(1324) by using a more
refined decomposition of 1324-avoiding permutations, which enables us to
carry out a more careful counting argument. Let us color each entry of
the 1324-avoiding permutation p = p1p2 · · · pn red or blue as in Section 2.
Furthermore, let us mark each entry of p with one of the letters A, B, C, or

D as follows.

(1) Mark each red entry that is a left-to-right minium in the partial
permutation of red entries by A,

(2) mark each red entry that is not a left-to-right minimum in the partial
permutation of red entries by B,

(3) mark each blue entry that is not a right-to-left maximum in the
partial permutation of blue entries by C, and

(4) mark each blue entry that is a right-to-left maximum in the partial
permutation of blue entries by D.

Call entries marked by the letter X entries of type X. Let w(p) be the
n-letter word over the alphabet {A,B,C,D} defined above. In other words,
the ith letter of w(p) is the type of pi in p. Let z(p) be the n-letter word
over the alphabet {A,B,C,D} whose ith letter is the type of the entry i in
p.

Example 3.1. Let p = 3612745. Then the subsequence of red entries of p
is 36127, the subsequence of blue entries of p is 45, so w(p) = ABABBCD,

while z(p) = ABACDBB.

The following lemma shows a property of w(p) that will enable us to
improve the upper bound on Sn(1324). Let us say that a word w has a
CB-factor if somewhere in w, a letter C is immediately followed by a letter
B.

Lemma 3.2. If p is 1324-avoiding, then w(p) has no CB-factor.

Proof. Let us assume that C1 is the ith letter of w(p), and B1 is the (i+1)st
letter of w(p). That means that pi > pi+1, otherwise the fact that pi is
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blue would force pi+1 to be blue. Furthermore, since pi is not a right-to-
left maximum, there is an entry d on the right of pi (and on the right of
pi+1) so that pi < d. Similarly, since pi+1 is not a left-to-right minimum,
there is an entry a on its left so that a < pi+1. However, then apipi+1d is a
1324-pattern, which is a contradiction. �

Lemma 3.3. If p is 1324-avoiding, then there is no entry i in p so that i
is of type C and i+ 1 is of type B.

Proof. Analogous to the proof of lemma 3.2. If such a pair existed, i would
have to be on the right of i+1, since i is blue and i+1 is red. As i is not a
right-to-left maximum, there would be a larger entry d on its right. As i+1
is not a left-to-right minimum, there would be a smaller entry a on its left.
However, then a(i+ 1)id would be a 1324-pattern. �

Lemma 3.4. Let hn be the number of words of length n that consist of

letters A, B, C and D that have no CB-factors. Then we have

H(x) =
∑

n≥0

hnx
n =

1

1− 4x+ x2
.

This implies

(1) hn =
3 + 2

√
3

6
·
(

2 +
√
3
)n

+
3− 2

√
3

6
·
(

2−
√
3
)n

.

Proof. We claim that if n ≥ 2, then hn = 4hn−1 − hn−2. Indeed, take any
of the hn−1 words of length n− 1 that have the given property. Affix any of
the four letters of the alphabet to the end of each such word. The result is
a word counted by hn, except in the hn−2 cases in which the last two letters
are C and B, in that order.

Together with the initial conditions h0 = 1 and h1 = 4, this leads to the
functional equation

H(x)− 4x− 1 = 4x(H(x) − 1)− x2H(x).

Expressing H(x), we obtain

H(x) =
1

1− 4x+ x2

as claimed. It is now routine to find the exact formula for hn using partial
fractions. �

The following, simple but crucial lemma tells us that the ordered pair
(w(p), z(p)) completely determines the 1324-avoiding permutation p. Read-
ers who prefer may consult Section 1.2 first for some background on this
argument.

Lemma 3.5. Let Avn(1324) be the set of all 1324-avoiding n-permutations.

Then the map f : Avn(1324) → Hn × Hn, given by f(p) = (w(p), z(p)) is

injective.
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Proof. LetHn be the set of all words of length n over the alphabet {A,B,C,D}
in which a letter C is never immediately followed by a letter B. Then
|Hn| = hn. Let (w, z) ∈ Hn, and let us assume that f(p) = (w, z), that is,
that w(p) = w, and z(p) = z for some p ∈ Avn(1324).

Then w tells us for which indices i the entry pi will be of type A, namely
for the indices i for which the ith letter of w is A. Similary, w tells us the
indices j for which the entry pi is of type B, type C, or type D.

After this, we can use z to figure out which entries of p are of type A,
type B, type C or type D.

There remains to show that this information completely determines p,
that is, that there is at most one permutation that avoids 1324 and satisfies
all the type requirements imposed by w and z.

In order to see this, note that entries of type A must be in decreasing
order in their positions. Entries of type D must be in decreasing order in
their positions. Once these entries are placed, entries of type B must be
placed in their positions from left to right, so that in each step, the smallest
available entry is placed that is larger than the closest entry of type A on the
left. (Otherwise a red 132-pattern is formed.) Similarly, the entries of type
D must be placed in their positions from the right, so that in each step, the
largest available entry is placed that is smaller than the closest right-to-left
maximum on the right. (Otherwise a blue 213-pattern is formed.) �

Corollary 3.6. For all positive integers n, the inequality

Sn(1324) < h2n−1

holds.

Proof. The fact that Sn(1324) < h2n is immediate from the injective property
of f that we have just proved in Lemma 3.5. In order to complete the proof of
this Corollary, note that the image of f consists of ordered pairs (w(p), z(p))
in which both w(p) and z(p) starts with an A, since both p1 and 1 are always
red, and left-to-right minima within the string of red entries (and even in
all of p). �
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