Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T09:41:33.673Z Has data issue: false hasContentIssue false

An Optimal Algorithm for Finding Frieze–Kannan Regular Partitions

Published online by Cambridge University Press:  23 April 2014

DOMINGOS DELLAMONICA Jr
Affiliation:
Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA (e-mail: ddellam@mathcs.emory.edu)
SUBRAHMANYAM KALYANASUNDARAM
Affiliation:
Department of Computer Science and Engineering, IIT Hyderabad, India (e-mail: subruk@iith.ac.in)
DANIEL M. MARTIN
Affiliation:
Center for Mathematics, Computer Science and Cognition, Universidade Federal do ABC, Santo André, SP 09210-170Brazil (e-mail: daniel.martin@ufabc.edu.br)
VOJTĚCH RÖDL
Affiliation:
Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA (e-mail: rodl@mathcs.emory.edu)
ASAF SHAPIRA
Affiliation:
School of Mathematics, Tel Aviv University, Tel Aviv, Israel69978 (e-mail: asafico@tau.ac.il)

Abstract

In this paper we prove that two local conditions involving the degrees and co-degrees in a graph can be used to determine whether a given vertex partition is Frieze–Kannan regular. With a more refined version of these two local conditions we provide a deterministic algorithm that obtains a Frieze–Kannan regular partition of any graph G in time O(|V(G)|2).

Type
Paper
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Alon, N., Duke, R. A., Lefmann, H., Rödl, V. and Yuster, R. (1994) The algorithmic aspects of the regularity lemma. J. Algorithms 16 80109.Google Scholar
[2]Conlon, D. and Fox, J. (2012) Bounds for graph regularity and removal lemmas. Geom. Funct. Anal. 22 11911256.Google Scholar
[3]Coppersmith, D. and Winograd, S. (1990) Matrix multiplication via arithmetic progressions. J. Symbol. Comput. 9 251280.Google Scholar
[4]Dellamonica, D., Kalyanasundaram, S., Martin, D., Rödl, V. and Shapira, A. (2012) A deterministic algorithm for the Frieze–Kannan regularity lemma. SIAM J. Discrete Math. 26 1529.Google Scholar
[5]Duke, R. A., Lefmann, H. and Rödl, V. (1995) A fast approximation algorithm for computing the frequencies of subgraphs in a given graph. SIAM J. Comput. 24 598620.Google Scholar
[6]Erdős, P. and Turán, P. (1936) On some sequences of integers. J. London Math. Soc. (S1) 11 261264.Google Scholar
[7]Frieze, A. and Kannan, R. (1999) Quick approximation to matrices and applications. Combinatorica 19 175220.Google Scholar
[8]Frieze, A. and Kannan, R. (1996) The regularity lemma and approximation schemes for dense problems. In 37th Annual Symposium on Foundations of Computer Science (Burlington, VT, 1996), IEEE Computer Society Press, pp. 1220.Google Scholar
[9]Gowers, W. T. (1997) Lower bounds of tower type for Szemerédi's uniformity lemma. Geom. Funct. Anal. 7 322337.Google Scholar
[10]Kohayakawa, Y., Rödl, V. and Thoma, L. (2003) An optimal algorithm for checking regularity. SIAM J. Comput. 32 12101235.CrossRefGoogle Scholar
[11]Schacht, M. and Rödl, V. (2010) Fete of combinatorics and computer science. In Regularity Lemmas for Graphs (Katona, G., Schrijver, A. and Szönyi, T., eds), Springer, pp. 287326.Google Scholar
[12]Szemerédi, E. (1975) On sets of integers containing no k elements in arithmetic progression. Acta Arith. 27 199245.Google Scholar
[13]Szemerédi, E. (1978) Regular partitions of graphs. In Problèmes Combinatoires et Théorie des Graphes (Orsay 1976), Vol. 260 of Colloques Internationaux du CNRS, CNRS, pp. 399401.Google Scholar
[14]Williams, R. (2009) Private communication.Google Scholar