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Abstract. The preferential attachment network with fitness is a dynamic ran-
dom graph model. New vertices are introduced consecutively and a new vertex
is attached to an old vertex with probability proportional to the degree of the old
one multiplied by a random fitness. We concentrate on the typical behaviour of
the graph by calculating the fitness distribution of a vertex chosen proportional
to its degree. For a particular variant of the model, this analysis was first carried
out by Borgs, Chayes, Daskalakis and Roch. However, we present a new method,
which is robust in the sense that it does not depend on the exact specification of
the attachment law. In particular, we show that a peculiar phenomenon, referred
to as Bose-Einstein condensation, can be observed in a wide variety of models.
Finally, we also compute the joint degree and fitness distribution of a uniformly
chosen vertex.
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1 Introduction

Preferential attachment models were popularized by [BA99] as a possible model for
complex networks such as the world-wide-web. The authors observed that a simple
mechanism can explain the occurrence of power law degree distributions in real world
networks. Often networks are the result of a continuous dynamic process: new mem-
bers enter social networks or new web pages are created and linked to popular old
ones. In this process new vertices prefer to establish links to old vertices that are well
connected. Mathematically, one considers a sequence of random graphs (random dy-
namic network), where new vertices are introduced consecutively and then connected
to each old vertex with a probability proportional to the degree of the old vertex. This
rather simple mechanism leads to networks with power law degree distributions and
thus offers an explanation for their occurrence, see e.g. [BRST01] for a mathematical
account.

There are many variations of the classic model to address different shortcomings, see
e.g. [Hof12] for an overview. For example, a more careful analysis of the classical
model shows that one can observe a “first to market”-advantage, where from a cer-
tain point onwards the vertex with maximal degree will always remain maximal, see
e.g. [DM09]. Clearly, this is not the only possible scenario observed in real networks.
One possible improvement is to model the fact that vertices have an intrinsic qual-
ity or fitness, which would allow even younger vertices to overtake old vertices in
popularity.

Introducing fitness has a significant effect on the network formation. In particular,
it may provoke condensation effects as indicated in [BB01]. A first mathematically
rigorous analysis was carried out in [BCDR07] for the following variant of the model:
First every (potential) vertex i ∈ N is assigned an independent identically distributed
(say µ-distributed) fitness Fi. Starting with the network G1 consisting of the sin-
gle vertex 1 with a self-loop, the network is formed as follows. Suppose we have
constructed the graph Gn with vertices {1, . . . , n}, then we obtain Gn+1 by

• insertion of the vertex n+ 1 and

• insertion of a single edge linking up the new vertex to the old vertex i ∈
{1, . . . , n} with probability proportional to

Fi degGn
(i), (1)

where degG(i) denotes the degree of vertex i in a graph G.

In [BCDR07], the authors compute the asymptotic fitness distribution of a vertex
chosen proportional to its degree. This limit distribution is either absolutely con-
tinuous with respect to µ (“fit-get-richer phase”) or has a singular component that
puts mass on the essential supremum of µ (“condensation phase” or “Bose-Einstein
phase”). In the condensation phase a positive fraction of mass is shifted towards the
essential supremum of µ.

The analysis in [BCDR07] uses a coupling argument with a generalized urn model,
which was investigated by [Jan04] using in turn a coupling with a multitype branching
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process. A more direct approach was presented in [Bha07], who explicitly couples
the random graph model with a multitype branching process and then uses classical
results, see e.g. [JN96], to complete the analysis. Both results rely very much on the
particularities of the model specification. This is in strong contrast to the physicists’
intuition which suggests that explicit details of the model specification do not have
an impact.

The aim of the article is to close or at least reduce this gap significantly. We present
a new approach to calculating fitness distributions, which is robust in the sense that
it does not rely on the exact details of the attachment rule. In particular, we show
that the condensation phenomenon can be observed in a wide range of variations of
the model.

What makes the preferential attachment model with fitness more difficult to analyse
than classic preferential attachment models is that the normalisation, obtained by
summing the weights in (1) over all vertices i, is neither deterministic nor is it linear
in the degrees.

In the framework of the classical preferential attachment model, there are several ap-
proaches to specify the model fairly robustly. A rather general approach to calculate
degree distributions in the case of a constant normalisation is presented in [HW06],
where only a (linear) recursion for the degree sequence is assumed. However, the
approach is restricted to a deterministic out-degree. For a linear model, the require-
ment of a deterministic normalisation can be relaxed. For example in [CF03], apart
from more complicated update rules, the out-degree of a new vertex is also allowed
to be random (albeit of bounded degree). Similarly, in [Jor06] it is only assumed
that the out-degree distribution has exponential moments. However, in these cases
even though the normalisation is random, it is rather well concentrated around its
mean. A particular interesting variant is when the out-degree is heavy-tailed as anal-
ysed in [DEHH09]. Here, the fluctuations of the normalisation around its mean start
interfering and alter the degree distributions significantly.

For non-linear preferential attachment models, a particular elegant way of dealing
with a random normalisation is to establish a coupling with a branching process,
which implicitly takes care of the problem, see for example the survey [Bha07]. This
also includes models with sublinear preferential attachment rules, see e.g. [RTV07].
A generalisation of the model with fitness is presented in [Jor10], where the attrac-
tiveness of a vertex is a function of a random location in some metric space. However,
in that setting the full analysis is only carried out when the metric space is finite,
which corresponds to only finitely many different values for the random fitness in our
model.

Our approach shows a new way of dealing with the normalisation constant using a
bootstrapping argument. The idea is to start with a bound θ on the normalisation,
from which we deduce a new bound T (θ). Then, by a continuity argument, we deduce
that the correct limit of the normalisation is a fixed point of T . We stress that the
mapping T is new and has not appeared in the physics literature on complex networks
with fitness yet.

In particular, our proofs show that the condensation effect can be observed irrespec-
tively of the fine details of the model. The phenomenon of Bose-Einstein condensation
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seems to have a universal character, for an overview of further models see [DM12]. The
precise analysis of the dynamics in a closely related model are carried out in [Der13].

2 Definitions and main results

We consider a dynamic graph model with fitness. Each vertex i ∈ N is assigned an
independent µ-distributed fitness Fi, where µ is a compactly supported distribution
on the Borel sets of (0,∞) that is not a Dirac-distribution. We call µ the fitness
distribution.

We measure the importance of a vertex i in a directed graph G by its impact

impG(i) := 1 + indegree of i in G.

For technical reasons, we set impG(i) = 0, if i is not a vertex of G.

The complex network is represented by a sequence (Gn)n∈N of random directed multi-
graphs without loops that is built according to the following rules. Each graph Gn

consists of n vertices labeled by 1, . . . , n. The first graph consists of the single ver-
tex 1 and no edges. Further, given Gn, the network Gn+1 is formed by carrying out
the following two steps:

• Insertion of the vertex n+ 1.

• Insertion of directed edges n + 1 → i for each old vertex i ∈ {1, . . . , n} with
intensity proportional to

Fi · impGn
(i). (2)

Note that this is not a unique description of the network formation. We still need to
clarify the explicit rule how new vertices connect to old ones. We will do this in terms
of the impact evolutions: for each i ∈ N, we consider the process Z(i) = (Zn(i))n∈N
defined by

Zn(i) := impGn
(i).

Since all edges point from younger to older vertices and since in each step all new
edges attach to the new vertex, the sequence (Gn)n∈N can be recovered from the
impact evolutions (Z(i) : i ∈ N). Indeed, for any i, j, n ∈ N with i < j ≤ n there are
exactly

∆Zj−1(i) := Zj(i) −Zj−1(i)

links pointing from j to i in Gn. Note that each impact evolution Z(i) is monotonically
increasing, N0-valued and satisfies Zn(i) = 1l{n=i} for n ≤ i, and any choice for the
impact evolutions with these three properties describes uniquely a dynamic graph
model. We state the assumptions in terms of the impact evolutions. For a discussion
of relevant examples, we refer the reader to the discussion below.

Assumptions. Let λ > 0 be a parameter and define

F̄n =
1

λn

n∑

j=1

Fj impGn
(j) =

1

λn
〈F ,Zn〉,
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where Zn := (Zn(i))i∈N.

We assume that the following three conditions are satisfied:

(A1)

E[∆Zn(i)|Gn] =
Fi Zn(i)

nF̄n
.

(A2) There exists a constant Cvar such that

Var(∆Zn(i)|Gn) ≤ Cvar
E[∆Zn(i)|Gn].

(A3) Conditionally on Gn, for i 6= j, we assume that ∆Zn(i) and ∆Zn(j) are
negatively correlated.

By assumption the essential supremum of µ is finite and strictly positive, say s. Since
the model will still satisfy assumptions (A1) - (A3), if we replace Fi by F ′

i = Fi/s,
we can and will assume without loss of generality that

(A0)
ess sup(µ) = 1.

Remark 2.1. Assumptions (A1)-(A3) guarantee that the total number of edges in
the system is of order λn, see Lemma 3.2.

Let us give two examples that satisfy our assumptions.

Example 2.2. Poisson outdegree (M1). The definition depends on a parameter
λ > 0. In model (M1), given Gn, the new vertex n+ 1 establishes for each old vertex
i ∈ {1, . . . , n} an independent Poisson-distributed number of links n + 1 → i with
parameter

Fi Zn(i)

n F̄n
.

Note that the conditional outdegree of a new vertex n + 1, given Gn, is Poisson-
distributed with parameter λ.

Example 2.3. Fixed outdegree (M2). The definition relies on a parameter λ ∈ N

denoting the deterministic outdegree of new vertices. Given Gn, the number of edges
connecting n + 1 to the individual old vertices 1, . . . , n forms a multinomial random
variable with parameters λ and

(FiZn(i)

λn F̄n

)

i=1,...,n
, where F̄n =

1

λn

n∑

i=1

Fi Zn(i).

The model (M2) with λ = 1 is the one analysed in [BCDR07].

We analyse a sequence of random measures (Γn)n∈N on [0, 1] given by

Γn =
1

n

n∑

i=1

Zn(i) δFi

5



the impact distributions. These measures describe the relative impact of fitnesses.
Note also that, up to normalisation, Γn is the distribution of the fitness of a vertex
chosen proportional to its impact.

Theorem 2.4. Suppose that Assumptions (A0)-(A3) are satisfied. If
∫ f

1−f µ(df) ≥
λ, we denote by θ∗ ≥ 1 the unique value with

∫
f

θ∗ − f
µ(df) = λ

and set otherwise θ∗ = 1. One has

lim
n→∞

F̄n = θ∗, almost surely

and we distinguish two regimes:

(i) Fit-get-richer phase. Suppose that
∫ f

1−f µ(df) ≥ λ. (Γn) converges, almost
surely, in the weak∗ topology to Γ, where

Γ(df) =
θ∗

θ∗ − f
µ(df)

(ii) Bose-Einstein phase. Suppose that
∫ f

1−f µ(df) < λ. (Γn) converges, almost
surely, in the weak∗ topology to Γ, where

Γ(df) =
1

1− f
µ(df) +

(

1 + λ−

∫

[0,1)

1

1− f
µ(df)

)

δ1.

Remark 2.5. In particular, the two phases can be characterized as follows. In the
Fit-get-richer phase, i.e. if

∫ f
1−f µ(dx) ≥ λ, then the limit of (Γn) is absolutely contin-

uous with respect to µ. However, in the Bose-Einstein-phase, i.e. if
∫ f

1−f µ(dx) < λ,
then the limit of (Γn) is not absolutely continuous with respect to µ, but has an atom
in 1. The explanation for this phenomenon is that a positive fraction of newly incom-
ing edges connects to vertices with fitness that is closer and closer to the essential
supremum of the fitness distribution µ, which in the limit amounts to an atom at the
essential supremum.

Next, we restrict attention to vertices with a fixed impact k ∈ N. For n ∈ N we
consider the random measure

Γ(k)
n :=

1

n

n∑

i=1

1l{Zn(i)=k}δFi
,

representing – up to normalisation – the random fitness of a uniformly chosen vertex
with impact k.

To prove convergence of (Γ(k)
n ), we need additional assumptions. Indeed, so far our

assumptions admit models for which vertices are always connected by multiple edges
in which case there would be no vertices with impact 2.

We will work with the following assumptions:
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(A4) ∀k ∈ N: supi=1,...,n 1l{Zn(i)=k} nP(∆Zn(i) ≥ 2|Gn) → 0, a.s.

(A4’) ∀k ∈ N: supi=1,...,n 1l{Zn(i)=k} n
∣
∣P(∆Zn(i) = 1|Gn)−

FiZn(i)
n F̄n

∣
∣ → 0, a.s.

Further we impose an additional assumption on the correlation structure:

(A5) Given Gn, the collection {∆Zn(i)}
n
i=1 is negatively quadrant dependent in

the sense that for any i 6= j, and any k, l ∈ N

P{∆Zn(i) ≤ k;∆Zn(j) ≤ ℓ|Gn} ≤ P{∆Zn(i) ≤ k|Gn}P{∆Zn(j) ≤ ℓ|Gn}

Remark 2.6. Note that both Examples 2.2 and 2.3 also satisfy these additional
assumptions. Moreover, under Assumption (A1), Assumptions (A4) and (A4’) are
equivalent to

(A4”) ∀k ∈ N: supi=1,...,n 1l{Zn(i)=k} nE[∆Zn(i)1l{∆Zn(i)≥2}|Gn] → 0, a.s.

Theorem 2.7. Suppose that Assumptions (A0), (A4), (A4’) and (A5) are satisfied
and that for some θ∗ ∈ [1,∞)

lim
n→∞

F̄n = θ∗, almost surely.

Then one has that, almost surely, (Γ(k)
n ) converges in the weak∗ topology to Γ(k), where

Γ(k)(df) =
1

k + θ∗

f

θ∗

f

k−1∏

i=1

i

i+ θ∗

f

µ(df) (3)

The theorem immediately allows to control the number of vertices with impact k ∈ N.
Let

pn(k) :=
1

n

n∑

i=1

1l{Zn(i)=k} = Γ(k)
n ([0, 1]).

Corollary 2.8. Under the assumptions of Theorem 2.7, one has that

lim
n→∞

pn(k) =

∫

(0,1]

1

k + θ∗

f

θ∗

f

k−1∏

i=1

i

i+ θ∗

f

µ(df), almost surely.

Outline of the article

Section 3 starts with preliminary considerations. In particular, it introduces a stochas-
tic approximation argument which among other applications also appeared in the
context of generalized urn models, see e.g. the survey [Pem07]. In preferential at-
tachment models, these techniques only seem to have been used directly in [Jor10].
Roughly speaking, key quantities are expressed as approximations to stochastically
perturbed differential equations. The perturbation is asymptotically negligible and
one obtains descriptions by differential equations that are typically referred to as
master equations.

7



Section 4 is concerned with the proof of Theorem 2.4. Here the main task is to
prove convergence of the random normalisation (F̄n). This goal is achieved via a
bootstrapping argument. Starting with an upper bound on (F̄n) of the form

lim sup
n→∞

F̄n ≤ θ, almost surely,

we show that this statement remains true when replacing θ by

T (θ) = 1 +
1

λ

∫
θ − 1

θ − f
f µ(df). (4)

Iterating the argument yields convergence to a fixed point. The mapping T always
has the fixed point θ = 1. Moreover, it has a second fixed point θ∗ > 1 if and only
if
∫

x
θ−xµ(dx) > λ, which corresponds to the fit-get-richer phase. In this case, one

can check that only the larger fixed point θ∗ is stable. However, in the condensation
phase, T has only a single fixed point, which is also stable. See also Figure 1 for an
illustration.

θ∗

1

1

(a) Fit-get-richer

1

1

(b) Bose-Einstein

Figure 1: The figure on the left shows the schematic graph of T in the case that
θ∗ > 1, while the one on the right is for the case θ∗ = 1.

Section 5 is concerned with the proof of Theorem 2.7. The proof is based on stochas-
tic approximation techniques introduced in Section 3. In our setting these differential
equations are non-linear because of the normalisation F̄n. However, since we can
control the normalisation by Theorem 2.4, in the analysis of the joint fitness and de-
gree distribution, we arrive at linear equations (or more precisely inequalities) for the
stochastic approximation. The latter then yield Theorem 2.7 via an approximation
argument.

3 Preliminaries

We first recall the general idea of stochastic approximation, which goes back to [RM51]
and can be stated for example for a stochastic process Xn taking values in R

d. Then,
Xn is known as a stochastic approximation process, if it satisfies a recursion of the
type

Xn+1 −Xn =
1

n+ 1
F (Xn) +Rn+1 −Rn, (5)

8



where F is a suitable vector field and the increment of R corresponds to an (often
stochastic) error. In our setting, we could for example restrict to the case when µ is
supported on finitely many values {f1, . . . , fd} ⊂ (0, 1] and denote by

Xn(k) =
1

n

n∑

i=1

Zn(i)1l{Fi=fk},

the proportion of vertices that have fitness fk weighted by their impact. Then, one
can easily calculate the conditional expectation of Xn+1(k) given the graph Gn up to
time n. Indeed, as we will see in the proof of Proposition 4.1, under our assumptions
we obtain that

E[Xn+1(k)−Xn(k) | Gn] =
1

n+ 1

(

µ({fk}) +
fk
F̄n

Xn(k)−Xn(k)
)

Therefore, we note that Xn = (Xn(k))
d
k=1 satisfies

Xn+1(k)−Xn(k) =
1

n+ 1

(

µ({fk}) +
fk
F̄n

Xn(k)−Xn(k)
)

+Rn+1(k)−Rn(k),

so that Xn = (Xn(k))
d
k=1 satisfies an equation of type 5, provided we take Rn+1(k)−

Rn(k) = Xn+1(k) − E[Xn+1(k)|Gn], which defines a martingale, for which we can
employ the standard techniques to show convergence.

Provided that the random perturbations are asymptotically negligible, it is possible
to analyse the random dynamical system by the corresponding master equation

ẋt = F (xt).

There are many articles exploiting such connections and an overview is provided
by [Ben99]. The connection to general urn models is further explained in [Pem07]. In
random graphs, the resulting differential equation is closely related to what is known
as the master equation in heuristic derivations, see e.g. [New10, Ch. 14].

However, in our setting, this method is not directly applicable. First of all, we would
like to consider arbitrary fitness distributions (i.e. not restricted to finitely many
values) and secondly the resulting equation is not linear, because of the appearance
of the normalization F̄n. The latter problem is addressed by using a bootstrapping
method (as described in the introduction). However, this leads to an inequality on
the increment, rather than an equality as in (5). Fortunately, the resulting vector
field F has a very simple structure and so we can deduce the long-term behaviour of
Xn by elementary means, the corresponding technical result is Lemma 3.1. By using
inequalities, we also gain the flexibility to approximate arbitrary fitness distribution
by discretization.

In order to keep our proofs self-contained, we will first state and prove an easy special
case of the technique adapted to our setting.

Lemma 3.1. Let (Xn)n≥0 be a non-negative stochastic process. We suppose that the
following estimate holds

Xn+1 −Xn ≤
1

n+ 1
(An −BnXn) +Rn+1 −Rn, (6)

where

9



(i) (An) and (Bn) are almost surely convergent stochastic processes with determin-
istic limits A,B > 0,

(ii) (Rn) is an almost surely convergent stochastic process.

Then one has that, almost surely,

lim sup
n→∞

Xn ≤
A

B
.

Similarly, if instead under the same conditions (i) and (ii)

Xn+1 −Xn ≥
1

n+ 1
(An −BnXn) +Rn+1 −Rn,

then almost surely

lim inf
n→∞

Xn ≥
A

B
.

Proof. This is a slight adaptation of Lemma 2.6 in [Pem07]. Fix δ ∈ (0, 1). By our
assumptions, almost surely, we can find n0 such that for all m,n ≥ n0,

An ≤ (1 + δ)A, Bn ≥ (1− δ)B, |Rm −Rn| ≤ δ.

Then, by (6), we have that for any m > n ≥ n0,

Xm −Xn ≤

m−1∑

j=n

1

j + 1
(Aj −BjXj) + |Rm −Rn|

≤

m−1∑

j=n

1

j + 1
((1 + δ)A− (1− δ)BXj))

︸ ︷︷ ︸

=:Yj

+δ.
(7)

Let C = (1+δ)A
(1−δ)B . For each index j ≥ n0 with Xj ≥ C + δ, one has that

Yj ≤ −B(1− δ)δ/(j + 1).

Since the harmonic series diverges, by (6) there exists m0 ≥ n0 with Xm0 ≤ C + δ.

Next, we prove that for any m ≥ m0 one has Xm ≤ C+3δ provided that n0 is chosen
sufficiently large (i.e. 1

n0+1(1+δ)A ≤ δ). Suppose that Xm > C+δ. We choose m1 as
largest index smaller than m with Xm1 ≤ C+δ. Clearly, m1 ≥ m0 and an application
of estimate (7) gives

Xm ≤ Xm1 + Ym1 + δ ≤ C + 2δ +
1

m+ 1
(1 + δ)A ≤ C + 3δ =

(1 + δ)A

(1− δ)B
+ 3δ.

Since δ ∈ (0, 1) is arbitrary, we get that, almost surely,

lim sup
n→∞

Xn ≤
A

B
.

The argument for the reverse inequality works analogously.
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As a first application of Lemma 3.1, we can show that the total number of edges
converges if properly normalized.

Lemma 3.2. Almost surely, we have that

lim
n→∞

1

n

n∑

i=1

Zn(i) = 1 + λ.

Proof. Define Yn = 1
n

∑n
i=1Zn(i). Then, we calculate the conditional expectation of

Yn+1 given Gn using that Zn+1(n+ 1) = 1 by definition as

E[Yn+1|Gn] =
1

n+ 1

(
n∑

i=1

E[Zn+1(i)|Gn] + 1
)

= Yn +
1

n+ 1

(
1 +

n∑

i=1

E[∆Zn(i)|Gn]− Yn

)

= Yn +
1

n+ 1
(1 + λ− Yn),

where we used assumption (A1) on the conditional mean of ∆Zn(i) and the definition
of F̄n. Thus, we can write

Yn+1 − Yn =
1

n+ 1
(1 + λ− Yn) +Rn+1 −Rn, (8)

where we define R0 = 0 and

∆Rn := Rn+1 −Rn = Yn+1 − E[Yn+1|Gn].

Therefore, Rn is a martingale and Rn converges almost surely, if we can show that
E[(∆Rn)

2] is summable. Indeed, first using (A3) which states that impact evolutions
of distinct vertices are negatively correlated, we can deduce that

E[(∆Rn)
2|Gn] ≤

1

(n+ 1)2
(

n∑

i=1

E[(∆Zn(i)− E[∆Zn(i)|Gn])
2|Gn] + 1

)

≤
1

(n+ 1)2
(
Cvar

n∑

i=1

E[∆Zn(i)|Gn] + 1
)

≤
1

(n+ 1)2
(Cvar λ+ 1),

which is summable.

Hence, we can apply both parts of Lemma 3.1 together with the convergence of (Rn)
to obtain the almost surely convergence limn→∞ Yn = 1 + λ.

Later on, we will need some a priori bounds on the normalisation sequence.

Lemma 3.3. Almost surely, we have that
∫

xµ(dx) ≤ lim inf
n→∞

1
n F̄n ≤ lim sup

n→∞

1
n F̄n ≤ 1 + λ.
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Proof. For the lower bound, notice that by definition Zn(i) ≥ 1, and therefore

lim inf
n→∞

1

n

n∑

i=1

FiZn(i) ≥ lim inf
n→∞

1

n

n∑

i=1

Fi =

∫

xµ(dx).

Conversely, one can use that the Fi ≤ 1 and combine with limn→∞
1
n

∑n
i=1 Zn(i) =

1 + λ, see also Lemma 3.2.

4 Proof of Theorem 2.4

The central bootstrap argument is carried out at the end of this section. It is based on
Lemma 4.2. Before we state and prove Lemma 4.2, we prove a technical proposition
which will be crucial in the proof of the lemma.

Proposition 4.1. (i) Let θ ≥ 1. If

lim sup
n→∞

F̄n ≤ θ, almost surely,

then for any 0 ≤ a < b ≤ 1, one has

lim inf
n→∞

1

n

n∑

i=1

1l{Fi∈(a,b]}impn(i) ≥

∫

(a,b]

θ

θ − f
µ(df),

almost surely.

(ii) Let θ > 0. If
lim inf
n→∞

F̄n ≥ θ,

then for any 0 ≤ a < b < θ ∧ 1,

lim sup
n→∞

1

n

n∑

i=1

1l{Fi∈(a,b]}Zn(i) ≤

∫

(a,b]

θ

θ − f
µ(df).

Proof. (i) First we prove that under the assumptions of (i), one has for 0 ≤ f < f ′ ≤ 1,
that

lim inf
n→∞

1

n

n∑

i=1

1l{Fi∈(f,f ′]}Zn(i) ≥
θ

θ − f
µ((f, f ′]), almost surely. (9)

Let 0 ≤ f < f ′ ≤ 1 and denote by

Xn = Γn((f, f
′]) =

1

n

∑

i∈In

Zn(i),

where we denote by In = {i ∈ {1, . . . , n} : Fi ∈ (f, f ′]}.

We will show (9) with the help of the stochastic approximation argument explained
in Section 3, see Lemma 3.1. We need to provide a lower bound for the increment

12



Xn+1 −Xn. Using assumption (A1), we can calculate the conditional expectation of
Xn+1:

E[Xn+1|Gn] =
1

n+ 1

∑

i∈In

E[Zn+1(i)|Gn] +
1

n+ 1
P(Fn+1 ∈ (f, f ′])

= Xn +
1

n+ 1

(∑

i∈In

E[∆Zn(i)|Gn]−Xn + µ((f, f ′])
)

= Xn +
1

n+ 1

(∑

i∈In

FiZn(i)

nF̄n
−Xn + µ((f, f ′])

)

.

Hence, rearranging yields

E[Xn+1|Gn]−Xn ≥
1

n+ 1

(

µ(f, f ′]−
(
1−

f

supm≥n F̄m

)
Xn

)

Thus, we can write

Xn+1 −Xn ≥
1

n+ 1

(

µ(f, f ′]−
(
1−

f

supm≥n F̄m

)
Xn

)
+Rn+1 −Rn,

where Rn is a martingale defined via R0 = 0 and

∆Rn := Rn+1 −Rn = Xn+1 − E[Xn+1|Gn].

If we can show that Rn converges almost surely, then Lemma 3.1 together with the
assumption that lim supn→∞ F̄n ≤ θ shows that

lim inf
n→∞

Xn ≥
θ

θ − f
µ((f, f ′]),

which is the required bound (9).

The martingale convergence follows if we show that E[(∆Rn)
2|Gn] is summable. In-

deed,

∆Rn =
1

n+ 1

∑

i∈In

(Zn+1(i)− E[Zn+1(i)|Gn]) +
1

n+ 1
(1l{Fn+1∈(f,f ′]} − µ((f, f ′]).

The second moment of the last expression is clearly bounded by 1
(n+1)2

µ((f, f ′]) which

is summable, so we can concentrate on the first term. Now, we can use (A3), the
negative correlation of ∆Zn(i), and then (A1) and (A2) to estimate the variance to
deduce that

1

(n+ 1)2
E

[(∑

i∈In

(Zn+1(i)− E[Zn+1(i)|Gn])
)2∣

∣Gn

]

≤
1

(n+ 1)2
E

[(∑

i∈In

(∆Zn(i)− E[∆Zn(i)|Gn])
)2∣

∣Gn

]

≤
1

(n+ 1)2

∑

i∈In

Var(∆Zn(i)|Gn)

≤
1

(n+ 1)2
Cvar

∑

i∈In

FiZn

nF̄n
≤

1

(n + 1)2
Cvarλ,

13



where we used the definition of F̄n in the last step. The latter is obviously summable,
so that Rn converges almost surely.

Note that the assertion (i) follows by a Riemann approximation. One partitions (a, b]
via a = f0 < · · · < fℓ = b with an arbitrary ℓ ∈ N. Then it follows that

lim inf
n→∞

1

n

n∑

i=1

1l{Fi∈(a,b]}impn(i) ≥

ℓ−1∑

k=0

θ

θ − fk
µ((fk, fk+1]), almost surely,

and the right hand side approximates the integral up to an arbitrary small constant.

(ii) It suffices to prove that for 0 ≤ f < f ′ < θ ∧ 1 one has

lim sup
n→∞

1

n

n∑

i=1

1l{Fi∈(f,f ′]}Zn(i) ≤
θ

θ − f ′
µ((f, f ′]), almost surely. (10)

This follows completely analogous to part (i) using Lemma 3.1. Then the statement
(ii) follows as above by a Riemann approximation.

The next lemma takes the lower bound on the fitness distribution obtained in Propo-
sition 4.1 to produce a new upper bound on the normalisation. We set for θ ≥ 1

T (θ) = 1 +
1

λ

∫
θ − 1

θ − f
f µ(df) (11)

Lemma 4.2. (i) Let θ > 1. If

lim sup
n→∞

F̄n ≤ θ, almost surely,

then
lim sup
n→∞

F̄n ≤ T (θ), almost surely,

(ii) Let θ > 0 and suppose that

lim inf
n→∞

F̄n ≥ θ, almost surely.

One has, almost surely,

lim inf
n→∞

F̄n ≥

{
T (θ) if θ ≥ 1,

θ + θ
λ(1− µ[0, θ)) if θ ∈ (0, 1).

Proof. (i) Define a measure ν on [0, 1) via

ν(df) =
θ

θ − f
µ(df).

Further, set ν ′ = ν+((1+λ)−ν[0, 1))δ1. Since by Lemma 3.2, limn→∞
1
n

∑n
i=1 Zn(i) =

1 + λ, almost surely, we get with Proposition 4.1 that, for every t ∈ (0, 1),

lim sup
n→∞

1

n

n∑

i=1

1l{Fi∈[t,1)}Zn(i) ≤ 1 + λ− ν([0, t)) = ν ′([t, 1]), almost surely.

14



This allows us to compute a new asymptotic upper bound for (F̄n): let m ∈ N,
observe that, almost surely,

F̄n =
1

λn

n∑

i=1

FiZn(i) ≤
1

λn

n∑

i=1

1

m

m−1∑

j=0

1l{Fi≥j/m}Zn(i)

=
1

λm

m−1∑

j=0

1

n

n∑

i=1

1l{Fi≥j/m}Zn(i),

so that

lim sup
n→∞

F̄n ≤
1

λm

m−1∑

j=0

ν ′([j/m, 1]), almost surely.

The latter expression tends with m → ∞ to the integral 1
λ

∫
x ν ′(dx) and we finally

get that, almost surely,

lim sup
n→∞

F̄n ≤
1

λ

∫

f ν ′(df) = T (θ).

(ii) Let θ′ ∈ (0, θ ∧ 1) and consider the (signed) measures ν = ν(θ′) and ν ′ = ν ′(θ′)
defined by

ν(df) =
θ

θ − f
1l[0,θ′](f)µ(df)

and
ν ′ = ν + (1 + λ− ν[0, 1])δθ′ .

As above we conclude with Proposition 4.1 that for t < θ′, almost surely,

lim inf
n→∞

n∑

i=1

1l{Fi∈(t,1]}Zn(i) ≥ 1 + λ− ν((0, t]) = ν ′((t, 1]).

We proceed as above and note that for any m ∈ N,

F̄n =
1

λn

n∑

i=1

FiZn(i) ≥
1

λn

n∑

i=1

θ′

m

m−1∑

i=1

1l{Fi≥
j

m
θ′}Zn(i)

=
θ′

λm

m−1∑

j=1

1

n

n∑

i=1

1l{Fi≥
j

m
θ′}Zn(i)

which yields that, almost surely,

lim inf
n→∞

F̄n ≥
θ′

λm

m∑

j=1

ν ′(( j
mθ′, 1]).

Since m ∈ N is arbitrary, we get that, almost surely,

lim inf
n→∞

F̄n ≥
1

λ

∫

f ν ′(df) =
1

λ

(

θ′(1 + λ)− θ

∫

[0,θ′]

θ′ − f

θ − f
µ(df)

)

.

15



We distinguish two cases. If θ < 1, we use that the latter integral is dominated by
µ([0, θ′]) and let θ′ ↑ θ to deduce that

lim inf
n→∞

F̄n ≥ θ +
θ

λ
(1− µ[0, θ)), almost surely.

If θ ≥ 1, we let θ′ ↑ 1 and get

lim inf
n→∞

F̄n ≥
1

λ

∫

f ν ′(df) =
1

λ

(

1 + λ− θ

∫
1− f

θ − f
µ(df)

)

= T (θ).

Finally, we can prove Theorem 2.4, where we first show the normalisation converges
using a bootstrap argument based on Lemma 4.2. Finally we use the bound on
the fitness distribution obtained in Proposition 4.1 to show convergence of fitness
distributions.

Proof of Theorem 2.4. (i) Fit-get-richer phase. Suppose that θ∗∗ is the smallest value
in [θ∗,∞) with

lim sup
n→∞

F̄n ≤ θ∗∗, almost surely. (12)

Such a value exists due to Lemma 3.3. We prove that θ∗∗ = θ∗ by contradiction.
Suppose that θ∗∗ > θ∗. We apply Lemma 4.2 and get that

lim sup
n→∞

F̄n ≤ T (θ∗∗), almost surely.

Now note that T is continuous on [θ∗, θ∗∗] and differentiable on (θ∗, θ∗∗) with

T ′(θ) =
1

λ

∫
f(1− f)

(θ − f)2
µ(df) ≤

1

λ

∫
f

(θ − f)
µ(df) < 1.

Further θ∗ is a fixed point of T . Therefore, by the mean value theorem,

T (θ∗∗) = T (θ∗) + T ′(θ)(θ∗∗ − θ∗) < θ∗∗

for an appropriate θ ∈ (θ∗, θ∗∗). This contradicts the minimality of θ∗∗.

We now turn to the convergence of the measures Γn. Note that the measure Γ defined
by

Γ(df) =
θ∗

θ∗ − f
µ(df)

has total mass 1 + λ. Since Γn(0, 1) = 1
n

∑n
i=1Zn(i) tends to 1 + λ, almost surely,

one can apply the Portmanteau theorem to prove convergence of (Γn). Let D =
⋃

n∈N 2−n
Z∩[0, 1] denote the dyadic numbers on [0, 1]. We remark that the number of

dyadic intervals (a, b] with endpoints a, b ∈ D is countable so that, by Proposition 4.1,
there exists an almost sure event Ω0, such that for all dyadic intervals (a, b]

lim inf
n→∞

Γn(a, b] ≥ Γ(a, b] on Ω0.
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Let now U ⊂ (0, 1) be an arbitrary open set. We approximate U monotonically from
within by a sequence of sets (Um)m∈N with each Um being a union of finitely many
pairwise disjoint dyadic intervals as above. Then, for any m ∈ N, one has

lim inf
n→∞

Γn(U) ≥ lim inf
n→∞

Γn(Um) ≥ Γ(Um) on Ω0

and by monotone convergence, it follows that lim infn→∞ Γn(U) ≥ Γ(U) on Ω0. This
proves convergence

Γn ⇒ Γ, almost surely.

Since F̄n = 1
λ

∫
f Γn(df), we conclude that, almost surely,

lim
n→∞

F̄n =
1

λ

∫

f Γ(df) = θ∗.

(ii) Bose-Einstein phase. Let θ∗ = 1. We start as in (i). Let θ∗∗ denote the smallest
value in [1,∞) with

lim sup
n→∞

F̄n ≤ θ∗∗, almost surely.

As above a proof by contradiction proves that θ∗∗ = 1. Next, let θ∗∗ denote the
largest real in (0, 1] with

lim inf
n→∞

F̄n ≥ θ∗∗, almost surely. (13)

By Lemma 3.3, such a θ∗∗ exists and we assume that θ∗∗ < 1. By Lemma 4.2, the
inequality (13) remains valid for

θ∗∗ +
θ∗∗

λ
(1− µ[0, θ∗∗)) > θ∗∗

contradicting the maximality of θ∗∗. Hence,

lim
n→∞

F̄n = 1, almost surely.

By Proposition 4.1, one has, for 0 ≤ a < b < 1,

lim inf
n→∞

Γn(a, b] ≥

∫

(a,b]

1

1− f
µ(df) = Γ(a, b], almost surely,

and, for 0 ≤ a < b = 1,

lim inf
n→∞

Γn(a, 1] = 1 + λ− lim sup
n→∞

Γn(0, a] = Γ(a, 1], almost surely.

The rest of the proof is in line with the proof of (i).
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5 Proof of Theorem 2.7

The proof is achieved via a stochastic approximation technique as discussed in Sec-
tion 3.

Proof of Theorem 2.7. We prove the statement via induction over k = 1, 2, . . . . The
proof of the initial statement (k = 1) is similar to the proof of the induction step and
we will mainly focus on the latter task.

Let k ∈ {2, 3, . . . } and suppose that the statement is true when replacing k by a value
in 1, . . . , k − 1. We fix f, f ′ ∈ [0, 1] with µ({f, f ′}) = 0, µ((f, f ′]) > 0 and consider
the random variables

Xn := Γ(k)
n ((f, f ′])

for n ∈ N. In the first step we derive a lower bound for the increments of (Xn) that
is suitable for the application of Lemma 3.1.

We restrict attention to vertices with fitness in (f, f ′] and denote In := {i ∈ {1, . . . , n} :
Fi ∈ (f, f ′]}. Note that

E[Xn+1|Gn] =
1

n+ 1

∑

i∈In

k∑

l=1

1l{Zn(i)=l}P(∆Zn(i) = k − l|Gn)

= Xn +
1

n+ 1

∑

i∈In

(k−1∑

l=1

1l{Zn(i)=l}P(∆Zn(i) = k − l|Gn)

− 1l{Zn(i)=k}P(∆Zn(i) 6= 0|Gn)
)

−
Xn

n+ 1
.

(14)

An application of the induction hypothesis gives that for fixed l ∈ {1, . . . , k − 1}

lim
n→∞

∑

i∈In

1l{Zn(i)=l}P(∆Zn(i) = k − l|Gn) = 1l{l=k−1}
k − 1

θ∗

∫

(f,f ′]
xdΓ(k−1)(dx),

almost surely. Indeed, for l = k − 1
∣
∣
∣

∑

i∈In

1l{Zn(i)=k−1}P(∆Zn(i) = 1|Gn)−
k − 1

F̄n

∫

(f,f ′]
xdΓ(k−1)(dx)

∣
∣
∣

≤ sup
i=1,...,n

1l{Zn(i)=k−1}n
∣
∣
∣P(∆Zn(i) = 1|Gn)−

(k − 1)Fi

n F̄n

∣
∣
∣

+
k − 1

F̄n

∣
∣
∣

∫

(f,f ′]
xdΓ(k−1)

n (dx)−

∫

(f,f ′]
xdΓ(k−1)(dx)

∣
∣
∣

and the former term tends to zero due to assumption (A4’) and the latter term tends
to zero by the induction hypothesis (and the fact hat Γ(k−1) puts no mass on f and
f ′). Analogously, one verifies the statement for the remaining l’s invoking assumption
(A4). Further one has that

∑

i∈In

1l{Zn(i)=k}P(∆Zn(i) 6= 0)−
f ′k

F̄n
Xn

≤
∑

i∈In

1l{Zn(i)=k}

(

P(∆Zn(i) = 1|Gn)−
Fik

nF̄n

)

+ sup
i=1,...,n

nP(∆Zn(i) ≥ 2|Gn)
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where the two terms on the right hand side converge to 0 by assumptions (A4) and
(A4’).

Consequently, there exist stochastic processes (An) and (Bn) such that

E[Xn+1|Gn]−Xn ≥
1

n+ 1
(An −BnXn)

with An → k−1
θ∗

∫

(f,f ′] xdΓ
(k−1)(x) and Bn → 1+ k f ′

θ∗ , almost surely (where the former

limit is positive since µ((f, f ′]) > 0). We now choose (Rn) as the martingale with

Rn =

n∑

k=1

(Xk − E[Xk|Gk−1]),

where we define G0 as the empty graph and observe that

Xn+1 −Xn ≥
1

n+ 1
(An −BnXn) +Rn+1 −Rn. (15)

Convergence of the remainder term. Next, we prove that (Rn) converges almost
surely. An elementary calculation shows that the process (Rn) is the difference of two
martingales, namely

M (1)

n+1 = M (1)
n +

1

n+ 1

(∑

i∈In

1l{Zn(i)<k,Zn+1(i)≥k} − E
[∑

i∈In

1l{Zn(i)<k,Zn+1(i)≥k}|Gn

])

,

and

M (2)

n+1 = M (2)
n +

1

n+ 1

(∑

i∈In

1l{Zn(i)≤k,Zn+1(i)>k}−E
[∑

i∈In

1l{Zn(i)≤k,Zn+1(i)>k}|Gn

])

(16)

both starting in 0. Since both martingales are the same up to a shift of parameter
k, we only have to show that either converges almost surely for fixed k ∈ N. We will
show that M (2) converges by showing that its quadratic variation process converges
almost surely. Indeed we will show that E[(∆M (2)

n )2|Gn] is almost surely summable,
where ∆M (2)

n = M (2)

n+1 −M (2)
n .

First using assumption (A5), i.e. the conditional negative quadrant dependence of
∆Zn(i), we find that

E[(∆M (2)
n )2|Gn]

≤
1

(n+ 1)2

∑

i∈In

E

[(

1l{Zn(i)≤k,Zn+1(i)>k} − P
(
Zn(i) ≤ k,Zn+1(i) > k}|Gn

))2∣∣
∣Gn

]

≤
1

(n+ 1)2

∑

i∈In

1l{Zn(i)≤k}P(∆Zn(i) ≥ 1|Gn)

≤
1

(n+ 1)2
sup

i=1,...,n
n1l{Zn(i)≤k}

∣
∣
∣P(∆Zn(i) ≥ 1|Gn)−

FiZn(i)

nF̄n

∣
∣
∣+

λ

(n+ 1)2
,

where we used the definition of F̄n in the last step. By assumptions (A4) and (A4’)
the latter expression is indeed almost surely summable.
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Completing the induction step. Combining the convergence of the remainder term Rn

with the recursion in (15), it follows with Lemma 3.1 that

lim inf
n→∞

Γ(k)
n ((f, f ′]) ≥

(k − 1)
∫

(f,f ′] x dΓ
(k−1)(x)

θ∗ + kf ′
(17)

Recall that f, f ′ ∈ [0, 1] were chosen arbitrarily with f < f ′ and µ({f, f ′}) = 0, where
we can drop the assumption that µ((f, f ′]) > 0, since the statement holds trivially in
that case. We now pick a countable subset F ⊂ [0, 1] that is dense such that for each
of its entries f one has µ({f}) = 0. The above theorem shows that there exists an
almost sure set Ω0 on which (17) holds for any pair f, f ′ ∈ F with f < f ′. Suppose
now that U is an arbitrary open set. By approximating the set U from below by
unions of small disjoints intervals (f, f ′] with f, f ′ ∈ F it is straight-forward to verify
that

lim inf
n→∞

Γ(k)
n (U) ≥ (k − 1)

∫

(f,f ′]

x

θ∗ + kx
dΓ(k−1)(x)

on Ω0. The proof of the converse inequality, namely that almost surely, for any closed
A, one has

lim sup
n→∞

Γ(k)
n (A) ≤ (k − 1)

∫

(f,f ′]

x

θ∗ + kx
dΓ(k−1)(x)

is established in complete analogy. We thus obtain that Γ(k)
n converges almost surely,

in the weak∗-topology to Γ(k) given by

Γ(k)(dx) =
(k − 1)x

kx+ θ∗
Γ(k−1)(dx) =

k∏

l=2

(l − 1)x

lx+ θ∗
Γ(1)(dx).

Initialising the induction. To complete the argument, we still need to verify the
statement for the initial choice k = 1. We again define Xn = Γ(1)

n ((f, f ′]) for f, f ′ ∈
[0, f ] with µ({f, f ′}) = 0, µ(f, f ′] > 0 and we define In = {i ∈ {1, . . . , n} : Fi ∈
(f, f ′]}. Then, it follows that since Zn+1(n+ 1) = 1 by definition,

E[Xn+1|Gn] =
1

n+ 1

∑

i∈In

P(Zn+1 = 1|Gn) +
1

n+ 1
P(Fn+1 ∈ (f, f ′])

= Xn +
1

n+ 1

[∑

i∈In

1l{Zn(i)=1}P(∆Zn+1 ≥ 1|Gn)−Xn + µ((f, f ′])
]

.

Thus, in complete analogy with the induction step, one can show that

Xn+1 −Xn ≥
1

n+ 1
(An −BnXn) +Rn+1 −Rn,

where An → µ((f, f ′]) and Bn → 1 + f ′

θ∗ and Rn+1 − Rn = Xn+1 − E[Xn+1|Gn].
The remainder term Rn can then be decomposed as M (1)

n −M (2)
n + In as above with

M (1)
n = 0, M (2)

n defined as in (16) and the additional term defined as

In =
1

n

(
1l{Fn∈(f,f ′]} − P(Fn ∈ (f, f ′])

)
.
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We have already seen that M (2) converges. Moreover, an elementary martingale
argument (for i.i.d. random variables) shows that

∑

n∈N In also converges almost
surely. Therefore, by Lemma 3.1 we can deduce that

lim inf
n→∞

Xn ≥
θ∗

θ∗ + f ′
µ((f, f ′]).

Repeating the same approximation arguments as before, we obtain that Γ(1) converges
almost surely in the weak* topology to Γ(1) given by

Γ(1)(dx) =
θ∗

θ∗ + x
µ(dx),

which completes the proof by induction.
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